
Exploit the Last Straw That Breaks Android Systems
Lei Zhang1, Keke Lian1, Haoyu Xiao1, Zhibo Zhang1, Peng Liu2, Yuan Zhang1, Min Yang1, Haixin Duan3

1: Fudan University, 2: The Pennsylvania State University, 3: Tsinghua University
1: {zxl, kklian20, hyxiao20, zbzhang15, yuanxzhang, m yang}@fudan.edu.cn

2: pxl20@psu.edu, 3: duanhx@tsinghua.edu.cn

Abstract—The Android system services usually play a critical
role in running multiple important tasks, and delivering seamless
user experiences, e.g., conveniently storing user data. In this
paper, we conduct the first systematic security study on the data
storing process in Android system services, and consequently
discover a novel class of design flaws (named Straw), which can
lead to serious DoS (Denial-of-Service) attacks, e.g., permanently
crashing the whole victim Android device.

Then we propose a novel directed fuzzing based approach,
called StrawFuzzer, to automatically vet all system services
against the straw vulnerabilities. StrawFuzzer balances the trade-
off between path exploration and vulnerability exploitation. By
applying StrawFuzzer on three Android systems with the latest
security updates, we identified 35 unique straw vulnerabilities
affecting 474 interfaces across 77 system services and successfully
generated corresponding exploits, which can be used to conduct
various permanent/temporary DoS attacks. We have reported
our findings with suggestions for repairing the vulnerabilities
to corresponding vendors. Up to now, Google has rated our
vulnerability as high severity.

I. INTRODUCTION

In Android, many system services play a critical role in
running important tasks, especially storing user and system
data. For example, the system service “AccountManagerSer-
vice” can help apps save user account information, letting
users conveniently avoid repeated login whenever the apps are
opened.

Recently, the security of system services has attracted more
and more attention. However, up to now, their data storing
process is rarely understood and sanitized. In this work, we
conduct the first systematic security study on it. As a result, we
find that there are several different types of critical data storing
operations and instructions which are frequently used, yet
largely unprotected inside system services. More specifically,
many critical data storing instructions are exposed to untrusted
third-party apps through the services’ public interfaces. An
untrusted third-party app can send well-crafted messages to the
target system service, access its data storing instructions, and
inject trash data into the corresponding memory objects. After
the cumulative efforts of the attack (e.g., repeating a number
of times), all memory resources (e.g., heap) are exhausted.
Finally, this attack can crash the victim system service and
break down the Android device (e.g., rebooting).

Additionally, we find some of the above DoS (denial of
service) attacks cause a permanent result. In some cases,
the victim device cannot be recovered from rebooting once
attacked. Figure 1 illustrates an example of this. The system

service ‘AccountManagerService’ allows apps to save account
information with its public interface ‘addAccountExplicitly()’.
However, as shown in the figure, inside the interface, the
data storing operation ‘db.insert()’ is exposed, which adds the
input (e.g., ‘account’) into a database and saves the injected
account information permanently. Although the system service
validates if the account being stored belongs to the requester
app, it does not limit the number of accounts that an app can
store. Hence, a malicious app can store a huge number of
accounts by requesting this service many times, which finally
makes the size of the account database (also always loaded
in memory) exceed the memory ceiling of the service (e.g.,
for Pixel 3XL, the heap memory is limited to 512MB). As a
result, the attacker breaks down the system service and causes
the entire system to reboot. Worse still, every time when
the Android system is rebooted, the critical account system
service is required to be started, and the account database is
loaded into memory. Nevertheless, due to the too big size of
the database, the service quickly occupies too large memory
and is shut down. Consequently, the Android system falls into
an endless loop of rebooting and crashing, which leads to a
permanent DoS attack.

Furthermore, we discover a rich range of attack objects (i.e.,
exposed data storing instructions), not just the operations re-
lated to saving users’ or apps’ information (e.g., account). For
example, the window system service ‘WindowManagerSer-
vice’) creates a window session for capturing user’s operations
on the current screen. The window session is stored in a
container and can also be attacked (see more details in §II-B).

As mentioned above, one (major) cause of the security
flaws is no protection on data storing operations in system
services. The life-cycle design of the containers (e.g., array,
set, database, etc.) in Android system services is another
important cause. In order to provide seamless user experi-
ences, Android system services are always ready to serve
apps. Specifically, the system services always prepare various
containers for storing necessary data of an app, no matter the
app has been opened or not. It is worth noting that this is a
fundamental feature in Android. For example, Android allows
apps to register many event listeners, which will be triggered
when specific system events occur. The corresponding system
service creates such an event listener container before an app
is started and may release it after the app is closed. Therefore,
there is a long time window between the time to store the app’s
event listener in this container (Time-to-store) and the time to

1

release it (Time-to-release), which gives attackers chances to
launch attacks.

In this paper, we refer to this DoS attack as Straw1 attacks.
In essence, straw attacks belong to a kind of space DoS
attacks, which rely on the cumulative effect on the target data
storing (i.e., straw) – Each straw has little influence on the
service memory, but the attacker can cumulatively increase
the influence by continuously calling the vulnerable interface
within the time window between time-to-store and time-to-
release.

After understanding the straw attacks, we aim to create an
automated vulnerability detection and verification tool against
them. However, this is not an easy task. It should address
several challenges and achieve the following goals:

● Covering as many data storing instructions as possible.
The Android system will prepare plenty of resources before
apps’ requests. However, no detailed documentation can
tell us how the corresponding mechanisms are designed
and implemented. Besides, there are not well-defined sub-
systems and they are scattered across the huge code base of
Android. For example, the documentation for the “audio”
service only illustrates the interaction with audio hardware.
However, when an app initializes an audio player, its audio
configuration information is stored in the system service,
while this configuration is only used when the registered
audio player triggers specific events. Hence, the new tool
should understand the data storing process and find as many
types of data storing instructions as possible.

● Supporting the testing of a large number of different
types of service interfaces with different but proper
inputs. In Android, there are usually a large number of
different service interfaces. These interfaces have different
functionalities with very complex code logic. Understanding
them needs strong domain knowledge. What is worse,
different interfaces usually require different types of inputs.
Hence, the new tool should be generic and scalable, and
independent of domain knowledge. It is better to feed the
service interfaces with proper inputs and guide the services
under test to trigger as many vulnerabilities as possible.

● Carefully monitoring attack effects in a lightweight but
efficient way. Launching straw attacks often needs cumula-
tive effects. The result, i.e., memory change, of triggering
an exposed data storing operation is often subtle and hard
to monitor. Therefore, the new tool should be sensitive
to any memory change. However, only memory change is
inefficient to detect the vulnerability as it cannot indicate if
the time window is enough for exhausting service memory.
Thus, to confirm a vulnerability, we should trigger the attack
effects, e.g., crashes of system services. Moreover, to trigger
such a consequence, each data storing operation may need
to be tested thousands of times. Hence, the new tool should
conduct analysis in a lightweight way.

1This attack relies on continuously injecting data into Android system
services, which looks like continuously adding straws on the back of a camel
and finally breaking it down.

To accomplish these goals, we propose a directed grey-box
fuzzing (DGF) based approach, named StrawFuzzer. Our
basic idea is to continuously send input data (via an Android
API call) to a server process and monitor its memory size
change to see if it can release the injected data in time.
The key design of StrawFuzzer is a novel combination
of static and dynamic analysis techniques to effectively and
efficiently detect and verify straw vulnerabilities in Android
system services. First, we observe that static analysis often has
the whole picture of all system services, and can somehow
locate all potential data storing instructions. However, static
analysis is difficult to get the runtime memory status. Hence,
we introduce dynamic fuzzing as a complementary approach
which can not only monitor the runtime memory usage but
also generate a PoC to confirm the vulnerability.

Following the above methodology, StrawFuzzer is de-
signed as a two-phase analysis tool. In the first phase (i.e.,
static analysis), StrawFuzzer first applies static program
analysis techniques on system service code to generates call
graphs, control flow graphs, and data flow graphs. Next, by
leveraging the results, StrawFuzzer designs several heuris-
tic rules to locate as many vulnerable data storing instructions
as possible and use them as fuzzing targets in the next
stage (i.e., dynamic fuzzing). Additionally, StrawFuzzer
can extract the related path constraints to generate high-quality
seeds. In the second analysis phase (i.e., dynamic fuzzing),
StrawFuzzer intends to verify if the exposed data storing
can exceed the memory limitation. First, StrawFuzzer uses
an instrumented but lightweight environment to monitor any
change of memory size carefully and calculate the seed’s dis-
tance to the fuzzing target. Second, StrawFuzzer prioritizes
seeds with an adaptive strategy by making a good trade-off
between path exploration (to reach the target) and vulnerability
exploitation (to exhaust memory). Last, when a vulnerability
is confirmed, StrawFuzzer collects all results to generate
exploits for the vulnerability verification purpose.

We evaluate StrawFuzzer on 3 popular Android systems
with all the security updates (i.e., Android 10.0 on Pixel 3,
Android 11.0 on Pixel3 XL, and Android 10.0 on Oneplus 7).
As a result, StrawFuzzer successfully discovers 35 straw
vulnerabilities as well as 474 vulnerable service interfaces
(as indicated in Table II), which affect about 35% of An-
droid system services. Even high-privileged interfaces can be
attacked. We further analyze 3 customized Android systems
from Huawei, Samsung, and Vivo, and find that they inherit
most of the vulnerabilities from stock Android and all can be
attacked. Furthermore, the attack speed can be controlled by
the attacker. We find at least 42% of attacks can be finished
within 1 second and 90% within 77.6 seconds. Additionally,
we confirm that at least 3 vulnerabilities can also be used to
attack services provided by Android apps since regular app
services share the data storing vulnerabilities with the system
services. Specifically, we collect the top 100 free apps from
Google Play and confirm 76 of them suffer from straw attacks.

We have responsibly disclosed our findings to Google (in
Oct 2020), Huawei (in Apr 2021) and Oneplus (in May 2021).

2

addAccountExplicitly(Account, ...)

addAccountExplicitlyWithvisibility(Account, ...)

it checks isAccountManagedByCaller(Account.type)

addAccountInternal(Account, ...)

accounts.accountsDb.insertDeAccount(Account)

db.insert(Account)

// Add an account in AccountManagerService.java (Android 10.0)

Figure 1: The simplified call chain of adding an account in
AccountManagerService. It only checks if the account belongs
to the caller.

They confirmed and acknowledged our findings, as well as
decided to deploy patches to fix them.

We summarize the contributions of this work as follows:
● Our work is the first to systematically uncover the straw

attacks in Android systems, as well as revealing the root
causes of this new kind of vulnerability on Android services’
design and implementation.

● We design and implement a novel tool, called
StrawFuzzer, which can automatically locate and
exploit the vulnerable interfaces in Android services by
utilizing a DGF based approach. The source code is
available at GitHub [1].

● We evaluate StrawFuzzer on 3 Android systems. The re-
sults show StrawFuzzer successfully discovers 35 straw
vulnerabilities and exploits 474 vulnerable interfaces. Be-
sides, we confirm popular Android apps also suffer from
straw attacks.

II. UNDERSTANDING STRAW ATTACKS

In this section, we explain how straw attacks perform and
why the vulnerabilities are universal in Android. For consis-
tency in this paper, we use the term server process as a process
that receives data, client process that sends out data in inter-
process communication, and public interface as the Android
API call provided by server process. Besides, the client process
injects data into server process by sending requests containing
input parameters. Since both Android system and apps can
provide services for receiving data, both of them can act as
server processes and are affected by the straw attacks.

