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ABSTRACT

Affinity maturation (AM) of B cells through somatic hypermutations (SHMs) enables the immune
system to evolve to recognize diverse pathogens. The accumulation of SHMs leads to the forma-
tion of clonal lineages of antibody-secreting b cells that have evolved from a common naive B cell.
Advances in high-throughput sequencing have enabled deep scans of B cell receptor repertoires,
paving the way for reconstructing clonal trees. However, it is not clear if clonal trees, which capture
microevolutionary time scales, can be reconstructed using traditional phylogenetic reconstruction
methods with adequate accuracy. In fact, several clonal tree reconstruction methods have been
developed to fix supposed shortcomings of phylogenetic methods. Nevertheless, no consensus
has been reached regarding the relative accuracy of these methods, partially because evalua-
tion is challenging. Benchmarking the performance of existing methods and developing better
methods would both benefit from realistic models of clonal lineage evolution specifically designed
for emulating B cell evolution. In this paper, we propose a model for modeling B cell clonal
lineage evolution and use this model to benchmark several existing clonal tree reconstruction
methods. Our model, designed to be extensible, has several features: by evolving the clonal tree
and sequences simultaneously, it allows modeling selective pressure due to changes in affinity
binding; it enables scalable simulations of large numbers of cells; it enables several rounds of
infection by an evolving pathogen; and, it models building of memory. In addition, we also suggest
a set of metrics for comparing clonal trees and measuring their properties. Our benchmarking
results show that while maximum likelihood phylogenetic reconstruction methods can fail to
capture key features of clonal tree expansion if applied naively, a very simple post-processing of
their results, where super short branches are contracted, leads to inferences that are better than
alternative methods.
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1 INTRODUCTION

Immune response to new pathogens relies heavily on the Affinity maturation (AM) process. AM follows the
binding of immunoglobulin (IG) molecules to antigens and improves the affinity (i.e., binding ability) of B
cells to the antigen (1, 2). The AM process involves many aspects, including the activation of naive B cells
that have not been exposed to an antigen, clonal expansion of cells that increases the pool of antibodies,
somatic hypermutations (SHMs) (3) that alter the structure of antibodies and their ability to bind, and a
regulatory mechanism that plays the role of natural selection. The AM process creates memory and plasma
B cells; memory B cells can be reactivated and can undergo the AM process again (4), while plasma B cells
can secrete massive levels of neutralizing antibodies. Over time, the AM process leads to the formation of
clonal lineages within a given antibody repertoire, where each clonal lineage is formed by descendants of
a single naive B cell. The evolutionary history of each of these clonal lineages can be represented by a
clonal tree, where each vertex corresponds to a B cell, and a directed edge connects each B cell to all its
immediate descendants.

New sequencing technologies have enabled high-throughput scanning of antibody repertoires (AIRR-
seq) and have opened up new avenues for studying adaptive immune systems (5, 6, 7, 8, 9). AIRR-seq
technologies enabled AM analysis of antibody repertoires responding to antigens of various diseases, such
as flu (10, 11), HIV (12, 13), hepatitis (14, 15), multiple sclerosis (16, 17), rheumatoid arthritis (18). Such
analyses allow biologists to identify broadly neutralizing antibodies and reveal antigen-specific and general
mutation patterns (11, 19).

Due to the short time frame of clonal expansion, inferred clonal trees have unique properties (20). Some
sequenced nodes may belong to the internal nodes of the tree instead of the tips. Also, inferred clonal
trees are often not even close to bifurcating. Thus, unlike traditional phylogenetics, perhaps Steiner trees
(which can put observations at some of the internal nodes) or spanning trees (that put an observation
at all internal nodes) should be preferred for reconstructing antibody sequences (Figure 1A). Various
reconstruction methods have been developed attempting to recover clonal trees from antibody sequences
(e.g., 21, 22, 23, 24, 25, 26, 27). Some of these methods use simple clustering methods (e.g., 21), while
others formulate the problem as a Steiner tree problem (22, 23, 25, 27) or maximum-likelihood (ML)
phylogenetic tree reconstruction under models of sequence evolution (24, 26).

In order to evaluate methods proposed for reconstructing clonal trees, we need models for antibody
sequence evolution and clonal tree expansion that can be used for simulation. This modeling step is
challenging for several reasons. (i) Selection, which is an integral part of AM, needs to be modeled directly;
otherwise, the shape of the resulting trees will not be realistic. Traditional phylogenetics simulations first
simulate a tree of sampled taxa and then evolve sequences down the tree. This two-step approach simplifies
simulations but misses the dependency between the clonal tree shape and the antibody sequences. A better
approach is to co-evolve the tree and sequences. The challenge in co-evolving is to design a principled
model for how sequences impact evolution and to develop a scalable simulation algorithm that can generate
large numbers of cells. (ii) Literature suggests that there are hotspots and cold spots of SHMs (e.g., 28, 29).
However, traditional models of sequence evolution assume each site evolves independently and will miss
the context dependence. (iii) Different antibody cell types (e.g., activated and memory cells) have very
different mutational and selection behaviors, and these distinctions need to be modeled.

There have been several attempts at designing statistical models of AM clonal expansion (e.g., 30, 31, 32,
33, 20). As the AM process is complex, these models have taken different routes. For example, determining
affinities of sequences to hypothetical antigens is difficult, as affinity binding is a complicated chemical
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process, and each method models affinity differently. Nevertheless, all these methods have limitations,
which we will return to in our discussion section. Two factors worth pointing out are that they do not scale
to very large numbers of cells, and they allow for simulating one round of infection (as opposed to an
evolving pathogen and recurring infections); some also avoid differentiating different types of B cells.

In this paper, we propose a scalable and flexible simulation framework that can be instantiated in many
ways. We introduce a general birth, death, and transformation (BDT) model and describe how BDT can be
instantiated to create a model of AM that simultaneously co-evolves the clonal tree and antibody sequences.
We then introduce a scalable sampling algorithm for our model that enables generating large trees. With the
simulator (called DIMSIM) at hand, we note that comparing clonal trees and characterizing their properties
require care. We refine existing metrics and define new ones for characterizing properties (e.g., balance) of
clonal trees and for comparing them. Finally, we perform extensive simulation studies (Figure 1B) under
various parameters using DimSim. We study how the parameters of the AM model impact properties of
clonal trees and benchmark the performance of several reconstruction methods.

2 METHODS
2.1 Statistical Models

We first define a general Birth/Death/Transformation (BDT) model and then present an efficient algorithm
for sampling trees from that model. We then instantiate the general model for simulating AM processes
and move on to describe specific choices we made in our simulations.

2.1.1 BDT Model

Forward-time birth-death models are used extensively in macro-evolutionary modeling (34), whereas
microevolution simulations often use coalescent models that are easier to sample. We propose a general
forward-time model that can allow realistic microevolutionary simulations by ensuring that birth and death
rates are not constant and instead change with the properties of evolving units (e.g., cells).

In the BDT model, a set of entities continuously undergo birth (B), death (D), and transformation (T)
events. Each entity ¢ has a list of properties x; € ]Rﬂ\r] . At each point in time, the system contains a set S' of
n active entities, and each active entity ¢ € .S undergoes birth, death, and transformation events according
to independent Poisson point processes. In the birth event, a entity ¢ is removed from .S and new entities
J and k, with properties x; and x;,, are added to S; properties x; and x;, are drawn from a distribution
determined by x; and model parameters. In the event of the death of an entity ¢, it is removed from S.
In the transformation event, a entity ¢ is removed from S and a new entity j with properties x;, drawn
from a distribution determined by x;, is added to S. Starting from a single node and continuously applied,
this process defines a rooted tree where nodes are all entities that ever existed (including those that died);
birth events create bifurcations, transformation events create nodes with one child, and death events create
leaves. The tree can be subsampled subsequently.

For each entity ¢ € S, the birth, rate, and transformation rates are thoroughly determined by its properties
x; and the sum of properties over all entities S = 3, ¢ x;. We let Ap(x;, S), Ap(x;, S), and Ap(x;, S)
denote the birth, death, and transformation rates, respectively. In the time interval between two events
for any two entities in the system, we assume a memoryless process. Thus, these rates remain constant
between any two events but can change when an event happens. The ratio between the birth rate and the
death rate, both of which are functions of the entity properties, can be thought of as the factor controlling
the selective pressure, which can be time-variant.
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Because of the memoryless property, the time until the next BDT event always follows the exponential
distribution with rates Ag(x;,S), Ap(x;,S), and Ap(x;, S) for each event type. The time until any event
for any entity follows an exponential distribution with A\ = >, - o(Ap(x;,S) + Ap(x;,S) + Ar(x;, 9)).
The probability of the next event being a specific event 2 € { B, D, T'} for a particular entity 7 is Az(i.S) /).
Specifying the rate functions and the distribution of properties at the initial state fully specifies the model.

