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Abstract

The rapid histopathological examination of bone tissue remains a challenge for orthopaedic
oncologists due to the difficulty in performing cryosection-based analyses of bone tissue. Orthopaedic
oncologists instead rely on pre-operative x-ray computed tomography or magnetic resonance imaging
to identify the bony edge for a resection, a workflow which does not allow an accurate diagnosis or
the confirmation of negative tumour margins in the resected tissue, leading to bone margin
delimitation which can be up to 10-times wider than necessary in bony sarcomas (typically 2 cm from
the tumour). Here, we report that 3-dimensional contour-scan reflection-mode ultraviolet (UV)
photoacoustic microscopy (PAM) provides a label-free approach for the evaluation of unprocessed
thick human bone specimens. The UV-PAM images of both undecalcified and decalcified bone
specimens were validated with gold-standard hematoxylin and eosin stained images. An unsupervised
deep learning algorithm based on cycle-consistent generative adversarial networks converted the UV-
PAM images into H&E-like pseudocolor histologic images, allowing the pathologists to readily identify
the cancerous features following existing pattern-recognition parameters.

Approximately 18.1 million new cancer cases were diagnosed worldwide in 2018, while the nhumber of new
cancer cases per year is expected to rise to 29.5 million, with 9.6 million cancer-related deaths by 2040".
Despite the advances in cancer treatment, surgery remains the cornerstone, and more than 80% of cancer
patients have a surgical procedure at some point in the cancer evolution?2. In oncologic surgery, intraoperative
pathological examination provides surgical guidance and identification of tumor margins*. The border of the
removed tissue in tumor surgery is often examined by intraoperative frozen section to ensure negative margins,
meaning normal tissue surrounding the resected tumor5. Most localized tumors with negative margin resection
show much better outcomes and a lower chance of tumor recurrence. The intraoperative evaluation of tumor
margins allows confirmation of complete tumor resection before oncologic surgeons close the surgical wound
and helps patients avoid the second tumor resection surgery.

To provide rapid pathological examination and guide tumor resection, oncologic surgeons currently rely on the
frozen section technique, which typically takes a small portion of tissue and freezes the tissue in a cryostat
machine®. The frozen tissue is then cut into thin sections (5-8 um) using a microtome or cryostat and stained
for direct examination under a microscope. However, the need for sectioning the specimen into thin slices
prevents this technique from being used for hard tissue and may also cause inevitable tissue loss. For instance,
the rapid pathological examination of calcified bone (cortical bone and calcified tumors) often cannot be
evaluated by the frozen section technique due to the ossification”2. It is usually impossible to directly cut the
undecalcified bone tissue into slices thin enough for traditional pathological examination. Instead, the bone
must undergo a decalcification process that can take up to several days, which may introduce artifacts if under-
decalcified or over-decalcified®.

The difficulties of rapid pathological examination of bone specimens have been a long-standing challenge for
orthopedic oncologists in medical practice. For orthopedic oncologists resecting primary bone tumors, the need
for time-consuming decalcification procedures often obviates pathological analysis during the operation. Thus,
the surgeons tend toward wider margins based on pre-surgical imaging of bone tumors rather than
intraoperative tissue analysis. Although wider margins are desirable for local tumor control, the functional loss
can be much greater if those margins include vital structures such as tendons, nerves, blood vessels, or joints.
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Many surgeons use 2 centimeters as the ideal bony margin and measure this off the pre-operative imaging,
while a meta-analysis performed in 2019 showed that a 2 millimeter margin is sufficient to avoid local
recurrence’®. Since calcified primary bone tumors, such as osteosarcoma, present most commonly in a
periarticular location, 1.8 centimeters of margin difference could lead to joint salvage, increased patient bone
stock for any future surgery needed, and less morbidity'®. A modality that allows for fast, accurate bony margin
analysis would be an invaluable tool in limb-salvage surgery.

In recent years, rapid developments of imaging techniques have revolutionized many biological and biomedical
areas as well as pathology. Multiple fluorescence microscopy methods have been demonstrated for diagnostic
imaging, including confocal microscopy'!, wide-field structured-illumination microscopy (SIM)'213, light-sheet
microscopy'4, and microscopy with UV surface excitation (MUSE)'3. However, these fluorescence microscopy
techniques require dye staining of the specimen to provide image contrast, which involves complicated and
different procedures for various samples prior to imaging and needs highly experienced personnel. Label-free
optical imaging techniques have also been developed for rapid pathological diagnoses, such as stimulated
Raman scattering microscopy (SRS)'6'7 and coherence tomography/microscopy (OCT/OCM)'8.19, However,
although MUSE and SRS techniques provide fast surface imaging of slide-free specimens, they lack the depth-
resolving capability and suffer from the limited depth of field, resulting in blurred images of uneven surfaces
with unprocessed slide-free specimens. The deconvolution-based image fusion and multi-layer z stacked
images can be used to achieve an extended depth of field. But it usually takes much longer imaging time and
requires careful camera calibration and tedious experimental measurement of the point spread function, which
are highly sensitive to noise or image variability?®. While OCT has the depth-resolving capability, it cannot
provide direct nuclear contrast within tissues since the optical scattering contrast does not have sufficient
chromophore specificity?!. Thus, OCT images cannot well match the current pathology standard of hematoxylin
and eosin (H&E) staining in detail, which limits its application as a pathological diagnostic tool. The comparison
between different imaging modalities and traditional pathology approaches can be found in Supplementary
Table 1.