A. Straw Attacks in Android Services

Straw attacks leverage the logic flaw in server code to
exhaust its memory resources. That is, it does not limit the
total amount of data that can be stored from client process. To
conduct such an attack, the malicious app does not require
a special configuration and just looks like a normal app.
Specifically, during each iteration, the malicious app calls a
public interface in Android services. Then the Android Binder
will provide the needed inter-process communication (IPC) to

Application

windowManagerService.openSession()

binder.transact()

openSession()

Session()

linkToDeath()

Client Process

Server Process

binder.onTransact()

During startup, it registers a session

in WindowManagerService

/* The caller has died, so we can just forget about this.

 * Hmmm, should we call killSessionLocked()??

 */

Binder IPC

AOSP Developer

Figure 2: The simplified call chain of registering a window
session in WindowManagerService.

connect the client and server process. Next, the target public
interface is executed in server process with input data coming
from client process. Starting from executing this interface,
an execution path drives the control flow to arrive at the
vulnerable data storing instruction. After the execution is
finished, the data is stored and retained in the server memory.
Note that the malicious app calls the interface normally and
behaves just like all other benign apps. Thus, it’s difficult to
separate it from other apps. The only difference is that the
malicious app will call the interface multiple times.

Android contains various system services (e.g., 200 services
in Android 11.0) and apps (over 2,800,000 apps in Google
Play). Though they implement different functionality based
on Binder IPC, the underlying mechanism is the same –
The client data is first serialized in Parcel and sent out by
binder.transact(), then the server process deserializes the data
from binder.onTransact() and propagates it to its local method.
If the transformed data are stored in the server memory, they
will consume the memory resources of server process. Thus,
the straw attacks on them are similar. In addition, Android
Binder uses a fixed-size buffer to prevent the transformed
data from exceeding 1MB, and this limitation is shared by
all transactions in progress [2].

B. Analyzing Root Causes for Straw Attacks

Inconsistent Life Cycle. By using Binder based IPC, client
process can send data to server process. However, the life
cycle of these data is inconsistent in client process and server
process because of the time window between the data storing
(Time-to-store) and the data releasing (Time-to-release). More
specifically, when the IPC ends, the client process can free the
data and recycle the memory occupied by them. But the server
process will hold the data for a long time in case that it will
be used in the future. For example, in Figure 2, the client app
creates a window session for processing user operations. Thus,

3

Figure 3: The number of registered sensor listeners in Sensor
service cannot exceed 128.

for each session, the server and client process both maintain
several data structures to store this session’s data. However,
if the client app frees the memory of these data structures
(i.e., through GC in Java), the server process will still hold
this session. In fact, by calling linkToDeath() which binds this
session with the client app’s life, the server process will not
recycle this session unless the client app is dead. Thus, the
inconsistent life cycle of the data objects transformed through
IPC will make the server process consume more memory
resources than client process.

The Android system developers may also be confused about
the life cycle of the data stored in system server. One example
is their comments in Android’s code illustrated in Figure 2.
They think that once the caller is dead, this session object
should be freed by linkToDeath() and they wonder if they
should actively use killSessionLocked() to recycle it. However,
based on our experiments, linkToDeath() will not kill the
session object immediately when the caller is dead. Actually,
it needs about 385 seconds on average if we shut down the
caller app, and about 450 seconds on average if we uninstall
the caller app. This time window can further be abused by
attackers to mislead the mobile user. For example, the attacker
app can consume most of the system server memory resources
which are just a bit smaller than the upper bounds. After
the user shuts down the attacker app and starts another app,
the system server will crash once this app consumes server
memory, which re-delegates the role of the attacker to another
app from the perspective of mobile users.

Limited Memory Usage. Android enforces a set of limitations
on each process’s memory resources, including the system
server, which indicates that the total amount of stored data
in server memory has an upper bound. For example, Android
limits the heap memory of each process to 512MB in Pixel
3XL (Android 11). If the system server exhausts its heap
memory, it will throw out a ‘java.lang.OutOfMemoryError’
and crash. Besides, Android also customizes plenty of mem-
ory resource limitations. For instance, as illustrated in Fig-
ure 3, the number of registered sensor listeners in “sen-
sor” service cannot exceed 128. Otherwise, it will throw a
’java.lang.IllegalStateException’.

The exhaustion of these limited memory resources will
raise the attention of Android’s recovery mechanisms, such
as Watchdog and ANR [3]. Commonly, these mechanisms are

designed to reboot the system if it runs into an error state
occasionally. However, it’s easy to see that, with the capability
of exhausting system server memory resources, the attacker
can control when and how often the system server will run
into an error state, which is far beyond the design purpose
of Android’s recovery mechanisms. Besides, though Android
implements plenty of system services, most of them run in
the same process, i.e., the system server. Thus, one system
service’s crash can break down the whole system server as
well as other system services.

Lack of Memory Size Check. A straightforward way to
ensure the server process avoids memory resource exhaustion
is checking the size of available memory before storing client
data. However, we find that some memory size checks are
incomplete. Figure 4 illustrates an example. The “window”
service of Android expects each client app only registers one
Session object to interact with the window manager. In fact, a
malicious app can register as many Session objects as it wants
because of lacking essential checks, which finally exhausts the
server memory.

Besides, there exist design flaws in Android IPC, which
pose challenges for servers to enforce memory size checks.
For example, Figure 5 illustrates two interfaces provided by
Android IPC for deserializing client data. Compared to the
createFloatArray(), createStringArray() does not check if the
server’s available memory is enough for deserializing client’s
data. However, to enforce such a memory size check, the
server needs to know the exact size of the memory that client’s
data will consume. For createStringArray(), the server should
know the array length (i.e., N in line 2) and the memory size
of each java.lang.String object. Unfortunately, the memory
size of each java.lang.String object depends on the number
of characters in it, which is undefined and can be any int
value. Thus, the server process cannot compute the exact size
consumed by the string array and compare it with the available
memory. This flaw can be abused to attack plenty of public
interfaces, even the privileged ones, illustrated in §VI-B.

Lastly, the enforced memory size checks are double-edged
swords to all apps, which also can be abused to launch DoS
attacks. For example, though the check of available memory
(e.g., check dataAvail()) in createFloatArray() can prevent the
server from memory exhaustion, it also prevents all the apps
from sending data to the server process if the server does not
have enough available memory. Thus, if a malicious app first
stores a lot of data in the server process, which is a bit smaller
than the memory size limitation, no other apps can use this
server anymore.

III. DESIGN INSIGHTS AND APPROACH

A. Static Analysis

By utilizing static analysis, we can locate all data storing
instructions (with heuristic rules) and service interfaces that
can reach these instructions. Furthermore, we can collect path
constraints to these data storing instructions and generate
initial seeds for dynamic fuzzing.

4

/**

 * This class represents an active client session. There is generally one

 * Session object per process that is interacting with the window manager.

 */

class Session extends IWindowSession.Stub ... {

}

Figure 4: The Android framework developer expects each
client process has one session.

Figure 5: createStringArray() vs. createFloatArray()

1) Heuristic based vulnerability candidates locating: One
major challenge is that no documentation discovers how many
data storing instructions exist in Android, where they are, and
what they look like. Hence, we need first to figure out the
pattern of these data storing instructions and then identify them
by static analysis.

Intuitively, the instruction ‘new’ may give some hints, since
it creates a new object and consumes memory resources in
Android, which is a Java-based platform. However, these data
objects will normally be freed (i.e., GC in Java) after the
method’s execution. Thus, they will not be “stored” in the
server memory, which indicates that labeling all the data
operation instructions will introduce a lot of false positives.

Instead, considering our goal is to abuse data storing to
launch straw attacks, we observe that they should satisfy
several constraints. First, the server should maintain references
of the injected data after the end of execution to prevent them
from being recycled by GC. That is, utilizing an object in
server’s main thread to keep their references. Second, the
size of the data structure used for maintaining them can
be increased, which requires that these data structures are
certain containers that store references of injected data, e.g.,
android.util.ArrayMap. We detail this part in §IV-A.

2) Initial seed creation: The efficiency of fuzzing depends
on the quality of the seeds. Traditionally, prior work [4]–[8]
utilize expert experience to select initial seeds and generate
new seeds by mutating them. However, with a huge code base
and plenty of service interfaces, it’s challenging to summarize
enough expert knowledge for seeds used for fuzzing Android
system services. Thus, we propose a novel approach by auto-
matically extracting such knowledge from Android framework.
The idea is that, in the Android framework, the path constraints
(i.e., branch conditions) are highly relevant to system status or
the system resources can be accessed by the caller app. These

inputs have confined values for choice because of the limited
run-time environment. For instance, the input pid of interface
SliceManagerService.checkSlicePermission() can be dynam-
ically determined by android.os.Process.myPid(). Therefore,
we can extract these values from Android framework and use
them as initial seeds.

Note that, during the control- and data-flow analysis, we
also split the public interfaces’ parameters into three sets: 1)
control-flow related inputs, which taint values used in checking
branch conditions, 2) consumption related inputs, which taint
data injected through those labeled data storing instructions,
and 3) other inputs, which are irrelevant to branch conditions
and data storing. The idea is that StrawFuzzer only needs
to mutate control-flow related inputs during exploration to find
new paths and consumption related inputs during exploitation
to trigger cumulative consequences.

B. Dynamic Fuzzing

Although the static analysis can help locate the interfaces
that store input data, they cannot determine the attack effects.
For instance, the attacker can add broadcast messages into a
queue maintained by “activity” service. Meanwhile, the system
server could process and remove them from the queue. The
attack can succeed only if the speed of storing data is faster
than that of releasing data. Thus, dynamic analysis is necessary
for verifying if the time window is enough for exploiting the
data storing.

1) Lightweight feedback collection: we first collect the
feedback of exploration (i.e., the distance to the target) and
exploitation (i.e., the memory size change) to guide fuzzing.

First, to calculate the distance to the target, prior work
utilizes basic block level instrumentation to obtain the “dis-
tance” between execution traces and target sites [9]. However,
this introduces non-negligible overhead during the run-time,
which significantly affects the monitoring of memory size
change. We first design and implement a lightweight but
efficient approach. Considering that the invocations of data
storing instructions rely on the satisfaction of preconditions in
their caller methods’ control-flow structures, we can obtain the
execution traces at the method level and use the control-flow
information as the guidance to improve them. Thus, we can
calculate an approximate probability of reaching the target for
each method on call graph (CG) under the guidance of control-
flow graph (CFG), and use this reachability probability as the
“distance”, detailed in §IV-B.

Next, for monitoring memory size change, the key problem
is that each straw (i.e., input data) has little influence on
the memory size, even smaller than the regular change of
server memory. Thus, we should execute each seed multiple
times to accumulate its influence so that we can observe the
memory size change. However, there exist some constraints
that implicitly determine if the app-provided data will retain
in server memory. For example, the system server may ignore
the inputs with the same value. Thus, to evaluate a specific
seed, we should generate a set of variations that have the same
quality but different values. Specifically, we generate a new

5

input by modifying its content without changing its size, to
ensure it has the same quality (i.e., consuming the same size
memory) as the original seed.

2) Adaptive seed selection: In general, StrawFuzzer
favors seeds that get closer to the target in exploration or
consume more memory in exploitation. But a critical obstacle
here is how to balance the trade-off between exploration and
exploitation [9], (i.e., when to select seeds for exploration or
exploitation). Traditional approaches like AFLGO assign fixed
time to split them. However, such a splitting heavily relies on
the empirical knowledge of the tested program and is inflex-
ible. Since Android system services provide plenty of public
interfaces, it’s impractical to have enough empirical knowledge
to pre-set the splitting time for each of them. Besides, the
exploitation in StrawFuzzer can be time-consuming and
it’s hard to determine the exact time needed. Thus, to bal-
ance the trade-off, StrawFuzzer uses an adaptive strategy
to dynamically schedule them. Specifically, StrawFuzzer
introduces simulated annealing to balance the scores (i.e.,
energy) of each seed used in exploration and exploitation,
and selects the seed with the highest score in each round of
fuzzing, detailed in §IV-C.

