Identifying Channel Related Vulnerabilities in
Zephyr Firmware

Devansh Rajgarhia
Indian Institute of Technology Kharagpur
Kharagpur, India
devanshrajgarhia@iitkgp.ac.in

Abstract—In recent years, IoT devices and systems have
helped make our lifestyle smarter. Operating systems running
on IoT devices form a critical component for connectivity,
security, networking, storage, remote device management and
other system needs. As a result, applications deployed on top
of such an operating system can exploit its vulnerabilities and
potentially leak confidential data to the attacker. IoT devices
typically have sensors that allow them to measure one or more
channel values. They constitute one such example of confidential
data for the user which can get leaked or manipulated by a
malicious application exploiting the privileges provided by the
operating system. In this work, we propose a methodology for
finding security vulnerabilities using the concept of taint analysis
on the LLVM IR of a part of the kernel of the Zephyr OS, a
lightweight real-time operating system for connected, resource-
constrained and embedded devices. Several vulnerabilities were
detected as reported in the Results section.

Index Terms—Vulnerability, Zephyr, LLVM IR, Taint Analysis

I. INTRODUCTION

Internet of Things (IoT) is an evolving paradigm that allows
electrical gadgets and sensors to communicate with each other
through the Internet to make our lives easier. Smart devices and
the Internet are used by IoT to bring new solutions to a variety
of problems and concerns in commerce, administration and
corporate entities throughout the world [1], [12]. Improvement
in OS development is a critical step in creating a platform
that supports the most up-to-date protocols and standards for
intelligent IoTs of the future [13]. An IoT OS is expected
to support a variety of hardware designs, boards and devices.
RIOT [2], and Zephyr [3] are some of the IoT OSs that are
available to help with the increasing growth in this sector.

The Zephyr operating system is based on a relatively
simpler and smaller kernel. It is intended for use on asset
constrained and embedded systems - from basic sensors to IoT
remote applications running on smartwatches. Like other IoT
operating systems, Zephyr also provides multiple drivers and
sensor options to the user. The goal of this work is to analyze
channel-related data leak vulnerabilities associated with the
Zephyr RTOS. Zephyr channels are a relatively new concept
in the embedded systems world. Fundamentally, a channel is
a quantity that a sensor can measure. Since a complex sensor
typically measures several quantities, the notion of channel
enables an RTOS to have an abstraction (in the OS kernel) of
individual quantities, especially when the sensor abstraction is

Peng Liu
Pennsylvania State University
University Park, USA
px120@psu.edu

Shamik Sural
Indian Institute of Technology Kharagpur
Kharagpur, India
shamik @cse.iitkgp.ac.in

too coarse-grained. It enables Zephyr to interact with a sensor
in a fine-grained manner.

There are two kinds of vulnerabilities found in IoT OSs.
First, the applications running on them may be malicious and
could be leaking sensor channel values without the knowledge
or consent of the user [11]. Even applications that are not
malicious and were carefully programmed may suffer from
such leaks (e.g., advertisements from third party). Second, it
can also happen that an attacker takes advantage of the priv-
ileges given and manipulating the sensor channel data or the
sensor device itself [14]. Denial of Service, Data Type Probing,
Malicious Control, Malicious Operation, Scan, Spying, and
Wrong Setup are examples of attacks and anomalies that can
cause IoT system failures [16].

Taint analysis [15] is one of the methods used to detect such
kind of security vulnerabilities in OSs. These approaches track
sensitive “tainted” information through the OS by starting at
a pre-defined source (e.g., an API method returning sensor
channel value) and then following the data flow until it reaches
a given sink (e.g., a socket), giving precise information about
which data may be leaked where. Taint analysis can be used
to identify the data that influences safety-critical components.
In this work, we use the same approach to find security
vulnerabilities present in the Zephyr OS kernel.

II. RELATED WORK

Previously, there have been some work on analyzing frame-
works and applications to find security vulnerabilities. Centaur
is one such work that focuses on analyzing the Android Frame-
work [7]. It enables symbolic execution of the framework and
uses taint analysis to improve the effectiveness of vulnerability
discovery. This analysis does not, however, include an analysis
of any kind of channel-related vulnerabilities.