Flatness is difficult to achieve in calcified bone tumors resected during operation, as cutting hard and calcified
bone inevitably leads to rough surfaces. To address these challenges, we have developed the real-time 3D
contour-scan ultraviolet photoacoustic microscopy (UV-PAM) and demonstrated the label-free imaging of thick
unprocessed bone, which requires minimal tissue preparation. The capability of imaging the non-sectioned
bone specimen allows direct visualization of well-preserved structure and composition of calcifications, which
could make UV-PAM potentially an ideal tool for rapid diagnosis of challenging tissues like thick calcified bone
specimens. As a hybrid imaging modality, photoacoustic tomography (PAT) detects either endogenous or
exogenous contrast-induced ultrasound signals through light absorption?223, The wavelength-dependent
absorption allows PAT to quantitatively measure the concentration and distribution of different optical
absorbers, while the less scattering ultrasound detection enables high-resolution deep tissue imaging. The
unique advantage of scalable spatial resolutions and imaging depths makes PAT attractive for various
applications, ranging from imaging of nhanometer-scale mitochondria to millimeter-level blood vessels in deep
tissue?2. Based on the imaging resolution and reconstruction approaches, PAT can be implemented in the form
of either photoacoustic computed tomography (PACT) or photoacoustic microscopy (PAM)23. While PACT is
mostly used for deep tissue imaging at the ultrasound resolution, PAM is often implemented with the optical
diffraction-limited resolution. Utilizing the nonlinear absorption or Griineisen parameter, PAM is also capable
of achieving super-resolution imaging beyond the optical diffraction limits?4-26. Depending on the illumination
wavelength, various contrasts have been imaged by label-free PAM, including but not limited to
hemoglobin?"22, DNA/RNA2°, cytochrome30, water?', lipid®2, and protein33.

In this study, we developed the UV-PAM system using a 266 nm nanosecond pulsed laser and demonstrated
histology-like imaging of bone specimens. We implemented a real-time 3D contour-scanning mechanism to
ensure consistent and optical diffraction-limited resolution for uneven bone specimen surfaces, which does not
need prior knowledge of the surface profile. Using the UV-PAM system, we demonstrated the histology-like
imaging of unprocessed thick bone specimens with rough surfaces, which is challenging for traditional
histological techniques. The UV-PAM images of both decalcified and undecalcified bone sections were
acquired and compared with gold-standard H&E-stained images for validation. In addition, we present an
unsupervised deep learning-based method to perform virtual H&E staining of grayscale UV-PAM images to
provide the pathologist with complementary contrast and help interpret PAM images. Unlike supervised deep
learning methods such as generational adversarial networks (GAN)3+35 our unsupervised deep learning
method based on cycle-consistent generational adversarial networks (CycleGAN) does not require coupled



pairs of stained and unstained images®®%’. It avoids the need for well-aligned UV-PAM and H&E-stained
images for neural network training, which can be challenging to acquire due to artifacts caused by sample
preparation-induced morphology changes. All experiments and protocols in this study are approved by the
Institutional Review Boards at the California Institute of Technology, the University of California at Los Angeles,
and the City of Hope.

Results

Histopathological examination of bone tissue via UV-PAM. With optical focusing and the time-of-flight
information from photoacoustic (PA) signals, PAM images the contrast distribution in 3D. The PA signal was
received by a 42 MHz ultrasound transducer and digitized by a data acquisition card sampling at 500 MHz.
We found that PAM can localize the z positions of the sample surface with accuracy finer than the acoustical
resolution (~40 um) by approximately a factor of 10 as limited by the signal-to-noise ratio. The UV-PAM
employs a 266 nm nanosecond pulsed laser to image the DNA/RNA. While the penetration depth depends on
the sample type, in bone specimens, we found that the UV light penetration is less than the acoustical
resolution. Thus, no deep PA signal is generated and mixed with surface signals, allowing direct imaging of
the surfaces of thick bone specimens. While soft tissue can be sampled or squeezed with a flat surface,
unprocessed hard tissues (i.e., calcified primary bone, Supplementary Fig. 1) usually have a rough surface
due to tissue extraction.

