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There exists a gap in terms of the signals provided by pacemakers (i.e., intracardiac electrogram (EGM)) and
the signals doctors use (i.e., 12-lead electrocardiogram (ECG)) to diagnose abnormal rhythms. Therefore, the
former, even if remotely transmitted, are not sufficient for doctors to provide a precise diagnosis, let alone
make a timely intervention. To close this gap and make a heuristic step towards real-time critical intervention
in instant response to irregular and infrequent ventricular rhythms, we propose a new framework dubbed
RT-RCG to automatically search for (1) efficient Deep Neural Network (DNN) structures and then (2) cor-
responding accelerators, to enable Real-Time and high-quality Reconstruction of ECG signals from EGM
signals. Specifically, RT-RCG proposes a new DNN search space tailored for ECG reconstruction from EGM
signals and incorporates a differentiable acceleration search (DAS) engine to efficiently navigate over the
large and discrete accelerator design space to generate optimized accelerators. Extensive experiments and
ablation studies under various settings consistently validate the effectiveness of our RT-RCG. To the best of
our knowledge, RT-RCG is the first to leverage neural architecture search (NAS) to simultaneously tackle
both reconstruction efficacy and efficiency.
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1 INTRODUCTION

Over 5.8 million people in the USA and over 23 million worldwide are affected by cardiac dis-
eases [8, 33], where the inability to generate or conduct the electrical signals necessary to stimulate
muscle contraction is the major cause for many heart failures [16]. To treat these failures, artifi-
cial electronic pacemakers are usually implanted to stimulate the heart with electrical impulses to
maintain or restore a normal rhythm. In particular, about 3 million people worldwide use pacemak-
ers and 6,000,000 pacemakers are implanted each year [81]. Currently, cardiac pacemakers cannot
sense or compute 12-lead ECGs from EGMs. Patients with pacemakers require regular and often
costly and time-consuming hospital visits to ensure (1) the proper functioning of the pacemaker
and (2) the timely adjustment of the pacing parameters to adapt to changes in the heart’s condi-
tion over time. Thanks to recent advances in the internet of things (IoT) technologies, remote
monitoring of pacemakers will become more commonplace, allowing doctors to check pacemaker
status and thus reduce the frequency of costly hospital visits [94].

Despite the promising advantages of remotely monitoring pacemakers, there is still a gap in
terms of the signals that can be provided by pacemakers and the ones doctors need to diagnose
abnormal rhythms and provide appropriate therapy. Specifically, cardiac pacemakers utilize con-
tinuously collected EGMs, which are electrical activities sensed locally via implanted electrodes.
However, 12-lead ECGs obtained from skin electrodes contain significantly greater information
than EGMs, which, in certain cases, could be utilized to better diagnose abnormal rhythms and
provide appropriate therapy. To close this gap, the synthesis or reconstruction of ECG signals from
a set of EGM signals is of great significance in enabling effective remote monitoring of pacemak-
ers, providing necessary therapy, and making timely clinical intervention possible [75]. As such,
there has been a growing interest in developing techniques to reconstruct ECG signals from their
corresponding EGM signals using linear filtering [26, 43, 44, 54], fixed dipole modeling algorithms
[54, 55], and nonlinear reconstruction via a time delay neural network [41, 42, 63].

While the aforementioned techniques were pioneering steps, there is still much room to im-
prove their performance for practical and widespread adoption. In particular, most of the existing
techniques adopt either linear approaches that lack generalization capability for unseen symptoms
and can fail in the presence of noises and artifacts, or a multivariate nonlinear approach that re-
quires the simultaneous recording of both EGM and 12-lead ECG signals for every single patient
[41, 42, 63]. Motivated by the recent breakthroughs in deep neural networks (DNNs) and their
demonstrated promise in medical applications [20, 23, 24, 74], it is natural to consider DNN-based
reconstruction techniques, aiming for much improved generalization capability and better efficacy
towards more practical clinical uses. However, the excellent performance of DNN-based solutions
often comes at the cost of high complexity (e.g., millions of parameters and operations [83]), which
stands at odds with the extremely constrained resources at the implanted, battery-powered pace-
makers. Specifically, restricted by the pacemaker’s limited hardware budget, the often complex
DNN-based solutions make it particularly challenging to handle real-time reconstruction on the
pacemakers, which could enable improved and possibly life-critical interventions to the patients.
Currently, EGMs stored in pacemakers are analyzed offline through an inpatient setting for im-
proved diagnosis of the underlying condition, where therapeutic intervention might need to be
changed over time and thus require real-time adaptation. For example, monitoring ECG data in
real-time can allow for determination of potentially deadly ventricular arrhythmias [57], and dic-
tate pacing mediated therapies such as anti-tachycardia pacing. Online real-time reconstruction
of EGMs to ECGs allows for real-time and immediate intervention and thus potentially paves the
way for novel treatments, whereas offline reconstruction may not always be possible, and the po-
tential latency involved in doing so could be life threatening. Another example is utilizing ECGs
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in real-time for optimizing parameters for cardiac resynchronization therapy to treat heart failure
patients [4], where a real-time embedded accelerator allows for on-device reconstruction with a
low latency and is thus critical. Furthermore, with traditional pacemakers slowly being replaced
by leadless pacemakers [73], such an accelerator would also pave the way for improved therapy
with minimal sensing sites.

