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Abstract— This paper investigates using a sampling-based

approach, the RRT*, to reconfigure a 2D set of connected

tiles in complex environments, where multiple obstacles might

be present. Since the target application is automated building

of discrete, cellular structures using mobile robots, there are

constraints that determine what tiles can be picked up and

where they can be dropped off during reconfiguration. We

compare our approach to two algorithms as global and local

planners, and show that we are able to find more efficient

build sequences using a reasonable amount of samples, in

environments with varying degrees of obstacle space.

I. INTRODUCTION

Cellular structures are related to reconfigurable robotics
work, but rather than using intelligent, powered and actuated
reconfigurable modules, small robots that walk along the
modules are used to move them. This allows the modules
to be passive, which reduces their complexity, weight, and
cost. Automated building of discrete, cellular structures has
potential applications at many scales, ranging from plans for
kilometer-scale manufacturing structures in space [10], to
millimeter-scale smart material [18], to nano-scale assembly
with DNA [17].

Building using discrete, cellular structures provides some
advantages when compared to methods that require an ex-
ternal scaffold or an external gantry such as traditional 3D-
printing. The workspace of the gantry defines the size of the
structure that can be built. In contrast, the cellular structures
provide their own scaffold for construction, and modules can
move along this structure to increase the build area.

The robot in Figs. 1 and 2 shows the motivating hardware
system. Automated building of discrete cellular structures
was explored by Jenett et al. [9]. Their work featured
cellular components called tiles used as building material
and BILL-E, a robot designed to reconfigure them. Tiles are
discrete structures that can be assembled and disassembled
by mating the magnets on two separate tiles faces. BILL-E is
a mobile robotic platform based on the inchworm archetype.
This six DoF robot can walk along the structure made of tiles,
and can pick up, carry, and then place one tile at a time. As
with reconfigurable robotics, the reconfiguration speed can
often be increased by using more robots at a time [3], [5],
but this paper focuses on moving a single robot.
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Fig. 1. This work is motivated by the challenge of reconfiguring a set
of tiles using a simple robot [9] that can move one tile at a time while
walking on the remaining tiles. The sequence a) to d) shows an example of
a robot reconfiguring (white) tiles. The inset images are the planner’s view,
where red squares are tiles, light blue and light green squares are the start
and goal configurations, the blue square is the location where the robot will
place the next tile, and the black squares are obstacles. See overview video
at https://youtu.be/Fp0MUag8po4.

We consider the problem of reconfiguring a given start
into a given goal configuration of tiles using a single robot,
moving one tile at a time while keeping all intermediate con-
figurations connected, regardless of the presence of obstacles.
Among other factors, power consumption motivates solving
for the shortest set of moves to achieve this. Because the
robot itself can only move on top of tiles (see Fig. 2), the
connectivity constraint is crucial to ensure that the robot can
reach every tile of the shape at all times. Furthermore, we
require the tiles to be connected to make sure that the relative
positions of the tiles stay the same during the reconfiguration,
which is important when reconfiguring in space or water,
where they can easily float away once disconnected.

II. RELATED WORK

A. Tile reconfiguration

Reconfiguring a cellular structure is a challenging motion-
planning problem, even when the problem is simplified to
the placement of tiles in 2D. Tile reconfiguration has been
explored by many authors. Gmyr et al. [8] explore algorithms
for reconfiguring sets of hexagonal tiles, with applications in
construction of nano materials.

http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
https://nsf.gov/awardsearch/showAward?AWD_ID=1849303
https://nsf.gov/awardsearch/showAward?AWD_ID=2130793
https://youtu.be/Fp0MUag8po4


