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Abstract  
The rapid histopathological examination of bone tissue remains a challenge for orthopaedic 
oncologists due to the difficulty in performing cryosection-based analyses of bone tissue. Orthopaedic 
oncologists instead rely on pre-operative x-ray computed tomography or magnetic resonance imaging 
to identify the bony edge for a resection, a workflow which does not allow an accurate diagnosis or 
the confirmation of negative tumour margins in the resected tissue, leading to bone margin 
delimitation which can be up to 10-times wider than necessary in bony sarcomas (typically 2 cm from 
the tumour). Here, we report that 3-dimensional contour-scan reflection-mode ultraviolet (UV) 
photoacoustic microscopy (PAM) provides a label-free approach for the evaluation of unprocessed 
thick human bone specimens. The UV-PAM images of both undecalcified and decalcified bone 
specimens were validated with gold-standard hematoxylin and eosin stained images. An unsupervised 
deep learning algorithm based on cycle-consistent generative adversarial networks converted the UV-
PAM images into H&E-like pseudocolor histologic images, allowing the pathologists to readily identify 
the cancerous features following existing pattern-recognition parameters. 
 
Approximately 18.1 million new cancer cases were diagnosed worldwide in 2018, while the number of new 
cancer cases per year is expected to rise to 29.5 million, with 9.6 million cancer-related deaths by 20401. 
Despite the advances in cancer treatment, surgery remains the cornerstone, and more than 80% of cancer 
patients have a surgical procedure at some point in the cancer evolution2,3. In oncologic surgery, intraoperative 
pathological examination provides surgical guidance and identification of tumor margins4. The border of the 
removed tissue in tumor surgery is often examined by intraoperative frozen section to ensure negative margins, 
meaning normal tissue surrounding the resected tumor5. Most localized tumors with negative margin resection 
show much better outcomes and a lower chance of tumor recurrence. The intraoperative evaluation of tumor 
margins allows confirmation of complete tumor resection before oncologic surgeons close the surgical wound 
and helps patients avoid the second tumor resection surgery. 
To provide rapid pathological examination and guide tumor resection, oncologic surgeons currently rely on the 
frozen section technique, which typically takes a small portion of tissue and freezes the tissue in a cryostat 
machine6. The frozen tissue is then cut into thin sections (5-8 µm) using a microtome or cryostat and stained 
for direct examination under a microscope. However, the need for sectioning the specimen into thin slices 
prevents this technique from being used for hard tissue and may also cause inevitable tissue loss. For instance, 
the rapid pathological examination of calcified bone (cortical bone and calcified tumors) often cannot be 
evaluated by the frozen section technique due to the ossification7,8. It is usually impossible to directly cut the 
undecalcified bone tissue into slices thin enough for traditional pathological examination. Instead, the bone 
must undergo a decalcification process that can take up to several days, which may introduce artifacts if under-
decalcified or over-decalcified9.  
The difficulties of rapid pathological examination of bone specimens have been a long-standing challenge for 
orthopedic oncologists in medical practice. For orthopedic oncologists resecting primary bone tumors, the need 
for time-consuming decalcification procedures often obviates pathological analysis during the operation. Thus, 
the surgeons tend toward wider margins based on pre-surgical imaging of bone tumors rather than 
intraoperative tissue analysis. Although wider margins are desirable for local tumor control, the functional loss 
can be much greater if those margins include vital structures such as tendons, nerves, blood vessels, or joints. 
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Many surgeons use 2 centimeters as the ideal bony margin and measure this off the pre-operative imaging, 
while a meta-analysis performed in 2019 showed that a 2 millimeter margin is sufficient to avoid local 
recurrence10. Since calcified primary bone tumors, such as osteosarcoma, present most commonly in a 
periarticular location, 1.8 centimeters of margin difference could lead to joint salvage, increased patient bone 
stock for any future surgery needed, and less morbidity10. A modality that allows for fast, accurate bony margin 
analysis would be an invaluable tool in limb-salvage surgery.  
In recent years, rapid developments of imaging techniques have revolutionized many biological and biomedical 
areas as well as pathology. Multiple fluorescence microscopy methods have been demonstrated for diagnostic 