To this end, we aim to develop an efficient DNN-based reconstruction framework to push for-
ward the efficacy and efficiency frontier towards practical and widespread adoption by leveraging
recent advances in neural architecture search and DNN acceleration. Specifically, we make the
following contributions in this work:

e We propose a new framework dubbed RT-RCG, which can automatically search for (1) effi-
cient DNN structures and then (2) corresponding accelerators to enable Real-Time and high-
quality Reconstruction of ECG signals from EGM signals. To the best of our knowledge, the
proposed RT-RCG is the first to simultaneously tackle and leverage neural architecture
search (NAS) for both reconstruction efficacy and efficiency.

e Drawing inspiration from existing ECG reconstruction works, RT-RCG proposes a new DNN
search space tailored for ECG reconstruction from EGM signals to enable automated search
for DNNs that consistently outperform state-of-the-art (SOTA) reconstruction techniques
in terms of both reconstruction correlation (between the reconstructed ECGs and the real-
measured ECGs) and algorithmic generalization capability.

e Built upon recent advances in DNN acceleration, RT-RCG incorporates a differentiable ac-
celeration search (DAS) engine that makes use of gradient-based optimization to efficiently
navigate over the large and discrete accelerator design space to automatically generate opti-
mized accelerators that achieve real-time reconstruction.

e Extensive experiments and ablation studies under various settings consistently validate the
effectiveness of our proposed RT-RCG in leading to higher reconstruction quality and better
reconstruction efficiency as compared to SOTA reconstruction algorithms and DNN accelera-
tors, respectively. We believe that RT-RCG has made a nontrivial step towards practical ECG
reconstruction from EGM signals on the pacemaker, promising the real possibility of real-
time critical intervention in instant response to irregular and infrequent ventricular rhythms
that require timely treatment.

2 RELATED WORKS

ECG Reconstruction. In response to the practical need of ECG reconstruction from EGM signals,
various methods have been proposed [26, 41-44, 54, 55, 63] using linear filtering [26, 43, 44, 55],
fixed dipole modeling algorithms [54], nonlinear filtering [41, 42], and time delay neural net-
works [63], In particular, a single EGM channel was used to synthesize a single ECG lead in Ref-
erence [26], which can be highly dependent on the chosen EGM lead; later, logical extension of
Reference [26] was developed that uses all EGM leads for synthesis [43, 44], where both the EGMs
and the ECGs were first projected onto a 3D space and then three linear filters were calculated
between the signals, providing an indirect way to find the transfer functions between EGM sig-
nals and the 12-lead ECG; similarly, References [54, 55] directly calculated a multivariate linear
transfer matrix between the EGMs and the 12-lead ECGs via penalized linear regression. Despite
their satisfactory performance, especially for patients with a surface ECG containing only a one-
beat morphology, these linear methods can suffer from a degraded correlation between the EGMs
and the ECGs in real applications due to the noises and artifacts present, and the natural evolu-
tion and diversity of the pathology. The limitation of linear reconstruction methods (e.g., an av-
erage correlation value of lower than 0.5 in Reference [55]) motivated the multivariate nonlinear
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approach presented in References [41, 42, 63], all of which require the simultaneous recording of
the EGMs and 12-lead ECGs for every single patient to train a time-delay artificial neural net-
work (TDNN). While this method provided the best average correlation results for sinus rhythm
heartbeats, it is still limited for practical uses, as it cannot effectively reconstruct diseased mor-
phologies and 12 different TDNN models must be calculated to reconstruct each ECG lead.