The BDT model can be efficiently sampled if rate functions have certain (very general) properties. We
leave all the mathematical details for Appendix 2.1. In short, the memoryless property of the model makes it
possible to perform efficient sampling despite the fact that rates change with the tree. The main innovations
of the sampling algorithm are 1) rewriting rate functions as polynomial functions of other parameters,
which enable finding the time to the next event in constant time, and 2) using an interval tree data structure
to store partial sums needed for normalization. With our proposed Algorithm S1 (in Appendix 4), a tree
on k nodes drawn from the distribution defined by the BDT process can be sampled in O(k log(k)) time.
Thus, the BDT model can be efficiently sampled to create trees with millions of nodes.

2.1.2 Antibody Affinity Maturation (AM) model

We now define a specific instance of the BDT model designed for AM. Simulations according to this
AM model are implemented in a C++ tool called Dynamic IMmuno-SIMulator (DIMSIM). The model has
many parameters reflecting immune system properties (Table 1), which we define throughout this section
(Appendix 1 defines our particular usage of terms commonly used in immunology). The use of birth death
models for AM is not new (e.g., 33) but particular choices of our model are different from prior work.

2.1.2.1 Rounds and stages

We model the evolution of antibody-coding sequences in response to r rounds of infections by an evolving
antigen (e.g., SARS-Cov2 or flu). Each round consists of two stages, an infected stage, where a set of new
antigens initiate a response that activates the B cells being modeled, and a dormant stage, where the B cells
being modeled are not actively involved in an immune response. Both stages used the same BDT model
but are parameterized differently. The switch between the two stages happens through user-defined rules
(e.g., rules that reflect infection progression as described below). During the infected stage of round 7, we

assume the existence of a given target amino-acid sequence (; = (CZ-(l), ceey CZ-(L)) of length L without any
stop codon, defined as the best possible antibody-coding sequence that can bind to the present antigen. The
target can change across rounds, and we describe two specific ways of choosing targets in Section 2.1.3.

2.1.2.2 Cell Properties

Since only memory B cells can be repeatedly activated by an encounter with antigens, we only simulate
memory B cells. Plasma B cells do not undergo SHMs and represent terminal states of the clonal lineage
development and thus can be sampled from the leaves of the simulated tree. We will refer to a B cell that
has just encountered an antigen and moved to a germinal center (GC) as an activated B cell (or “activated
cell” for short) (Figure 2A).

In the AM model, each entity i represents a B cell with the property vector x; = (gi, i, ti, % fa;, gia;)
with five values, among which the last three are derived from two other quantities: ¢; and a; (only saved in
the derived form). We keep derived properties as part of x; because they allow us to define Ap(x;, S) as
polynomials of saved properties; this, in turn, enables the use of our fast sampling algorithm. To follow the
BDT model, we assume the properties of each cell are fixed in between B/D/T events, ignoring possible
short-term temporal changes (35). We next define g;, s;, t;, and a;.
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e The binary property g; indicates whether a cell 7 is an activated B cell (1) or is a memory B cell outside
lymph nodes, which we call a “memory cell” for simplicity (0).

e The s; property stores the DNA sequence of B cell ¢ coding for the variable region of the heavy
chain with a fixed length 3L. We focus on simulating the heavy chain sequences only because most
existing AIRR-seq studies focus on sequencing heavy chains only (e.g., 16, 36, 37, 11). For the sake
of simplicity, we assume the fate of the cell depends only on the variable region of the heavy chain.
Each cell has a fixed sequence, and mutations occur at the time of a cell birth, which happens only for
activated cells in the infected stage. After a birth event for cell 7, sequences s; and s, of child cells j
and £ are chosen independently and identically at random (ignoring the G1 origin of mutations (38).)
While any sequence evolution model could be incorporated in the DIMSIM framework, in Section
2.1.3, we describe a 5-mer-based model used in our analyses.

e Property ¢; denotes the rate of transformation, which means the activation of a memory cell g; : 1 — 0
in response to an antigen, or the maturation of an activated cell into a memory cell g; : 0 — 1.
Transformations, which only happen during the infected stage, flip g but keep the sequence s intact.

e Property a; denotes the strength of affinity binding of the Ig receptor of the cell 7 to the antigen. We let
o denote the total affinity of activated cells and note o = Zie g gia; is the last element of the vector S.
Then, @i /- is the fraction of total affinity assigned to a cell.

Both ¢; and a; are derived and are set based on the sequence of 7 and the target.
2.1.2.3 Sequence affinity and birth, death, and transformation rates

Affinity a; is only defined and used during the infected stage where the target is available and is function
of the cell sequence s; and the target sequence (. The closer the sequence to the target, the higher its affinity
should be, a fact that other simulators have also incorporated (31, 33). The exact relationships between the
sequences and affinity are not known. For the purpose of benchmarking methods, we propose a simple
formula. Let f:(s;) be a measure of the closeness of the sequence to the target in the affinity space, we set

a; = el (1)

where A is a constant factor used to calibrate the selective pressure. As sequences get closer to the target,
the affinity grows gradually with a speed controlled by A (Figure 2B). We will describe our particular
choice of function f¢(s;) using BLOSUM similarity in Section 2.1.3.

The event rates are functions of cell properties and the stage (Table 2). During the dormant stage, there
are no births or transformations; cells only die with a very high uniform rate \; for activated cells and a
low uniform rate A/, for memory cells.

During the infected stage, we adjust the death rates of cells based on their affinities but keep the birth
rates constant; this interplay is used to simulate the selective pressure. Note that we do not claim that a
fixed birth rate and changing death rate is biologically realistic (e.g., see 39). However, in terms of the
dynamics of our model, what matters is the ratio of the birth and death rates, which enable us to make
this simplifying choice. In our model, an activated cell can undergo cell division at a uniform rate \p,
differentiate into a memory cell at a uniform rate ¢; = p,, \, or a plasma-like cell at a uniform rate p,\,
and undergo apoptosis (i.e., die). We do not model plasma-like cells; instead, both differentiation into
plasma-like cells and apoptosis are treated as death events (Figure 2A). The rate of apoptosis of an activated
cell 2 is modeled as inversely proportional to the amount of resources (antigens and FDCs) to which the cell
¢ has access when competing against other activated cells. Thus, the proportion of resources available to the
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cell 7 is modeled by the affinity proportion % /s (i.e., the affinity of the cell to the antigen normalized by the
current sum of the affinity of all activated cells). This affinity proportion is impacted by the parameter A.
The lower the A, the more uniform these proportions become, modeling low selective pressure; conversely,
as A increases, /o values further diverge between low affinity and high-affinity cells (Figure 2B). Thus, A
can be used to control the strength of the selective pressure.

The memory cells undergo apoptosis at a uniform rate \/;. They can also be activated by helper T cells to
enter the germinal center with the transformation rate

t; = )\tepaA(fc(Si)—Ao) — )\te—paAAoafa ) (2)

Note that the activation rate of memory cells increases monotonically with their affinity to the target,
according to af* where pq, set by default to 1/2, is the sensitivity of B cell activation to affinity. This
dependency on affinity models the increased propensity of the memory cells to activate when presented by
helper T cells with familiar antigens. The default choice p, = !/2 is motivated by the fact that although
memory cells with higher binding strengths to the antigen are more likely to be activated, the interaction
between a helper T cell and a memory B cell is a one-time event and thus less sensitive to binding strength.

Ilustration. As an example, consider a system with two cell types: L and H, each type with its own
unique sequence (Figure 2B-D). Assume all cells are activated cells, the number of L and H are the same at
one point in time, and H cells have a higher affinity than L cells by a factor of p. For ease of exposition,
here, we include the mutation rate as part of the death rate because mutation events also decrease cell
count. Let’s assume the total number of cells equals the carrying capacity C'. If L and H have the same
affinity (i.e., p = 1), then the birth and death rates are identical for all cells. As the affinity of H cells
is increased (i.e., p > 1), the death rate of L cells increases linearly, whereas the death rate of H cells
decreases (Figure 2B). Thus, H cells will have higher birth rates than death, will be selected for, and will
expand. If we fix p = 2 and increase the population size, the death rates of both L and H cells increase, but
at different rates (Figure 2D). When the population size is small compared to C', both types of cells have
more birth than death. After a threshold (¢/3 in this example), the death rate of L type surpasses its birth
rate (thus, its population starts to shrink) while the population of H cells continues to grow. However, as
the population size increases (2¢/3 here), both sets of cells start to shrink (i.e., higher death rates than birth),
because the population size is by definition bounded by C'.