imaging, including confocal microscopy11, wide-field structured-illumination microscopy (SIM)12,13, light-sheet 
microscopy14, and microscopy with UV surface excitation (MUSE)15. However, these fluorescence microscopy 
techniques require dye staining of the specimen to provide image contrast, which involves complicated and 
different procedures for various samples prior to imaging and needs highly experienced personnel. Label-free 
optical imaging techniques have also been developed for rapid pathological diagnoses, such as stimulated 
Raman scattering microscopy (SRS)16,17 and coherence tomography/microscopy (OCT/OCM)18,19. However, 
although MUSE and SRS techniques provide fast surface imaging of slide-free specimens, they lack the depth-
resolving capability and suffer from the limited depth of field, resulting in blurred images of uneven surfaces 
with unprocessed slide-free specimens. The deconvolution-based image fusion and multi-layer z stacked 
images can be used to achieve an extended depth of field. But it usually takes much longer imaging time and 
requires careful camera calibration and tedious experimental measurement of the point spread function, which 
are highly sensitive to noise or image variability20. While OCT has the depth-resolving capability, it cannot 
provide direct nuclear contrast within tissues since the optical scattering contrast does not have sufficient 
chromophore specificity21. Thus, OCT images cannot well match the current pathology standard of hematoxylin 
and eosin (H&E) staining in detail, which limits its application as a pathological diagnostic tool. The comparison 
between different imaging modalities and traditional pathology approaches can be found in Supplementary 
Table 1. 
Flatness is difficult to achieve in calcified bone tumors resected during operation, as cutting hard and calcified 
bone inevitably leads to rough surfaces. To address these challenges, we have developed the real-time 3D 
contour-scan ultraviolet photoacoustic microscopy (UV-PAM) and demonstrated the label-free imaging of thick 
unprocessed bone, which requires minimal tissue preparation. The capability of imaging the non-sectioned 
bone specimen allows direct visualization of well-preserved structure and composition of calcifications, which 
could make UV-PAM potentially an ideal tool for rapid diagnosis of challenging tissues like thick calcified bone 
specimens. As a hybrid imaging modality, photoacoustic tomography (PAT) detects either endogenous or 
exogenous contrast-induced ultrasound signals through light absorption22,23. The wavelength-dependent 
absorption allows PAT to quantitatively measure the concentration and distribution of different optical 
absorbers, while the less scattering ultrasound detection enables high-resolution deep tissue imaging. The 
unique advantage of scalable spatial resolutions and imaging depths makes PAT attractive for various 
applications, ranging from imaging of nanometer-scale mitochondria to millimeter-level blood vessels in deep 
tissue22. Based on the imaging resolution and reconstruction approaches, PAT can be implemented in the form 
of either photoacoustic computed tomography (PACT) or photoacoustic microscopy (PAM)23. While PACT is 
mostly used for deep tissue imaging at the ultrasound resolution, PAM is often implemented with the optical 
diffraction-limited resolution. Utilizing the nonlinear absorption or Grüneisen parameter, PAM is also capable 
of achieving super-resolution imaging beyond the optical diffraction limits24–26. Depending on the illumination 
wavelength, various contrasts have been imaged by label-free PAM, including but not limited to 
hemoglobin27,28, DNA/RNA29, cytochrome30, water31, lipid32, and protein33.  
In this study, we developed the UV-PAM system using a 266 nm nanosecond pulsed laser and demonstrated 
histology-like imaging of bone specimens. We implemented a real-time 3D contour-scanning mechanism to 
ensure consistent and optical diffraction-limited resolution for uneven bone specimen surfaces, which does not 
need prior knowledge of the surface profile. Using the UV-PAM system, we demonstrated the histology-like 
imaging of unprocessed thick bone specimens with rough surfaces, which is challenging for traditional 
histological techniques. The UV-PAM images of both decalcified and undecalcified bone sections were 
acquired and compared with gold-standard H&E-stained images for validation. In addition, we present an 
unsupervised deep learning-based method to perform virtual H&E staining of grayscale UV-PAM images to 
provide the pathologist with complementary contrast and help interpret PAM images. Unlike supervised deep 
learning methods such as generational adversarial networks (GAN)34,35, our unsupervised deep learning 
method based on cycle-consistent generational adversarial networks (CycleGAN) does not require coupled 