Similar 2D reconfiguration work examined efficient meth-
ods for compacting tile structures. Dumitrescu and Pach [4]
introduced a method where one tile is moved at a time by
sliding along the perimeter of the polyomino. Their algorithm
could convert an n-tile start configuration to an n-tile goal
configuration in O(n2) moves if the start and goal config-
urations have non-zero overlap. Moreno and Sacristán [15]
modified the method of [4] to be in-place, i.e., the tile is
always placed within one offset of the current structure.
Their method turns any configuration into a solid rectangle
within the bounding box of the start configuration. Akitaya
et al. [1] proved that it is NP-hard to minimize the number
of sliding moves under this model. They introduced a tech-
nique to improve reconfiguration performance by splitting
the reconfiguration into a gathering stage and a compacting
stage. In the gathering stage the structure is retracted such
that each component is well connected. In the compacting
stage the polyomino is transformed into a single, solid, xy-
monotone component. These works are related, but require
the start and goal configurations to overlap, occur in obstacle-
free environments, and allow any tile to move – while our
model requires the robot to travel to the next tile to move and
carry it to its destination, and is capable of handling obstacles
and start and goal configurations that do not overlap.

B. Sampling-based methods

While [1], [4], [15] introduced algorithms for reconfigura-
tion, an alternative is to search for a solution using sampling.

Rapidly-expanding random trees (RRT) are a sampling-
based motion-planning method designed to efficiently ex-
plore paths in high-dimensional spaces. RRTs were devel-
oped by LaValle and Kuffner [14], and are often used for
planning problems with obstacles and other constraints.

This approach is challenging because of the large configu-
ration space. The configurations of polyominoes form a high-
dimensional space that is related to placing n tiles in a �-tile
free space – every possible n-omino can potentially also be
translated and rotated. The number of viable configurations
becomes smaller if obstacles constrain the build area. At one
extreme, if the build area is a �-tile long, 1-wide column,
there is only one possible n-omino with �� n+ 1 possible
translations. If the free space is instead a
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sized square, it is difficult to compute the number of valid
configurations. Ignoring the constraint that the configuration
must be connected, there are �!

n!(��n)! placements of n tiles in
a �-tile free space. Alternately, we could count the number of
free polyominoes and ignore both obstacles and the position
of the polyomino. However, even the best methods for
computing free polyominoes [11] require time and memory
that grows exponentially in n. To address the challenges
of this large configuration space, this paper relies on local
planners and a simplified distance heuristic.

C. Automated building of discrete cellular structures

BILL-E can traverse the structure by locking its feet on
tile faces, and it can modify the structure by picking up and
placing tiles with a gripper located at the front of the robot.

Fig. 2. The BILL-E bots are designed to walk on tiles only. The round
design of the feet (left) does not allow the robot to step on other media
(right). Because of this limitation, the structure must stay connected to
ensure the BILL-E bot can reach every part of it. Additionally, disconnected
structures could easily drift away in certain media like water or space.

This platform is easy to manufacture and assemble, making
it a good candidate for implementing and testing automated
building algorithms.

Previous work has explored methods to simplify compli-
cated tile construction. Niehs et al. [16] and Fekete et al. [6]
showed that the robot control could be represented as a finite
automata and still enable building bounding boxes out of
tiles around arbitrary polyominoes, scale and rotate them
while keeping it connected at all times. These approaches
are presented in a video by Abdel-Rahman et al. [2].

III. DEFINITIONS

The workspace is a rectangular unit grid, where each cell
is either free, filled by a tile, or filled by an obstacle. This
paper searches for reconfiguration sequences to convert a set
of tiles from a start to a goal configuration. The start and goal
configurations are each connected components, i.e., for every
tile there is another tile that is adjacent to one of its sides.
Such shapes are called polyominoes. As neither the robot
nor the tile carried by the robot can cross an obstacle, we
assume that both configurations are located within the same
connected component of free space. Otherwise, no feasible
reconfiguration sequence exists.

A configuration S is converted to another one by walking
the robot to an adjacent position of a tile t, picking up t,
and walking along a shortest edge-connected path on S \{t}

before placing the tile in another location. An ordered series
of these operations is called a reconfiguration sequence.