Gerbil is a firmware analysis specific extension of the Angr
framework for analyzing binaries to effectively identify privi-
lege separation vulnerabilities in IoT firmware [8]. It analyzes
IoT firmware through symbolic execution and addresses the
issue that an attacker may use the privilege separation vulner-
ability to perform a wide range of assaults, including malicious
firmware replacement and denial of service. However, the
privilege separation vulnerabilities are much different from the
channel-related vulnerabilities that we have worked upon here.

TaintDroid, on the other hand, is a dynamic taint track-
ing and analysis system capable of simultaneously tracking
multiple sources of sensitive data [9]. It is used to monitor
android applications and keep a check on how third-party
applications use their private data. It employs taint analysis
to label the private data of the user as sources and monitors in
real-time how applications access and manipulate users’ data.
Flowdroid, in contrast, is a novel and exceptionally accurate
static taint investigation tool for Android applications [10].
An exact model of Android’s life cycle permits examination
of callbacks conjured by the Android system. It works on the
principle of forward and backward taint analysis to find the
aliases of the tainted variable. Its objective is to detect private
data leakage in Android applications, whereas in our work we
detect sensor channel data leakage in an RTOS.

SCANDROID [18] is a tool for automatically reasoning
about the security of Android apps. Its analysis is modular,
allowing programs to be checked incrementally when they are
installed on an Android device. It pulls security standards from
manifests that come with such apps and verifies whether data
flows through them are compliant with such specifications. It
is a tool that does a data flow analysis but is only for Android
apps whereas we here do it for an RTOS. CHEX [19] is a static
analysis tool for automatically detecting component hijacking
vulnerabilities in Android apps. It examines Android apps and
discovers probable hijack-enabling flows by executing low-
overhead reachability tests on customized system-dependent
graphs, modeling such vulnerabilities from a data-flow analy-
sis perspective.

FIRMADYNE [20] is an automated dynamic analysis solu-
tion that targets Linux-based firmware on network-connected
commercial off-the-shelf devices. The design decisions solve
several issues that come with dynamic analysis of COTS
firmware. To accomplish the scale required to evaluate thou-
sands of firmware binaries automatically, it relies on software-
based full system emulation with an instrumented kernel.

Costin [21] assessed a collection of around 32,000 firmware
images using static analysis. They found 38 previously undis-
covered vulnerabilities, including hard-coded backdoors, em-
bedded private key pairs, and XSS flaws, all of which were un-
covered without undertaking advanced static analysis. Several
alternative strategies for finding vulnerabilities in embedded
devices have been developed to guard against this attack
vector. For example, FIE [22] is a tool, which is a symbolic
executor to discover vulnerabilities in embedded devices using
the KLEE [23] symbolic execution engine. In a corpus of 99
open-source firmware applications for the MSP430 family of
8-bit embedded micro-controllers, they uncovered 21 memory
safety vulnerabilities. At a lower level, FEMU [24] integrates
the QEMU emulator inside the BIOS to simulate hardware
peripherals during the development of an embedded SoC.
However, none of the above-mentioned work focuses on static
analysis of an RTOS and more importantly on detecting sensor
channel-related vulnerabilities in an RTOS using taint analysis.

III. DETECTING VULNERABILITIES USING PHASAR

To perform the taint analysis, we use the LLVM [17]
Intermediate Representation of a part of the kernel of the
OS and process it. The analysis is often easier when a static
analysis challenge is solved on the IR rather than the source
language. This is because it eliminates the need for concrete
source language, as the IR is often simpler due to the lack
of nesting and fewer instructions. We use the Iwm2m-client
application code’s prj.conf (Kernel configuration) file to first
compile the app for getting the compile commands for each
of the files that were being used for that particular project. In
this way, the IR of only those components were generated that
are necessary for our analysis, and most of the tasks that are
not required were not integrated to avoid path explosion and
the need to process huge exploded super graphs.