 

pairs of stained and unstained images36,37. It avoids the need for well-aligned UV-PAM and H&E-stained 
images for neural network training, which can be challenging to acquire due to artifacts caused by sample 
preparation-induced morphology changes. All experiments and protocols in this study are approved by the 
Institutional Review Boards at the California Institute of Technology, the University of California at Los Angeles, 
and the City of Hope. 
 
Results 
Histopathological examination of bone tissue via UV-PAM. With optical focusing and the time-of-flight 
information from photoacoustic (PA) signals, PAM images the contrast distribution in 3D. The PA signal was 
received by a 42 MHz ultrasound transducer and digitized by a data acquisition card sampling at 500 MHz. 
We found that PAM can localize the z positions of the sample surface with accuracy finer than the acoustical 
resolution (~40 µm) by approximately a factor of 10 as limited by the signal-to-noise ratio. The UV-PAM 
employs a 266 nm nanosecond pulsed laser to image the DNA/RNA. While the penetration depth depends on 
the sample type, in bone specimens, we found that the UV light penetration is less than the acoustical 
resolution. Thus, no deep PA signal is generated and mixed with surface signals, allowing direct imaging of 
the surfaces of thick bone specimens. While soft tissue can be sampled or squeezed with a flat surface, 
unprocessed hard tissues (i.e., calcified primary bone, Supplementary Fig. 1) usually have a rough surface 
due to tissue extraction.  
The 3D contour-scanning UV-PAM (Fig. 1a) allows direct imaging of thick specimens with rough surfaces, 
provides the possibility of rapid pathological diagnosis of undecalcified thick bone. Since the height differences 
in adjacent B-scan positions (0.625 µm away from each other) can be reasonably assumed to be much smaller 
than the depth of focus (DOF) of our UV-PAM (~9 µm), the z contour-scanning trajectory can be predicted and 
updated in real-time after the first seed B-scan for the full field of view (FOV), without the prior knowledge of 
the surface contour (Supplementary Fig. 2). Thus, the real-time 3D contour scanning UV-PAM can ensure the 
distance between the image position and focal plane is within the DOF, resulting in a consistent diffraction-
limited lateral resolution for rough surface imaging. The performance of the proposed contour scanning 
mechanism has been tested using a phantom with a bent black tape, which showed well-compensated 
distances in the full FOV (Supplementary Fig. 3a-c). The measured lateral resolution is 0.96 µm 
(Supplementary Fig. 3d). 
After acquiring a grayscale UV-PAM image of the sample surface, the unsupervised deep learning method 
based on CycleGAN is used to implement the virtual staining. The deep learning network architecture (Fig. 1b) 
for virtual staining consists of two generators (G and F) and corresponding adversarial discriminators (DPA and 
DHE). Each pair of generators and discriminators are trained so that the outputs of G and F are indistinguishable 
from real PAM and H&E-stained images, respectively. The generators are further regularized using the cycle-
consistency loss – transforming an image from one domain and back should recover the original input. This 
process ensures that the transformations are bijective and produce corresponding morphology. The 
combination of cycle consistency and discriminator loss terms avoids the necessity for well-aligned paired 
datasets, which are needed in traditional l2-norm or similar loss training between a network output and a target 
label. With the neural network well trained, it takes less than 5 seconds to virtually stain an image of 1600×1600 
pixels.  
Thanks to the real-time 3D contour-scanning UV-PAM system and deep learning-assisted virtual staining, the 
rapid diagnosis of unprocessed bone becomes possible. The workflows of both PA histology and traditional 
H&E histology of bone clearly reveal the advantage of PA histology (Fig. 1c). While the frozen section 
technique is not applicable to hard bone specimens, conventional H&E histology techniques for bone can take 
up to 7 days. In contrast, the PA histology technique can produce virtually stained images of unprocessed 
bone for pathological examination within 11 minutes (0.625 µm step size, 1×1 mm2 FOV). 
3D contour-scanning UV-PAM of thick patient bones. To demonstrate the imaging of unprocessed thick 
bone specimens for rapid pathological diagnosis, we extracted mineralized primary bone specimens from 
patients in a tumor resection surgery. Unprocessed bone specimens were immediately fixed in the formalin 
solution after surgical excision to prevent degradation. No further cutting or sectioning was implemented with 
the bone specimen, avoiding the need for paraffin or agarose embedding. Then, the bone specimen was 
placed onto a customized water-immersed sample holder for scanning. We obtained the left tibia bone 
specimens from a patient with osteofibrous dysplasia-like adamantinoma, which has a rough surface due to 
the surgical excision by an oscillating saw. The image acquired by 2D raster scanning without contour 
compensation (Fig. 2a) shows a large portion of the out-of-focus area within the FOV (2.5×6.25 mm2), resulting 



 