We refer to the distance walked before picking up a tile
as the pickup distance dP and the distance walked while
carrying a tile as the dropoff distance dD, respectively. These
distances on the polyomino are determined by a breadth-first

search tree (BFS) over the configuration.
In general, the distance between two workspace positions

is defined by the length of the geodesic edge-connected path
between them, taking into account the obstacles.

The carry time (empty travel time) of a reconfiguration
sequence refers to the sum of all dropoff (pickup) distances.
Similarly, the total travel time of a sequence then refers to
the sum of carry time and empty travel time.

A minimum-weight perfect matching (MWPM) is a match-
ing between tiles from the start and the goal configurations
of minimum sum of dropoff distances.



Fig. 3. Obstacles (shown in black) can force arbitrarily long “detours”
using the MWPM between start (blue) and goal (green) configuration.

O(n) O(n)

Fig. 4. Lower bound examples for carry time (left) and empty travel time
(right). Note that gray tiles are contained in both start and goal configuration.

IV. THEORETICAL BACKGROUND

Before discussing some practical methods and their re-
sults, we will briefly describe the potential impact of obsta-
cles on the length of reconfiguration sequences, as well as
introduce theoretical lower bounds on the pickup and dropoff
distances that may have to be traversed.

Obstacles matter: It is easy to show that we can employ
obstacles to create instances which require an arbitrarily
higher number of moves than their obstacle-free counterparts.
For example, consider two configurations, consisting of
parallel lines that are two units apart from each another.
By placing obstacles in a straight line between the two, we
can increase the cost of a BFS-based MWPM by a factor
that is linear in the number of obstacles, see Fig. 3. This
corresponds to an increase in both the carry time and the
empty travel time.

Lower bound on carry time: In the absence of obstacles,
a significantly larger number of moves than the cost of an
obstacle-free MWPM may still be necessary. We can bound
this based on the carry time of applicable reconfiguration
sequences. Consider a square-like “c-shaped” start config-
uration of n tiles and a goal configuration which requires
moving one tile from one terminal of the “c” to the other,
see Fig. 4 (left). Assuming a constant-size (i.e., O(1)) gap
between the two terminals, the MWPM of this instance has
constant cost as well. Applicable strategies to reconfigure
start into goal require either building a shortcut between
the terminals and moving the tile from one side to the
other, or picking it up and walking along the entirety of the
configuration. Since both the arms of the “c” as well as its
left edge are of length O(n), a shortcut would have to cover
the same distance, implying an O(n) lower bound at least on
the sum of dropoff distances. Similarly, the carry time spent
walking a tile along the entire “c” implies an O(n) lower
bound on the dropoff distance as well. We conclude that the
carry time in applicable solutions is larger than the MWPM
by a factor of O(n) for these configurations.

Lower bound on empty travel time: In a similar fashion,
we can bound the sum of pickup distances from below. By
mirroring the “c” along its left edge to form “ cc”, we define a
pair of configurations which still have a MWPM of constant

cost, see Fig. 4 (right). While moving tiles from one terminal
to the other can be achieved without empty travel, moving
tiles in between both terminal pairs requires being present at
all four terminals at least once. This implies that we traveled
from one terminal pair to the other at some point, i.e., we
traversed a pickup distance of O(n).

We conclude that there exist configurations where both
minimal dropoff and pickup distances may be in O(n), even
if the MWPM is of constant cost.

V. METHODS

In this paper, we tackle the problem of determining a
reconfiguration sequence for converting a start configuration
into a goal configuration using a rapidly-expanding random
tree-star (RRT*) [12]. The RRT* proceeds by building a tree
where each node is a reachable configuration of the tiles.
The root is the start configuration. We expand the tree by
generating a random configuration (by constructing a random
polyomino in the workspace), and searching for the node of
the tree that is nearest to the current configuration. We then
take this nearest node and attempt to reconfigure it toward
the random configuration by applying at most rad dropoffs
as determined by a local planner. The resulting configuration
is then added to the RRT* tree. The RRT* then rewires the
tree to form shortest paths.