3) Exploit generation: Since StrawFuzzer finally trig-
gers the attack consequence (i.e., crashes of system server)
for each vulnerability, one straightforward way to generate
exploits is collecting the high-quality seeds generated by the
fuzzing and re-using them to construct the corresponding ex-
ploits. However, a problem for exploiting such vulnerabilities
in the wild is that it is undetermined how many times executing
the vulnerable interfaces can exhaust the memory resources,
which are affected by the run-time environment and device
performance. Thus, the number of high-quality seeds needed to
exploit the vulnerability is also undetermined, which requires
that the exploits should have the capability to generate new
seeds. The idea here is similar to the exploitation phase in
dynamic fuzzing – We can use these collected seeds as high-
quality initial seeds and arm the exploits with the capability
to generate new seeds by mutating them.

IV. METHODOLOGY

This section details our methodology. Figure 6 illustrates the
overall architecture of StrawFuzzer and the Algorithm 1
in the Appendix shows the high-level design of the fuzzing
process.

A. Static Analysis

The first step of StrawFuzzer is to locate the vulnera-
bility candidates and generate initial seeds for testing them.

1) Labeling data storing instructions: Based on the afore-
mentioned heuristics, we first identify all the fields defined
in Android system services, as they all run in the system
server process in singleton mode. Note that, since global static
objects are also singleton in server’s main thread and will not
be freed by GC, we additionally identify all the static fields
in the Android framework. Then we pick out containers in
them including various arrays, sets, maps, queues, lists, and

Directed Fuzzing Engine

Memory Size Sanitizer

Distance Calculator

Exploitation Queue

Exploration Queue

Execution EngineSeed GenerationSeed Selection

Simulated Annealing

Initial Seeds Android System Interface Locator

Exploits

Static Analysis

Figure 6: The overall architecture of StrawFuzzer.

Figure 7: An example for extracting initial seeds from An-
droid.

databases. Next, we label all the operations that increase the
size of these selected containers like add(), put(), and insert().
As a result, we find 96 kinds of instructions in Android and
label them as fuzzing targets.

2) Labeling public interfaces: To locate the public in-
terfaces which can reach these fuzzing targets, we conduct
a backward control-flow analysis from them, as well as a
data-flow analysis to check if they are tainted by the public
interfaces’ parameters. As a result, we match 609 fuzzing
targets with 1,244 public interfaces and use them to conduct
dynamic fuzzing.

3) Initial seed creation: StrawFuzzer selects initial
seeds by extracting all branch conditions checked in the
Android framework. Commonly, they check the input by
comparing it with specific constants or dynamic system sta-
tus (e.g., UserHandler.getUserId()). Thus, we directly use
these constants and the return values of these functions
as initial seeds. An example is illustrated in Figure 7.
StrawFuzzer will add UserHandler.USER ALL, UserHan-
dler.USER CURRENT OR SELF and the return value of
UserHandler.getUserId() into initial seeds.

6

public e(x,y){

 if(x>1)

 s(y);

 else

 r();

 o();

 }

e

s r o

Call Graph Control-flow Graph

1 1

0.5 0.5

1 0 0

0.25

P{e o}=0.5*1+0.5*1

Figure 8: An example for computing the reachability proba-
bility from entry e to target data storing s on call graph with
the guidance information collected from control-flow graph.

B. Feedback Collection

We detail the contribution evaluation of each seed in explo-
ration and exploitation for guiding the dynamic fuzzing.

Calculating Distance. Figure 8 illustrates an example of
this. Initially, we assign the fuzzing target s on CG with
Pr(s) = 1.0, and nodes which cannot reach s with Pr = 0.0.
Then we conduct a backward traverse on CG from s to
compute the Pr of the rest nodes. Note that, during the
traversing, we assign each edge in CG with their reachability
probability computed based on CFG. For example, the prob-
ability Pr{e → s} from e to s on CFG is 0.5, because e has
two successors including s in the CFG. Similarly, Pr{e→ r}
is 0.5 and Pr{e→ o} is 1. Next, we assign these reachability
probabilities on corresponding edges on CG. For instance, the
probability Pr{e → s} from e to s on CG is set to 0.5. Then
we normalize all the edges’ probability to ensure none of the
nodes’ Pr exceeds 1.0 by dividing the total probabilities of all
its brother edges. After normalization, Pr{e → r} is re-set to
0.5/(0.5+0.5+1), which is 0.25. Additionally, the probability
Pr for each node is a combination of all its successors. For
node e in CG, Pr(e) equals Pr{e → s} ∗ Pr(s) + Pr{e →
r}∗Pr(r)+Pr{e→ o}∗Pr(o), which is 0.25. Since Pr reveals
its distance to the fuzzing target, we can use it to evaluate the
contribution of seeds in the exploration phase. That is, for
each seed, we can obtain the set of triggered methods Sm

through instrumentation. Finally, for each method m in Sm,
we calculate its Pr(m), and select the max of them as the
seed’s contribution:

cr =max{Pr(m)∣m ∈ Sm}

Thus, if cr equals 1.0, we can know the distance of seed to
the target is 0. Algorithm 2 and 3 in the Appendix show the
detail of computing Pr.

Sanitizing Memory Size. In order to observe the cumulative
consequences of multiple executions, we design a memory size
sanitizer to monitor the memory resource consumption during
exploitation. Specifically, we choose two kinds of indicators
for sanitizing memory size: (1) the heap size, which is the
total amount (512MB in usual) of memory limited by Android
JVM; and (2) customized memory sizes, which are scattered
in Android system services based on their functionality. As
the heap size can be monitored by specific system interfaces
like getMemInfo(), the problem here is how to identify cus-
tomized memory sizes and their upper bounds. Fortunately,

with the interface locator, StrawFuzzer identifies a set of
singleton containers in the system server. The next step is
to identify whether Android enforces memory size checks
on them and their upper bounds. Particularly, we conduct a
control-flow analysis to locate the if statements that compare
their sizes with a constant, and use the constant as the
upper bound. As the example illustrated in Figure 3, the
MAX LISTENER COUNT (i.e., 128) is identified as the upper
bound of mSensorListeners.

With memory size sanitizer, StrawFuzzer can capture
the memory difference before and after executing the public
interface multiple times. Suppose that, before the execution,
the server has an initial memory size mi, and me after
the execution. The total amount of the memory resource is
mt. Thus, the contribution to memory consumption can be
calculated as:

cm =
me −mi

mt −mi

Note that, as our memory size sanitizer monitors a set of mem-
ory resources in the target process including heap memory and
customized memory resources, StrawFuzzer will evaluate
the seed’s contribution to them separately, and select the max
one as the result.

C. Seed Selection

This step selects high-quality seeds to fuzz Android system
services. Generally, StrawFuzzer favors seeds that can get
closer to the targets or consume more memory resources,
and uses simulated annealing to adaptively select seeds for
exploration or exploitation, to prevent StrawFuzzer from
wasting too much time on finding new paths or exploiting
hard-to-exploit paths.

Simulated Annealing. The path reachability cr and memory
consumption cm of a seed reveal its contribution to the
fuzzing. However, seeds with high contribution do not always
exploit the targets in practice due to some hard-to-satisfy
path constraints or hard-to-exploit targets. In order to avoid
StrawFuzzer getting trapped in a local optimum and adap-
tively schedule exploration and exploitation, StrawFuzzer
uses simulated annealing to gradually obsolete inefficient seeds
as follows:

T = 20−
N
500

in which N stands for how many times the seed has been
selected. Thus, the final contribution c of a specific seed is:

c = (cr + cm) ∗ T

By applying such a method, the seeds are evaluated by both
their contribution and selection times. On the one hand, a
seed in exploitation (i.e., cr = 1.0 ∧ cm ≥ 0) is prioritized
and has more chances to be selected than other seeds (e.g.,
cr < 1.0 ∧ cm = 0). On the other hand, if the seed has
been selected multiple times and still cannot trigger the
cumulative consequence, its final contribution will decrease

7

and StrawFuzzer will prioritize other seeds. Based on its
final contribution, the energy of a seed can be evaluated as:

energy = ⌊k ∗ c⌋ + b

in which b is the initial energy (i.e., 1 in our experiments),
and k is 100 based on AFL [10].

Note that one data storing instruction in Android system
may be reached from multiple public interfaces (e.g., mDis-
plays.put() is reachable from 60 service interfaces). Fuzzing
these interfaces one by one will waste plenty of testing
resources. Thus, during seed selection, StrawFuzzer will
consider all the seeds and their interfaces that can reach
the targets. That is, StrawFuzzer will map each seed to
its corresponding interface. After selecting the seed with the
highest energy, StrawFuzzer will use this seed’s interface
as the entry to conduct dynamic fuzzing.

D. Seed Generation & Mutation

1) Exploration Phase: As the goal of exploration is to find
a seed that could reach the fuzzing target, StrawFuzzer
mainly focuses on the control-flow related inputs of the tested
interface in this stage. After selecting a seed for exploration,
StrawFuzzer will generate a set of child seeds near it based
on its energy by only mutating the control-flow related inputs.
As an example, the interface broadcastIntent of Activity ser-
vice has 13 parameters, where StrawFuzzer only focuses
on mutating 8 control-flow related parameters to generate
seeds in the exploration phase.

2) Exploitation Phase: To make sure the fuzzing target can
be executed every time during exploitation, StrawFuzzer
will not modify the control-flow related inputs in this phase,
and only mutate consumption related inputs, because repeat-
edly invoking a service interface with the same inputs may not
result in cumulative consequences. For instance, the public
interface isTagEnabled() of Dropbox service in Android 10
takes a String as input, and uses it as the key for storing data
into a static ArrayMap object. So if isTagEnabled() is called
multiple times with the same input, only the first execution
could consume memory resources in server process. Thus,
mutation is inevitable in this phase.

In general, we mutate these consumption related inputs
towards a trend of enlarging memory size. Specifically, we ob-
serve that these inputs are commonly used in two types: (1) the
size of memory allocation, e.g., the size of arrays or maps; (2)
the content stored in memory, e.g., the data stored in arrays or
maps. For the first type, they are usually some specific Integer
values. Thus, StrawFuzzer tends to generate a very large
value for Integer and mutate it by generating new inputs near
it. For the second type, the memory consumed by them com-
monly depends on the String objects stored in them, as the size
of String objects in Java is unlimited. Thus, StrawFuzzer
tends to generate different and large String values for them.
For instance, the interface accountAuthenticated() has only
one parameter of android.accounts.Account, which can be con-
structed with three String parameters named name, type, and
accessId respectively. The first parameter name is identified

as consumption related input while the last two parameters
are control-flow related inputs, so StrawFuzzer will only
mutate name by increasing its string length during exploitation.

E. Exploit Generation

To generate exploits, we first collect high-quality seeds
during fuzzing, then inherit the seed mutation used in the
exploitation phase to arm our exploits with the capability to
generate new seeds. Note that, since the new seeds are used
for exploitation, we only mutate consumption related inputs.
Moreover, since our attacks are launched by third-party apps,
we prepare a code template for sending requests to Android
services through Binder IPC. Interested readers can find it in
the open-sourced code of StrawFuzzer.