Built upon the above prior works, RT-RCG targets reconstruction algorithms that are generally
applicable in the presence of noise, artifacts, and diverse pathologies.

DNNs in Cardiology Applications. The recent breakthroughs of DNNs in various fields have
sparked a growing interest in developing DNN-based solutions for cardiologic problems spanning
from ECG classification to sleep status monitoring [22, 29, 30, 49, 88, 90]. In particular, Refer-
ence [88] adopted a DNN to remove noises contaminating the ECG signals; Reference [22] used
two DNNs together with short-duration (5 seconds) ECG segments to detect pulses during out-
of-hospital cardiac arrest; Reference [90] proposed to utilize DNNs for the classification of ECG
signals into different heart rhythms (i.e., normal beat or different types of arrhythmias); Reference
[49] made use of a DNN and a hidden Markov model to detect obstructive sleep apnea based on
single lead ECG signals. The readers are referred to Reference [7] for a detailed survey on applying
DNNss to cardiology applications. While these works demonstrate the great potential of DNN-based
solutions for cardiologic problems, DNN-powered ECG-EGM reconstruction algorithms are still
under-explored, let alone real-time reconstruction implementation, motivating us to propose and
develop our RT-RCG framework.

Neural Architecture Search. Neural architecture search (NAS) [99] has emerged as one
of the most significant sub-fields of AutoML [37] as it enables automatically searching for an op-
timal DNN structure from the given data and has outperformed manually designed DNNs on a
range of tasks such as image classification [34, 52, 71, 72] and segmentation [13, 14, 51]. Early NAS
works achieve SOTA performance at the cost of enormous search time [64, 99, 100]. Specifically,
reinforcement learning (RL)-based NAS [34, 71, 72, 99, 100] and evolutionary algorithm-based
NAS [62, 64] explored the search space and train each sampled network candidate from scratch,
thus suffering from prohibitive search costs. Later, differentiable NAS (DNAS) [9, 52, 77, 82, 84]
was proposed to update the weights and architecture in a differentiable manner through supernet
weight sharing, reducing the search time to several hours [69]. Motivated by the promising perfor-
mance achieved by those DNAS works, recent works have extended DNAS to more tasks such as
segmentation [14, 51], image enhancement [25, 47], and language modeling [12]. As a result, we
leverage the DNAS method integrated with a new search space to develop our proposed RT-RCG
framework.

DNN Accelerators. DNNs’ powerful performance comes at a cost of a prohibitive complex-
ity, motivating extensive research in dedicated DNN accelerators, as specialized hardware has the
potential to achieve orders-of-magnitude higher energy/time efficiency. Specifically, it has been
shown that aggressive efficiency can be achieved by carefully designing the micro-architectures
(e.g., the number of memory hierarchies or processing element (PE) units, the storage size of
different memories, and the shape of the PE array) and algorithm-to-hardware mapping strate-
gies (i.e., dataflow). For example, representative works, such as ShiDiannao [21] and Eyeriss [15],
identified the performance bottleneck caused by the required massive data movements and pro-
posed novel micro-architectures and dataflows that aim to maximize data reuse for reducing the
energy/time cost to access higher cost memories. Early works mostly rely on experts’ manual
design, which can be very time-consuming (months or even years) and require cross-disciplinary
knowledge in algorithm, micro-architecture, and circuit design. In response to the intense demands
and challenges of manually designing DNN accelerators, we have seen rapid development of de-
sign flow [10, 11, 66, 86] and DNN design automation frameworks [27, 76, 78, 79, 96] to standardize
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the design flow of DNN accelerators and to expedite the development process. For example, the
DNNBuilder accelerator [97] applied an automated resource allocation strategy, fine-grained layer-
based pipeline, and column-based cache to deliver high-quality FPGA-based DNN accelerators, and
Reference [89] made the first step towards automatically generating both FPGA- and ASIC-based
DNN accelerators without humans in the loop given the DNNs from machine learning frameworks
(e.g., PyTorch) for a designated application and dataset.

Leveraging the learning from prior works, RT-RCG integrates an DAS engine to automatically
generate micro-architectures and dataflows to achieve real-time reconstruction.