2.1.3 Specific Modeling Choices

Several steps of our simulations are flexible and can be changed by the user. We next describe the set
of choices we have implemented and used in the experiments below. We have performed two sets of
experiments with different settings; where the two simulations differ, we explain both choices.

Switching between stages. The system enters dormant stage when antigens are neutralized by the
antibodies. We have implemented two options for defining neutralization. i) Switch to the dormant stage
after a certain duration from the beginning of the infected stage. 7i) Switch to the dormant stage when the
total affinity of antibodies produced by plasma-like cells reaches a certain threshold; here, we switch when
the sum of affinities of activated cells (o) reaches a predefined constant M.

Sequence evolution. In our experiments, we use an empirical 5-mer-based model inspired by the Yaari
et al. (40) model. Let sgp ) be the nucleotide on the p-th position of the nucleotide sequence of the cell 1.

Each s;p ) or sl(gp ) is independently set to s € {A, C, G, T} with probability: Pr(sgp ) = s) = Pr(s,(cp ) =
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s) = f(s, SEP_Q), sz(p_l), sl(.p), sl(.pH), SEPH)) where f : {A,C,G, T}6 — [0, 1] denotes an empirically
determined 5-mer frequency model based on the Yaari et al. (40) model and recomputed based on newer
datasets including non-synonymous mutations (Appendix 2). Note that the rate of the mutation of each

position changes as the sequence around it changes (e.g., from a low rate 5-mer to a high rate 5-mer).

Sequence affinity function. While various methods can be imagined for measuring the closeness of
the sequence to the target, we used a simple approach: measuring sequence similarity according to the
BLOSUM matrix and appropriate scaling of numbers. We assume each amino-acid position contributes to
the binding strength to the target and the stability of the structure of the Ig-receptor independently. We model
affinity proportionally to the product of the effect of each amino-acid position. This simple model ignores
the 3D structure of proteins for the most part but should be sufficient for creating benchmarking datasets
as none of the reconstruction methods consider 3D structure either. However, because complementarity-
determining regions (CDRs), which include the binding sites, tend to accumulate more SHMs compared to
framework regions (FRs) (41, 19), we do differentiate those. When s; includes a stop codon, we simply
set a; = 0. Otherwise, we define the BLOSUM score of an amino acid sequence § = (£ W ¢ (L)) with
respect to target ¢ as

A€ = Z (5(5(10)7 ¢Py — 5, <(p))) +wy Z (5(5(17)7 ¢P)y —5(¢), C(p))) (3)

peCDR pe{l...L}\CDR

where 4(., .) gives the BLOSUM score between two amino acids (Table S2), and w; is a constant used to
calibrate the importance of CDRs versus FRs in the affinity and transformation processes. We then simply
set fe(si) = A¢(&(si)) where &(.) translates from DNA to AA.

Choosing targets. One target sequence per round needs to be selected. The extent of the change in
targets across rounds impacts the patterns of the immune response and hence the shape of the resulting
clonal trees. To define targets across rounds in our experiments, we explore two options. i) We simply use
the antibodies known to neutralize a specific disease as the target. Existing databases such as CoV-AbDab
(42) provide excellent sources of such candidates. i7) Evolutionary approach: We seek a set of sequences
with an evolutionary trajectory that reflects the evolutionary history of a set of real antigens (e.g., influenza
virus). Let the known amino-acid sequences of an antigen (e.g., flu) sampled through time be denoted by
11, .., M, and let each sequence have the fixed length L,,. To choose the targets, we first select an arbitrary
naive B cell, here chosen from datasets of Ellebedy et al. (36), and set ¥ to the nucleotide sequence of
the variable region of its heavy chain. Then, we simply set ¢; to the amino-acid translation of 0. In other
words, in the first round, we use the naive cell as the target, and therefore, the first couple of rounds of the
simulation should be treated as dummy rounds and should be discarded. Let x be a positive constant that
controls the rate of change in the target relative to the rate of change in the antigen sequences. To define the
remaining targets, we seek to find the set of » — 1 sequences that minimize:

Ln
S e X sy = o () = 3 (6 ) — s, )] )
i,j€lr] pcCDR g=1

Thus, a set of target sequences across 7 rounds are preferred if their pairwise distance matrix maximally
matches the pairwise distance matrix of all antigen sequences over the same rounds (with a scaling). To
account for conserved regions, we arbitrarily chose to keep all the non-CDR regions invariable in all target
sequences (this choice can be easily changed). Thus, we seek to make the distance between two target
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sequences from two rounds similar to the distances of antigen sequences, scaled by a factor of k. We
approach this NP-hard problem using a greedy search heuristic (Algorithm S3). The heuristic starts with
arbitrary ¢, .. ., ¢, and replaces one symbol of one sequence at a time to reduce the objective function; it
repeats until reaching a local minimum where no such replacement is possible.

2.2 Benchmarking Setup

We use two sets of experiments, one focused on SARS-CoV?2 and one focused on influenza. The two sets
of simulations use different settings to demonstrate the flexibility of the tool. In both experiments, unless
otherwise specified, we used the default settings for the various parameters of Table 1.

2.2.1 SARS-CoV2 simulations

We performed 3-5 rounds of infections by SARS-CoV2. For SARS-CoV?2, the potential antibodies
neutralizing the virus are available, providing us with a natural way to choose the targets. We selected all
heavy chain sequences of human antibodies with IGHV1-58 and IGHJ3 from the Coronavirus Antibody
Database (42) that neutralize some variants of SARS-CoV2 and have 16 amino acids in their CDR3. We
kept only one sequence per upload date by choosing the antibody that neutralizes the most variants of
SARS-CoV?2 and obtained 14 sequences (Table S3). We then simulated 3-5 (randomly selected) infections
with targets randomly selected from the sequences in Table S3 and the infection start date set to be the
upload date. We ensured that gaps between the start dates of any two infections were more than 50 days.
Each round of infections is set to last 50 days. We repeat this process for 50 replicate individuals.

For each individual, at the end of simulations, we sample ¢ = 50, 100, 200, 500 antibody-coding nu-
cleotide sequences from cells in the system (i.e., from the last round of infection) and built their clonal tree.
We also examine scaling of a subset of methods by testing ¢ € {50, 100, 200, 500}.

2.2.2 Flu simulations

We performed several simulations of a series of r = 56 rounds of flu, using sequences of hemagglutinin
(HA) protein. HA found on the surface of the influenza viruses is the primary target of neutralizing
antibodies. High mutation rates of influenza genome change the sequence of HA and allow the virus to
escape from the immune pressure, thus making flu a recurring seasonal infection. The NCBI Influenza
Virus Resource (43) contains 961 HA sequences from influenza B virus collected around the world. Each
HA sequence is labeled with a year and a location. For simulation purposes, we extracted 59 HA sequences
corresponding to flu infections in Hong Kong and selected 56 out of 59 HA sequences with the same length
(584 aa). The selected HA sequences were detected in Hong Kong from 1999 to 2010. Notice that HA
sequences could be replaced with other widely available antigen sequences (e.g., Coronavirus).

We used the evolutionary approach described earlier to choose the target amino-acid sequences. Each
round corresponds to one season, starts at the infected stage with a given target sequence ¢;, and ends when
o = M. At that point, we assume the infection is overcome, and the system switches to dormant, where we
stay until the next round starts (times of flu outbreaks are known in our dataset). When the » = 56 rounds
of infections end, we sample ¢ = 200 antibody-coding nucleotide sequences W1, ..., V. from cells in the
system (i.e., from the round r) and built their clonal tree. While it is unrealistic for a person to get infected
with flu these many times, this procedure allows us to test the impacts of a large number of infections.

Here, we set up four experiments, varying one or two parameters in each experiment (Table 3) and setting
the remaining ones to default values (Table 1). The central experiment contains 19 conditions, changing
the selective pressure (A) and the rate of hypermutation (11). We vary A from !/sx of default value (0.1)
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to 2x and vary y s from 1.25 x 1074 to 2 x 1073 per base-pair per generation. In six combinations, the
selective pressure is not high enough to overcome random mutations; in these cases, the affinity values do
not increase, and as a result, the carrying capacity is never reached. Thus, we exclude these conditions. We
also study three other parameters. We vary the weight multiplier of FRs (w) from !/5 to 2. We vary the
carrying capacity (C'), which is the germinal center size or the amount of antigens FDCs hold in the context
of B cell maturation, from 12500 to 400000. The value of this parameter can impact the speed of novel
mutations arising and may change the properties of simulated trees. We also vary the mean lifetime of
memory cells from 0.5 year to 16 years to study the impact of the extent of memory cell activation during
recurrent infections.