V. EVALUATION

We implement StrawFuzzer with about 13,000 lines of
Java code and 1,200 lines of Python code. Specifically, we
use Smali/BakSmali [11] and vDexExtractor [12] to disas-
semble the Java bytecode of Android system, use Soot [13]
to implement static analysis, and use Xposed [14] to im-
plement method-level instrumentation for dynamic fuzzing.
Then we evaluate StrawFuzzer’s effectiveness, efficiency,
and accuracy by applying it to 3 latest Android systems.
We further analyze how the vulnerabilities affect real-world
Android system and present some case studies in §VI.

Statistics of analysis target. Table I shows the tested system
and overall results. Note that we update all systems with their
latest security updates before our evaluation. On average, each
system has 193 services and 4,097 public interfaces. Besides,
after customization, the third-party vendor (i.e., Oneplus) adds
more services into the system.

Efficiency. To illustrate the efficiency of StrawFuzzer, we
summarize StrawFuzzer’s analysis time on all the analysis
targets, i.e., 3 Android systems with 579 system services.
For a specific Android system, StrawFuzzer needs about
204 hours to finish its analysis on average. In particular,
the interface locator needs about 4 hours and locates 435
candidates of vulnerable data storing instructions as well as
963 public interfaces. The dynamic fuzzing needs about 200
hours for each system, consisting of 148 hours for exploration
and 52 hours for exploitation. When fuzzing each interface,
the timeout is set as 300 seconds, experimentally.

A. Tool Accuracy

In total, StrawFuzzer outputs 673 crashes as well as
673 exploits after removing duplicates. Next, we break down
these crashes and find that they are triggered by exploiting 40
vulnerabilities, of which 35 belong to Unlimited Data Storing,
and 5 belong to Uncaught Exception [15] as by-products. Note
that some interfaces can trigger multiple vulnerabilities. We
get 474 unique interfaces after deduplicating the interfaces
affected by all straw vulnerabilities. The details are shown
in Table IV. The reason for by-products is that they can
trigger the crash of system server, which is an indicator of

8

Table I: Impact of discovered straw vulnerabilities over popular Android system.

Android System # Vulnerable Service # Exploitable Interface # Generated Date of
(Version/Device) (# All Service) (# All Public Interface) Exploit Security Updates
11.0 (Pixel 3XL) 70(200) 435(4,146) 598 2020.09.05

10.0 (Pixel 3) 67(183) 395(3,903) 579 2020.08.05
10.0 (Oneplus 7) 67(196) 400(4,243) 584 2020.07.01

our memory size sanitizer. As StrawFuzzer successfully
generates exploits for each vulnerability, the final detection
precision is 100% and there are no false positives in the results.

For false negatives, since StrawFuzzer is designed to
discover a new type of vulnerability (i.e., straw vulnerability),
and there is no ground truth of all vulnerabilities, which is
a common limitation for existing work [16]–[19] devoted to
uncovering new types of vulnerabilities, we currently do not
have a good way to predict the false negatives accurately.
However, to understand the reasons which may lead to false
negatives, we further analyze 50 randomly selected candidates
that could not be successfully exploited. Overall, 43 of them
fail to explore due to the path constraints, and the other 7 are
hard to exploit in practice. The details are as follows. First,
34 of them fail because the corresponding service interfaces
require privileged permissions only granted to system apps.
Second, 2 candidates require critical parameters which are
only allowed to be instantiated by system processes. For ex-
ample, the method grantDevicePermission() of usb service has
a parameter android.hardware.usb.UsbDevice, which will be
checked whether its creator is system process before executing
this interface. Third, 6 candidates require specific process or
system status which are hard to satisfy, for instance, the in-
terface setBackupEnabled() requires the current user has been
registered in the backup service, which cannot be satisfied by
StrawFuzzer via mutating inputs. Forth, there is one can-
didate whose execution triggers another crash before finishing
the exploitation (i.e., uncaught exception). Lastly, 7 candidates
are hard to exploit in practice, as the service interfaces limit
the size of input data, and the exploitation cannot finish within
the time limit. For example, StrawFuzzer could only inject
an integer once into the interface checkPackage(), and needs
more than 24 hours to exploit it successfully, which is far
beyond the timeout, i.e., 5 minutes in our experiments.

B. Tool Effectiveness & Findings

For all found vulnerabilities, we illustrate their details in
Table III (two interfaces labeled with ⋆ can be exploited for
permanent DoS attack and the rest for temporary DoS attack)
and list all exploitable interfaces in Table IV in the Appendix.
We choose a subset of them as case studies in §VI to illustrate
the attack in the real world. We further conduct some analysis
to understand the root causes of these vulnerabilities and how
they affect real-world Android systems.

Finding 1: Plenty of Android system services are ex-
ploitable. Figure 9 visualizes the number of affected interfaces
per system service in Android 11. It shows that, among
the 200 system services, 35% of them contain exploitable

0 5 10 15 20 25 30 35
0 5 10 15 20 25 30 35

Interface

usb
network_management

media_router
telephony.registry

notification
connectivity

device_policy
audio

batterystats
wifi

content
activity_task

package
activity
account

(a) Distribution of exploitable
interfaces in system services.

(b) Top 15 services containing the
most exploitable interfaces.

Figure 9: Exploitable interfaces per system service in Android
11. Each node in (a) stands for one service (200 in total).

interfaces. Moreover, the most affected interfaces are from
a small set of services containing account, content, activity,
device policy, etc., which are correlated with device or app
status and user information management. Besides, though the
interfaces used for attacks are of various types and come from
various services, the main influences on memory consumption
come from parameters of type “java.lang.String”. Interestingly,
these strings commonly have no limitations, even though some
of them carry distinct semantics like calling package names.

Finding 2: High-privileged interfaces can also be attacked.
We then analyze the permission requirements of the 474
exploitable interfaces. 262 of them require no permission, and
54 of them require app-level permission. The rest (i.e., 158)
are high-privileged interfaces, which are protected by system-
level permissions. This is because the vulnerabilities lie in
the deserialization of input data, which are executed before
the permission check. Thus, attackers can finish the execution
of vulnerable code (i.e., storing data in server memory) before
failing the permission check. That is, to attack these privileged
interfaces, the malicious app does not need any permission. We
use a case study to illustrate this in §VI-B1.

Finding 3: Android deserialization significantly expands
the influence scope of straw vulnerabilities. We further
analyze the location of vulnerable data storing. As illustrated
in Table II, though most of them (about 54%) exist in the
particular APIs implemented in different Android services,
they only affect a small part of exploitable interfaces (about

9

Table II: The summary of Straw vulnerabilities exposed by
StrawFuzzer.

Location # Vulnerable # Affected
Category Data Storing Exploitable Interface

Particular Service API 19 29
Android Deserializer 16 435

Total 35 474

6%). That is, over 90% of interfaces are exploitable because
of the flaws in their deserialization phase. The reason is that
Android provides a new deserialization mechanism, named
Parcel & Parcelable, and all the Android service interfaces
use the provided APIs to deserialize client inputs. Thus, if one
of these APIs is vulnerable, all the service interfaces using it
will be exploitable.

Finding 4: System updating of Android introduces new
vulnerabilities. To reveal when these vulnerabilities appear
in Android, we further conduct a cross-version analysis from
Android 8 to 11. Specifically, for the 435 exploitable interfaces
we found in Android 11, we analyze when the interfaces are
added into Android (i.e., the added time) and when they be-
come exploitable (i.e., the exploitable time). It shows that for
about 6% of the interfaces, their exploitable time is later than
added time, which indicates that these vulnerabilities are in-
troduced by functional updates. For example, the vulnerability
in GnssManagerService.addGnssNavigationMessageListener()
can only be exploited on Android 11 because of a flaw in the
update code. Specifically, Google updates 3 public interfaces
in Android 11 to additionally accept a string type parameter
featureId. Unfortunately, this string parameter will be stored
in a set gnssDataListeners maintained by “location” service.
Thus, a malicious app can abuse this to inject a lot of crafted
strings into the system server.

Finding 5: Customized versions of Android inherit most
of the vulnerabilities in stock Android. To understand how
straw vulnerabilities affect customized versions of Android, we
additionally collect 3 Android devices from Huawei (Android
10.0), Samsung (Android 10.0), and Vivo (Android 9.0).
Note that these vendors heavily customize Android system
and forbid users to root their devices. We cannot re-run
StrawFuzzer on these systems as it requires system-level
instrumentation. Thus, we choose to evaluate the exploits
generated by StrawFuzzer on these devices directly. As a
result, almost all vulnerabilities can be exploited successfully,
except for one in the interface trackPlayer() of the “audio”
service. This indicates that the customized versions of Android
inherit most of the vulnerabilities from stock Android. The rea-
son for the failed one is that Huawei modifies this interface’s
parameters by adding a string to indicate caller’s package
name. Additionally, we also identify a new vulnerability in
one customized system service (i.e., the “secrecy” service)
on Oneplus 7 (Android 10), which allows clients to register
callbacks without limitation.

Finding 6: The time needed for the attack can be controlled
by the attacker. We further analyze the straw vulnerabilities

about the time it takes to render the device unusable. To reduce
randomness, we test each vulnerability 3 times. As shown in
Figure 10, 90% of straw vulnerabilities can be successfully
attacked within 78 seconds on average. This time can be
further reduced by leveraging parallel execution.

Note that, though straw attacks take a period of time to
complete the attack, the attacker can interrupt and continue the
attack at any time. Straw attacks exploit the vulnerable data
storing in system server, which has a time window between
the data storing (i.e.,Time to store) and the data releasing (i.e.,
Time to release). Thus, during this time window, the attack
can be paused and the injected data (i.e., payloads) still exist
in the server memory. Taking advantage of this feature, the
attacker can control the time needed for the attack. On the one
hand, the attacker can split the time needed into many small
pieces and hide them into common tasks like file downloading.
The user is hard to feel the attack because each piece only
has a little influence on the system. We confirm that the
time window is long enough for 95% of our vulnerabilities
to conduct this kind of attack. On the other hand, the attacker
can roughly inject plenty of payloads (like fork bomb and SYN
flooding) into system server to exhaust its memory resources.
In this case, the system will become unusable soon. For
example, 42% of our vulnerabilities need less than 1 second
to trigger the rebooting of system.

0 50 100 150 200 250 300
Attack Time (seconds)

0%

20%

40%

60%

80%

100%
C

D
F

(%
)

(77.6,90.0%)

(1.0,42.0%)

Figure 10: Attack time of straw vulnerabilities.

Finding 7: Android apps share the same vulnerabilities
with Android system services. Like system services, the
regular services in Android apps also need to store the apps’
own data. In theory, if their internal data storing operations
are exposed, attackers can launch straw attacks on these app
services. To confirm this, we collect the top 100 free apps from
Google Play, and then apply our exploit code to vet them. As
a result, we find 76 apps suffer from straw vulnerabilities.
We further break down the reasons for these vulnerabilities.
On the one hand, they inherit the vulnerabilities in Android
deserialization. For example, the popular “AppFlyer” SDK
(70 billion+ installations) uses the vulnerable interface creat-
eStringArray() in Figure 5 to accept data from clients. Thus,
any app (e.g., facebook) that uses this SDK is vulnerable. On
the other hand, they implement vulnerable containers to store
clients’ data but without any limitation and protection, like
using a HashMap to store the widget ids from other apps,
which are used to bind specific calendar tasks.