A. Local planner algorithms

To reconfigure one configuration into another, we imple-
mented two local planners (code at [7]). The local planner
takes a start configuration S and a goal configuration G and
returns the pickup location P and the dropoff location D

for one tile. A complete motion planner either produces a
solution in finite time or correctly reports that there is none.

We call any tile that can be picked up without disconnect-
ing the remaining tiles a leaf tile. The shortest path along
a polyomino from P to D is constructed by computing a
BFS along the set of tiles S [D. The shortest path between
coordinates Ci and Cj is constructed by computing a BFS
along the obstacle free set ¬O.

Our first local planner is called GLC(S,G,O) for Grow

Largest Component. It behaves differently depending on if
the start and goal polyominoes overlap. If the start and goal
polyominoes do not overlap, the closest tiles between S and
G are found. Then the closest leaf tile in S to this gap is
moved to shrink the gap by one. If there is an overlap, the
largest connected component in the overlap is computed. All
the tiles in G that connect to this connected component are
identified as the set N . All the leaf nodes in S that are
not already in the connected component are identified as the
set L. Then the closest pair in {L,N} is moved. A more
detailed description of this algorithm can be found in the full
version [7]. While this planner is complete (see Theorem 1
below), its solution is not guaranteed to be optimum, but it is
fast to compute and serves as an upper-bound on the optimal
solution.

Theorem 1: GLC(S,G,O) is a complete motion planner.



Proof: In case that S and G do not overlap, let Se and
Ge be the endpoints of a shortest path between S and G. If no
such path exists, the goal configuration G is not reachable
from S. Since S always contains at least two leaf tiles, a
leaf tile can always be picked up from the configuration and
placed on the first empty position of the path towards G,
reducing the distance between Se and Ge by one. Once this
distance is one, i.e., they are adjacent, the result of such a
move is a non-empty overlap S\G which contains precisely
Ge for the subsequent iteration.

Once the overlap is non-empty, the following holds true.
So long as there exists at least one tile t /2 M , i.e., a tile
that is not part of the largest connected component, there
exists a spanning tree of the dual graph of S which has a
leaf t

0
2 L \M . This directly implies that if t itself is not

a leaf, t is part of a path to a leaf tile t
0 outside of M . We

conclude that at any given point, it is possible to determine
a leaf tile that can safely be moved to become part of the
largest connected component M of the overlap.

The reconfiguration sequence determined by GLC takes
total travel time O(n2) for instances with start distance no
more than n between S and G. This stems from the fact
that every tile is moved at most once as soon as the current
and goal configurations overlap, since every tile that has
been used to grow the largest component remains in that
position until G is reached. Both the pickup and dropoff
distances for each tile are bounded from above by n, resulting
in O(n2) total travel time. Some instances actually require
at least ⌦(n2) travel time. Consider moving a row of n tiles
to the right by n tiles.

Our second planner, MWPMEXPAND(S,G,O), uses a
minimum-weight perfect matching between all the tiles in
S and G, where distances are calculated according to the
shortest path around obstacles using BFS. The matching is
sorted by distance between the pairs, and of all the leaf
nodes in S, the one with the longest distance matching is
moved as close as possible (along the configuration S) to its
goal destination. While this planner uses a minimum-weight
perfect matching, this is not a complete planner, and can
get stuck. For instance, let S ! G be the reconfiguration

, which seeks to move the middle tile upwards.
MWPMEXPAND will only move the middle tile, but this
cannot be moved without disconnecting the polyomino.
GLC(S,G,O) can handle such a situation since it selects
one component and grows it.

Fig. 5 demonstrates an example of polyomino reconfigu-
ration using the GLC and MWPMEXPAND algorithms.