in an inconsistent resolution and poor image quality. The rough bone surface profile is reconstructed by the 
PA signal time-of-flight information (Fig. 2b), revealing a large fluctuation in surface height and less than 10% 
of the pixels within the DOF. In contrast, the UV-PAM image acquired by the 3D contour scanning of the same 
area showed significantly improved image quality and consistent resolution across the FOV (Fig. 2c). More 
than 92% of the surface area is within the small DOF during the 3D contour scanning (Fig. 2d). Another 
comparison between the 2D raster-scanning PAM image and the 3D contour-scanning PAM image of 
unprocessed patient bone can be found in Fig. 2e and Fig. 2f. As shown in Fig. 2f, important bone structures, 
such as trabeculae and marrow, can be visualized by UV-PAM with specimen integrity. More 3D contour-
scanning UV-PAM demonstrations of undecalcified thick bone specimens can be found in Supplementary Fig. 
4 and Supplementary Fig. 5. It clearly shows that the 3D contour-scanning UV-PAM system is capable of 
imaging the rough surfaces of unprocessed thick bone specimens. In contrast, it is difficult to acquire high-
quality images using the traditional 2D raster-scanning approach. Since UV-PAM imaging is non-destructive, 
the unprocessed bone specimens can be used for further pathological diagnosis.  
H&E validation for label-free UV-PAM of bone specimens. Since the traditional H&E-stained slice of bone 
usually requires decalcification and cutting into thin sections (i.e., 5-8 μm), we first demonstrated UV-PAM 
imaging of a formalin-fixed paraffin-embedded (FFPE) decalcified bone fragment without malignancy on a 
glass slide. As shown in Figs. 3a and 3c, obvious bone structures, including decalcified mineralized bone, can 
be readily visualized. In addition, the close-up images (Figs. 3b and 3d) demonstrate profiles and nests of 
metastatic carcinoma within the medullary space of the bone. The decalcified bone specimen from the patient 
with chondroblastic osteosarcoma is also imaged by UV-PAM and shown in Supplementary Fig. 6.  
To validate the PA histology of bone fragments, we compared UV-PAM images of both decalcified and 
undecalcified bone specimens with gold-standard H&E-stained images acquired by a traditional optical 
microscope. Here, the contrast of PAM images is reversed to highlight the high absorption region in dark color 
for better comparison with H&E-stained images. A comparison between the original grayscale image and the 
image in reversed contrast can be found in Supplementary Fig. 7. The decalcified bone section on a glass 
slide extracted from a patient with metastatic adenocarcinoma was imaged by UV-PAM (Fig. 4a) and compared 
with its corresponding H&E-stained image (Fig. 4c). The UV-PAM image demonstrates the key features 
present in the H&E-stained image, in which abnormal tumor glands are readily observable (indicated by 
arrows). Meanwhile, the PAM image of a decalcified fragments of bone and hematopoietic marrow with no 
evidence of metastatic carcinoma (Fig. 4b) also shows the same structure as its corresponding H&E result 
(Fig. 4d). Furthermore, the undecalcified bone slices were imaged by PAM and compared with H&E-stained 
images, which avoids potential artifacts introduced by the decalcification procedures. Since these specimens 
were harvested from a portion of the tumor with low calcification, they did not require the decalcification 
procedure to section the specimen into thin slices. The PAM images (Fig. 5a-c) of undecalcified bone sections 
on a glass slide are presented in reverse contrast. Fig. 5a and Fig. 5b demonstrate features of osteoblastic 
osteosarcoma, while Fig. 5c demonstrates the myxoid lobules of chordoma. The corresponding H&E-stained 
images are acquired by the digital whole slide scanning microscope with a 40X objective (Fig. 5d-f)., showing 
essentially identical structures as the PAM images. Close-up images in sliding windows are shown in 
Supplementary Movie 1. Another example of UV-PAM and H&E comparison can be found in Supplementary 
Fig. 8, which was from a decalcified bone slice with high-grade osteosarcoma from the femur. The necrotic 
tumor (Supplementary Fig. 8b) and the viable tumor (Supplementary Fig. 8c-d) can be identified using the 
PAM images, which also showed comparable features as the H&E-stained images (Supplementary Fig. 8f-g).  
Photoacoustic virtual histology via deep learning. To match traditional histologic images, we performed 
virtual H&E staining on the grayscale PAM images using a CycleGAN based deep learning method36. The 
virtual staining CycleGAN network architecture is shown in Fig. 6. More detailed procedures of generating 
virtually H&E-stained PAM images are described in Methods. The example UV-PAM images of the bone 
section are shown in grayscale contrast (Supplementary Fig. 9) and histology-like pseudocolor (Fig. 7a and 
Fig. 7c), which demonstrate architectural features as well as cellular details similar to the corresponding H&E 
images (Fig. 7b and Fig. 7d). The close-up virtual histologic PAM images (Fig. 7a1-a2 and Fig. 7c1-c2) clearly 
demonstrate histologic features that would be important in the interpretation of pathological examination and 
correspond to the close-up H&E images (Fig. 7b1-b2 and Fig. 7d1-d2). The virtual histologic images have 
been reviewed by three pathologists and one orthopedic surgeon, who confirmed the comparable and 
interpretable histologic features present in H&E-stained slides that might be used for clinical diagnosis. More 
details of close-up images from the virtually stained PAM images and corresponding H&E-stained images are 
shown in Supplementary Movie 2 and Supplementary Movie 3 for side-by-side comparison. The cell nuclear 



 

counts, nuclear cross-sectional areas, and internuclear nearest neighbor distances are quantitatively 
compared in Supplementary Fig. 10 and Supplementary Table. 2, demonstrating a good match between the 
virtual staining photoacoustic image and the corresponding real H&E-stained image. As shown in 
Supplementary Table. 2, internuclear distances in two images match within the errors. The cell counts and 
nuclear cross-sectional areas are slightly different, which is expected as we were looking at neighboring 
sections taken at different axial positions instead of the same section. 
 