10

C. Performance of Fuzzing

During fuzzing of these vulnerabilities, StrawFuzzer
needs 28,746 executions of public interfaces on average to
exploit the target. In order to figure out the test resources
spent in each phase of fuzzing, we separate executions dur-
ing the exploration and exploitation. The results show that
StrawFuzzer performs more executions in the exploitation
phase. As an example, the vulnerability Account.Account() lies
in the deserialization of input data in IPC and can be quickly
reached. Then StrawFuzzer will soon enter the exploitation
phase. Thus, the strategy of assigning fixed time to two phases
in prior work [20], [21] may need more time to trigger such a
vulnerability. Furthermore, we analyze the switching times of
scheduling these two stages during fuzzing and find that most
of them are under 3, which also implies the effectiveness of
our adaptive strategy to make sure each reachable path found
has enough time to be tested in exploitation.

Comparison of adaptive strategy with fixed-time strategy.
To evaluate the effectiveness of our adaptive strategy, we
compare it with fixed-time strategy deployed by classical
fuzzers like AFLGO [20]. Specifically, we randomly select
30 exploitable interfaces from our results and separately run
StrawFuzzer with adaptive strategy and two fixed explo-
ration time strategies – The first one divides exploration time
and exploitation time as 5:1 which is the same with AFLGO,
and the second 1:1. In this experiment, we set a timeout of 300
seconds and run each fuzzing setting on each interface for 5
rounds to reduce randomness. The result is shown in Figure 11,
which illustrates the average crashes triggered per minute with
different strategies. The result shows that our adaptive strategy
finds vulnerable interfaces faster (about 4x) than the fixed-
time strategy. Additionally, only StrawFuzzer successfully
identifies all 30 vulnerable interfaces, while fixed-time strategy
fails to discover 2 of them before exceeding the timeout. This
is because adaptive strategy leaves more time for exploitation,
thus accelerates vulnerability detection.

5:1 1:1 adaptive
Strategy

0

1

2

3

Ef
fic

ie
nc
y

(#
 c

ra
sh

/m
in

)

0.7

 23%

0.9

 29%

3.3

 100%

Figure 11: Efficiency of adaptive and fixed-time strategy.

VI. CASE STUDY

We now choose a subset of our results to explain how they
can be exploited.

A. Permanent DoS Attack to the Device

AccountManagerService provides an interface named ad-
dAccountExplicitly() that allows apps to store user accounts in
Android system. Thus, apps can directly use these accounts to
log in and reduce the user’s effort to re-input the accounts. The
stored accounts can be viewed in the Settings app of Android.
Normally, each app only stores a few accounts in the system
and mobile users can manipulate them (e.g., delete accounts)
in the Settings app. Since account management is essential and
widely used in Android apps, Android removed the permission
requirements for this interface from Android 6.0.

1) Unlimited Registration of New Accounts: The interface
does not limit the number of accounts that each app can add.
Thus, a malicious app can store a large number of crafted
accounts through this interface. AccountManagerService will
store the inputted accounts to a database in the device’s inter-
nal storage, i.e. /data/system de/0/accounts de.db. During the
startup of Android system, the system server will automatically
load all the accounts stored in this database, which exceeds the
memory limitation, and the system crashes again. The Android
system will fall into an endless loop – it continuously reboots
and crashes, which is a permanent DoS attack on the device.

The only way for mobile users to remove these crafted
accounts is to use the Settings app. However, this app relies on
AccountManagerService to manage these accounts. Since Ac-
countManagerService is down, the Settings app will be stuck at
the startup or crash directly. Worse still, other countermeasures
that rely on Settings app like factory reset and system image
flush will also lose their effects.

2) Exploitation in Real World: This vulnerability can be
easily exploited in the wild. As aforementioned, this interface
does not require any permission. To generate crafted accounts,
malicious apps need to generate two strings – account name
and account type. Since account type is pre-defined in each
app, malicious apps can use a long string as the account name
to construct a large account object. Figure 12 illustrates a
simplified exploit. Note that, AccountManagerService ignores
accounts with the same name and type, thus the account name
should be different in each round of attack.

while(true){

 AccountManager accountManager =

 AccountManager.get(getApplicationContext());

 String name = getRandomAndLongString();

 // Generate a random and very long string

 String type = "badAccounts";

 Account account = new Account(name, type);

 accountManager.addAccountExplicitly(account,"",new Bundle());

}

// Simplified Exploit (Tested on Pixel 3XL, Android 11.0)

Figure 12: The simplified exploit for exploiting addAccount-
Explicitly() to conduct permanent DoS attack.

B. Bypass User Interaction to Reboot Android System

To protect Android users, Google implements a set of
user interactions before triggering some critical behaviors of

11

Android, for example, rebooting the phone. We now give two
examples to illustrate how to use these vulnerabilities to reboot
the mobile phone without user interaction.

1) Deserialization Error of Privileged Interfaces: Ac-
countManagerService provides a public interface getAc-
countsAsUserForPackage() used for querying the accounts
of another user. This interface is protected by a system-
level permission INTERACT ACROSS USERS FULL, which
cannot be granted to third-party apps. Thus, when fuzzing
this interface, StrawFuzzer often triggers a security excep-
tion and is rejected from accessing this interface. However,
StrawFuzzer still finds that the server memory consump-
tion increases rapidly through calling this interface.

Specifically, this interface receives Account as input. Based
on the design of Android IPC, system services will first
deserialize the client’s input data and then execute the service’s
code, including checking permissions. Thus, the code used for
deserializing Account is not protected, and any vulnerability
in it can be attacked by malicious apps. During the deseri-
alization of Account, it will store itself to a global static set
(i.e., sAccessedAccounts). If the malicious app continuously
calls this vulnerable interface with different Account objects,
the server memory consumption will increase rapidly and it
finally triggers java.lang.OutOfMemoryError which crashes
the system server and reboots the mobile phone.

2) Unlimited Increase of Cache: Android provides a system
service, named DropboxManagerService, to record chunks of
data from various sources, such as app crash logs and kernel
error logs. For convenience, it labels the data with a tag before
storing it in this service. Besides, it provides a public interface
isTagEnabled() with a string parameter tag, which can be used
by Android apps to check if the tag is allowed in this system.

However, StrawFuzzer finds that the system server
memory will increase rapidly if an Android app continuously
calls isTagEnabled() with different input tags. The reason is
that this interface uses a hash map mValues to cache each
tag’s check result. Specifically, the interface isTagEnabled()
should query a local database to ensure if the input tag is
allowed to use. To accelerate the check and reduce queries
to the database, it uses the hash map mValues to store the
check results. Thus, for each tag, it first looks for the result
in the cache. If the cache misses, it queries the local database
and then stores the result in the cache. Unfortunately, it does
not restrict the maximum size of the cache. Thus, a malicious
app can increase this cache by using different tags and finally
exhausts system server memory. Then the system server will
shut down and the system will reboot.

VII. DISCUSSION

Straw Attacks in More Scenarios. As storing data from the
client is common in multi-task systems, we believe that straw
attacks can be launched in more systems. However, the attack
effect is determined by the limits set for memory resources
of server processes. For servers with sufficient resources,
the difficulty of straw attacks will be greatly increased, for
example, Linux kernel, which can have a large amount of

memory by using swap space. Besides, the recovery mech-
anism for programs running into an error state can determine
the attack consequence. Nevertheless, straw attacks can indeed
be launched against a server with limited resources.

Security Implications of Straw Attacks. Typically, straw
vulnerabilities can be used to launch various DoS attacks.

1) Temporary DoS attack: Existing Android DoS
work [16], [17] studied the security hazards that temporary
DoS attacks may cause. With the help of a UI state inference
attack [22], attackers can trigger the vulnerabilities when
the system is conducting critical tasks. For instance, a
malicious app could hinder the critical application patching
by registering one receiver with the package removed action
and offline reverse-engineering. Android OS is widely used
in various mission-critical scenarios like serving medical
devices [23] and aircraft navigation [24], as well as embedded
in nano-satellites [25]. Prior work [26], [27] illustrated how to
infer the critical moments via side channels. Thus, a stealthy
attacker can launch straw attacks at some critical moments
when the above apps are running.

2) Permanent DoS attack: Although straw attacks do not
directly destroy data, they bring great difficulties for victims
to access data (e.g., messages and images). With a permanent
DoS attack, attackers can cut off the interactions between
users and their devices by trapping the victim device into an
endless loop. Moreover, nowadays, many IoT, web, and cloud
services, like Google accounts, are allowed to be strongly
bound to smartphones to provide a better and more secure
user experience. Normally, when a user accesses the service
(especially in a new environment), the user’s smartphone will
receive an ”approve-or-deny” message for authorization and
verification. However, when the victim device is permanently
down, the user faces trouble accessing the service, which may
be totally locked.

3) Attack Re-delegation: Another feature of straw attacks
is that attackers can re-delegate the attacker role to another
benign app. One way is to crash the system when users using
victim apps – We confirm that the malicious code can execute
in the background in the latest Android (e.g., Android 11).
Another way is consuming server memory to a bit smaller
than the limitation (the upper bound). Thus, the next opened
app can easily exceed the limitation, detailed in §II-B.

Possible Mitigation. A straightforward way for mitigation is
to limit the number of memory resources, e.g., accounts, to
a reasonably low number. This can be leveraged to protect
known memory resources, but the obstacle here is that sys-
tem defenders can hardly know all the memory resources
that should be well limited, as data storing operations are
widespread in Android system and involves a variety of mem-
ory objects. Additionally, the reasonable number is sometimes
hard to decide, especially in the deserialization phase. For
example, as indicated in Figure 5, the server process can
not consume the exact size of memory consumed by the
string array in a single request. Based on the understanding
of the root causes, we propose some recommendations to

12

mitigate the straw threats. First, considering that Android
deserializers affect the most vulnerabilities, we recommend
that Android should enforce more checks and validation on
data storing operations. The second mitigation is to shrink
the attack window (between time-to-store and time-to-release)
by enhancing services’ capability of releasing data in their
containers. For example, when the available memory is not
enough, it can actively release the low-priority data (e.g., data
from the same caller) with a first-in-first-out strategy. Last,
when abnormal memory consumption is observed, further
data storing operations should be warned and even paused to
provide system services time to apply the above two mitigation
strategies.

VIII. RELATED WORK

Memory consumption vulnerability. Memory consumption
vulnerabilities [28] commonly lead to the exhaustion of limited
resources. Wang et al. [29] and Carbonneaux et al. [30]
focused on worst-case memory consumption analysis to deter-
mine the bounds for programs. Numerous related studies [31]–
[34] were devoted to detecting memory leaks in programs
with the help of AddressSanitizer [35] and LeakSanitizer [36].
These studies detected memory leaks by locating unneeded but
unreleased data in program memory, which was not suitable
for Android. This is mainly because the input data stored in
server memory may be used in the future thus could not be
considered as unneeded objects, e.g., various event listeners.

Android DoS attack. Prior work [16]–[18], [37]–[39] stud-
ied DoS attacks to Android system. For instance, Huang et
al. [17] discovered a design trait in the concurrency control
mechanism of Android system server and Armando et al. [37]
abused the loosely protected Unix socket permission to fork
an unbounded number of processes. Similar to typical DoS
attacks like fork bomb [40] and SYN flooding [41], these
attacks commonly focused on specific limited resources, such
as synchronized locks or processes. However, straw attacks can
attack many different types of objects (e.g., account databases
and data listeners). Furthermore, benefited from the diversity
of data stored by system server, straw attacks can achieve high
severity attack consequences, e.g., permanently downing the
victim mobile device.