The 3D contour-scanning UV-PAM (Fig. 1a) allows direct imaging of thick specimens with rough surfaces,
provides the possibility of rapid pathological diagnosis of undecalcified thick bone. Since the height differences
in adjacent B-scan positions (0.625 um away from each other) can be reasonably assumed to be much smaller
than the depth of focus (DOF) of our UV-PAM (~9 um), the z contour-scanning trajectory can be predicted and
updated in real-time after the first seed B-scan for the full field of view (FOV), without the prior knowledge of
the surface contour (Supplementary Fig. 2). Thus, the real-time 3D contour scanning UV-PAM can ensure the
distance between the image position and focal plane is within the DOF, resulting in a consistent diffraction-
limited lateral resolution for rough surface imaging. The performance of the proposed contour scanning
mechanism has been tested using a phantom with a bent black tape, which showed well-compensated
distances in the full FOV (Supplementary Fig. 3a-c). The measured lateral resolution is 0.96 pm
(Supplementary Fig. 3d).

After acquiring a grayscale UV-PAM image of the sample surface, the unsupervised deep learning method
based on CycleGAN is used to implement the virtual staining. The deep learning network architecture (Fig. 1b)
for virtual staining consists of two generators (G and F) and corresponding adversarial discriminators (Dpa and
Dke). Each pair of generators and discriminators are trained so that the outputs of G and F are indistinguishable
from real PAM and H&E-stained images, respectively. The generators are further regularized using the cycle-
consistency loss — transforming an image from one domain and back should recover the original input. This
process ensures that the transformations are bijective and produce corresponding morphology. The
combination of cycle consistency and discriminator loss terms avoids the necessity for well-aligned paired
datasets, which are needed in traditional -norm or similar loss training between a network output and a target
label. With the neural network well trained, it takes less than 5 seconds to virtually stain an image of 1600x1600
pixels.

Thanks to the real-time 3D contour-scanning UV-PAM system and deep learning-assisted virtual staining, the
rapid diagnosis of unprocessed bone becomes possible. The workflows of both PA histology and traditional
H&E histology of bone clearly reveal the advantage of PA histology (Fig. 1¢). While the frozen section
technique is not applicable to hard bone specimens, conventional H&E histology techniques for bone can take
up to 7 days. In contrast, the PA histology technique can produce virtually stained images of unprocessed
bone for pathological examination within 11 minutes (0.625 ym step size, 1x1 mm2FOV).

3D contour-scanning UV-PAM of thick patient bones. To demonstrate the imaging of unprocessed thick
bone specimens for rapid pathological diagnosis, we extracted mineralized primary bone specimens from
patients in a tumor resection surgery. Unprocessed bone specimens were immediately fixed in the formalin
solution after surgical excision to prevent degradation. No further cutting or sectioning was implemented with
the bone specimen, avoiding the need for paraffin or agarose embedding. Then, the bone specimen was
placed onto a customized water-immersed sample holder for scanning. We obtained the left tibia bone
specimens from a patient with osteofibrous dysplasia-like adamantinoma, which has a rough surface due to
the surgical excision by an oscillating saw. The image acquired by 2D raster scanning without contour
compensation (Fig. 2a) shows a large portion of the out-of-focus area within the FOV (2.5%6.25 mm?), resulting



in an inconsistent resolution and poor image quality. The rough bone surface profile is reconstructed by the
PA signal time-of-flight information (Fig. 2b), revealing a large fluctuation in surface height and less than 10%
of the pixels within the DOF. In contrast, the UV-PAM image acquired by the 3D contour scanning of the same
area showed significantly improved image quality and consistent resolution across the FOV (Fig. 2c¢). More
than 92% of the surface area is within the small DOF during the 3D contour scanning (Fig. 2d). Another
comparison between the 2D raster-scanning PAM image and the 3D contour-scanning PAM image of
unprocessed patient bone can be found in Fig. 2e and Fig. 2f. As shown in Fig. 2f, important bone structures,
such as trabeculae and marrow, can be visualized by UV-PAM with specimen integrity. More 3D contour-
scanning UV-PAM demonstrations of undecalcified thick bone specimens can be found in Supplementary Fig.
4 and Supplementary Fig. 5. It clearly shows that the 3D contour-scanning UV-PAM system is capable of
imaging the rough surfaces of unprocessed thick bone specimens. In contrast, it is difficult to acquire high-
quality images using the traditional 2D raster-scanning approach. Since UV-PAM imaging is non-destructive,
the unprocessed bone specimens can be used for further pathological diagnosis.

H&E validation for label-free UV-PAM of bone specimens. Since the traditional H&E-stained slice of bone
usually requires decalcification and cutting into thin sections (i.e., 5-8 ym), we first demonstrated UV-PAM
imaging of a formalin-fixed paraffin-embedded (FFPE) decalcified bone fragment without malignancy on a
glass slide. As shown in Figs. 3a and 3c, obvious bone structures, including decalcified mineralized bone, can
be readily visualized. In addition, the close-up images (Figs. 3b and 3d) demonstrate profiles and nests of
metastatic carcinoma within the medullary space of the bone. The decalcified bone specimen from the patient
with chondroblastic osteosarcoma is also imaged by UV-PAM and shown in Supplementary Fig. 6.