2.2.3 Compared methods of Clonal Lineage Reconstruction

We compare eight tools: minimum spanning tree, BRILIA (23), [gPhyML (24), RAXML (44), Immunitree
(22), Dnapars (45), BEAST (46), and GCtree (27). We also include an alternative “contracted” version for
four methods (IgPhyML*, RAXxML*, BEAST*, Dnapars*). We note this is not an exhaustive list, as many
other tools also exist (e.g., SAMM (33) and IgTree (47)) that we did not include. For all methods, we ran
reconstructions using one CPU core and set a 24-hour wall time for each replicate.

MST(-like) methods. We implemented a simple minimum spanning tree method containing Wy, ..., ¥
as well as W, which is forced to be the root. We compute the nucleotide Hamming distance between all
pairs of sequences and construct the minimum spanning tree (MST) using those distances. Besides the
simple MST, we also test Immunitree (22), a tool that clusters antibody-coding sequences into lineages and
builds clonal trees at the same time by optimizing a minimum spanning tree and Steiner tree-like problem.
We took as input Wy, ..., W, and used Immunitree to build a set of clonal trees. We then added vertex U as
the root and let the roots of the clonal trees to be immediate children of .

Brilia clusters antibody-coding sequences into lineages and builds clonal trees at the same time. We took
as input W1, ..., V. and used Brilia v3.5.4 to build a set of clonal trees. We then added vertex W as the root
and added roots of the clonal trees as children of W.

Phylogenetic methods. We tested ML phylogenetic reconstruction tool RAXML v8.2.12 under the
GTR+GAMMA model and IgPhyML v1.1.5, an ML method tuned specifically for immune cells. We also
tested maximum parsimony (MP) trees using Dnapars from the PHYLIP package v3.697 (45) and Bayesian
MCMC using BEAST v1.10.4 (46). We ran BEAST under the GTR+GAMMA model and uncorrelated
relaxed clock with log-normal distribution; we set the tree prior model to Bayesian Skyline, the length of
MCMC chain to be 108, and the burn-in rate to 10%. For RAXML, Dnapars, and BEAST, we took as input
vy, ...,V and ¥ to obtain an unrooted phylogenetic tree and rerooted at 0. For Dnapars, we reported the
greedy consensus tree when Dnapars outputted multiple trees. We also report the majority consensus tree
and refer to it as Dnapars*. For [gPhyML, we took as input W1, ..., ¥ and provided ¥ as root to obtain a
rooted phylogenetic tree. RAXML, IgPhyML, and BEAST produce fully binary trees, while Dnapars can
produce non-binary trees.

Contracted phylogenetic methods. As previously suggested (27, 33), contracting short or low support
branches is one way of addressing the limitations of methods that output fully binary trees. Since the length
of each antibody-coding nucleotide sequence < 400, we can assume that both ends of any branch with
length less than 10~ would correspond to the same sequence (if it was sampled). Therefore, we contracted
branches of length less than 10~ for RAXML and IgPhyML, and call the resulting methods RAXML* and
IgPhyML*. While the same logic does not hold for the Bayesian methods (because of the prior on branch
lengths), for consistency, we applied the same procedure to BEAST to obtain BEAST*.
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GCtree is an approach that integrates sequence abundance information to break ties in an MP analysis
(27). It allows sequences to be placed on internal nodes. We took W1, ..., W as input to GCtree v4.04 and
provided ¥ as root to obtain a rooted phylogenetic tree. As V1, ..., U, often contain repetitive sequences,
GCtree can utilize the sequence frequencies for lineage reconstruction.

2.2.4 Evaluation metrics

The simulated and reconstructed histories of samples W1, ..., WU  are represented as trees, where samples
are uniquely labeled on some nodes, and the remaining nodes are left unlabeled. Labeled nodes represent
sequences in the samples, and unlabeled nodes denote the ancestral sequences not present in the samples. We
evaluate results in two ways, described in detail in Appendix 2.4. We use a set of metrics for characterizing
properties of simulated trees in terms of their topology, branch length, and distribution of labeled nodes.
We also compare the simulated trees to those inferred using each method (Table 4).

While metrics for comparing phylogenies exist, these metrics need to be amended for clonal trees that
can have sampled ancestral nodes (33, 48). Many of the existing metrics can be generalized to compare
a simulated tree R and a reconstructed tree £ (Table 4), both induced down to include all labeled nodes
(i.e., removing unlabeled nodes if less than two of their children have any labeled descendants). Unlike
traditional phylogenies, here, internal nodes can be labeled, and we define metrics based on rooted trees
instead of unrooted trees. We refer to the set of labeled nodes under a node as a cluster. Note that singleton
clusters (i.e., those with one labeled node) are trivial when all labeled nodes are placed at leaves; however,
when labeled nodes can be placed at internal nodes, including or excluding singleton clusters can change
the metrics. Thus, we also define many of the distances with and without singleton clusters. Some distances
(i.e., FNR and FDR metrics) are already normalized. To normalize other distances, for each experimental
condition, we create a control tree by randomly permuting labels of the true tree. We then normalize the
errors of a reconstruction method by dividing it by the average score of replicates of the control method.

3 RESULTS
3.1 Demonstration of the simulation process

Visualizing one replicate under default conditions for both SARS-Cov2 and flu simulations, we see
similarities and differences between the two scenarios (Figure 3AB versus Figure 3C—E). In both cases,
during each round of infection, the affinity first decreases and then increases as long as the duration of the
infection is long enough (Figure 3AC). Thus, when the number of activated cells is low, and the selective
pressure is low, a mutation is likely to lead to reduced affinity, whereas when the number of activated
cells increases, the selective pressure begins to increase and select for higher affinity; these patterns are in
concordance with the literature (49). In the SARS-Cov2 simulations with a fixed duration, the total number
of activated cells converges to similar values across infections, but the final affinity changes (Figure 3A). In
the case of flu, the duration of infections, the mean affinity at the end, and the total number of cells also
vary widely across different rounds (Figure 3C). When the affinity at the start of a round is low, the duration
of infection is longer, and more activated cells and memory cells are generated (Figures 3C and S1A). This
pattern can be justified: when the immune system already has a high affinity to the antigen, it can eradicate
the antigen quickly and without much need for further evolution. To further quantify the pattern, we define
the novelty of each target (; as the negation of the maximum BLOSUM score between that target and any
previous target: —max;<;{A¢,(¢;)}. We observe that as novelty of the target increases, the average affinity
of activated cells at the end of the infection tends to decrease (R? = 0.242, p=25X 10~%), whereas, the
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number of activated cells at the end of the infection (R? = 0.248, p = 2.0 x 10~*) and the duration of
infection (R? = 0.288, p = 4.8 x 10~°) both tend to increase (Figure 3D).

Memory cell counts fluctuate during each infection and across infections. In the SARS-Cov2 simulations,
because the duration of the infection is fixed, after 15-30 days, the accumulation of memory cells stops;
in fact, the buildup of memory cells starts to fade due to cell deaths, as one would expect. In the flu
simulations, which have a much shorter duration, each round leads to a buildup in memory cells from the
start to the end of the infection, and the amount of buildup depends on the duration and correlates with
novelty (R? = 0.264, p = 1.2 x 10~%). However, the total number of memory cells reduces between rounds
due to cell deaths (Figure S1C) and changes across rounds. In particular, a string of short-lived infections
and large time spans between the flu seasons between 2002 and 2008 gradually lead to a depletion of the
memory cells, which are then built up again in the subsequent rounds (Figure S1C). Finally, sequences
from each round are not monophyletic in either simulation, as expected due to the use of memory of cells
(Figure 3BE). In both cases (especially SARS-Cov2), the antibodies evolved in later infections have more
representations in the sample and are further away from the root.

3.2 Benchmarking reconstruction methods
3.2.1 SARS-Cov2 simulations
3.2.1.1 Default Parameters

Under default parameters, GCtree failed to run on 2 out of 50 replicates, and we exclude those replicates
from our analyses. The relative accuracy of methods depends partially on the metric of choice (Figure 4).
Using metrics that rely on cluster recovery (i.e., RF, FDR vs. FNR, and MD), the contracted phylogenetic
ML methods (IgPhyML* and RAXxML*) have the best accuracy. Judged by triplet-based metrics TED and
TD, GCltree has the best accuracy (mean: 11% for TED and 12.4% for TD) followed closely by RAxML*
(mean: 11.2% for TED and 14.1% for TD). While RAXML* is among the most accurate methods with all
metrics, GCTree is very accurate according to triplet-based metrics but not with cluster-based methods.
This discrepancy reflects different emphases of the metrics: TED and TD focus more on deeper branches
in the tree that produce more triplets and are less sensitive to local branch contractions and resolutions.
By contrast, cluster-based metrics treat every part of the tree equally and can be highly sensitive to local
changes. The other methods have no obvious advantage to ML or GCtree. The MST-like methods have
high precision, coming close to contracted ML methods, but also have much lower recall (FNR > 25%).
Immunitree (which uses Steiner trees) is substantially better than a simple MST in terms of recall but not
in terms of many metrics, including triplet-based measures (TED and TD). The MP method, Dnapars, was
not more accurate than ML, and neither were BEAST or BEAST*.