B. Tree nodes

The configuration of a polyomino is described by a binary
occupancy grid with the same size as the workspace. These
configurations constitute the nodes of the RRT*, and they
can only be connected to other nodes if their configurations
differ by a valid dropoff (see Fig. 6). A valid dropoff is
described by a tile that can be picked up, and free path on
the polyomino to carry it to a location where it can be placed.

The tile that was picked up to create a node is referred to as
the source, the location where it was placed is the target.

The cost of moving between connected nodes A and B is
equal to the sum of dP , the distance from A’s target to B’s
source, and dD, the distance from B’s source to B’s target.
The cost to move to a node is dependent on the parent’s
target, so rewiring nodes in a section of the tree can affect
faraway nodes.

To increase exploration rate while keeping the size of the
tree manageable, nodes can be added after rad > 1 dropoffs.
In this case, each node in the RRT* must contain the sources
and targets for the intermediate configurations. Nodes can
still be connected in less dropoffs if rewiring occurs or the
random configuration is reached.

C. Distance heuristic

The algorithm extends the closest node in the tree toward
a random configuration using a local planner. To determine
the relative distance between two configurations, we use a
simple distance heuristic h that describes how close they are
to each other. Overlap ov is a clear factor; two configurations
are the same only if their tiles occupy the same locations.
Unfortunately, ov provides no information if the configura-
tions do not overlap. To correct this, we also consider the
center of mass com of each configuration, and the Euclidean
distance between them.

h =
ov + 1

max{kcomA � comBk2, 0.1}
(1)

Two configurations can have the same center of mass, so a
lower threshold is imposed on the denominator of Eq. (1) to
avoid large results that can dominate over other candidates.
Additionally, the numerator is equal to ov+1 so a heuristic
value can be assigned to configurations with no overlap.

D. Dynamic bias

The RRT* alternates between growing toward random
configurations and the goal itself. The probability of choos-
ing the goal is usually set to a small number, e.g., 5-10%, so
the tree spends more time exploring [14]. This helps avoid
converging to local minima by finding more paths.

If the start and goal configurations are initially far apart
according to our heuristic, either because of little overlap
or a large distance between their centers of mass, it can be
advantageous for the tree to explore using a small goal bias.
As tree nodes approach the goal structure, increasing the bias
can accelerate finding a path.

We implement a dynamic bias that changes as the tree
gets closer to the goal. This leverages the advantages of a
small bias at the beginning, prioritizing exploration, and a
higher bias that speeds up the path creation to reduce time
to first solution. This is similar to the concept of simulated
annealing [13], which searches for an optimum value using
a search radius that decays to zero as time increases.

We set the dynamic bias to the sum of a base value biasbase,
and a value dependent on the current performance of the tree.
For this particular application, the performance is the ratio
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Fig. 5. Five consecutive dropoffs by the (top) GLC algorithm and (bottom) MWPMEXPAND local planners. GLC always places tiles on the goal
structure when it can, while MWPMEXPAND can create bridges to reach further parts of the structure sooner.

Fig. 6. An example of nodes in our RRT*. Each node represents a
configuration. (Left) Node A can create nodes B and C with just one
dropoff, so it connects to them. A dropoff is defined as moving to pick
up a valid tile (dP ), and moving to drop it off at a valid location (dD).
However, B and C cannot create each other with just one dropoff so they
are not connected. (Right) To increase exploration rate, nodes can be added
after more than one dropoff. Here, B is three dropoffs away from A and is
added as a node to the tree, while the intermediate configurations are not.

of µov , the mean of the amount of overlap between the tree’s
nodes and the goal, and the total number of tiles n. An upper
threshold biasmax is defined to determine the maximum bias
toward the goal.

biasdyn = biasbase + (biasmax � biasbase)
µov

n
(2)

VI. RESULTS

A. Local planner performance

To evaluate the performance of the RRT* approach to
polyomino reconfiguration, we created five maps with dif-
ferent characteristics, as shown in Fig. 7. Map 1 has the
starting and goal configurations centered. In maps 2 and
3, the starting and goal configurations are adjacent but
they encompass empty space. The last two maps introduce
obstacles and require significant travel from the starting to
the goal configuration.