To validate the PA histology of bone fragments, we compared UV-PAM images of both decalcified and
undecalcified bone specimens with gold-standard H&E-stained images acquired by a traditional optical
microscope. Here, the contrast of PAM images is reversed to highlight the high absorption region in dark color
for better comparison with H&E-stained images. A comparison between the original grayscale image and the
image in reversed contrast can be found in Supplementary Fig. 7. The decalcified bone section on a glass
slide extracted from a patient with metastatic adenocarcinoma was imaged by UV-PAM (Fig. 4a) and compared
with its corresponding H&E-stained image (Fig. 4c). The UV-PAM image demonstrates the key features
present in the H&E-stained image, in which abnormal tumor glands are readily observable (indicated by
arrows). Meanwhile, the PAM image of a decalcified fragments of bone and hematopoietic marrow with no
evidence of metastatic carcinoma (Fig. 4b) also shows the same structure as its corresponding H&E result
(Fig. 4d). Furthermore, the undecalcified bone slices were imaged by PAM and compared with H&E-stained
images, which avoids potential artifacts introduced by the decalcification procedures. Since these specimens
were harvested from a portion of the tumor with low calcification, they did not require the decalcification
procedure to section the specimen into thin slices. The PAM images (Fig. 5a-c) of undecalcified bone sections
on a glass slide are presented in reverse contrast. Fig. 5a and Fig. 5b demonstrate features of osteoblastic
osteosarcoma, while Fig. 5¢ demonstrates the myxoid lobules of chordoma. The corresponding H&E-stained
images are acquired by the digital whole slide scanning microscope with a 40X objective (Fig. 5d-f)., showing
essentially identical structures as the PAM images. Close-up images in sliding windows are shown in
Supplementary Movie 1. Another example of UV-PAM and H&E comparison can be found in Supplementary
Fig. 8, which was from a decalcified bone slice with high-grade osteosarcoma from the femur. The necrotic
tumor (Supplementary Fig. 8b) and the viable tumor (Supplementary Fig. 8c-d) can be identified using the
PAM images, which also showed comparable features as the H&E-stained images (Supplementary Fig. 8f-g).
Photoacoustic virtual histology via deep learning. To match traditional histologic images, we performed
virtual H&E staining on the grayscale PAM images using a CycleGAN based deep learning method36. The
virtual staining CycleGAN network architecture is shown in Fig. 6. More detailed procedures of generating
virtually H&E-stained PAM images are described in Methods. The example UV-PAM images of the bone
section are shown in grayscale contrast (Supplementary Fig. 9) and histology-like pseudocolor (Fig. 7a and
Fig. 7c), which demonstrate architectural features as well as cellular details similar to the corresponding H&E
images (Fig. 7b and Fig. 7d). The close-up virtual histologic PAM images (Fig. 7a1-a2 and Fig. 7c1-c2) clearly
demonstrate histologic features that would be important in the interpretation of pathological examination and
correspond to the close-up H&E images (Fig. 7b1-b2 and Fig. 7d1-d2). The virtual histologic images have
been reviewed by three pathologists and one orthopedic surgeon, who confirmed the comparable and
interpretable histologic features present in H&E-stained slides that might be used for clinical diagnosis. More
details of close-up images from the virtually stained PAM images and corresponding H&E-stained images are
shown in Supplementary Movie 2 and Supplementary Movie 3 for side-by-side comparison. The cell nuclear



counts, nuclear cross-sectional areas, and internuclear nearest neighbor distances are quantitatively
compared in Supplementary Fig. 10 and Supplementary Table. 2, demonstrating a good match between the
virtual staining photoacoustic image and the corresponding real H&E-stained image. As shown in
Supplementary Table. 2, internuclear distances in two images match within the errors. The cell counts and
nuclear cross-sectional areas are slightly different, which is expected as we were looking at neighboring
sections taken at different axial positions instead of the same section.

Discussion

The development of 3D contour-scanning UV-PAM in reflection mode enables more rapid pathological
examination of bone specimens. In contrast, traditional pathological examination techniques for bone involve
time-consuming decalcification procedures, and the frozen section technique is often not applicable. With the
bone mineral as its major component, dense cortical bones can take days to decalcify before it is soft enough
to be sectioned into thin slices, which prevents rapid intraoperative diagnosis. Currently, orthopedic surgeons
heavily rely on pre-operative x-ray CT or MRI to identify the extent of the tumor for the planning of resection
margins. But these imaging modalities cannot provide accurate diagnosis and intraoperative confirmation of
tumor margins. The reflection-mode contour-scanning UV-PAM enables label-free imaging of unprocessed
thick bone samples with rough surfaces, which provides detailed information for pathological examination of
the tumor margin rapidly, meeting a critical need for intraoperative margin analysis.