DNN Algorithm and Accelerator Co-exploration. Exploring the networks and the corre-
sponding accelerators in a joint manner [1, 31, 39, 40, 50, 92] has shown great potential towards
maximizing both accuracy and efficiency. Recent works have extended NAS to jointly search DNN
accelerators in addition to DNN structures. In particular, References [1, 31, 40, 92] conducted RL-
based searches to co-explore the network structures and design parameters of an FPGA-/ASIC-
based accelerator, but their RL-based methods can suffer from large search costs, limiting their
scalability to handle large joint spaces. Recently, References [19, 50] extended differentiable NAS
to network and accelerator co-search. However, Reference [50] only considered one accelerator
parameter (i.e., the parallel factor of an FPGA accelerator template), which is not always applica-
ble to most naturally non-differentiable accelerator design parameters such as loop order and loop
size, while Reference [19] adopted a DNN to generate accelerator designs with network structures
as the DNN’s inputs, which lack interpretability. In contrast, our work adopts differentiable joint
search in a sequential manner to efficiently explore a generic network and accelerator design space.

3 PRELIMINARIES OF DEEP NEURAL NETWORKS (DNNS) AND THE EGM/ECG
DATA FORMAT

Deep Neural Networks (DNNs). Modern DNNs usually consist of a cascade of multiple con-
volutional (CONV), pooling, and fully connected (FC) layers through which the inputs are
progressively processed. The CONV and FC layers can be described as:

C-1 R-1 S-1
Ole,]lellf] = a((Z DU Wieolleillkellks] x Ileil[eU + kA 1LFU + ks]) + B[co]) o
0<co <M, 0<e<EO0Lf<F,

where W, I, O, and B denote the weights, input activations, output activations, and biases, respec-
tively. In the CONV layers (see an example in Figure 1), C and M, E and F, R and S, and U stand for
the number of input and output channels, the size of input and output feature maps, and the size
of weight filters, and stride, respectively; while in the FC layers, C and M represent the number
of input and output neurons, respectively; with o denoting the activation function, e.g., a ReLU
function (ReLU (x) = max(x,0)). The pooling layers reduce the dimension of feature maps via
average or max pooling. The recently emerging compact DNNs (e.g., MobileNet [35] and Efficient-
Net [72]) introduce depth-wise CONV layers and squeeze-and-excite layers that can be expressed
in the above description as well [18].

Pre-processing of the EGM/ECG Signals. Here, we describe the adopted pre-processing for
the EGM and ECG signals, both of which were recorded simultaneously during the cardiac ablation
procedure. In the first step, the signals were initially obtained at a sampling frequency of 1,000 Hz,
and subsequently bandpass filtered using a 5th order Butterworth filter with a cutoff frequency at
3 Hz and 50 Hz. The cutoff at 3 Hz helps to eliminate potential baseline wanders and the cutoff
at 50 Hz can eliminate powerline interferences, electromyographic noise, and electrode motion
artifact noise [45]. To align with the phase change caused by the pre-processing filtering in the
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Fig. 1. Anillustrative example of one CONV operation as formulated in Equation (1), where M/C (the number
of input/output channels), E/F (the input feature map height/width), R/S (kernel height/width) and U (stride)
are 3/3,5/5, 3/3, and 1, respectively. This example assumes that ReLU is used as the activation function and
the first output is 2.

forward direction, we adopt the zero phase filtering and also filter the signal backwards in time
[46] to ensure that the pre-processing of the data does not introduce additional distortion. In the
second step of the pre-processing, the data from the previous step is segmented to extract the QRS
portion of ECG signals, which contains much information about the synchronization of the heart’s
ventricles and has been demonstrated to be a strong biomarker for overall cardiac health [56].

Time-frequency Representation of EGM/ECG Signals. To make use of DNNs to reconstruct
ECG signals from EGM signals, we first transfer EGM signals’ 2-dimensional (2D) multi-channel
time-series representation into a 3-dimensional (3D) time-frequency representation with the
help of STFT, inspired by the similar treatments in speech recognition and audio processing appli-
cations [3, 61, 91].