For our analysis, we use the PhASAR [4] static analysis
tool. It is an LLVM-based static analysis framework for
C/C++ code. PhASAR uses the Inter-procedural Distributive
Environments algorithm to perform taint analysis on the IR. In
IFDS [5] and its generalization IDE [6], a data flow problem
is transformed into a graph reachability problem. Reachability
is computed using the so-called exploded super-graph (ESG).
The complexity of the IDE algorithm is O(|N||D|?), where
|N| is the number of nodes on the Inter-Procedural Control
Flow Graph (or number of program statements) and |D| is
the size of the data-flow domain used. PhAASAR requires the
sources and sinks to be defined in a JSON file and feed this
configuration for the analysis. PhASAR can also be used as
a library to create an LLVM pass that runs on the LLVM IR
for analysis. We made an LLVM pass using PhASAR to run
the taint analysis on a defined set of sources and sinks.

A. Data Leakage

The first analysis done was to detect any kind of leakage of
private data from the sensor to the Internet. For this purpose,
we use our device as the source in the z_impl_sample_fetch
and z_impl_channel_get functions, which are the system calls
to get the channel values from the sensor connected to the IoT.
We mark all the Internet-related functions from our LLVM
IR as the sink and run the IDE Extended Taint Analysis
of PhASAR. As expected, the tool shows that the source
can reach the sink through some path in the IR although it
is not capable of showing the exact path through which it
is occurring. One of our speculated execution paths through
which this can happen is by exploiting the APIs available for
the application and using the CoAP protocol to transfer the
resource data from the IoT device to the attacker. The time
order of the APIs will be as follows. (a) sensor_sample_fetch:
Fetches the sample value of a channel for a given device
with the help of hardware and drivers. (b) sensor_channel_get:
From the device’s channel buffer, copies the fetched channel
value and returns it to the user. (c) socket: Creates a socket
for the transmission of data between a server and a client.
(d) connect: Connects the sockets and initializes them. (e)
coap_packet_init: Creates a new CoAP Packet from input data.
(f) coap_packet_append_payload_marker: Append payload

zero dev wval pkt
[] [] []

sensor_sample_fetch ‘

sensor_channel_get ‘

connect ‘

‘ socket ‘

coap_packet_init ‘

| coap_packet append_payload _marker |

‘ coap_packet_append_payload |

‘ send ‘

Fig. 1. Taint flow path for sensor channel leakage

marker to CoAP packet. (f) coap_packet_append_payload:
Append payload to CoAP packet. (g) send: Sends the packet
over the sockets.

In Fig. 1, we show how the data flow occurs when these
APIs are called in that order. In the figure, zero refers to
the tautology and is always tainted, dev refers to the sen-
sor device being used to capture the sensor channel value,
val refers to the sensor channel value returned by the sen-
sor_channel_get API to the user and pkt refers to the network
packet that will be transmitted across the internet. When the
sensor_sample_fetch function is called, the device gets tainted
with the sensor channel value. Once the sensor_channel_get
function is called, the sensor channel data is copied from
the device’s buffer, thus tainting the value variable being
returned to the user. Next, the user creates a socket, con-
nects it to the other end of the socket using the address,
and initializes a CoAP packet that is to be sent, using the
coap_packet_init API. To add the sensor data as a payload to
the packet, it uses the coap_packet_append_payload_marker
and the coap_packet_append_payload APIs, respectively. Dur-
ing this process, the packet gets tainted due to the value. The
packet is then sent to the other end of the socket using the
send function, thus leaking the sensor channel values.

This is only one possible path. However, there could be
several other possible paths through which this type of leakage
can occur. Zephyr provides several other protocols like MQTT,
LwM2M, HTTP, etc., which could be exploited by the attacker.
This kind of data leakage might be used by agencies to
collect data from users and use them for their analysis. For
example, an agency might be keeping track of the temperature
in which a person generally stays in, and accordingly shows
advertisements for either heaters or air-conditioners. There is
another type of vulnerability that is common in which an
attacker can manipulate the sensor channel data.

B. Peripheral Manipulation

This analysis was done to see if the attacker can change the
sensor channel values using the Internet. For this purpose, we
use the z_impl_sample_fetch and z_impl_channel_get func-
tions as the sink. We make an LLVM pass that uses PhnASAR
as a library. The pass could detect a declared variable in our
LLVM IR and if the declared variable belongs to the internet-
related codes, it would mark the variable as a source and run
our taint analysis. In this way, we could get the variables that
reaches our sinks by some path in the control flow graph.
Using this LLVM pass, we were able to detect quite some
vulnerabilities in the Zephyr OS.