When rendering a diagnosis from standard H&E-stained slides, pathologists examine the architecture
morphology and cellular features such as cell nuclei, cytoplasm, and extracellular matrix. The H&E staining
approach has been long and widely used in histology, as it provides a clear contrast between cell nuclei and
cytoplasmic parts by staining them in different colors. Thus, pathologists are accustomed to the stained and
counterstained appearance of H&E-stained tissue samples, which show extracellular matrix and cytoplasm as
pink, and cell nuclei as blue/purple. At the UV wavelength of 266 nm3, the cell nuclei have a much higher
absorption coefficient and PA amplitudes than the extracellular matrix and cytoplasm, allowing the virtual
labeling of them in different colors like H&E staining. We processed the grayscale PAM images and generated
the pseudocolor images for virtual H&E staining by applying the deep learning approach with CycleGAN, which
does not need well-aligned PAM and H&E-stained image pairs for neural network training. The virtually stained
pseudocolor PAM images demonstrated cellular, nuclear, and cytoplasmic detail, matching the corresponding
H&E-stained images. With more clinically relevant PAM virtual histology results, the deep convolutional neural
network technique may be further used to potentially achieve automatic diagnosis and tumor margin
detection®.

Although we have demonstrated the potential of UV-PAM for rapid diagnosis of unprocessed bone specimens,
further improvements can be made toward better clinical use. One key challenge is to improve the image
speed to allow for faster feedback intraoperatively. The current UV-PAM system employs a pulsed 266 nm
laser with a pulse repetition rate up to 50 kHz, which limited the theoretical image speed to an A-line rate of
50 kHz. However, due to the accuracy and stability of step motors, it is challenging to ensure a good image
quality of UV-PAM at high motor speeds. The current system is running at 10 kHz laser repetition rate, which
takes about 10 minutes in practice to scan a FOV of 1x1 mm? at the step size of 0.625 um. To achieve higher
imaging speeds, we can use faster optical scanning approaches and even higher laser repetition rates®.
Moreover, multichannel parallel imaging can be used to further boost the imaging speed, where multiple focal
spots and an ultrasound transducer array are used for image reconstruction. For instance, a microlens array
can be utilized to create multiple focal spots for multichannel parallel imaging, which has been reported to
improve the imaging speed of UV-PAM by 40 times*°. However, the limited numerical aperture and the short
working distance of the microlens array can only be used in transmission-mode UV-PAM, which impedes its
practical use for high-resolution images of thick unprocessed biological samples. Reflection-mode
multichannel UV-PAM with high resolution will be needed for faster intraoperative diagnosis.

Due to the physical limit of z-motor mechanical movement, which cannot adjust the position fast enough, a
small portion (e.g., ~6.3% in Fig. 2c) of the areas may still fall out of the DOF if we scan a large FOV (e.g., 6x8
mm?). To further improve the performance of high-resolution PAM imaging of rough surfaces, an electrically
tunable lens (ETL) may be integrated into our system to allow faster optical focus shifting with high accuracy*.
Since the acoustical DOF of the focused ultrasonic transducer is often much longer (i.e., hundreds of microns)
than the optical DOF, the optical focus shifting within the acoustic DOF can be used to compensate for the
steep height fluctuation, while the time-dependent gain compensation technique can be used to compensate
for the transducer sensitivity difference within the acoustic DOF42.



Compared with traditional intraoperative pathological methods (i.e., frozen sectioning), photoacoustic histology
can lower the cost by reducing the turnaround time and avoiding highly specific personnel for sample
preparation and specimen transportation. It may also enable remote and automatic pathological diagnostics in
the future. The current UV-PAM system employs a Q-switched Nd: YLF nanosecond pulsed UV laser at the
wavelength of 266 nm to generate photoacoustic signals of cell nuclei, which may be challenging for in vivo
imaging due to the safety concern of UV laser. The need for nanosecond pulsed UV laser increases the cost
of the PAM system. Further developments using longer laser wavelengths for photoacoustic histological
imaging will not only enable in vivo imaging but also significantly lower the equipment cost. Another limitation
is that the current system requires specimens to be mounted onto a sample holder and immersed into water
for mechanical scanning and acoustic coupling, which is suboptimal for high-throughput histological imaging.
A better configuration that allows the specimen outside the water tank will ensure even easier sample handling
for rapid high-throughput histological imaging.

In summary, we have demonstrated label-free UV-PAM as a valid way to image unprocessed bone without
the need for tissue sectioning. The immediate clinical indication for these results is to provide the possibility of
rapid pathological examination of bone tumor margins. Since no physical sectioning is needed, it does not
need highly specific trained technicians for bone specimen preparation. Moreover, the undestructed bone
specimen can be further examined by other techniques after label-free UV-PAM imaging. In this paper, we
focused on the demonstration of bone, which is one of the most challenging biological tissues for rapid
pathological diagnosis. But the system can also be applied to various other types of specimens. We believe it
has great potential for revolutionizing the pathological diagnosis and providing immediate feedback for
determining the tumor margin.