Discussion 
The development of 3D contour-scanning UV-PAM in reflection mode enables more rapid pathological 
examination of bone specimens. In contrast, traditional pathological examination techniques for bone involve 
time-consuming decalcification procedures, and the frozen section technique is often not applicable. With the 
bone mineral as its major component, dense cortical bones can take days to decalcify before it is soft enough 
to be sectioned into thin slices, which prevents rapid intraoperative diagnosis. Currently, orthopedic surgeons 
heavily rely on pre-operative x-ray CT or MRI to identify the extent of the tumor for the planning of resection 
margins. But these imaging modalities cannot provide accurate diagnosis and intraoperative confirmation of 
tumor margins. The reflection-mode contour-scanning UV-PAM enables label-free imaging of unprocessed 
thick bone samples with rough surfaces, which provides detailed information for pathological examination of 
the tumor margin rapidly, meeting a critical need for intraoperative margin analysis.  
When rendering a diagnosis from standard H&E-stained slides, pathologists examine the architecture 
morphology and cellular features such as cell nuclei, cytoplasm, and extracellular matrix. The H&E staining 
approach has been long and widely used in histology, as it provides a clear contrast between cell nuclei and 
cytoplasmic parts by staining them in different colors. Thus, pathologists are accustomed to the stained and 
counterstained appearance of H&E-stained tissue samples, which show extracellular matrix and cytoplasm as 
pink, and cell nuclei as blue/purple. At the UV wavelength of 266 nm38, the cell nuclei have a much higher 
absorption coefficient and PA amplitudes than the extracellular matrix and cytoplasm, allowing the virtual 
labeling of them in different colors like H&E staining. We processed the grayscale PAM images and generated 
the pseudocolor images for virtual H&E staining by applying the deep learning approach with CycleGAN, which 
does not need well-aligned PAM and H&E-stained image pairs for neural network training. The virtually stained 
pseudocolor PAM images demonstrated cellular, nuclear, and cytoplasmic detail, matching the corresponding 
H&E-stained images. With more clinically relevant PAM virtual histology results, the deep convolutional neural 
network technique may be further used to potentially achieve automatic diagnosis and tumor margin 
detection16.  
Although we have demonstrated the potential of UV-PAM for rapid diagnosis of unprocessed bone specimens, 
further improvements can be made toward better clinical use. One key challenge is to improve the image 
speed to allow for faster feedback intraoperatively. The current UV-PAM system employs a pulsed 266 nm 
laser with a pulse repetition rate up to 50 kHz, which limited the theoretical image speed to an A-line rate of 
50 kHz. However, due to the accuracy and stability of step motors, it is challenging to ensure a good image 
quality of UV-PAM at high motor speeds. The current system is running at 10 kHz laser repetition rate, which 
takes about 10 minutes in practice to scan a FOV of 1x1 mm2 at the step size of 0.625 µm. To achieve higher 
imaging speeds, we can use faster optical scanning approaches and even higher laser repetition rates39. 
Moreover, multichannel parallel imaging can be used to further boost the imaging speed, where multiple focal 
spots and an ultrasound transducer array are used for image reconstruction. For instance, a microlens array 
can be utilized to create multiple focal spots for multichannel parallel imaging, which has been reported to 
improve the imaging speed of UV-PAM by 40 times40. However, the limited numerical aperture and the short 
working distance of the microlens array can only be used in transmission-mode UV-PAM, which impedes its 
practical use for high-resolution images of thick unprocessed biological samples. Reflection-mode 
multichannel UV-PAM with high resolution will be needed for faster intraoperative diagnosis.  
Due to the physical limit of z-motor mechanical movement, which cannot adjust the position fast enough, a 
small portion (e.g., ~6.3% in Fig. 2c) of the areas may still fall out of the DOF if we scan a large FOV (e.g., 6x8 
mm2). To further improve the performance of high-resolution PAM imaging of rough surfaces, an electrically 
tunable lens (ETL) may be integrated into our system to allow faster optical focus shifting with high accuracy41. 
Since the acoustical DOF of the focused ultrasonic transducer is often much longer (i.e., hundreds of microns) 
than the optical DOF, the optical focus shifting within the acoustic DOF can be used to compensate for the 
steep height fluctuation, while the time-dependent gain compensation technique can be used to compensate 
for the transducer sensitivity difference within the acoustic DOF42.  



 

Compared with traditional intraoperative pathological methods (i.e., frozen sectioning), photoacoustic histology 
can lower the cost by reducing the turnaround time and avoiding highly specific personnel for sample 
preparation and specimen transportation. It may also enable remote and automatic pathological diagnostics in 
the future. The current UV-PAM system employs a Q-switched Nd: YLF nanosecond pulsed UV laser at the 
wavelength of 266 nm to generate photoacoustic signals of cell nuclei, which may be challenging for in vivo 
imaging due to the safety concern of UV laser. The need for nanosecond pulsed UV laser increases the cost 
of the PAM system. Further developments using longer laser wavelengths for photoacoustic histological 
imaging will not only enable in vivo imaging but also significantly lower the equipment cost. Another limitation 
is that the current system requires specimens to be mounted onto a sample holder and immersed into water 
for mechanical scanning and acoustic coupling, which is suboptimal for high-throughput histological imaging. 
A better configuration that allows the specimen outside the water tank will ensure even easier sample handling 
for rapid high-throughput histological imaging. 
In summary, we have demonstrated label-free UV-PAM as a valid way to image unprocessed bone without 
the need for tissue sectioning. The immediate clinical indication for these results is to provide the possibility of 
rapid pathological examination of bone tumor margins. Since no physical sectioning is needed, it does not 
need highly specific trained technicians for bone specimen preparation. Moreover, the undestructed bone 
specimen can be further examined by other techniques after label-free UV-PAM imaging. In this paper, we 
focused on the demonstration of bone, which is one of the most challenging biological tissues for rapid 
pathological diagnosis. But the system can also be applied to various other types of specimens. We believe it 
has great potential for revolutionizing the pathological diagnosis and providing immediate feedback for 
determining the tumor margin.  
 