Fuzzing based vulnerability detection. Fuzzing is an effec-
tive technique that has been widely adopted to detect software
vulnerabilities and bugs. However, state-of-the-art tools [4]–
[8], [42]–[49] hardly satisfy the requirements of detecting
straw vulnerabilities. First, existing work is not designed for
testing exposed data storing operations. It is difficult to extend
them to understand the data storing process inside a large num-
ber of Android system service interfaces and even to achieve
the goal of covering as many different types of data storing
operations as possible. Second, most fuzzing tools (e.g., [4]–
[8]) heavily relied on domain knowledge for the purpose of
optimizing the seed generation or scheduling. For example,
AFLGO [20] used expert experiences to split the time used for
exploration and exploitation. However, they are not suitable

to analyze a large number of Android system services, as
different Android system services provide completely different
functionalities. Hence, a generic solution regardless of domain
knowledge is needed. Some work proposed mitigation to
this problem, but they are still ineffective to detect straw
vulnerabilities. For example, Vuzzer [50] used static analysis
to aggressively extract data-flow features (i.e., hard-coded
constants) from condition checks to assist input generation for
coverage based fuzzing. However, we should first understand
the data storing process and then identify the condition checks
which have data dependency on the data storing instructions.
Moreover, the condition checks in Android system usually
rely on dynamic values determined by run-time system status,
which are hard-to-obtained by static analysis. Third, these
tools (e.g., [39], [51]) are insensitive (not designed) to memory
size change. It is hard for them to drive the path exploration
and vulnerability exploitation with the feedback from memory
size sanitizer, and achieve good performance. Last, they com-
monly used heavy instrumentation, for example, instruction
level [34] and basic block level [50] instrumentation, which
significantly affected the effectiveness of monitoring memory
size change.

Other resource consumption related vulnerability. Another
thread of related work leveraged DGF to find resource con-
sumption vulnerabilities and bugs, such as algorithm com-
plexity vulnerabilities. For example, SlowFuzz [52], PerfFuzz
[53], Singularity [54], and HotFuzz [55] studied how fuzzing
can be leveraged to automatically detect the time-consuming
code. Specifically, SlowFuzz tracked the total count of in-
structions executed during a run to automatically find inputs
that maximize computational resource utilization. PerfFuzz
associated each program location to an input that exercised that
location most and aimed to generate inputs that independently
maximized the execution count of each CFG edge. Existing
work aimed to find the worst inputs by monitoring the time
consumed in each round of execution. However, since each
straw has little influence on the memory size, even smaller than
the regular change of system memory, only monitoring each
round of execution is ineffective to detect straw vulnerabilities.
Additionally, existing work only focused on testing a small
set of programs. They used a fixed-time strategy to adjust the
selection of seeds for exploration and exploitation, which is
not suitable for testing straw vulnerabilities.

IX. CONCLUSION

In this work, we conduct the first systematic study on
the straw vulnerabilities, which can cumulatively increase the
memory consumption of system server by exploiting exposed
data storing and cause temporary/permanent DoS attacks. We
propose a directed grey-box fuzzing based approach (named
StrawFuzzer) against the problems and discover 35 straw
vulnerabilities as well as 474 vulnerable interfaces affecting
35% of real-world Android system services. Our findings show
that more complete checks for data from apps are strongly
needed.

13

X. ACKNOWLEDGMENT

We would like to thank our shepherd Kevin Borgolte
and anonymous reviewers for their insightful comments that
helped improve the quality of the paper, as well as Guan-
gliang Yang for his help on the paper writing. This work
was supported in part by National Natural Science Founda-
tion of China (U1836210, U1836213, U1736208, 61972099,
62172105, 62102093), and Natural Science Foundation of
Shanghai (19ZR1404800). Peng Liu was partially supported
by NSF CNS-1814679. Yuan Zhang was supported in part by
the Shanghai Rising-Star Program under Grant 21QA1400700.
Min Yang is the corresponding author, and a faculty of Shang-
hai Institute of Intelligent Electronics & Systems, Shanghai
Institute for Advanced Communication and Data Science, and
Engineering Research Center of Cyber Security Auditing and
Monitoring, Ministry of Education, China.

REFERENCES

[1] Strawfuzzer open source address. Https://github.com/kekeLian/StrawFuzzer.
[2] Transactiontoolargeexception. Http://dwz.date/eMNP.
[3] Anr. Https://developer.android.com/topic/performance/vitals/anr.
[4] Z. Wang, B. Liblit, and T. Reps, “Tofu: Target-orienter fuzzer,” arXiv

preprint arXiv:2004.14375, 2020.
[5] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed

generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy (SP).

[6] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security.

[7] M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, vol. 34, 2011.
[8] D. Vyukov, “Syzkaller,” 2015.
[9] P. Wang and X. Zhou, “Sok: The progress, challenges, and perspectives

of directed greybox fuzzing,” arXiv preprint arXiv:2005.11907, 2020.
[10] American fuzzy lop (afl) fuzzer. Https://lcamtuf.coredump.cx/afl/.
[11] Smali. Https://github.com/JesusFreke/smali.
[12] vdex extractor. Https://github.com/anestisb/vdexExtractor.
[13] Soot. Https://github.com/Sable/soot.
[14] rovo89. Xposed framework. Http://dwz.date/eMNT.
[15] MITRE. Cwe-248: Uncaught exception. Http://dwz.date/eMNU.
[16] K. Wang, Y. Zhang, and P. Liu, “Call me back! attacks on system

server and system apps in android through synchronous callback,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security.

[17] H. Huang, S. Zhu, K. Chen, and P. Liu, “From system services freezing
to system server shutdown in android: All you need is a loop in an app,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[18] H. Zhang, D. She, and Z. Qian, “Android ion hazard: The curse of
customizable memory management system,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.

[19] L. Zhang, Z. Yang, Y. He, Z. Zhang, Z. Qian, G. Hong, Y. Zhang,
and M. Yang, “Invetter: Locating insecure input validations in android
services,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security.

[20] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security.

[21] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.

[22] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it:{UI} state inference and novel android attacks,” in
23rd {USENIX} Security Symposium ({USENIX} Security 14).

[23] Android and rtos together: The dynamic duo for today’s medical devices.
Http://dwz.date/eMNF.

[24] Northrop to demo darpa navigation system on android.
Https://article.wn.com/view/WNATf.

[25] Nexus one launched into space on cubesat, becomes first phonesat in
orbit. Http://dwz.date/eMND.

[26] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu, and D. Wu, “Towards
discovering and understanding unexpected hazards in tailoring antivirus
software for android,” in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, 2015.

[27] D. Lundberg, B. Farinholt, E. Sullivan, R. Mast, S. Checkoway, S. Sav-
age, A. C. Snoeren, and K. Levchenko, “On the security of mobile
cockpit information systems,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security.

[28] Cwe-400: Uncontrolled resource consumption. Http://dwz.date/eMNW.
[29] D. Wang and J. Hoffmann, “Type-guided worst-case input generation,”

Proceedings of the ACM on Programming Languages, 2019.
[30] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao, “End-to-

end verification of stack-space bounds for c programs,” ACM SIGPLAN
Notices, 2014.

[31] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang, “Smoke: scalable
path-sensitive memory leak detection for millions of lines of code,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE).

[32] J. Vilk and E. D. Berger, “Bleak: automatically debugging memory leaks
in web applications,” ACM SIGPLAN Notices, 2018.

[33] M. Jump and K. S. McKinley, “Cork: dynamic memory leak detection
for garbage-collected languages,” in Proceedings of the 34th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 2007.

[34] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen, X. Xie,
G. Pu, and T. Liu, “Memlock: Memory usage guided fuzzing,” in 42nd
International Conference on Software Engineering. ACM, 2020.

[35] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in USENIX Annual Technical
Conference (ATC), 2012.

[36] A. Samsonov and K. Serebryany, “New features in addresssanitizer,”
2013.

[37] A. Armando, A. Merlo, M. Migliardi, and L. Verderame, “Would
you mind forking this process? a denial of service attack on android
(and some countermeasures),” in IFIP International Information Security
Conference, 2012.

[38] Y. Gu, K. Sun, P. Su, Q. Li, Y. Lu, L. Ying, and D. Feng, “Jgre: An
analysis of jni global reference exhaustion vulnerabilities in android,” in
2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN).

[39] J. Wu, S. Liu, S. Ji, M. Yang, T. Luo, Y. Wu, and Y. Wang, “Ex-
ception beyond exception: Crashing android system by trapping in”
uncaught exception”,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP).

[40] Fork bomb. Https://en.wikipedia.org/wiki/Forkbomb.
[41] W. Eddy et al., “Tcp syn flooding attacks and common mitigations,”

RFC 4987, August, Tech. Rep., 2007.
[42] M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and M. Lemerre,

“Binary-level directed fuzzing for use-after-free vulnerabilities,” arXiv
preprint arXiv:2002.10751, 2020.

[43] H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin, H. Chen, and
Y. Sui, “Typestate-guided fuzzer for discovering use-after-free vulner-
abilities,” in 42nd International Conference on Software Engineering.
ACM, 2020.

[44] H. Liang, Y. Zhang, Y. Yu, Z. Xie, and L. Jiang, “Sequence cover-
age directed greybox fuzzing,” in 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC).

[45] J. Kim and J. Yun, “Poster: Directed hybrid fuzzing on binary code,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security.

[46] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan: Sanitizer-
guided greybox fuzzing,” in 29th {USENIX} Security Symposium
({USENIX} Security 20).

[47] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,
“Savior: Towards bug-driven hybrid testing,” in 2020 IEEE Symposium
on Security and Privacy (SP).

[48] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
2019.

[49] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program
transformation,” in 2018 IEEE Symposium on Security and Privacy (SP).

14

[50] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, 2017.

[51] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge, “{FANS}:
Fuzzing android native system services via automated interface anal-
ysis,” in 29th {USENIX} Security Symposium ({USENIX} Security
20).

[52] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “Slowfuzz: Auto-
mated domain-independent detection of algorithmic complexity vulner-
abilities,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security.

[53] C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perffuzz: Automati-
cally generating pathological inputs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018.

[54] J. Wei, J. Chen, Y. Feng, K. Ferles, and I. Dillig, “Singularity: Pattern
fuzzing for worst case complexity,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering.

[55] W. Blair, A. Mambretti, S. Arshad, M. Weissbacher, W. Robertson,
E. Kirda, and M. Egele, “Hotfuzz: Discovering algorithmic denial-of-
service vulnerabilities through guided micro-fuzzing,” arXiv preprint
arXiv:2002.03416, 2020.