Branch contraction improves the accuracy of all phylogenetic methods under all metrics (Figure 4B).
Normal phylogenetic ML methods (IgPhyML and RAXxML), which produce fully binary trees with no
samples at leaves, have the lowest FNR (highest recall), retrieving approximately 90% of the correct
clusters. However, their FDR is predictably high (low precision): more than 30% of their clusters are
incorrect. Luckily, contracted ML methods have only a slight increase in FN rate (< 2% on average) but
enjoy a dramatic improvement in precision. By simply contracting super-short branches, the FDR error
reduces to less than 20% for IgPhyML* and RAXxML*, which is better than all other methods. Similarly,
normal phylogenetic methods perform poorly according to RF and MD metrics, which emphasize precision.
Among the two phylogenetic ML methods, RAXML is slightly more accurate than [gPhyML in terms of RF,
FNR, and FPR, while IgPhyML has slightly lower MD. The accuracy of MP and Bayesian methods also
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improve with branch contraction, but the improvements are less dramatic than ML. Dnapars* improves the
precision of Dnapars by approximately 4% at the cost of only 0.4% decrease in recall. While BEAST has
similar accuracy to RAXML before contraction, BEAST* is far inferior to RAXML* because it improves
the precision over BEAST far less than RAXML* versus RAXML.

We next compare the properties of the inferred trees and true trees (Figures 4C and S2). MST puts far too
many labels at internal nodes (~40% instead of ~5%), while Immunitree and contracted ML trees are very
close to the true tree in terms of percent internal samples. Immunitree overestimates the tree balance, while
other methods underestimate balance, especially before contracting short branches. Conversely, MST and
Immunitree underestimate and other methods overestimate the depth of samples; note that contraction also
reduced error in sample depth. Phylogenetic methods, by definition, overestimate the bifurcation index as
1; this overestimation is dramatically reduced but not fully eliminated by contracted phylogenetic methods
and Immunitree. MST, on the other hand, underestimates bifurcation index.

3.2.1.2 Varying sample size

As the number of sequences sampled changes from 50 to 500, the accuracy and running time both change
(Figures 5 and S3). The impact of sample size on the accuracy of IgPhyML* and Dnapars* measured
according to TED is insignificant (p = 0.62, 0.18, respectively, according to an ANOVA test). Increasing
sample size does significantly reduce the accuracy of Immunitree and BEAST* (p = 5 x 107% and
p = 0.0001, respectively) and significantly improves the accuracy of RAXML* and MST (p = 0.006 and
p < 10712, respectively). The main impact of the sample size is on the running time. MST runs in seconds,
and RAxML takes minutes to finish for all dataset sizes. All other methods were much slower. While
Dnapars is the third fast method with 50-sequence input, its running time increases rapidly, and it fails
to finish with > 200 sample cases within 24 hours. In fact, Dnapars had the worst running time scaling.
We empirically estimate that the running time of other methods increases with sample size no worse than
quadratically (proportionally to ¢Lb LT 007 13 and <99 for IgPhyML, RAXML, Immunitree, MST,
and BEAST respectively) while Dnapars increases with "4 for the two data points where it did finish.
Although we didn’t directly include GCtree, we can approximate the running time of GCtree by Dnapars,
as invoking Dnapars is the most time-consuming step of GCtree. While BEAST scaled well, it had the
highest running time and failed to finish 500 sample cases within the allotted 24 hours.

3.2.2 Flu simulations

Because Dnapars, GCtree, and BEAST are much slower (and in the case of GCtree, occasionally fail to
run properly), we do not include them for the flu analyses (where ¢ = 200).

3.2.2.1 Default Parameters

Under default parameters, Flu simulations exhibit very similar patterns to SARS-CoV2 simulations. Over
all evaluation metrics, contracted ML methods (IgPhyML* and RAxML*) clearly have the best accuracy
(Figure 6). By simply contracting super-short branches, the FDRs of IgPhyML and RAXML reduce to less
than 15% from close to 35%. The MST-like methods still have low FDR and very high FNR. BRILIA
consistently has a high error in our analyses. These patterns remain largely similar (but are magnified) when
singletons are removed from consideration (Figure S4). The main exception is that when singletons are
excluded, Immunitree is no longer the second-best method according to the RF distance. When comparing
the properties of the inferred trees and true trees (Figure 6C), BRILIA puts far too many labels at internal
nodes (~35% instead of ~8%), overestimates the tree balance, underestimates the depth, and slightly
underestimates the bifurcation index. On this dataset, MST is quite close to the correct levels of bifurcation.
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3.2.2.2 Varying selective pressure

The reconstruction methods are all impacted as selective pressure (A) changes, but some methods are
more sensitive than others, and they are affected differently (Figures 7AB). Contracted phylogenetic
methods have the best accuracy across values of A. The ranking among other methods depends on the
selective pressure, such that phylogenetic methods become the worst when A is high and become the best
when A is low. As A increases, the error tends to increase for phylogenetic methods under all evaluation
metrics except for the FNR; for example, the FDR of RAXML increases from 27% at the !/4x selective
pressure to 42% at the 2x level. In contrast, the error of Immunitree, MST, and BRILIA reduces with
increased A according to FNR and RF. Contracted phylogenetic methods are relatively robust to the A and
their error rates change only slightly across conditions. When singletons are removed from the metrics of
comparison, patterns remain similar, though the impact of selective pressure becomes less pronounced
(Figure S5A).

The reason behind these patterns becomes more apparent once we consider changes in tree properties
(Figure 7C). As A increases, the fraction of internal samples tends to increase. This pattern can be explained:
when selective pressure is high, cells with low affinity die off quickly, which results in shorter branch
lengths. Since phylogenetic methods put all sequences at leaves, they have reduced accuracy. In contrast,
IgPhyML*, RAXML*, and Immunitree successfully assign sequences to internal branches; as a result, their
percentages of internal samples match those of the true trees. Similarly, with increased A, the bifurcation
index of the simulated tree tends to decrease, a pattern that is observed also in reconstructed trees from
I[gPhyML*, RAXML*, Immunitree, MST, and BRILIA. Again, phylogenetic trees, which produce binary
trees, are unable to capture these patterns. As A increases, the depth of sampled nodes of the simulated
tree tends to decrease, a pattern matched by IgPhyML* and RAXxML* but not other methods. Finally,
when A is high, trees are shorter (i.e., accumulate fewer mutations) and more branches are single mutation
(Figure S6), both of which make phylogenetic inference more difficult. The reduced levels of depth, total
change, and bifurcation make sense: higher pressure should result in fewer mutations needed to reach M
because cells with unfavorable mutations are less likely to survive; this would produce shorter trees.

3.2.2.3 Varying rate of hypermutation

As the hypermutation rate (x) increases, error decreases for normal phylogenetic methods (IgPhyML
and RAXML) according to most metrics but stays relatively stable for contracted methods (Figure 7DE).
Increasing p results in simulated trees that are marginally less balanced, are more bifurcating, have fewer
internal node samples, and have a higher depth for sampled nodes (Figure 7F). Thus, increasing j» generates
trees more similar to what traditional phylogenetic methods assume. Contracted phylogenetic methods and
Immunitree designate the right percentage of nodes as internal, but both are slightly more bifurcating than
true trees (Figure 7F). Overall, contracted phylogenetic methods are the most accurate across all values of

.
3.2.2.4 Interplay between selective pressure and mutation rate

When we vary both A and p, we observe that increasing the mutation rate has similar effects on the error
and tree properties as decreasing the selective pressure (Figure 8). Reassuringly, error patterns observed
when fixing one variable and changing the other are consistent with patterns when both variables are
changed (Figures 8 and S7). The most difficult condition for phylogenetic methods is low mutation rates
and high selective pressure, where close to 70% of the branches include only a single mutation, and the
bifurcation index is only 43%. However, the contracted methods are impacted less in these conditions

Frontiers 13



Zhang et al. DIMSIM

and are, in fact, improved according to the RF metric (Figure S7). In addition, we observe that antibody
clonal trees become more phylogenetic-like — that is, more bifurcating (max: 0.74) and fewer internal
samples (min: 20%) — with n = 1073 and A = 1/ax. Increasing the mutation rate or decreasing the selective
pressure beyond these values leads to combinations where the infection could not be overcome.