Methods

Label-free reflection-mode UV-PAM. The reflection-mode UV-PAM system used an Nd: YLF (neodymium-
doped yttrium lithium fluoride) Q-switched 266 nm nanosecond pulsed laser (QL266-010-O, CrystaLaser). A
bandpass glass filter (FGUV5, Thorlabs) was placed at the laser output to reject the leaked pump light. After
passing the colored glass filter, a small portion of the beam was reflected by a UV fused silica beam sampler
(BSF10-UV, Thorlabs) and directed to a Si photodiode (PDA36A, Thorlabs) for pulse-to-pulse fluctuation
compensation. The UV laser beam was expanded by a pair of plano-convex lenses and spatially filtered by a
15 um high-energy pinhole (900PH-15, Newport). The expanded and collimated beam was then focused onto
the sample by a custom-made water-immersion UV objective lens (consisting of an aspheric lens, a concave
lens, and a convex lens (NT49-696, NT48-674, NT46-313, Edmund Optics)) with a numerical aperture (NA) of
0.16. A customized ring-shaped ultrasonic transducer (42 MHz center frequency, 76% —6dB two-way
bandwidth) with a central aperture was used to detect the PA signal, which allows the optical and acoustical
confocal alignment. The detected signal was amplified by two low noise amplifiers (ZFL-500LN+, Mini-Circuits)
and digitized by the data acquisition card (ATS 9350, Alazar Technologies) at a 500 MHz sampling rate. The
PAM image was acquired by scanning the water-immersed sample mounted onto a customized 3D scanner
(consisting of 3 step motors, PLS-85, Pl Micos, GmbH). The reconfigurable 1/O device (myRIO-1900, National
Instruments) with a field-programmable gate array (FPGA) was used to control and synchronize laser pulses,
motor movements, and data acquisition.

Real-time 3D contour-scanning UV-PAM. To allow imaging of the rough surface of unprocessed thick
samples like bone, we developed the contour scanning mechanism without prior knowledge of the sample
surface using a 3-axis motorized stage, which ensures consistent lateral resolution within a large field of view.
For consistent and optimized optical resolution, the distance between the sample and optical focus should be
maintained within the DOF during scanning. In contour scanning, the time-of-flight information of PA signals is
used to calculate the distance between the sample and the focal spot, which can be adjusted by the z-motor
during scanning. With the numerical aperture of 0.16, the DOF of our UV-PAM microscope is only about 9 um,
which corresponds to 6 ns ultrasound propagation for the speed of sound at 1500 m/s in room temperature
water. The acquired PA signal was digitized at the sampling rate of 500 MHz (ATS9350, AlazarTech). The z-
profile of the sample surface can be accurately calculated using the time-of-flight information of PA signals,
enabling contour scanning for z-position compensation.

Prior to PAM imaging, the optical and acoustic foci are confocally aligned, while the propagation time of the
acoustic signal from the optical focus is recorded to determine the focal spot position. To extract the ultrasound
propagation time, we calculate the centers of positive and negative peak positions in PA A-line signals, which
are converted to the sample position. Without prior knowledge of the sample surface profile, one seed B-scan



with the z-motor disabled is implemented to calculate the starting contour trajectory. To avoid potential noise
interference and remove outliers, a 100-point moving average is used to generate a smooth z scanning
trajectory. During the contour scanning, both the x-axis motor and the z-axis motor move simultaneously. After
the first contoured B-scan, the z-motor trajectory and the distance between the sample surface and the
ultrasonic transducer are calculated and used to compute the accurate surface profile. Due to the small y step
(0.625 um), we set the second z-motor trajectory to follow the surface profile from the previous contoured B-
scan*3. Then, the surface profile is updated according to the second contoured B-scan. This process is
repeated until the whole scanning is completed. Real-time data processing and system control are
implemented using MATLAB and LabVIEW hybrid programming.

Bone specimen preparation and H&E imaging. The bone specimens for UV-PAM imaging were procured
from larger specimens in the pathology laboratory with informed consents of patients, surgically removed from
patients at the City of Hope and UCLA medical center. All bone specimens were fixed in 10% buffered formalin
prior to any other procedures. For thick undecalcified specimens in this study, the specimens were mounted
to the sample holder for imaging without further processing. To decalcify specimens, we treated the bone
specimens with a decalcifying solution containing chelating agents in dilute HCI, while the treatment time varied
depending on the size and hardness of the specimens. After fixation and decalcification, the specimen was
embedded in paraffin wax, sectioned into 5-micron thick slices, and placed on glass slides. Specimens with
less calcification were sectioned without decalcification. These slices were then processed with standard H&E
staining and cover-slipped. The H&E-stained slides were imaged using either the standard optical microscope
or the digital whole slide scanning (Leica Aperio AT2) with a 40X objective.