Our analysis showed that the data and offset variables
from the following functions when tainted, can reach the
sinks (i.e., the sensor_channel_get or sensor_channel_fetch
functions) and influence the sensors. (a) coap_packet_parse:
Parses the CoAP packet in data, validating and initializing it.
(b) parse_option: Parses the options of the CoAP packet. (c)
decode_delta: The single-byte or two-byte length of the option
is decoded. (d) read: Reads the data. (e) read_u8: Reads 8 bits
of data. (f) read_bel6: Reads 16 bits of data.

We can also confirm this taint propagation from the call-
graph of the function coap_packet_parse shown in Fig. 2.
The functions marked in red are those involved in the prop-
agation of the tainted data and offsets. The callgraph shows
that these tainted variables are passed onto the parse_option
function, which then passes the tainted variables to read_us§,
decode_delta, and read functions. The decode_delta function
passes these tainted variables to read_bel6.

coap_packet_parse

|

parse_option

/|

option_header
_get_len

option_header

_get delta

read u8

read

decode _delta

l

read_belb

Fig. 2. Call graph for coap_packet_parse function

This data variable in the true sense is the data containing a
CoAP packet, its data pointer being positioned at the start of
the packet. There are several ways how this can be used by an
attacker. One is by designing an application with the following
time order execution of the APIs. (a) socket: Creates a socket
for the transmission of data between a server and a client. (b)
connect: Connects the sockets and initializes them. (c) recv:

zero pkt payload dev

pr

socket

[] [] []
connect

[] [] []

coap_packet_parse

‘ recv ‘

coap_handle_request

‘ coap_packet_get_payload ‘

function

callback ‘ ‘ device_get_binding ‘

D]

‘ sensor_channel_get ‘ i x

Fig. 3. Taint flow path for sensor channel manipulation

Recieve the packet of the socket. (d) coap_packet_init: Creates
a new CoAP Packet from input data. (e) coap_packet_parse:
Parses the CoAP packet in data, validating and initializ-
ing it. (f) coap_handle_request: When a request is received,
calls the appropriate methods of the matching resources. (g)
coap_packet_get_payload: Returns the data pointer and length
of the CoAP packet. (h) sensor_channel_get: From the device’s
channel buffer copies the fetched channel value and returns it
to the user.

The taint flow for this kind of application is shown in
Fig. 3. In the designed application, the IoT device first
creates a socket, connects to the address of the attacker,
and receives the tainted packets through the Internet. It then
parses the packet using the coap_packet_parse function and
after validation, calls the coap_handle_request function. The
coap_handle_request function calls the appropriate callback
function, in which it can get the payload from the packet using
the coap_get_payload function and then use this payload to
get access to a sensor in the IoT device. Once the attacker has
access to the device, he can call the sensor_channel_fetch or
any other related APIs to manipulate the data in the device
buffer. It can also call for sensor_attr_set API to change the
attributes like range, sampling frequency, or any other device
configuration which is supported for that particular sensor.
This can also result in the crashing of the IoT device due
to incorrect API calls for the sensor.

The PhASAR tool also detects a vulnerability in the
net_conn_change_callback function. This function changes the
callback and user_data for a registered connection handle.
If the callback is changed and set to some other callback
that can access the sensor device, it can cause a problem.
Consider the example path shown in Fig. 4. The flow is as
follows. (a) socket: Creating a socket on the IoT device. (b)
net_udp_register: Registering a callback to be called when a

Original application
working

socket

‘ net_udp_register ‘ software

interrupt | net_conn_change
net_recv_data _callback
: Sy
% 29y
! &
S
callback1 callback2
user data

taints device

‘ device_get_binding |
i

‘ sensor_channel_get |

Fig. 4. Vulnerability in case of net_conn_change_callback

UDP packet is received corresponding to the received packet.
(c) net_recv_data: Pushing the packet up in the network stack
for further processing. (d) callbackl: Executing Callback when
the UDP packet is received.