3.2.2.5 Other parameters

Beyond the main two parameters, we also studied changing six secondary parameters, most of which
had relatively little impact on the results (Fig 9). As the weight of FRs regions in computing affinity (w )
increases, the error tends to increase slightly for all methods under many evaluation metrics (Figure S8).
This pattern can be related to the slight increase in the number of single branch mutations and the reduction
in the total number of substitutions across the tree. As germinal center capacity (C') increases, error
increases or decreases slightly, depending on what measure is examined (Figure S9). Increasing C' tends
to reduce the number of internal samples and single mutation branches in the simulated tree, and tends
to increase mutations per branch. As memory cell life-time (1/x,) increases, the error tends to increase
for phylogenetic methods (Figure S10), including I[gPhyML* and RAXML*, which nevertheless continue
to be the best methods. Plasma cells conversion rate (p,) (Figure S11), rate of change in antibody target
compared to antigen change (x) (Figure S12), and the threshold of total affinity for neutralization and stage
change (M) (Figure S13) have small and inconsistent impacts on tree inference error. In all conditions
examined, [gPhyML* and RAXML* have the best accuracy (Fig 9).

4 DISCUSSION

We introduced a general model of antibody evolution and instantiated it in two different ways to simulate
antibody response to flu and SARS-Cov2. The two simulations were substantially different in their choice of
models and model parameters and produced quite distinct scenarios (Figure 3). Nevertheless, they showed
similar results in terms of benchmarking of methods. Below, we further comment on the implications
of these results for reconstruction methods, evaluation metrics, and simulation procedures. We end by
pointing out the limitations of the current work and directions for future work.

4.1 Implications for reconstructing antibody evolution

Consistent with the literature, we found that ML methods need subsequent processing for inferring
antibody clonal trees with high accuracy. Depending on the simulation condition, 1% to 20% of sampled
sequences belonged to internal nodes, and the true trees are only 60% to 70% bifurcating. We observed
that results of phylogenetic inference using ML, taken at face value, can have low accuracy. However,
ML phylogenetic methods with the simple adjustment of contracting short branches can outperform the
alternative methods. Despite the higher accuracy of contracted phylogenetic methods compared to the
available alternatives, we note that there is still substantial error. Under the default condition, while 90% of
clusters of the true tree were recovered, about 15% of the recovered clusters were incorrect. In particular,
the discrepancy between FNR and FDR was due to the fact that the inferred trees are somewhat more
bifurcating than true trees (e.g., ~70% versus 60% in the default condition). Thus, while contracting some
super-short branches increases accuracy, these trees are still biased towards too much resolution.

Previous benchmarking of reconstruction methods has shown somewhat contradictory results in terms of
the choice of the best methods. Davidsen and Matsen (33) found parsimony-based methods GCTree and
another post-processing method they introduced called SAMM to be superior to ML methods (they did not
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test Bayesian methods). In contrast, Yermanos et al. (50) concluded the Bayesian method BEAST is the
best method overall, followed by ML and MP methods. The two studies used very different simulation
approaches. In addition, Davidsen and Matsen (33) used the genotype-collapsing approach adopted from
DeWitt et al. (27) to created contracted trees, while Yermanos et al. (50) did not. Our study, which has more
similarities to Davidsen and Matsen (33) than Yermanos et al. (50), only partially confirms observations
from these previous studies.

Just like Davidsen and Matsen (33), we observed that subsequent processing improves MP methods, as
GCTree was better than Dnapars in our tests. Similar to them, we also ranked GCTree highly when judged
by triplet-based distances. However, Davidsen and Matsen (33), who used dnaml and IQ-TREE, found that
ML methods are inferior to MP methods. Our results ranked RAXML* (RAXML plus contraction) as the
best or close to the best method in all simulations with all metrics. The exact causes of these disparities
are not obvious. They could stem from differences in simulation procedures, evaluation metrics used
(recall that with triplet metrics, GCtree is slightly better than RAXML*), or even the choice of the ML
inference method (dnaml and IQ-TREE versus RAXML). More consequentially, we used the I' model
of rate-across-sites heterogeneity, but it appears that Davidsen and Matsen (33) ran IQ-TREE with no
model of rate heterogeneity, which may be problematic given that antibody sequences include hotspots and
coldspots. A final interesting difference is the contraction strategy. In contrast to Davidsen and Matsen (33)
who used ancestral reconstruction for contracting branches, we used a fixed branch length threshold that we
selected based on the sequence length. It could be that difficulties in ancestral state reconstruction render
the genotype-collapsing approach of DeWitt et al. (27) less effective than our simple rule of thumb. Note
that statistical tests of whether a zero branch length null hypothesis can be rejected also exist (51, 52, 53)
and are fast (54) and could be used in lieu of our simple heuristic, an option that should be tested in the
future. Our results imply that phylogenetic methods that naturally model zero branch length (e.g., 55) are
also promising. In particular, the adaptive LASSO method of Zhang et al. (56) seems suitable for inferring
antibody evolution and can be tested in the future.

It is harder to reconcile our results with Yermanos et al. (50). Unlike their study, our results did not
find BEAST to be better (or much worse) than ML method RAXML. The main limitation of BEAST
in our analyses was that it did not benefit from branch contraction nearly as much as ML methods do.
This difference is likely because the prior distributions on branch length render our simple rule-of-thumb
ineffective. For ML methods, branches with lengths much smaller than the inverse of the sequence length
can be expected to correspond to no changes. This simple rule fails when the branch lengths is governed by
priors as well as the likelihood. It is possible that Bayesian polytomy tests (55) could overcome this issue
and produce accurate results. It is also likely that with different priors on branch length, our simple heuristic
could become more effective. More broadly, the topological accuracy of BEAST may be impacted by
priors (we attempted to use settings similar to Yermanos et al. (50), but other priors may increase accuracy).
These uncertainties are not limited to our study and point to a practical difficulty with using Bayesian
MCMC methods: given the limited signal in antibody sequences, the prior choice is consequential and
needs more research.

Beyond accuracy, methods had substantially different running times in ways that may seem surprising.
As expected, BEAST was slower than other methods, though its running time rose only linearly as the
datasets became larger. However, RAXML was dramatically faster than the MP method Dnapars. While
MP is a somewhat simpler problem than ML, the available tools for MP inference are not as advanced
as ML methods. As a result, we did not see a trade-off between running time and accuracy; except for
MST, which was extremely fast but inaccurate, RAXML* had the best running time and the best accuracy
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according to most criteria. Larger samples can give a more complete picture of the evolutionary changes.
Nevertheless, accuracy was not impacted dramatically by sampling (except for MST), and only 50 samples
were enough to obtain reasonable accuracy, indicating that high sampling may not be always essential.

4.2 Implications for evaluation criteria

The ranking of reconstruction methods can change based on which of the ten evaluation criteria we
choose, and these rankings only partially correlate (Figure S14). FDR and FNR are weakly anti-correlated
only when including singletons (mean Spearman’s rank correlation coefficient across all tests p = —0.12).
RF distance, which combines both aspects, correlates moderately with both FDR (p = 0.5) and FNR
(p = 0.57). The triplet-based metrics strongly agree with each other (p = 0.97) and are mostly compatible
with the RF distance (p ~ 0.75), but are less similar to MD and PD metrics (p < 0.52). Consistent with the
observation that triplet metrics penalize false negatives more than false positives, they agree more strongly
with FNR than FDR (p = 0.65 vs 0.26). MD and PD are very similar to each other (p = 0.96), have no
correlation to FNR (p < 0.05), but have moderately high correlation to FDR (p = 0.71). Finally, we notice
that singletons can matter: while FNR and FNR* are highly correlated (p = 0.94), RF correlates with RF*
less strongly (p = 0.71), and FDR correlates with FDR* only moderately (p = 0.61).

The choice of the metric should depend on the downstream application of the clonal tree. While contracted
phylogenetic methods are dramatically better than base methods based on most criteria, they are only
slightly better according to the triplet-based criteria. The triplet metrics do not penalize trees heavily if
they are more resolved than the true tree or if they move internal nodes to leaves. Thus, when downstream
usage is robust to extra resolution and extra terminal edges, triplet metrics offer a good way to measure
topological accuracy. On the other extreme, PD and MD are very sensitive to the tree resolution and
internal placement, so much so that they often evaluate inferred phylogenetic trees to be much worse than
random trees (Figure S7) because these trees generate fully resolved trees and put samples at leaves. Thus,
we don’t find PD and MD to be reliable metrics of topological accuracy. RF distance is in between: it
penalizes extra resolution more than triplet metrics but less than path-based metrics. It does distinguish
contracted and phylogenetic methods but rarely evaluates any methods to be worse than random (Figure S7).
Overall, dividing the observed error along two (potentially contradictory) axes, such as FNR and FDR is
recommended because this evaluation provides more insight into the reasons behind error.