The results for maps 3 and 4 shown in Fig. 7. The rest of
the results, for the current and following subsection, can be
found in [7]. GLC and MWPMEXPAND were used as local
planners for the RRT*. For comparison, both were also used
as global planners to find solutions.

For each map, five different values for biasmax were tested,
as defined in Eq. (2). biasbase = 0.1 in all cases, so with
biasmax = 0.1 no dynamic bias was implemented. The tree
continued expanding until ten thousand nodes were created.
The GLC and MWPMEXPAND planners are shown with

dashed and dotted lines, respectively. GLC is guaranteed to
find a solution (see Theorem 1), so it appears in all of the
plots. MWPMEXPAND can get stuck in local minima, and
for maps 2 and 3 it did not find a solution.

An expected observation is that, for higher values of
biasmax, the tree finds a solution faster. The first point in
all the plots is the average amount of nodes it needed to find
a path, as well as the average cost of that initial solution.
The nodes to first solution is similar for both the GLC
and MWPMEXPAND as local planners, with the exception
of map 3, for which the tree with MWPMEXPAND took
considerably longer.

After ten thousand nodes the lower values for biasmax did
not find better solutions, despite prioritizing exploration. For
all but map 2 in the GLC results, biasmax = 0.75 performs
best in terms of time required to find a path and the cost of
the solution after ten thousand nodes. In the MWPMEXPAND
results, the same biasmax value consistently performs better
than most of the other values.

Compared to the algorithms as global planners, at least one
setting of RRT* outperforms the GLC in all but map 1. The
MWPMEXPAND performed worse than most RRT* settings
for maps 1 and 4. Map 5, the other map for which it found
a solution, was the only map where it outperformed the
rest of the strategies. In addition, RRT*(MWPMEXPAND)
performed much worse on maps 1 and 5.

B. Initial solution and multiple dropoffs

To increase the probability of RRT* finding a better solu-
tion, the tree can be initialized with the best solution between
GLC and MWPMEXPAND as global planners. Simulations
similar to the previous section were carried out with this
strategy. Since MWPMEXPAND tends to get stuck often,
and based on the results from the previous section, GLC
is always used as the local planner for RRT*.

Additionally, the effect of multiple dropoffs between nodes
is investigated. Nodes are added to the tree every rad number
of dropoffs, unless the configurations being expanded toward
are reached. Rewiring can also result in fewer dropoffs.

The results for maps 3 and 4 are shown in Fig. 8. For
both of these maps, GLC found the best/only solution as a
global planner. For map 4 the RRT* was able to considerably
improve the initial solution, whereas before it only managed
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Fig. 7. Comparison of different strategies for a) map 3 and b) map 4. GLC is the local planner for the RRT* on the left plots, while MWPMEXPAND
is the local planner on the right ones. RRT* was run ten times for each map, for five different biasmax values, for each local planner. Because GLC
is a complete planner, it always finds a solution, while MWPMEXPAND gets stuck often. All maps (1-5) are shown on the left. See animation at
https://youtu.be/Fp0MUag8po4.
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Fig. 8. RRT* results using the best initial solution for a) map 3 and b) map 4. Three different rad values were used to test the effect of multiple
dropoffs, with five different biasmax values. Here we show the plots for (left) biasmax = 0.1, (middle) biasmax = 0.5 and (right) biasmax = 1. Each point
is the average of ten runs.

to do so once. The higher rad values were also able to
outperform the previous solutions for map 3.

For the two maps shown, the higher rad values resulted
in better performance. However, for maps 1, 2 and 5 the
trend was the opposite. One downside of the higher values
is that node creation takes longer, because every intermediate
configuration is checked for potential rewiring.