APPENDIX

Algorithm 1 StrawFuzzer
Input: m - Public interface
Input: t - Targeted data storing instruction
Input: i - Initial seeds with energy Initial Energy
Output: s - test cases used for straw attacks
1: s← ⊘
2: Explore← i
3: Exploit← ⊘
4: while time and resource budget do not expire do
5: (seed, energy)← selectMax(Explore ∪Exploit)
6: for j from 1 to energy do
7: seed′ ←mutate(seed)
8: if seed ∈ Explore then
9: distance← explore(m,t, seed′)

10: energy = evaluate(distance)
11: if distance == 0 then
12: Exploit.add(seed′, energy)
13: else
14: Explore.add(seed′, energy)
15: end if
16: else if seed ∈ Exploit then
17: memorysize← exploit(m,t, seed′)
18: if cumulative consequence triggered then
19: s.add(seed′)
20: else
21: energy = evaluate(memorysize)
22: Exploit.add(seed′, energy)
23: end if
24: end if
25: end for
26: newEnergy = anneal(seed)
27: energyUpdate(seed,newEnergy)
28: end while
29: return s

Algorithm 2 Call Graph Probability Estimate
Input: Entry method e and target method s
Input: Call graph CG =< V,E > with e as root node
Output: {Pr(v)∣v ∈ V }
1: M = {v∣v could reach s on CG}
2: for mi ∈ {V −M} do
3: Pr(v) = 0.0
4: end for
5: G′ <M,E′ >= sub-graph of CG by removing v ∈ {V −M}
6: G <M,E′′ >= DAG of G′ by removing loops
7: vl = topological sorted G
8: Pr(s) = 1.0
9: for v ← pop last(vl) do

10: {Pr{v → v′}∣v′ ∈ Next(v)} = EstimateOnCFG(v)
11: Pr(v) = ∑v′∈Next(v) Pr{v → v′} ⋅ Pr(v′)
12: end for
13: return {Pr(i)∣v ∈M}

Algorithm 3 EstimateOnCFG(): Calling Probability Estimate
on CFG
Input: Method e
Output: {Pr{e→ v}∣v ∈ Next(e)}
1: G < V = b0, b1, . . . , bn,E >= CFG of e
2: G′ < V ′,E′ >= DAG of G by removing loops
3: bl = topological sorted G {Each node b has a property p represents its estimate

probability}
4: for all b ∈ V ′ do
5: b.p = 0.0
6: end for
7: for all v ∈ Next(e) do
8: Pr{e→ v} = 0.0
9: end for

10: b0.p = 1.0
11: for b← pop first(bl) do
12: for b′ ∈ Next(b) do
13: b′.p = b′.p + b.p/length(Next(b))
14: end for
15: for all v called in b do
16: Pr{e→ v} =max(Pr{e→ v}, b.p)
17: end for
18: end for
19: for all v ∈M do
20: Pr{e→ v} = Pr{e→ v}/∑v′∈M Pr{e→ v′}
21: end for

15

Table III: The exploitable vulnerabilities exposed by StrawFuzzer. The second column lists the methods containing unique
exploitable data storing instructions in the Android framework. In the fourth column, ¬ stands for the Pixel 3 (Android10.0),
­ stands for the Pixel 3XL (Android11.0) and ® stands for the OnePlus 7 (Android10.0). The last column lists the number of
public interfaces provided by system services which can be used to trigger the vulnerability by an Android app. The interfaces
tagged with ⋆ can be used to launch permanent DoS attacks. In particular, methods in the deserialization phase (i.e., methods
in android.os.Parcel class) are aggregated into two lines according to the functional similarity.

ID Method Containing Unique Exploitable Data Storing Instructions Detail Affected #Affected
Systems Interfaces

Unlimited Data Storing:

1 Account.Account()
insert user’s online accounts into accounts de.db and cache
them in account service. Apps that register the accounts can
access online resources without entering credentials repeatedly.

¬­® 276

2 AccountManagerService.insertDeAccount()
insert user’s online accounts into accounts de.db and cache
them in account service. Apps that register the accounts can
access online resources without entering credentials repeatedly.

¬­® 2⋆

3 Settings$NameValueCache.getStringForUser()
cache the name and result of query to the system settings
databse in system server, which can improve the efficiency of
subsequent queries.

¬­® 2

4 PlaybackActivityMonitor.trackPlayer() store the configuration of audio players in audio service, which
can be used to track them and their states. ¬­® 1

5 WifiMulticastLockManager.acquireLock()
store the acquired wifi multicast lock and its caller name in
wifi service. The lock is used to allow an app to receive wifi
multicast packets.

¬­® 1

6 UsageStatsService$BinderService.reportPastUsageStart()
store the Activity and associated token string in usagestats
service for usage statistics recording. The token string is defined
by app to represent the usage of in-app features.

¬­® 2

7 AppTimeLimitController.noteUsageStart()
record the Usage entity name in usagestats service when an
entity become active. The Usage entity is responsible for
aggregating application usage data.

¬­® 2

8 BroadcastDispatcher.enqueueOrderedBroadcastLocked() add broadcasts into an orderly scheduling queue maintained by
activity service. ¬­® 2

9 GnssManagerService.addGnssDataListenerLocked() store the registeded GNSS data listener and information of the
caller in location service. ­ 3

10 ActivityManagerService.broadcastIntentLocked()
keep the broadcast data in activity service if the broadcast is
labeled as sticky. The sticky broadcast will be maintained in
the system for a period of time.

¬­® 2

11 RemoteCallbackList.register() store the registered remote callback and associated information
in system server. ¬® 1

12 PlaybackActivityMonitor$PlayMonitorClient.init() register a callback in audio service to track the playback activity
listener. ¬­® 1

13 RecordingActivityMonitor$RecorderDeathHandler.init() register a callback in audio service to track the audio recorder
provided by the client. ¬­® 1

14 RecordingActivityMonitor$RecMonitorClient.init() register a callback in audio service to track the listener which
is used to monitor the audio recording updates. ¬­® 1

15 Session.Session()
register a callback in window service to track the initialized
window session. This session is used to interact with window
manager.

¬­® 1

16 SensorPrivacyService$DeathRecipient.DeathRecipient() register a callback in sensor privacy service to track the regis-
tered sensor privacy state listener. ¬­® 1

17 WifiP2pServiceImpl.getMessenger()
register a callback in wifip2p service to track the Messenger,
which is used by client apps to establish asynchronous commu-
nication with wifip2p service.

¬­® 1

18 AudioPlaybackConfiguration$IPlayerShell.monitorDeath() register a callback in audio service to monitor the corresponding
audio player. ¬­® 1

19 LocationManagerService.linkToListenerDeathNotificationLocked()
register a callback in location service for the provided listener.
The listener is registered by client apps to monitor the dnss data
changes.

¬­® 3

20 SecrecyService$zta.zta()
register a callback in secrecy service for the provided secrecy
service receiver. The receiver is registered by client apps to track
the secrecy service state changes.

® 1

21-24

Parcel.readStringList()

¬­® 66Parcel.readTypedList() deserialize data from client inputs transmitted via IPC and add
Parcel.readParcelableList() them into a list continuously.
Parcel.readListInternal()

25-35

Parcel.createStringArrayList()

¬­® 245

Parcel.createTypedArrayList()
Parcel.readStringArray()
Parcel.readSparseArray()
Parcel.readCharSequenceArray() create an array whose size is read from client inputs transmitted
Parcel.readSparseBooleanArray() via IPC.
Parcel.readParcelableArray()
Parcel.readArray()
Parcel.createStringArray()
Parcel.readArraySet()
Parcel.readHashMap()

Uncaught Exception:
1 RemoteCallbackList.register() invoke method ’IInterface.asBinder()’ on a null object reference ¬­® 1
2 ActivityManagerService.handleApplicationWtfInner() read field ’exceptionMessage’ on a null object reference ¬­® 2
3 StringBuilder.StringBuilder() invoke method ’String.length()’ on a null object reference ¬­® 1

4 IBluetoothMidiService.addBluetoothDevice() invoke method ’MidiDeviceService.asBinder()’ on a null object
reference ¬­® 1

5 UserController.ensureNotSpecialUser() throw IllegalArgumentException if user id less than 0 ® 1

16

Table IV: Exploitable interfaces discovered by StrawFuzzer.

ID Service Exploitable Interfaces #
Unlimited Data Storing

0 accessibility registerUiTestAutomationService, sendAccessibilityEvent 2

1 account

startAddAccountSession, getAccountVisibility, getPassword, clearPassword, renameAccount, getPreviousName, isCredentialsUp-
dateSuggested, hasFeatures, addAccountExplicitlyWithVisibility, updateCredentials, removeAccountAsUser, getPackagesAndVisi-
bilityForAccount, getAccountByTypeAndFeatures, updateAppPermission, unregisterAccountListener, addAccountAsUser, rename-
SharedAccountAsUser, copyAccountToUser, getAccountsByFeatures, setAuthToken, hasAccountAccess, someUserHasAccount,
getAuthToken, startUpdateCredentialsSession, getUserData, registerAccountListener, confirmCredentialsAsUser, peekAuthToken,
createRequestAccountAccessIntentSenderAsUser, setAccountVisibility, addAccount, removeAccountExplicitly, removeSharedAc-
countAsUser, accountAuthenticated, removeAccount, addAccountExplicitly, setUserData, setPassword

38

2 activity

handleApplicationStrictModeViolation, startActivityWithFeature, publishContentProviders, updateLockTaskPackages, startDele-
gateShellPermissionIdentity, broadcastIntent, bindService, bindIsolatedService, publishService, registerReceiver, noteAlarmStart,
scheduleApplicationInfoChanged, getIntentSenderWithFeature, noteAlarmFinish, startActivity, registerReceiverWithFeature, start-
Service, startConfirmDeviceCredentialIntent, noteWakeupAlarm, updatePersistentConfiguration, peekService, updateConfiguration,
broadcastIntentWithFeature, unbindBackupAgent, startActivityAsUserWithFeature, setServiceForeground, startActivityAsUser,
startRecentsActivity, stopService, finishActivity, sendIntentSender, unbindFinished, unbroadcastIntent, getIntentSender

34

3 activity task

reportAssistContextExtras, navigateUpTo, clearLaunchParamsForPackages, startVoiceActivity, enterPictureInPictureMode, star-
tActivityAndWait, startDreamActivity, startActivities, addAppTask, startActivityAsUser, startActivityWithConfig, startActivity,
updateConfiguration, updateDisplayOverrideConfiguration, activityIdle, startActivityAsCaller, setPictureInPictureParams, startAs-
sistantActivity, launchAssistIntent, startActivityIntentSender, startNextMatchingActivity, finishActivity, startRecentsActivity, isAc-
tivityStartAllowedOnDisplay

24

4 alarm set 1
5 android.security.keystore generateKey, begin, update, importWrappedKey, importKey, attestDeviceIds, attestKey, finish 8
6 app prediction notifyAppTargetEvent 1
7 appops getHistoricalOps, setAudioRestriction, getHistoricalOpsFromDiskRaw, addHistoricalOps 4
8 appwidget bindRemoteViewsService, partiallyUpdateAppWidgetIds, updateAppWidgetIds, updateAppWidgetProvider 4

9 audio

getFocusRampTimeMs, getMinVolumeIndexForAttributes, dispatchFocusChange, getDevicesForAttributes, getVolumeIndexFo-
rAttributes, getMaxVolumeIndexForAttributes, abandonAudioFocus, setUidDeviceAffinity, setFocusRequestResultFromExtPolicy,
setUserIdDeviceAffinity, playerAttributes, trackPlayer, setVolumeIndexForAttributes, trackRecorder, registerRecordingCallback,
registerPlaybackCallback, startWatchingRoutes, requestAudioFocus

18

10 autofill setAutofillFailure, setUserData, setAugmentedAutofillWhitelist 3

11 backup initializeTransportsForUser, updateTransportAttributesForUser, excludeKeysFromRestore, requestBackup, adbBackup, filter-
AppsEligibleForBackupForUser, requestBackupForUser, fullTransportBackupForUser 8

12 batterystats

noteWifiScanStoppedFromSource, notePhoneSignalStrength, noteBleScanStarted, noteLongPartialWakelockFinishFrom-
Source, noteWifiRunning, noteStartWakelockFromSource, noteWifiStopped, noteFullWifiLockAcquiredFromSource,
noteWifiBatchedScanStartedFromSource, noteStopWakelockFromSource, noteLongPartialWakelockStartFromSource,
noteWifiRunningChanged, noteChangeWakelockFromSource, noteBleScanResults, noteFullWifiLockReleasedFromSource,
noteGpsChanged, noteWifiBatchedScanStoppedFromSource, noteBleScanStopped, noteWifiScanStartedFromSource

19

13 bluetooth manager registerStateChangeCallback, registerAdapter 2
14 clipboard setPrimaryClip, addPrimaryClipChangedListener 2
15 companiondevice associate, stopScan 2