Methods 
Label-free reflection-mode UV-PAM. The reflection-mode UV-PAM system used an Nd: YLF (neodymium-
doped yttrium lithium fluoride) Q-switched 266 nm nanosecond pulsed laser (QL266-010-O, CrystaLaser). A 
bandpass glass filter (FGUV5, Thorlabs) was placed at the laser output to reject the leaked pump light. After 
passing the colored glass filter, a small portion of the beam was reflected by a UV fused silica beam sampler 
(BSF10-UV, Thorlabs) and directed to a Si photodiode (PDA36A, Thorlabs) for pulse-to-pulse fluctuation 
compensation. The UV laser beam was expanded by a pair of plano-convex lenses and spatially filtered by a 
15 µm high-energy pinhole (900PH-15, Newport). The expanded and collimated beam was then focused onto 
the sample by a custom-made water-immersion UV objective lens (consisting of an aspheric lens, a concave 
lens, and a convex lens (NT49-696, NT48-674, NT46-313, Edmund Optics)) with a numerical aperture (NA) of 
0.16. A customized ring-shaped ultrasonic transducer (42 MHz center frequency, 76% −6 dB two-way 
bandwidth) with a central aperture was used to detect the PA signal, which allows the optical and acoustical 
confocal alignment. The detected signal was amplified by two low noise amplifiers (ZFL-500LN+, Mini-Circuits) 
and digitized by the data acquisition card (ATS 9350, Alazar Technologies) at a 500 MHz sampling rate. The 
PAM image was acquired by scanning the water-immersed sample mounted onto a customized 3D scanner 
(consisting of 3 step motors, PLS-85, PI Micos, GmbH). The reconfigurable I/O device (myRIO‑1900, National 
Instruments) with a field-programmable gate array (FPGA) was used to control and synchronize laser pulses, 
motor movements, and data acquisition.  
Real-time 3D contour-scanning UV-PAM. To allow imaging of the rough surface of unprocessed thick 
samples like bone, we developed the contour scanning mechanism without prior knowledge of the sample 
surface using a 3-axis motorized stage, which ensures consistent lateral resolution within a large field of view. 
For consistent and optimized optical resolution, the distance between the sample and optical focus should be 
maintained within the DOF during scanning. In contour scanning, the time-of-flight information of PA signals is 
used to calculate the distance between the sample and the focal spot, which can be adjusted by the z-motor 
during scanning. With the numerical aperture of 0.16, the DOF of our UV-PAM microscope is only about 9 µm, 
which corresponds to 6 ns ultrasound propagation for the speed of sound at 1500 m/s in room temperature 
water. The acquired PA signal was digitized at the sampling rate of 500 MHz (ATS9350, AlazarTech). The z-
profile of the sample surface can be accurately calculated using the time-of-flight information of PA signals, 
enabling contour scanning for z-position compensation. 
Prior to PAM imaging, the optical and acoustic foci are confocally aligned, while the propagation time of the 
acoustic signal from the optical focus is recorded to determine the focal spot position. To extract the ultrasound 
propagation time, we calculate the centers of positive and negative peak positions in PA A-line signals, which 
are converted to the sample position. Without prior knowledge of the sample surface profile, one seed B-scan 



 

with the z-motor disabled is implemented to calculate the starting contour trajectory. To avoid potential noise 
interference and remove outliers, a 100-point moving average is used to generate a smooth z scanning 
trajectory. During the contour scanning, both the x-axis motor and the z-axis motor move simultaneously. After 
the first contoured B-scan, the z-motor trajectory and the distance between the sample surface and the 
ultrasonic transducer are calculated and used to compute the accurate surface profile. Due to the small y step 
(0.625 µm), we set the second z-motor trajectory to follow the surface profile from the previous contoured B-
scan43. Then, the surface profile is updated according to the second contoured B-scan. This process is 
repeated until the whole scanning is completed. Real-time data processing and system control are 
implemented using MATLAB and LabVIEW hybrid programming.  
Bone specimen preparation and H&E imaging. The bone specimens for UV-PAM imaging were procured 
from larger specimens in the pathology laboratory with informed consents of patients, surgically removed from 
patients at the City of Hope and UCLA medical center. All bone specimens were fixed in 10% buffered formalin 
prior to any other procedures. For thick undecalcified specimens in this study, the specimens were mounted 
to the sample holder for imaging without further processing. To decalcify specimens, we treated the bone 
specimens with a decalcifying solution containing chelating agents in dilute HCl, while the treatment time varied 
depending on the size and hardness of the specimens. After fixation and decalcification, the specimen was 
embedded in paraffin wax, sectioned into 5-micron thick slices, and placed on glass slides. Specimens with 
less calcification were sectioned without decalcification. These slices were then processed with standard H&E 
staining and cover-slipped. The H&E-stained slides were imaged using either the standard optical microscope 
or the digital whole slide scanning (Leica Aperio AT2) with a 40X objective.  
UV-PAM virtual histology via CycleGAN. To reconstruct the UV-PAM images, we first calculated the PA 
amplitude of each A-line signal after the Hilbert transform. The pulse energy measured by the photodiode was 
used to normalize the PA amplitude and compensate for the laser pulse fluctuation. The axial position of the 
specimen surface was calculated by detecting the peak of the A-line signal after the Hilbert transform. The 2D 
MAP (maximal amplitude projection) image was self-normalized. Since the PA amplitude of the contrast is 
proportional to its absorption coefficient, it can be used to effectively differentiate cell nuclei, cytoplasm, and 
the background. The cell nuclei have the largest absorption coefficient at 266 nm and the highest PA signals. 
After calculating the grayscale UV-PAM, we use a trained neural network to perform virtual H&E staining, 
which is more familiar to pathologists and thus easier for them to interpret. 
We use the CycleGAN architecture36, shown in Fig. 6, which can learn how to map images from the UV-PAM 
domain, PA, to the H&E domain, HE, without the need for well-aligned image pairs. We use an adversarial 
loss to learn the transformations G: PA  HE and F: HE  PA, such that the images G(PA) and F(HE) are 
indistinguishable from HE and PA, respectively. The discriminators are trained to distinguish between real 
images and those produced by the generators. The loss function for 𝐷𝐷𝐻𝐻𝐻𝐻  is given by44  