The application first opens a socket and connects to the
address of the other socket. Once connected, it registers a call-
back for UDP packets using a protocol for the connection (i.e.,
UDP here), protocol family-like AF_INET6 for IPv6 support,
and the socket addresses of the endpoints. Every time a packet
arrives the callbackl function is called and executed. This
application runs normally until a software interrupt is made.
If this software interrupt calls for net_conn_change_callback,
the callback function for this application can be changed to
callback2 and the user data is also changed to the new user
data that has been provided by the software interrupt. This user
data can be used by the new callback2 function to get hold
of a sensor using the device_get_binding function. Callback2
can then also call sensor channel-related functions for the
particular sensor. The taint flows from user data supplied by
the net_conn_change function call to the sensor device.

Another vulnerability that arises is due to the
net_conn_input function. It is called when a network
packet is received by the IoT device. It returns a verdict
NET_OK if the packet was consumed or NET_DROP if the
packet parsing failed and the caller should handle the received
packet. If the packet was consumed, it means that it called a
callback function for that packet and in the callback function,
it could access the device/sensor of the IoT device similar
to the way described above. We show a partial callgraph of
net_conn_input function in Fig. 5 and its taint propagation
along the edges. The functions marked in red are the ones
detected by PhASAR as a vulnerability. If we assume the

l pkt received

net_conn_input

net_pkt_clone

conn_send_icmp_error

pkt

net_icmpv6_send_error

net_pkt_alloc pkt
_buffer

net_buf_pull
_mem

net_send_data

net_pkt_cursor
_init

net_pkt_get
_data

Fig. 5. Call graph of net_conn_input and taint propagation

packet received (denoted by pkt in Fig. 5) to be tainted,
then with the execution of code, it taints more variables
along the path of the callgraph, which are also detected by
PhASAR. The function checks if it received a packet with
a multicast destination address, since then it might need to
deliver the packet to multiple recipients. In this case, it calls
net_pkt_clone to make a clone of the packet. The clone here
is detected as a vulnerability by PhASAR.

It can also be seen from the -callgraph that the
net_conn_input function sends an ICMP error using the
conn_send_icmp_error function and passes the tainted packet
to it. The packet is passed to net_icmpv6_send_error function.
This function makes a new packet (denoted by err_pkt in
Fig. 5) using the net_pkt_alloc_with_buffer function. It ini-
tializes the cursor using the net_cursor_init function and reads
the headers of the original packet. The source and destination
link addresses from the original packet are copied to this new
packet. It uses the net_buf_pull_mem function to decode the
data in the buffer and set the lengths of the copied packet.
The err_pkt is then sent using the net_send_data function.
The taint further propagates into the net_pkt_alloc_buffer
function. It finally reaches pool_get_unint, data_alloc and
net_buf frag_insert functions. If any of these tainted variables
is changed by the attacker, it affects the packet that was
received and thus, it also affects the callback function which
is executed after receiving the packet.

IV. EXPERIMENTAL RESULTS

The analysis was done on a virtual machine having 16
VCPUs (Intel Xeon processors) and 32 GB RAM.

PhASAR v0521 and Zephyr v2.7.1 were used for the
analysis. On the VM, it took around 20 minutes for the

LLVM pass to run on the IR for the peripheral manipulation
analysis. This time is quite reasonable since the IR has 388,499
instructions resulting in a huge control flow graph. Also, the
IDE Extended Taint Analysis of PhASAR was run 1,855 times.
This analysis time could be reduced if instead of doing a
forward taint analysis, we did a backward taint analysis.

TABLE I
VULNERABILITIES FOUND BY PERIPHERAL MANIPULATION ANALYSIS
File Name Function Name Variables
Iwm2m_engine.c Iwm2m_init _s_buffer
Iwm2m_rw_json.c get_s32 tmp
. tmp, value_offset,
get_objlnk P
put_end_oi out, fd
put_end_ri out, path, fd
put_s8 out
put_sl16 out, value
put_s32 out, value
Iwm2m_rw_oma_tlv.c put_s§4 out, value
- - - put_string out, buflen
put_float out
put_bool out, value_s8
put_opaque out, buflen
put_objlnk out
get_s32 temp, tmp
in, opaque,
Iwm2m_rw_plain_text.c get_opaque in_len
get_objlnk tmp
fixed_data_alloc size, fixed
pool_get_uninit pool
data_alloc size
net_buf_get ret
buf.c net_buf_simple_reserve buf
’ buf, clone,