16 connectivity
pendingListenForNetwork, establishVpn, provisionVpnProfile, setAlwaysOnVpnPackage, releaseNetworkRequest, startLegacyVpn,
requestNetwork, listenForNetwork, setGlobalProxy, declareNetworkRequestUnfulfillable, registerNetworkAgent, registerConnectiv-
ityDiagnosticsCallback, pendingRequestForNetwork, startTethering

14

17 connmetrics logEvent 1

18 content

cancelSync, getPeriodicSyncs, getIsSyncableAsUser, requestSync, isSyncPending, cancelRequest, setSyncAutomaticallyAsUser,
isSyncPendingAsUser, syncAsUser, addPeriodicSync, setSyncAutomatically, cancelSyncAsUser, addStatusChangeListener, get-
SyncStatusAsUser, getSyncAutomatically, getSyncStatus, sync, setIsSyncableAsUser, removePeriodicSync, setIsSyncable, getSyn-
cAutomaticallyAsUser, isSyncActive, getIsSyncable

23

19 content capture removeData 1
20 content suggestions classifyContentSelections 1
21 country detector addCountryListener 1
22 crossprofileapps resetInteractAcrossProfilesAppOps, startActivityAsUserByIntent 2

23 device policy

enableSystemAppWithIntent, setUserRestriction, setLockTaskPackages, setDelegatedScopes, addPersistentPreferredActivity, set-
KeepUninstalledPackages, setCrossProfilePackages, setAlwaysOnVpnPackage, setPermittedAccessibilityServices, setAffiliationIds,
setRecommendedGlobalProxy, setPackagesSuspended, updateOverrideApn, addOverrideApn, setPermittedCrossProfileNotification-
Listeners, setMeteredDataDisabledPackages, setUserControlDisabledPackages, setPermittedInputMethods, uninstallCaCerts, add-
CrossProfileIntentFilter, startManagedQuickContact, generateKeyPair, setCrossProfileCalendarPackages

23

24 deviceidle addPowerSaveWhitelistApps, registerMaintenanceActivityListener 2
25 dropbox add, isTagEnabled 2
26 econtroller continueOperation, getDownloadableSubscriptionMetadata, downloadSubscription, setSupportedCountries 4
27 ethernet setConfiguration, addListener 2
28 extphone setLteBandPriority 1
29 fingerprint authenticate, addLockoutResetCallback 2
30 imms updateStoredMessageStatus 1
31 input method startInputOrWindowGainedFocus, addClient 2
32 ions updateAvailableNetworks 1
33 ipsec createTransform 1
34 ircs getRcsThreads, storeFileTransfer 2
35 isms sendStoredMultipartText, sendMultipartTextForSubscriberWithOptions, sendMultipartTextForSubscriber 3
36 jobscheduler scheduleAsPackage, schedule, enqueue 3
37 launcherapps cacheShortcuts, startSessionDetailsActivityAsUser, registerShortcutChangeCallback, pinShortcuts, uncacheShortcuts, getShortcuts 6

38 location addGnssNavigationMessageListener, addGnssAntennaInfoListener, addGnssMeasurementsListener, injectGnssMeasurementCorrec-
tions, registerGnssStatusCallback 5

39 media router
deselectRouteWithRouter2, setDiscoveryRequestWithRouter2, selectRouteWithRouter2, requestCreateSessionWithManager, trans-
ferToRouteWithManager, setRouteVolumeWithRouter2, setRouteVolumeWithManager, selectRouteWithManager, deselectRoute-
WithManager, requestCreateSessionWithRouter2, transferToRouteWithRouter2

11

17

ID Service Exploitable Interfaces #
40 media session notifySession2Created 1
41 midi openDevice, setDeviceStatus, getDeviceStatus, registerDeviceServer 4
42 mount registerListener 1
43 netpolicy snoozeLimit, getNetworkQuotaInfo 2
44 netstats registerUsageCallback, getDetailedUidStats, unregisterUsageRequest 3

45 network management addInterfaceToLocalNetwork, removeRoute, registerNetworkActivityListener, startTetheringWithConfiguration, removeRoutes-
FromLocalNetwork, setInterfaceConfig, setDnsForwarders, getNetworkStatsUidDetail, addLegacyRouteForNetId, addRoute 10

46 nfc setForegroundDispatch, invokeBeamInternal 2

47 notification

enqueueNotificationWithTag, cancelNotificationsFromListener, setAutomaticZenRuleState, setNotificationsShownFromListener,
updateNotificationChannelForPackage, addAutomaticZenRule, applyAdjustmentsFromAssistant, createConversationNotification-
ChannelForPackage, updateAutomaticZenRule, updateNotificationChannelGroupForPackage, getActiveNotificationsFromListener,
updateNotificationChannelFromPrivilegedListener, updateNotificationChannelGroupFromPrivilegedListener

13

48 oneplus nfc service setSupportCardTypes 1
49 opscenecallblock isNotificationMutedByESport, isMutedByCallBlocker, isCallBlockedWithUid 3

50 package

grantDefaultPermissionsToEnabledImsServices, queryIntentActivityOptions, querySyncProviders, queryIntentContentProviders, ac-
tivitySupportsIntent, getLastChosenActivity, setDistractingPackageRestrictionsAsUser, resolveService, setMimeGroup, notify-
DexLoad, revokeDefaultPermissionsFromDisabledTelephonyDataServices, addPersistentPreferredActivity, canForwardTo, getPack-
agesHoldingPermissions, queryIntentReceivers, notifyPackagesReplacedReceived, grantDefaultPermissionsToEnabledTelephony-
DataServices, queryIntentActivities, installExistingPackageAsUser, revokeDefaultPermissionsFromLuiApps, addCrossProfileIntent-
Filter, grantDefaultPermissionsToEnabledCarrierApps, replacePreferredActivity, runBackgroundDexoptJob, resolveIntent, current-
ToCanonicalPackageNames, verifyIntentFilter, findPersistentPreferredActivity, getUnsuspendablePackagesForUser, setPackages-
SuspendedAsUser, addPreferredActivity, canonicalToCurrentPackageNames, queryIntentServices, setLastChosenActivity

34

51 package native isAudioPlaybackCaptureAllowed 1

52 permissionmgr
grantDefaultPermissionsToEnabledImsServices, grantDefaultPermissionsToEnabledCarrierApps, revokeDefaultPermissionsFrom-
LuiApps, revokeDefaultPermissionsFromDisabledTelephonyDataServices, grantDefaultPermissionsToEnabledTelephonyDataSer-
vices

5

53 phone
setSystemSelectionChannels, setAllowedCarriers, enableVisualVoicemailSmsFilter, requestCellInfoUpdateWithWorkSource,
setRoamingOverride, getSubIdForPhoneAccount, updateEmergencyNumberListTestMode, requestNetworkScan, getCarrierPacka-
geNamesForIntentAndPhone

9

54 platform compat isChangeEnabled, getAppConfig, reportChange 3
55 power acquireWakeLock, updateWakeLockWorkSource 2
56 print startPrinterDiscovery, validatePrinters, startPrinterStateTracking, stopPrinterStateTracking, getCustomPrinterIcon 5
57 role setRoleNamesFromController 1
58 secrecy isInEncryptedAppList, registerSecrecyServiceReceiver 2
59 sensor privacy addSensorPrivacyListener 1
60 shortcut removeLongLivedShortcuts, disableShortcuts, getShareTargets, enableShortcuts, removeDynamicShortcuts, pushDynamicShortcut 6
61 simphonebook updateAdnRecordsWithContentValuesInEfBySearchUsingSubId 1
62 slice checkSlicePermission 1
63 telecom handleCallIntent, startConference, registerPhoneAccount 3

64 telephony.registry

notifyBarringInfoChanged, notifyDataConnectionForSubscriber, notifyCellLocation, notifyDataConnection, notifyPhysicalChannel-
ConfigurationForSubscriber, notifyServiceStateForPhoneId, notifySignalStrengthForPhoneId, notifyOutgoingEmergencySms, noti-
fyPhysicalChannelConfiguration, notifyCellInfo, notifyPhoneCapabilityChanged, notifyOutgoingEmergencyCall, notifyCellLoca-
tionForSubscriber, notifyCellInfoForSubscriber, notifyRegistrationFailed

15

65 telephony ims requestCapabilities 1

66 textclassification onSelectionEvent, onDetectLanguage, onCreateTextClassificationSession, onSuggestConversationActions, onTextClassifierEvent,
onClassifyText, onSuggestSelection, onGenerateLinks 8

67 thermalservice registerThermalStatusListener 1

68 usagestats registerAppUsageObserver, registerAppUsageLimitObserver, registerUsageSessionObserver, reportUsageStart, reportPastUsageS-
tart, reportChooserSelection 6

69 usb addDevicePackagesToPreferenceDenied, setDevicePersistentPermission, setDevicePackage, addAccessoryPackagesToPreference-
Denied, removeDevicePackagesFromPreferenceDenied, removeAccessoryPackagesFromPreferenceDenied 6

70 user createProfileForUser, createProfileForUserEvenWhenDisallowedWithThrow, createProfileForUserEvenWhenDisallowed, createPro-
fileForUserWithThrow 4

71 vibrator vibrate, setAlwaysOnEffect 2
72 voiceinteraction getActiveServiceSupportedActions, startVoiceActivity, finish, startAssistantActivity 4

73 wifi

getMatchingScanResults, connect, getMatchingPasspointConfigsForOsuProviders, getAllMatchingPasspointProfilesForScanResults,
addNetworkSuggestions, startSubscriptionProvisioning, removeNetworkSuggestions, getMatchingOsuProviders, getAllMatch-
ingFqdnsForScanResults, setWifiApConfiguration, addOrUpdatePasspointConfiguration, startLocalOnlyHotspot, startTethered-
Hotspot, setSoftApConfiguration, getWifiConfigsForPasspointProfiles, acquireMulticastLock, updateWifiLockWorkSource, ac-
quireWifiLock, getWifiConfigForMatchedNetworkSuggestionsSharedWithUser, startSoftAp, addOrUpdateNetwork, save

22

74 wifiaware requestMacAddresses 1
75 wifip2p getMessenger 1
76 wifirtt cancelRanging, startRanging 2
77 window modifyDisplayWindowInsets, openSession, watchRotation 3

Uncaught Exception
1 activity handleApplicationWtf 1
2 bluetooth manager bindBluetoothProfileService 1
3 content sync 1
4 fingerprint addLockoutResetCallback 1
5 media session dispatchAdjustVolume 1
6 oneplus colordisplay service notifySetUp 1

18

	Introduction
	Understanding Straw Attacks
	Straw Attacks in Android Services
	Analyzing Root Causes for Straw Attacks

	Design Insights and Approach
	Static Analysis
	Heuristic based vulnerability candidates locating
	Initial seed creation

	Dynamic Fuzzing
	Lightweight feedback collection
	Adaptive seed selection
	Exploit generation

	Methodology
	Static Analysis
	Labeling data storing instructions
	Labeling public interfaces
	Initial seed creation

	Feedback Collection
	Seed Selection
	Seed Generation & Mutation
	Exploration Phase
	Exploitation Phase

	Exploit Generation

	Evaluation
	Tool Accuracy
	Tool Effectiveness & Findings
	Performance of Fuzzing

	Case Study
	Permanent DoS Attack to the Device
	Unlimited Registration of New Accounts
	Exploitation in Real World

	Bypass User Interaction to Reboot Android System
	Deserialization Error of Privileged Interfaces
	Unlimited Increase of Cache

	Discussion
	Temporary DoS attack
	Permanent DoS attack
	Attack Re-delegation

	Related Work
	Conclusion
	Acknowledgment
	References