𝑙𝑙𝐷𝐷𝐻𝐻𝐻𝐻 = 𝐷𝐷𝐻𝐻𝐻𝐻�𝐺𝐺(𝑃𝑃𝑃𝑃)�2 + �1 − 𝐷𝐷𝐻𝐻𝐻𝐻(𝐻𝐻𝐻𝐻)�2,     (1) 
where 𝑃𝑃𝑃𝑃 is a UV-PAM image patch, and 𝐻𝐻𝐻𝐻 is an H&E-stained image patch. Similarly, the loss function for 
𝐷𝐷𝑃𝑃𝑃𝑃 is given by 

𝑙𝑙𝐷𝐷𝑃𝑃𝑃𝑃 = 𝐷𝐷𝑃𝑃𝑃𝑃�𝐹𝐹(𝐻𝐻𝐻𝐻)�2 + �1 − 𝐷𝐷𝑃𝑃𝑃𝑃(𝑃𝑃𝑃𝑃)�2.     (2) 
The generators are trained to try and fool the discriminators by producing images that match the statistical 
properties of the target domain. To ensure G doesn’t simply produce convincing but irrelevant H&E images, 
an additional loss term is necessary. Conventionally, this would be the l2 or l1 norm loss between the network 
output and some known ground truth image. However, this requires well-aligned paired datasets, which are 
challenging to acquire after sample preparation. 
Instead, the CycleGAN architecture learns the inverse transformation so that cycle consistency can be used 
to ensure the images are of the same structures. The total loss for the generators is  

𝑙𝑙𝐺𝐺 = �1 − 𝐷𝐷𝐻𝐻𝐻𝐻�𝐺𝐺(𝑃𝑃𝑃𝑃)��
2

+ �1 − 𝐷𝐷𝑃𝑃𝑃𝑃�𝐹𝐹(𝐻𝐻𝐻𝐻)��
2

+ 𝜆𝜆�𝐹𝐹�𝐺𝐺(𝑃𝑃𝑃𝑃)� − 𝑃𝑃𝑃𝑃� + 𝜆𝜆�𝐺𝐺�𝐹𝐹(𝐻𝐻𝐻𝐻)� − 𝐻𝐻𝐻𝐻�,  (3) 
where the regularization parameter 𝜆𝜆 is set to 10.  
The generators are residual networks consisting of an input convolutional layer, two convolutional layer and 
downsampling blocks, nine residual network blocks, two convolutional and upsampling blocks, and finally, an 
output convolutional layer45. Instance normalization and rectified linear unit (ReLU) layers are used after each 
convolutional layer. For the discriminator, we use PatchGAN consisting of convolutional layer and 
downsampling blocks, which classify whether the image is real on overlapping 70x70 pixel image patches46. 
This patch size is a compromise between promoting high spatial frequency fidelity and avoiding tiling artifacts. 



 