UV-PAM virtual histology via CycleGAN. To reconstruct the UV-PAM images, we first calculated the PA
amplitude of each A-line signal after the Hilbert transform. The pulse energy measured by the photodiode was
used to normalize the PA amplitude and compensate for the laser pulse fluctuation. The axial position of the
specimen surface was calculated by detecting the peak of the A-line signal after the Hilbert transform. The 2D
MAP (maximal amplitude projection) image was self-normalized. Since the PA amplitude of the contrast is
proportional to its absorption coefficient, it can be used to effectively differentiate cell nuclei, cytoplasm, and
the background. The cell nuclei have the largest absorption coefficient at 266 nm and the highest PA signals.
After calculating the grayscale UV-PAM, we use a trained neural network to perform virtual H&E staining,
which is more familiar to pathologists and thus easier for them to interpret.

We use the CycleGAN architecture?®®, shown in Fig. 6, which can learn how to map images from the UV-PAM
domain, PA, to the H&E domain, HE, without the need for well-aligned image pairs. We use an adversarial
loss to learn the transformations G: PA > HE and F: HE - PA, such that the images G(PA) and F(HE) are
indistinguishable from HE and PA, respectively. The discriminators are trained to distinguish between real
images and those produced by the generators. The loss function for Dy is given by**

1215 = Dy (G(PA))’ + (1 — Dyg (HE))®, (1)
where PA is a UV-PAM image patch, and HE is an H&E-stained image patch. Similarly, the loss function for
Dp, is given by

1Ppa = Dy, (F(HE)) + (1 — Dpa(PA))’. )
The generators are trained to try and fool the discriminators by producing images that match the statistical
properties of the target domain. To ensure G doesn’t simply produce convincing but irrelevant H&E images,
an additional loss term is necessary. Conventionally, this would be the 2 or 1 norm loss between the network
output and some known ground truth image. However, this requires well-aligned paired datasets, which are
challenging to acquire after sample preparation.

Instead, the CycleGAN architecture learns the inverse transformation so that cycle consistency can be used
to ensure the images are of the same structures. The total loss for the generators is

16=(1- DHE(G(PA)))2 +(1 = Dps (F(HE)))Z +A|F(G(PA)) — PA| + A|G(F(HE)) — HE], 3)
where the regularization parameter 1 is set to 10.
The generators are residual networks consisting of an input convolutional layer, two convolutional layer and
downsampling blocks, nine residual network blocks, two convolutional and upsampling blocks, and finally, an
output convolutional layer*s. Instance normalization and rectified linear unit (ReLU) layers are used after each
convolutional layer. For the discriminator, we use PatchGAN consisting of convolutional layer and
downsampling blocks, which classify whether the image is real on overlapping 70x70 pixel image patches“6.
This patch size is a compromise between promoting high spatial frequency fidelity and avoiding tiling artifacts.



In the discriminator networks, instance normalization and leaky RelLU (IReLU) layers, [ReLU(x) =
max (0.2x, x) are used after each convolutional layer. Anti-alias downsampling and upsampling layers are used
in both the generators and discriminators to improve shift invariance*’.

The training dataset consisted of UV-PAM images of undecalcified bone specimens. These images were
converted into 17940 and 26565 286x286 pixel image patches for UV-PAM and H&E histology, respectively.
During training, these were further randomly cropped to 256x256 for data augmentation. The training was
performed with the Adam solver with a batch size of 4 and an initial learning rate of 0.0002, decaying to zero
over 100 epochs*8. Once trained, we used the generator G to transform UV-PAM data in overlapping 256x256
pixel image patches, which were recombined with linear blending. To validate the virtual histology
performance, we have quantitatively assessed the accuracy of our virtual staining method. We have
segmented the cell nuclei in comparative regions of interest to compare their numbers, sizes, and densities.
The nuclear segmentation was performed via Qupath*®, using the default cell detection settings with the
threshold set to 0.3 to reduce false positives. The cell counts, average nuclear areas, and average nearest
neighbor internuclear distances were calculated for comparison of the UV-PAM virtual histology and H&E
results.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its
Supplementary Information. The training dataset and the fake output images for the CycleGAN network are
available online (https://doi.org/10.5281/zenodo.6345772). Other raw data are too large to be publicly shared,
yet they are available for research purposes from the corresponding authors on reasonable request.

Code availability

The original code for CycleGAN is available at https://github.com/junyanz/pytorch-Cycle GAN-and-pix2pix. We
applied this to our dataset with the customized settings described in Methods. MATLAB was used for creating
image tiles for the network and restitching output image tiles. The quantitative analysis of photoacoustic virtual
histology was done via QuPath (https://qupath.github.io/). The system control software and the data collection
software are proprietary and used in licensed technologies.
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Figure captions

Fig. 1 Rapid label-free UV photoacoustic (PA) histology via deep learning. a, schematic of the 3D contour
scan UV-PAM system. The UV laser is spectrally filtered by a bandpass colored glass filter (BF) and spatially
filtered and expanded using a pair of lenses and a pinhole (PH). The beam sampler (BS) is placed before the
lens to pick up a small fraction of the beam for photodiode measurement to compensate for the laser pulse-
to-pulse energy fluctuation. The collimated and expanded beam is focused through a ring-shaped ultrasound
transducer using a customized water immersed objective and illuminates the specimen for photoacoustic
excitation. The 3D contour scanning of the specimen placed on the sample holder is implemented for UV-PAM
imaging. b, Deep learning network architecture for virtual staining of PAM images. The CycleGAN model
consists of two generators, G: PA>H&E and F: H&E->PA, and corresponding adversarial discriminators, Dpa
and Dxe. ¢, The workflow for PA histology and conventional H&E staining histology of bone samples (1x1 mm?2
field of view).