Assuming that the matrix S; € RMXT denotes the EGM time-series where M and T correspond
to the number of channels and the number of time samples for each channel, respectively, then
S; can be re-formulated as S; = [sgl), . ,sgm), o ,s(tM)]T, with ng) e R and T denoting
the time-series for each of the M channels and the transpose operator, respectively. As such, the
corresponding 3D time-frequency signals, denoted as S;f, can be represented as:

.
_ M (M)
S,f = [stf,...,stf ]

s(t?) = [sgm) ohy,. ..,s(tm) o hK]T s

where Vk € {1,...,K}, hy € CT defines the kth time-frequency filter in the complex space corre-

@)

sponding to sgm), and o denotes the convolution operator. We set the length of each time-frequency
filter (after filtering) as T, and thus sg}n) € CKXTr represents a 2D complex matrix with each row
denoting the time domain information and each column denoting the frequency domain infor-
mation. Concatenating all channels’ time-frequency representation, we then have a 3D complex
matrix S;r € CMXKXTy In this work, we use windowed Fourier filters as the filters hy, i.e., trans-
ferring the time-series representation into its time-frequency one that becomes the operation of
applying a 3D short-time Fourier transform (STFT) operator to the time-series EGM signals.

4 THE PROPOSED RT-RCG FRAMEWORK
4.1 RT-RCG: Overview and Problem Formulation

Framework Overview. Figure 2 shows an overview of the proposed RT-RCG framework. Given
the recorded EGM signals, user-specified demands (e.g., accuracy and latency), and hardware
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Fig. 2. An overview of the proposed RT-RCG framework, which accepts the recorded EGM/ECG signals

dataset and the target hardware specification as inputs to automatically generate reconstruction networks
and their corresponding accelerators to maximize the reconstruction quality and acceleration efficiency.

resource budgets/specification, our RT-RCG framework automatically searches for networks to
maximize the reconstruction efficacy and then the corresponding accelerators to maximize the
hardware acceleration efficiency, i.e., the outputs of RT-RCG include (1) the searched network to
be used for reconstructing ECG signals from the input EGM signals and (2) the searched accelera-
tor to process the searched network with optimized hardware efficiency. In particular, our RT-RCG
framework consists of two components, i.e., a differentiable network search (DNS) engine and
a DAS engine, which will be described in Section 4.2 and Section 4.3, respectively.

The Optimization Formulation. As stated in Section 1, RT-RCG is designed to reconstruct the
full 12-lead ECG signals from the recorded (partial) EGM signals, with both originally being time-
series signals. For notation, we denote the EGM and ECG samples using {X, } 11:]:1 and {Y,} f:’:l,
respectively, where N denotes the total number of heartbeats in the dataset (see Table 3). Mean-
while, the EGM and ECG signals can be represented using a 2D matrix, i.e., X, € RMecmxT 4nd
Y, € RMeceXT | where Mggy and Mg denote the number of channels (leads) for the ECG
and EGM signals, respectively, and T denotes the number of time samples per heartbeat. As in-
troduced in Section 3, the ECG and EGM signals will first be transferred into a time-frequency
format denoted as X,,, € RMForXXxTr and v, =~ e RMecoxKXIr respectively. In this work, we
have Mggy = 5 and Mgcg = 12, respectively, and both K and Ty are empirically fixed to 16 with
a STFT window size of 30 and overlap of 6 during the filtering, based on the collected dataset (see
Table 3). Through empirical studies, this STFT configuration gave us the best subsequent recon-
struction accuracy with the least number of parameters. As such, the problem of reconstructing
ECG from EGM becomes how to map the signals in RMecr*EXTr to that in RMecoXKXTr which
can be considered as a problem of multivariate regression and the corresponding optimization can
be formulated as follows:

N
fngp{;uf(xntf), Yo,,)- 3)

where H denotes the function space, f denotes the reconstruction function that aims to recon-
struct Yy, given X, ., £ denotes the loss function of reconstruction capturing the total difference
(e.g., the mean square error) between the reconstructed samples f(Xy,,) and the real-measured
samples Yy, . for all the N samples. The goal of the optimization is to find a reconstruction
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Table 1. Visualizing RT-RCG’s Network Backbone with 14 Searchable Blocks, where TBS Denotes
“To Be Searched”

Operation type  CONV ~ Maxpool ~CONV ~ Maxpool Searchable blocks X 14 DECONV  Upsample DECONV  Upsample CONV ~CONV  CONV