In the discriminator networks, instance normalization and leaky ReLU (lReLU) layers, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) =
max (0.2𝑥𝑥, 𝑥𝑥) are used after each convolutional layer. Anti-alias downsampling and upsampling layers are used 
in both the generators and discriminators to improve shift invariance47.  
The training dataset consisted of UV-PAM images of undecalcified bone specimens. These images were 
converted into 17940 and 26565 286x286 pixel image patches for UV-PAM and H&E histology, respectively. 
During training, these were further randomly cropped to 256x256 for data augmentation. The training was 
performed with the Adam solver with a batch size of 4 and an initial learning rate of 0.0002, decaying to zero 
over 100 epochs48. Once trained, we used the generator G to transform UV-PAM data in overlapping 256x256 
pixel image patches, which were recombined with linear blending. To validate the virtual histology 
performance, we have quantitatively assessed the accuracy of our virtual staining method. We have 
segmented the cell nuclei in comparative regions of interest to compare their numbers, sizes, and densities. 
The nuclear segmentation was performed via Qupath49, using the default cell detection settings with the 
threshold set to 0.3 to reduce false positives. The cell counts, average nuclear areas, and average nearest 
neighbor internuclear distances were calculated for comparison of the UV-PAM virtual histology and H&E 
results. 
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Figure captions 
Fig. 1 Rapid label-free UV photoacoustic (PA) histology via deep learning. a, schematic of the 3D contour 
scan UV-PAM system. The UV laser is spectrally filtered by a bandpass colored glass filter (BF) and spatially 
filtered and expanded using a pair of lenses and a pinhole (PH). The beam sampler (BS) is placed before the 
lens to pick up a small fraction of the beam for photodiode measurement to compensate for the laser pulse-
to-pulse energy fluctuation. The collimated and expanded beam is focused through a ring-shaped ultrasound 
transducer using a customized water immersed objective and illuminates the specimen for photoacoustic 
excitation. The 3D contour scanning of the specimen placed on the sample holder is implemented for UV-PAM 
imaging. b, Deep learning network architecture for virtual staining of PAM images. The CycleGAN model 
consists of two generators, G: PAH&E and F: H&EPA, and corresponding adversarial discriminators, DPA 
and DHE. c, The workflow for PA histology and conventional H&E staining histology of bone samples (1x1 mm2 
field of view). 
Fig. 2 Label-free 3D contour-scanning UV-PAM of thick (>1 cm) unprocessed bone specimens. a, The 
UV-PAM images of the undecalcified left tibia bone extracted from a patient with osteofibrous dysplasia-like 
adamantinoma acquired by a 2D raster-scanning and c 3D contour scanning, showing the improved image 
quality by 3D contour scanning of the undecalcified bone specimen with a rough surface. Scale bar, 500 µm. 
The specimen surface position in the axial direction relative to the optical focal plane during b 2D raster 
scanning and d 3D contour scanning profiles are calculated by the time-of-flight information of the 
photoacoustic signal. A normal unprocessed thick bone sample is also imaged and compared using e 2D 
raster scanning and f 3D contour scanning. Scale bar, 250 µm. 
Fig. 3 Label-free UV-PAM of decalcified bone specimens. a, PAM image of the formalin-fixed paraffin-
embedded (FFPE) decalcified nonneoplastic bone fragment on a glass slide. A near vertically oriented 
trabecula of cancellous bone is seen in the middle portion of the image. Scale bar, 500 µm. b, A close-up 
image of a showing a portion of the cancellous bone at the left border of the image. Scale bar, 100 µm. c, PAM 
image of the FFPE decalcified bone specimen with metastatic poorly differentiated adenocarcinoma of 
pulmonary origin shows neoplastic glandular profiles of metastatic carcinoma on a glass slide. Scale bar, 500 
µm. d, The close-up image of c shows nests and glandular profiles of metastatic carcinoma. Scale bar, 100 
µm. 
Fig. 4 Label-free UV-PAM for identifying tumors in decalcified bone fragments. a, PAM image of the 
decalcified bone section on a glass slide with metastatic adenocarcinoma. b, PAM image of the decalcified 
bone section on a glass slide with normal bone fragment and hematopoietic marrow. The PAM contrast was 
reversed to highlight the high absorption region in dark color for better comparison. c-d, Corresponding H&E 
images of a and b. Neoplastic glands of metastatic carcinoma amongst bone fragments are indicated by arrows 
in a and c. Scale bars, 500 µm. 
Fig. 5 Label-free UV-PAM of the undecalcified bone specimen and H&E validation. a-b, UV-PAM images 
of undecalcified patient bone sections on a glass slide from patient #1 with osteoblastic osteosarcoma showing 
neoplastic osteoid matrix, the lacy material in between the nuclei of the neoplastic cells, denoted by arrows. c, 
UV-PAM images of an undecalcified patient bone section on a glass slide from patient #2 with chordoma, 
demonstrating lobules of the myxoid tumor demonstrating myxoid lobules of the tumor, which are areas 
denoted by arrows. d-f, Corresponding H&E images acquired by the digital whole slide scanning microscope 
with a 40X objective with an essentially identical appearance. Scale bars, 500 µm. 
Fig. 6 Detailed network architecture for virtual staining. The CycleGAN model consists of two generators, 
G: PA  HE and F: HE  PA, and corresponding adversarial discriminators, DPA and DHE. Each generator is 
composed of two downsampling blocks (a convolutional layer and anti-alias downsampling layer of stride two), 
nine residual blocks (two convolutional layers and a skip connection), and two upsampling blocks (an anti-alias 
upsampling layer of stride two and a convolutional layer). Each convolutional layer is followed by instance 
normalization and rectified linear unit (ReLU) activation layers. The discriminators are composed of three 
downsampling blocks, followed by an output convolutional layer. Each convolutional layer in the discriminators 
is followed by instance normalization and leaky ReLU activation layers. The network is applied to image 
patches of 256 by 256 pixels. 
Fig. 7 Label-free UV-PAM virtual histology of undecalcified bone via unsupervised deep learning. a, c, 
Virtual-stained PAM images of undecalcified bone sections on a glass slide. b, d, Corresponding H&E histology 
images. Scale bars, 500 µm. a1-a2, Close-up images of a show neoplastic spindle cells (denoted by many 
long, spindle-shaped purple nuclei, red arrow) arranged in vague streaming and fascicular patterns in a1, and 



 

a nodule of neoplastic chondroid material in a2 (yellow circle), corresponding to the H&E-stained images in b1 
and b2. c1-c2, Close-up images of c show ribbons of neoplastic spindle cells (red arrow) in c1 and 
disorganized osteoid, the streaky bands denoted by the yellow circle in c2, corresponding to the H&E-stained 
images in d1 and d2. Scale bars, 100 µm.  
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