net_buf_clone .
size

net_buf_frag_insert parent, frag

net_buf_simple_push buf
net_buf_simple_pull buf
net_buf_simple_pull_mem buf
. node, cb,
connection.c conn_get_unused)
user_data
net_pkt_clone backup

net_pkt_cursor_init pkt

net_pkt.c net_pkt_frag_insert pkt, frag
net_pkt_get_data backup
net_calc_chksum backup
coap_packet_parse opt_len
parse_option opt_delta
read_u8 data, offset
decode_delta data, offset,
opt
coap.c read offset
' read_bel6 offset
coap_block_transfer_init block_s} e,
total_size

coap_update_from_block sizel, size2

update_control_block2 ctx, new_current

update_control_block1 ctx, size
L. ctx, size,
update_descriptive_block X, s1z
new_current
coap_reply_init tkl

However, since the time taken by PhASAR for the analysis
is only 20 minutes, it was felt to be sufficient to go with the
forward analysis. Out of these 1,855 analyzed variables, we
could detect vulnerabilities in 75 variables for the peripheral
manipulation analysis. The detected vulnerabilities are listed
in Table I. Further examination revealed that most of these

variables are data packets received from the Internet, and then
that data is used in some callback function. Using the callback
function along with the data in the packet, the attacker can
manipulate the sensor device or any related sensor channel
as explained in the previous section. Some of the detected
vulnerabilities are also straightforward like the functions which
can directly manipulate sensor values. For example, LwWM2M
payload can be formatted as TLV (Type-Length-Value), JSON
(JavaScript Object Notation), opaque or Plain Text, and all
such formats are supported by the Zephyr OS. PhASAR also
reports these functions, which are used for text formatting in
LwM2M protocol as not secure. Some of these are (a) put_s8:
Set resource to value (signed 8 bit integer) (b) put_s32: Set
resource to value (signed 32 bit integer) (c) put_string: Set
resource to value (string) (d) put_bool: Set resource to value
(boolean)

Each of these functions is used to set a resource value in a
particular format. For example, the above functions are used
to set the resource’s value in TLV format. These functions
can be used by the attacker to set the sensor values using the
LwM2M protocol. For the data leak analysis, it takes around
3 minutes for our LLVM pass to run on the IR. Since here we
made all the sources together and ran the IDE Extended Taint
Analysis just once, it takes much less time than the peripheral
manipulation analysis. The majority of the time our analysis
is utilized by PhASAR for building the control flow graph.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a methodology for static analysis of
Zephyr Firmware to find sensor channel-related vulnerabilities.
We have been able to identify two kinds of vulnerabilities
related to the sensor channel, the first being data leakage from
the sensor to the Internet and the second being sensor data
manipulation using the Internet. We have provided several
sample paths the attacker can take advantage of to disrupt the
activities of the user or to gather information from the user
without her content. Both types of vulnerabilities need to be
addressed urgently.

To further confirm these paths through which data leakage
or data manipulation is taking place, we need to look into the
control flow graph of the IR. We plan to do this in our future
work. Using the control flow graph, we can find the exact paths
through which these bugs can be exploited. We also plan to
do static analysis of the rest of the kernel to discover more
vulnerabilities in the Zephyr OS, which might not be related
to the sensor channel but some other peripheral.

ACKNOWLEDGEMENT

Peng Liu was supported by NSF CNS-1814679 and NSF
CNS-2019340.

REFERENCES

[1] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M.S. (2013). Internet
of Things (IoT): A vision, architectural elements, and future directions.
Future Generation Computer Systems. 1645-1660.

[2] RIOT : The Friendly Operating System for Internet of Things. Available
online :https://www.riot-os.org/

[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

Zephyr Project. Available online: https://www.zephyrproject.org/
Schubert, P., Hermann, B., & Bodden, E. (2019). PhASAR: An Inter-
procedural Static Analysis Framework for C/C++. TACAS, 393-410.
Reps, T., Horwitz, S., & Sagiv, S. (1995). Precise interprocedural
dataflow analysis via graph reachability. POPL °95, 49-61.