Fig. 2 Label-free 3D contour-scanning UV-PAM of thick (>1 cm) unprocessed bone specimens. a, The
UV-PAM images of the undecalcified left tibia bone extracted from a patient with osteofibrous dysplasia-like
adamantinoma acquired by a 2D raster-scanning and ¢ 3D contour scanning, showing the improved image
quality by 3D contour scanning of the undecalcified bone specimen with a rough surface. Scale bar, 500 um.
The specimen surface position in the axial direction relative to the optical focal plane during b 2D raster
scanning and d 3D contour scanning profiles are calculated by the time-of-flight information of the
photoacoustic signal. A normal unprocessed thick bone sample is also imaged and compared using e 2D
raster scanning and f 3D contour scanning. Scale bar, 250 pym.

Fig. 3 Label-free UV-PAM of decalcified bone specimens. a, PAM image of the formalin-fixed paraffin-
embedded (FFPE) decalcified nonneoplastic bone fragment on a glass slide. A near vertically oriented
trabecula of cancellous bone is seen in the middle portion of the image. Scale bar, 500 um. b, A close-up
image of a showing a portion of the cancellous bone at the left border of the image. Scale bar, 100 um. ¢, PAM
image of the FFPE decalcified bone specimen with metastatic poorly differentiated adenocarcinoma of
pulmonary origin shows neoplastic glandular profiles of metastatic carcinoma on a glass slide. Scale bar, 500
pum. d, The close-up image of ¢ shows nests and glandular profiles of metastatic carcinoma. Scale bar, 100
pm.

Fig. 4 Label-free UV-PAM for identifying tumors in decalcified bone fragments. a, PAM image of the
decalcified bone section on a glass slide with metastatic adenocarcinoma. b, PAM image of the decalcified
bone section on a glass slide with normal bone fragment and hematopoietic marrow. The PAM contrast was
reversed to highlight the high absorption region in dark color for better comparison. ¢-d, Corresponding H&E
images of a and b. Neoplastic glands of metastatic carcinoma amongst bone fragments are indicated by arrows
in a and c. Scale bars, 500 ym.

Fig. 5 Label-free UV-PAM of the undecalcified bone specimen and H&E validation. a-b, UV-PAM images
of undecalcified patient bone sections on a glass slide from patient #1 with osteoblastic osteosarcoma showing
neoplastic osteoid matrix, the lacy material in between the nuclei of the neoplastic cells, denoted by arrows. c,
UV-PAM images of an undecalcified patient bone section on a glass slide from patient #2 with chordoma,
demonstrating lobules of the myxoid tumor demonstrating myxoid lobules of the tumor, which are areas
denoted by arrows. d-f, Corresponding H&E images acquired by the digital whole slide scanning microscope
with a 40X objective with an essentially identical appearance. Scale bars, 500 um.

Fig. 6 Detailed network architecture for virtual staining. The CycleGAN model consists of two generators,
G: PA > HE and F: HE > PA, and corresponding adversarial discriminators, Drpa and Dxe. Each generator is
composed of two downsampling blocks (a convolutional layer and anti-alias downsampling layer of stride two),
nine residual blocks (two convolutional layers and a skip connection), and two upsampling blocks (an anti-alias
upsampling layer of stride two and a convolutional layer). Each convolutional layer is followed by instance
normalization and rectified linear unit (ReLU) activation layers. The discriminators are composed of three
downsampling blocks, followed by an output convolutional layer. Each convolutional layer in the discriminators
is followed by instance normalization and leaky ReLU activation layers. The network is applied to image
patches of 256 by 256 pixels.

Fig. 7 Label-free UV-PAM virtual histology of undecalcified bone via unsupervised deep learning. a, c,
Virtual-stained PAM images of undecalcified bone sections on a glass slide. b, d, Corresponding H&E histology
images. Scale bars, 500 ym. a1-a2, Close-up images of a show neoplastic spindle cells (denoted by many
long, spindle-shaped purple nuclei, red arrow) arranged in vague streaming and fascicular patterns in a1, and



a nodule of neoplastic chondroid material in a2 (yellow circle), corresponding to the H&E-stained images in b1
and b2. c1-c2, Close-up images of ¢ show ribbons of neoplastic spindle cells (red arrow) in ¢1 and
disorganized osteoid, the streaky bands denoted by the yellow circle in ¢2, corresponding to the H&E-stained
images in d1 and d2. Scale bars, 100 pym.
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