Output channels 48 - 96 - TBS 48 - 96 - 24 24 24

Kernel size 7 2 5 2 TBS 5 2 7 2 3 3 3

Stride 1 2 1 1 TBS 1 2 1 2 1 1 1

function f that minimizes the reconstruction loss £. In RT-RCG, we use a DNN to approximate
and search for f using RT-RCG’s DNS engine, with the direct output of f having a time-frequency
format and then being transferred back into a time-series format for evaluating the reconstruction
efficacy. During training, the negative Pearson correlation [6] of the flattened time-frequency data
between the reconstructed ECG and the corresponding real-measured ECG signals will be used as
the loss for optimization. For evaluation, the Pearson correlation will be calculated between the
reconstructed and corresponding real-measured ECG signals on a test set (excluded in training)
after both of them are converted back to the time domain through the inverse STFT. Note that
the (inverse) STFT process will neither be accelerated by the proposed RT-RCG’s hardware nor be
counted towards the final latency in our experiments. This is because for a single piece of input,
the combined operations of both STFT and inverse STFT only take up about 1% of the total oper-
ations in the inference when DNNs shown in Table 8 are considered, assuming a fast convolution
algorithm is adopted. The (inverse) STFT operation can thus be easily conducted on the hardware
accelerator’s accompanying CPU incurring a negligible latency overhead.

4.2 RT-RCG: The DNS Engine

The Network Search Space. Motivated by the success of the encoder-decoder structure [65] that
has demonstrated its efficacy in learning compressed, interpretable, or structured representation of
data for denoising, compression, and data completion [20, 23, 24, 74], RT-RCG’s DNS engine adopts
a search space based on an encoder-decoder-based network backbone with searchable blocks to
extract and process diverse and patient-specific features from the complex EGM signals. As shown
in Table 1 and visualized in Figure 6, our network starts from a fixed downsample branch and ends
in a fixed up-sample branch with the intermediate blocks being set to be searchable for better
extracting and processing of the features hidden in the EGM signals. The hypothesis is that such
an encoder-decoder structure, i.e., a cascade of convolutional transformations and nonlinearities
with a bottleneck dimension, allows the approximation of the underlying data to be manifold as
discussed in Reference [20].

For the searchable blocks, inspired by the SOTA hardware-friendly search space in Reference
[82] that searches the kernel size, channel expansion ratio, and group number for each building
block, we propose a sequential search space with 14 searchable blocks and 9 candidate operations
for each block, including standard convolutions with a kernel size of 3/5, inverted residual blocks
with a kernel size of 3/5, a channel expansion of 1/3/5, and skip connections, which leads to a
search space with a total of 9'* network choices.

The Network Search Algorithm. We adopt the differentiable NAS (DNAS) algorithm [52]
considering its excellent search efficiency. In particular, we formulate the network search as a one-
level optimization [36, 84] by making use of the unbiased gradient estimation [32] to adapt to the
complex EGM signals that are diverse for different patients:

rgig Lrec(w,a) + AL%??(“)’

©

where o and « denote the supernet weights and the network architecture parameters, respectively,

the latter of which contains the probability of selecting each candidate operation; L. and L}MAC
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denote the ECG-EGM reconstruction loss and hardware-cost loss, which is determined by the
number of multiply-accumulate operations (MACs) in the given DNNs, respectively; and A
is a tradeoff parameter to balance the resulting reconstruction networks’ accuracy and efficiency.
In particular, the output of the /th layer A; in our DNS engine is a weighted sum of all candidate
operations:

K

A=) GS(aik)Oik(Ar-1), ©)

k=1
where K is the number of candidate operations, Oy is the kth operation for the Ith layer, o is
the probability of Oji, and GS denotes the Gumbel-Softmax function [38] that samples the op-
erations based on the distribution parameterized by «. In our DNS, we adopt a soft version of
Gumbel-Softmax, i.e., we use the output of Gumbel-Softmax as the weighted coefficient of Oy
with a continuous relaxation during backward pass [82] for updating «. At the end of the search,
we derive the final/searched network by selecting the operation with the highest probability for
each searchable block.

4.3 RT-RCG: The DAS Engine

In this subsection, we introduce the three key components in our proposed DAS engine, i.e., the
accelerator template, the search space extracted from the accelerator template, and the search
algorithm used to explore the search space.

4.3.1 The Accelerator Template of Our DAS Engine. Our DAS engine leverages a parameter-
ized accelerator template that features a total of ~ 10° choices for the micro-architecture and
dataflow, the latter of which determines how the network is temporally and spatially scheduled to
be executed on the micro-architecture, e.g., row stationary, output stationary, weight stationary,
and so on.