Sagiv, S., Reps, T., & Horwitz, S. (1995). Precise Interprocedural
Dataflow Analysis with Applications to Constant Propagation. Theo-
retical Computer Science - TCS, 167, 651-665.

Luo, L., Zeng, Q., Cao, C., Chen, K., Liu, J., Liu, L., Gao, N., Yang,
M., Xing, X., & Liu, P. (2020). Tainting-Assisted and Context-Migrated
Symbolic Execution of Android Framework for Vulnerability Discovery
and Exploit Generation. IEEE Transactions on Mobile Computing, 19,
2946-2964.

Yao, Y., Zhou, W., Jia, Y., Zhu, L., Liu, P, & Zhang, Y. (2019).
Identifying Privilege Separation Vulnerabilities in IoT Firmware with
Symbolic Execution. ESORICS, 638-657.

Enck, W., Gilbert, P., Chun, B., Cox, L.P,, Jung, J., Mcdaniel, P, &
Sheth, A. (2010). TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. ACM Trans. Comput.
Syst., 32, 5:1-5:29.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J.,
Traon, Y.L., Octeau, D., & Mcdaniel, P. (2014). FlowDroid: precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps. Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 259-269..
Park, M., Oh, H., & Lee, K. (2019). Security Risk Measurement for
Information Leakage in IoT-Based Smart Homes from a Situational
Awareness Perspective. Sensors (Basel, Switzerland), 19, 2148.
Kumar, S., Tiwari, P, & Zymbler, M.L. (2019). Internet of Things is
a revolutionary approach for future technology enhancement: A review.
Journal of Big Data, 6, 1-21.

Baccelli, E., Hahm, O., Giines, M., & Wihlisch, M. (2013). Operating
Systems for the IoT — Goals , Challenges and Solutions. Proceedings of
WISG.

Liu, X., Liu, Y., Liu, A., & Yang, L.T. (2018). Defending ON-OFF
Attacks Using Light Probing Messages in Smart Sensors for Industrial
Communication Systems. IEEE Transactions on Industrial Informatics,
14, 3801-3811.

Feng, Z., Wang, Z., Dong, W., & Chang, R. (2018). Bintaint: A
Static Taint Analysis Method for Binary Vulnerability Mining. 2018
International Conference on Cloud Computing, Big Data and Blockchain
(ICCBB), 1-8.

Sikder, A.K., Petracca, G., Aksu, H., Jaeger, T., & Uluagac, A.S. (2021).
A Survey on Sensor-Based Threats and Attacks to Smart Devices and
Applications. IEEE Communications Surveys & Tutorials, 23, 1125-
1159.

Lattner, C., & Adve, V.S. (2004). LLVM: a compilation framework for
lifelong program analysis & transformation. International Symposium
on Code Generation and Optimization, 2004. CGO 2004., 75-86.
Fuchs, A.P.,, Chaudhuri, A., & Foster, J.S. (2009). SCanDroid : Auto-
mated Security Certification of Android Applications.

Lu, L., Li, Z., Wu, Z., Lee, W., & Jiang, G. (2012). CHEX: statically
vetting Android apps for component hijacking vulnerabilities. Proceed-
ings of the 2012 ACM Conference on Computer and communications
security, 229-240.

Chen, D.D., Woo, M., Brumley, D., & Egele, M. (2016). Towards
Automated Dynamic Analysis for Linux-based Embedded Firmware.
NDSS.

Costin, A., Zaddach, J., Francillon, A., & Balzarotti, D. (2014). A
Large-Scale Analysis of the Security of Embedded Firmwares. USENIX
Security Symposium.In Proceedings of the 23rd USENIX conference on
Security Symposium (SEC’14), 95-110.

Davidson, D., Moench, B., Ristenpart, T., & Jha, S. (2013). FIE on
Firmware: Finding Vulnerabilities in Embedded Systems Using Sym-
bolic Execution. USENIX Security Symposium, 463-478.

Cadar, C., Dunbar, D., & Engler, D.R. (2008). KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs. OSDI, 209-224.

Li, H., Tong, D., Huang, K., & Cheng, X. (2010). FEMU: A firmware-
based emulation framework for SoC verification. 2010 IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 257-266.