4.3 Comparison to other simulation models

Several simulation tools capable of benchmarking reconstruction methods have been developed. Some of
these tools are not comparable to our effort because of various limitations. ImmuneSIM (57) generates
mutations but does not model the clonal tree or the selection process. Methods of Amitai et al. (31) and
Reshetova et al. (32) are based on the two-step simulation paradigm and only generate clonal trees under
selection, leaving sequence generation to other methods. AbSim (50) models VDJ recombination and does
not model memory cells; moreover, it appears that the tree shape evolves independently from sequences.
The most relevant method to ours are ber-phylo (33) and gedynamics (30), which simulate clonal trees of
antibody-coding sequences under AM. Both ber-phylo and gcdynamics have similarities and differences to
our method (Table 5). For example, they both support multiple targets but only one round of simulations.
Although our model is capable of multiple targets, for simplicity, DIMSIM uses one target per round
of infection. However, unlike the two other methods that only simulate activated cells, DIMSIM also
simulates memory cells; as a result, it can simulate multiple rounds of infection by an evolving pathogen
with changing targets while considering memory built from previous infections. Moreover, DIMSIM
simulates in continuous time, whereas the other tools simulate under discrete generations. All three
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methods use sequences to define affinity, albeit differently: DIMSIM using BLOSUM distance, brc-phylo
using hamming distance, and gcdynamics using random energy landscape. A main feature of DIMSIM is
that its rates are polynomial fractions of individual and total affinity; this choice enables it to speed up the
simulation, allowing it to scale up to large numbers of cells, which makes DIMSIM capable of simulating
many lineages at a time.

4.4 Limitations of the study

Our study has limitations that should be kept in mind. While many of these limitations may impact the
realism of the model, most will likely not impact the relative accuracy of reconstruction methods.

In our simulations, we did not add errors to sequence data used as input to clonal tree reconstruction
methods. Real AIRR-seq samples undergo extensive PCR and thus might contain both sequencing and
amplification errors. We assumed that error elimination is already performed (to perfection) prior to
reconstruction using existing methods (e.g., 58, 59, 60, 61). The efficacy of methods that simultaneously
filter errors and build clonal trees (e.g., 62, 23) should be the subject of future research. We also simulated
only substitution SHMs but no insertions and deletions, leaving the latter to future work.

In our AM model, we made several simplifying assumptions. For example, we assumed the affinity grows
gradually as the AA sequence becomes more similar to the target sequence. The idea that AM occurs
by mutational diffusion along one or more preferred paths in the genotype space has been supported by
Kepler et al. (63). Nevertheless, our i.i.d model is certainly a simplification without clear empirical support.
More complex models of receptor binding exist and can be integrated in the future: Ymir (64) is a 3D
structural affinity model which takes into account affinity jumps, cross-reactivity, and differential epitope
accessibility There are also machine learning attempts (65) to build predictive models of affinity, which can
be incorporated. However, including such sophisticated models could drastically slow down simulations.

We also assumed the existence of a target antibody sequence. The literature has increasingly documented
highly convergent immune responses to the same epitope across individuals and conditions (66, 67). This
observation gives us reason to think the existence of target sequences is not a bad assumption; nevertheless,
the choice of a single target may not be realistic. To model the change in the target as the viruses evolve, we
used two approaches: in one, we used real antibody sequences, which seems like a reliable approach. In our
second experiment, we chose targets with evolutionary divergence levels that mimic the divergence levels
of the antigen, albeit with some scaling factor. In the latter case, it is conceivable that two antigens with
high evolutionary distance are neutralized by similar antibodies or that antigens that are very similar require
very distant antibodies. We modeled SHMs as affecting daughter cells independently, but it is arguably
more realistic to make both daughter cells carry the same mutation due to the G1 origin of SHMs (38) (a
simple change to the model). Finally, our 5-mer mutation model, while based on the empirical model of
Yaari et al. (40), still fails to capture some complexities of the real antibody evolution. For example, we
concentrated substitutions on the CDR region, but other regions are known to also accumulate mutations
(62, 68, 69). Other B cell specific models (e.g., 70) including those that seek to tease out the effects of
selection from background mutations (e.g., 71) and per-position mutability models (63) can be incorporated
in the future.

For all these shortcomings, we offer several responses. Due to challenges in modeling antibody repertoire
(e.g., 72), the framework is designed to be flexible and can easily incorporate more complex models. Thus,
our work should be considered a first step that will enable better modeling in the future. Also, our objective
in simulations was to benchmark reconstruction tools; as long as our modeling choices did not distort the
comparison of methods, some model misspecification can be tolerated. We observed that the choice of
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the best method was not sensitive to many parameter choices, and in fact, the two simulations resulted in
similar conclusions.

Beyond model simplifications, we also chose to simulate parts of the complex immune system response
but not others. For example, we simulated one clonal lineage involved in an immune response. As such,
we ignored the important V(D)J recombination of IG loci (73) and sought to simply simulate a VDJ
recombinant that is effective in fighting a specific antigen. Even then, we simulated only one clonal lineage
at a time, a limitation that can be easily lifted in the future by starting from multiple root sequences with
different VDJ settings and assigning to each a different target sequence. Note that our tool can be easily
combined with methods of simulating VDJ recombination, such as IGoR (74). Neither did we simulate
light chains, which are often not captured in AIRR-seq sequencing data. Finally, we did not simulate
processes such as epitope focusing that produce broadly neutralizing antibodies (75).

4.5 Applications of the framework

Our framework for simulating clonal trees can be extended to other forms of microevolutionary scenarios.
While the current implementation is geared towards AM simulations, our proposed algorithm enables
forward-time simulation of very large numbers of entities under models that allow dependence between
sequences and rates of birth, death, or transformation. The ability to simulate a very large number of
entities combined with rates that change with properties of entities gives us the necessary ingredients to
simulate under complex models of evolution that consider selective pressure. Thus, our framework can be
adopted for other forms of microevolutionary simulation, such as the evolution of a virus within a host
and accumulation of SHMs in tumor evolution. Such a possibility would become most intriguing if it can
also model the co-evolution of different types of entities (e.g., antibodies and viruses). While we did not
simulate co-evolution here, we believe the framework is capable of performing such simulations by simply
creating entity types (just like we had cell types) and making the BDT rates a function of properties across
different cell types. Another promising direction for extensions of this work is to integrate the sequence
evolutionary models with network-based disease transmission models (e.g., 76, 77) to enable more accurate
simulations of disease spread and evolution.
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Figure 1. (A) Examples of a phylogenetic tree, a Steiner tree, and a spanning tree. Letters indicate
sequenced data. Phylogenetic trees put all data points at leaves, and none at internal nodes, spanning trees
put data at every node (whether internal or leaf), and Steiner trees are in between (some but not all internal
nodes correspond to data). (B) The evaluation framework. The BDT model, parameterized by several
values (Table 1) is first sampled using the fast algorithm implemented in DIMSIM to create the simulated
(i.e., “true”) sequence data and clonal trees. These trees are then reconstructed from the simulated sequence
data using various methods. The reconstructed clonal tree is compared to the simulated tree using several
metrics adopted here to account for internal node sampling and multifurcation. Properties of true and
inferred trees are measured using metrics such as balance and resolution.