An important thing to note is that sometimes the RRT*
can worsen the initial solution, as seen in maps 1 and 5.
The reason is that when a node is rewired the position of
the robot changes, which can negatively affect the cost of
subsequent nodes. To avoid increasing the time complexity
of the algorithm, only the costs of immediate children nodes
are considered. A deeper comparison, or duplicating nodes
when they both lower and raise costs of child nodes, could
be implemented to eliminate this issue.
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Fig. 9. Randomly generated maps for two percentages of obstacle space.
The green polyomino is the start configuration, and the red one is the goal.
In the maps used for testing, the workspace has a size of 30⇥ 30 tiles, and
the polyominoes are composed of 15 tiles.

C. Percentage obstacle space

We continue to test how the RRT* performs as more
obstacles are present in the workspace. For five different

https://youtu.be/Fp0MUag8po4


TABLE I
COMPARISON OF PLANNING STRATEGIES

method returning best solution MWPM
obstacle
percent

(%)
RRT*(GLC)

RRT*
(MWPM
EXPAND)

GLC
EXPAND
finds a
solution

10% 50% 30% 20% 10%
30% 50% 40% 10% 10%
50% 60% 40% 0% 30%
70% 50% 50% 0% 10%
90% 40% 40% 20% 90%

TABLE II
COMPARISON OF RRT* WITH BEST INITIAL SOLUTION

best initial solution improves initial solution
obstacle
percent

(%)
GLC MWPM

EXPAND

RRT*
(GLC)
rad = 1

RRT*
(GLC)
rad = 5

RRT*
(GLC)

rad = 10
10% 100% 0% 40% 60% 10%
30% 90% 10% 60% 50% 10%
50% 90% 10% 50% 50% 20%
70% 90% 10% 70% 60% 20%
90% 70% 30% 60% 10% 30%

percentages of obstacle space we created ten random maps
(50 maps total). Examples of randomly generated maps for
different percentages are shown in Fig. 9.

First, both GLC and MWPMEXPAND are used as local
planners for the RRT*. Based on the results from Sec. VI-A,
biasmax was set to 0.75, and rad to 1. The algorithm stops
after ten thousand nodes are created or a time limit passes
(required for higher percentage obstacle maps).

The performance of the RRT* is summarized in Table I.
It returned the best solution for most maps, regardless of
the density of obstacles, and RRT*(GLC) slightly outper-
formed RRT*(MWPMEXPAND) for the 10%, 30% and 50%
obstacle maps. Additionally, RRT*(MWPMEXPAND) returns
solutions with much higher costs than RRT*(GLC) in many
cases, showing that GLC is more robust as a local planner.
MWPMEXPAND never returned the least costly path, and in
fact it had a low success rate for all but the 90% obstacles.
At 90% obstacles there is little space for the tree to explore,
and the possibility of additional paths to the goal is minimal
so the four strategies returned paths with very similar costs.

Secondly, the RRT* was initialized with the best solution
as in Sec. VI-B. GLC was always used as the local planner,
and biasmax was kept at 0.75. The corresponding results are
summarized in Table II. Once again, GLC returned the best
initial solution the majority of the time. For rad = 1 and
rad = 5 the RRT* was able to improve the initial for more
than half the maps for most percentages. rad = 10 did not
perform so well, suggesting that the increased exploration
rate was not very helpful in these maps with higher density
of randomly generated obstacles.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented two local planners, GLC and MW-
PMEXPAND, and an RRT* implementation using these plan-
ners to optimize reconfiguration sequences for a set of tiles in
complex environments. The planners and RRT* were tested
on obstacle-free and obstacle-filled environments. The results

show that the RRT* often finds sequences with lower costs,
and that GLC is more robust as a local planner for the tree
than MWPMEXPAND.

Future work should study the complexity class of the
reconfiguration, additional techniques to enhance the RRT*
such as multi-query trees (for a robotic swarm as an example)
and consider more accurate distance heuristics for finding
nearest neighbors. Additionally, the algorithms should be
extended to work for 3D reconfiguration.
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