Quantification of tree inference error
(FP, FN, RF, triplet edit dist, triplet discord, MRCAD) :
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Figure 2. (A) States of cells and transitions during infected stage. Only states colored black are modeled.
Transitions to states colored gray are treated as death events. (B-D) Consider a population of activated B
cells where all cells have one of two sequences: L (low) or H (high). Let p be the ratio of affinity of H-type
cells to L-type cells, and let the affinity proportion be the total affinity of a cell type over the total affinity
(i.e., ?/(1+p) for Hand /(1 + p) for L). (B) The affinity proportion as a function of the selective pressure A
when the sequence closeness to the target f¢(.) is kept fixed for L and varies for H. (C) The ratio of death
rate to birth rate as a function of affinity proportion of H cells, fixing the population size to the carrying
capacity. (D) The ratio of death rate to birth rate as a function of the population size normalized by the
carrying capacity, fixing p = 2. All other parameters set to defaults (Table 1). The selective pressure A and
the level of binding control the portion of affinity taken up by better sequences (B), which controls the
growth of the cell type (C), which is also a function of the total population size (D).
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Figure 3. (A,C) Average affinity of activated cells to current infection target (log scale), the number of
activated cells, and the number of memory cells by total time in infected stage across stages of infection
(colors) for (A) SARS-Cov2 (discarding dormant stages) and (C) Flu (discarding the first 5 rounds and
dormant stages). (B,E) Clonal tree of memory cells sampled from one simulation under default condition
after all rounds for (B) SARS-Cov2 and (E) Flu. Nodes are colored by rounds when the memory cells
emerge same as part (A,C) (in Flu tree, gray color is used for rounds 1 through 46). Here, 11 internal
nodes in SARS-CoV2 tree and 17 internal nodes in Flu tree are sampled and are indicated as circles. Edge
weights denote the number of mutations of sequences denoted by adjacent nodes. (D) Impact of the novelty
of the antigen on the outcome of the infection across the 56 rounds of influenza simulations. The novelty
of rounds is measured by —max;<;{A¢,(¢;)} and is ranked from less novel to more novel on the x axis.
The y-axis shows ranking (from low to high) of average affinity of activated cells to the current infection
target (R2 = 0.242, p = 2.5 x 10™%) at the end of the infection, the number of activated cells (R? = 0.248,
p = 2.0 x 107%) at the end of the infection, the duration of infection (R? = 0.288, p = 4.8 x 1079), and
the change in memory cell count (R? = 0.264, p = 1.2 x 10~%) from the start to the end of the infection.
See Figure S1 for more.
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Figure 4. SARS-Cov2 simulations with default parameters. (A) False discovery rate (FDR) and false
negative rate (FNR), (B) normalized Robinson-Foulds cluster distance (RF), MRCA discordance (MD),
triplet edit distance (TED), and triplet discordance (TD) of various reconstruction methods all restricted to
48 replicates where all methods ran. The “control” trees are generated by randomly permuting labels of the
true tree. Benchmarking results in (B) are normalized by the control trees. (C) Properties of the estimated
and true trees.
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Figure 5. Running time and triplet edit distance (TED) of various reconstruction methods on SARS-CoV2
simulations under different sample sizes (50 replicates). Note that contracted methods have the same
running time as non-contracted versions are hence are not shown. Also note that GCTree is not included
but its running time increases similarly to Dnapare, which it runs internally.
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Figure 6. (A) False discovery rate (FDR) and false negative rate (FNR), (B) normalized Robinson-Foulds
cluster distance (RF), MRCA discordance (MD), triplet edit distance (TED), and triplet discordance
(TD) of various reconstruction methods on Flu simulations under default conditions (30 replicates). The
“control” trees are generated by randomly permuting labels of the true tree. Benchmarking results in (B)
are normalized by the control trees. (C) Properties of the estimated and true trees. For results excluding
singletons and the PD metric, see Figure S4.
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Figure 7. (A-C) Impact of selective pressure A and (D-F) mutation rate i on (A,B,D,E) tree inference
error and (C,F) tree properties. We measure tree error by (A,D) FDR, FNR, (B,E) Robinson-Foulds cluster
distance (RF), MRCA discordance (MD), triplet edit distance (TED), and triplet discordance (TD). Tree
errors and tree properties are averaged over 30 replicates. (C,F) We show properties of true (black) and

reconstructed trees. 1 = 5 X 107° in (A-C) and A = 0.1 in (D-F), which are all default values.
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Figure 8. For varying levels of selective pressure (A), rate of hypermutation (x), and all reconstruction
methods except BRILIA, we show (A) tree error measured by the triplet edit distance TED and (B)
properties of the true tree. When the mutation rate is too high and the selective pressure is too low, the
simulation never ends, meaning that the total affinity needed to overcome the antigen is never reached;
these conditions are missing from the figure. For other evaluation criteria see S7.
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Figure 9. Triplet edit distances and RF cluster distances by selective pressure on framework region,
carrying capacity, mean-life of memory cells, plasma cell conversion rate, antibody-flu BLOSUM ratio
(MARatio), stage change threshold (M).
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Table 1. Parameters of the AM model

Param. Default Parameter description

AZI Yao2 Rate (inverse life time) of cell death for memory cells (days—!)

b 6 Rate of cell division for activated B cells (days ')

Ad 104 Rate of cell death during dormant stage (day ).

At 0.01 Rate of activation of a typical responsive memory cell

Pp 1/100 Portion of activated B cells that turn into plasma cells per cell division
Pm 1/4 Portion of activated B cells that turn into memory B cells per cell division

" 5x 1074 Rate of SHMs per base pair per generation
K’ Appendix 2 Empirical 5-mer mutation frequencies per generation

L 125 Length of the amino acid antibody-coding sequence (assuming the length is fixed)

CDR  31-35,50-65, Positions of the three CDR regions (amino acid coordinates)
98-114
0(i,7) Table S2 BLOSUM matrix defined on a pair of amino-acids ¢ and j

Ag -120 BLOSUM score of a typical memory B cell antibody-coding sequence to target
Af -75 BLOSUM score of activated B cell antibody-coding sequences that leads to cure
wy 1/3 BLOSUM score multiplier of non-CDR positions (i.e., FRs)

K BLOSUM score ratio of antibody-coding sequences to antigen sequences

A 0.1 Selective pressure: factor connecting sequence similarity and log binding affinity
Pa 1/2 Factor connecting log affinity and B cell activation (sensitivity to affinity level A)
C 10° Carrying capacity limited by total resources (see text for meaning)

M CeABo The threshold of the sum of affinity for a stage change

r 56 Rounds of viral infections

0 Appendix 2 Nucleotide sequence of the initial B cell

¢1.-.¢, Appendix2  Target amino acid sequences for viral infections in each round
1n,...1m, Appendix 2  Flu sequences assumed as antigens in the simulation
t1...t,  Appendix 2  Starting time of each infected stage (day)

Table 2. Birth, death, and transformation rates. See Table S1 for polynomial forms.

Rate functions Infected stage Dormant stage
AB<X2'7 S) gz)\b + (1 — gl) x 0 0
Ap(xi,S) g T g N) (1= 9Ny gida+ (1= g0)A
Ar(x,S) ti = giPmAp + € paAAOapa(l — 9i) 0

Table 3. Experiment setup

Experiment Parameters Parameter values Parameter units
Selective AX (2,2),(2,1),(2,1/), (2, /1), (2,1/8), (1, 2), A:1071
pressure vs. (L 1), (L1/2), (L), (1,s), (1), (Vo1 2),  pa: 107
rate of (12, 1/a), (V2,1 f8), (M4, 1), (M, 2 /2),
hypermutation (01, a3, (1, 1J5), (s 1), (1o, 6)
Framework weight wy 2,1,15,1/3,1/5 1
Germinal center size C 4,2,1,1/2, /4,13 10°
Memory cell life 1/x, 16,8,4,2,1,1/ year (365 days)
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Table 4. Clonal tree properties and metrics for comparing the reference tree R to estimated tree E. See

also Table S6.
Property/Metric Definition

Internal sample (%) The percentage of labeled nodes that are internal nodes.

Ratio of the number of internal nodes to one less than labeled nodes;

equals to 1 for bifurcating trees and ~ 0 for a star tree.

Sample depth The average depth of labeled nodes.

Balance (cherry) Half the sum over all leaves of the fraction of their siblings that are also leaves.
Single mutation branches (%) The percentage of branches with length one.

Accumulated mutations (avg) The average depth (path length to the root) of all labeled nodes .

Accumulated mutations (sum) The summation of branch lengths of all branches.

Bifurcation index

Mutations per branch The average branch length.

False Discovery Rate (FDR) the percentage of clusters in E that are not in R

False Negative Rate (FNR) the percentage of clusters in R that are not in

RF cluster distance (RF) the number of clusters in either but not both trees

FDR* , FNR*, and RFx similar to the previous metrics but with singletons excluded

the number of trees induced by triples of labeled nodes (leaf or internal) where

Triplet discordance (TD) the topology in the simulated tree and the reconstructed tree differ

Triplet edit distance (TED) the sum of the RF cluster distance induced to each triplet of labeled nodes
MRCA Discordance (MD) the summation of MRCA discordance’ over all ordered pairs of labeled nodes.
Patristic Distance (PD) the summation of the patristic discordance® over all pairs of labeled nodes.

T MRCA discordance of two labeled nodes is the difference between the number of branches in the path
between each of them and their MRCA.

! Patristic discordance for a pair of labeled nodes is the difference between the number of branches in the
path between the two nodes on the two trees R and £

Table 5. A comparison of Most relevant tools for AM simulation.

DIMSIM ber-phylo gcdynamics

this paper (33) (30)
Targets Single-target (per round) Multi-target (1 round) Multi-target (1 round)
Rounds Yes No No
Affinity BLOSUM distance Hamming distance Random energy landscape
Mutation Updated (40) 40) 1.1.d
Scalability Up to millions of cells Thousands of cells Thousands of cells
Cell type Activated & Memory Activated Activated
Germinal Centers Combined (single) Combined (single) Multiple (in competition)
Time Continuous Discrete generations Discrete generations
Isotype No Yes No
Birth/Death rate Polynomial fraction of Neutral: independent of total affinity A function of affinity

individual and total affinity Kinetic: function of affinities
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