The Micro-architecture Overview. Our DAS engine leverages an accelerator template
inspired by a SOTA DNN accelerator [67], which adopts a multi-chunk micro-architecture for
maintaining high resource utilization when accelerating DNN layers with different structures (e.g.,
different sizes of the input/output feature maps and kernel sizes) to balance the communication
bandwidth and improve the acceleration throughput. Our accelerator template parameterizes
the multi-chunk micro-architecture. As illustrated in Figure 3 later, each chunk of the micro-
architecture corresponds to a sub-accelerator, which has hierarchical memories (e.g., on-chip
buffer and local register files (RF) and processing elements (PEs) characterized by searchable
design knobs such as the types of PE interconnections (i.e., Network-on-chip (NoC)), allocated
buffer sizes, and the computing scheduling and tiling (i.e., dataflows) to facilitate data reuse and par-
allelism. Specifically, each sub-accelerator sequentially processes multiple but not necessarily con-
secutive layers with similar network structures, while different sub-accelerators can be pipelined.

The Sub-accelerator Design. As shown in Figure 3, each sub-accelerator consists of (1) a sec-
ondary buffer to facilitate more local data reuse and reduce the higher-cost DRAM accesses and
(2) a PE array, where each PE includes a multiply and accumulate (MAC) unit and local reg-
ister files (RFs) for the inputs, weights, and outputs, respectively. For each sub-accelerator, the
dataflow determines the networks’ temporal and spatial mapping into the PE array and thus the
data movement patterns within different memories/buffers/RF, leading to orders of magnitude dif-
ference in the acceleration performance [76]. As our accelerator template can parameterize both
the micro-architecture and the dataflow (see Section 4.3.2), it enables our DAS engine to search
for dedicated micro-architecture and dataflow to match the networks’ structure to maximize the
target hardware performance.
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Fig. 3. An illustration of the parameterized micro-architecture adopted in the DAS engine of our RT-RCG
framework.

Acceleration/Execution. Here, we describe the execution of the network within each sub-
accelerator for better understanding. In Figure 3, if the data within the PEs process different input
channels along the H (horizontal) axis of the PE array and different output channels along the V
(vertical) axis of the PE array, then the weights with different input and output channels will be
spatially mapped into all PEs and then stay stationary until all corresponding computations are
finished. Meanwhile, the input corresponding to the weights that have been loaded into the PE
array will be streamed in via multicast along the H axis and broadcast along the V axis, facilitating
various weight reuse. The computed results along the H axis are accumulated while those along
the V axis are moved to the output buffer via multicast. In general, the PEs along both axes can pro-
cess different dimensions of the networks, including the input channels, output channels, feature
map height, and feature map width, where the ordering of the subsequent operations and buffer
read/write will determine the dataflow and are searchable in RT-ECG.

At any given time point, all sub-accelerators simultaneously process different clusters of the net-
work layers with each sub-accelerator processing data of different input frames, where different
layers within each sub-accelerator are executed sequentially to improve the throughput without
the necessity of waiting. This is made possible because (1) sub-accelerators only communicate with
the DRAM for fetching/storing the intermediate results and (2) an additional ping-pong buffer is
introduced in the DRAM to accommodate simultaneous read/write. In this way, there are no com-
munications needed among the sub-accelerators, leading to a more flexible and modular design. It
is then possible to tailor the design of each sub-accelerator to better match the network structure
and thus favor the achievable acceleration efficiency.

4.3.2  The Accelerator Search Space of Our DAS Engine. Based on the above accelerator template,
we extract the searchable parameters, of which different combinations lead to different accelera-
tors (i.e., micro-architecture and dataflow pairs), to form a generic accelerator space to be used by
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Table 2. The Constructed Generic Accelerator Search
Space Extracted from the Accelerator Template
Introduced in Section 4.3.1

Memory Hierarchy  Loop-order Loop-size
DRAM TBS -
Global Buffer TBS TBS
PE array - TBS
NoC design Max # of PEs Layer assignment
TBS TBS TBS

Where TBS Means “to be Searched” and the Searchable
Parameters Include (1) the NoC Design, (2) Max # of PEs,
(3) Layer Assignment, (4) Loop-order and (5) Loop-size
Across Different Memory Hierarchies, i.e., the DRAM,
Global Buffer, and PE Array.

our DAS engine. The micro-architecture is characterized by the number of memory hierarchies
and PEs, the size of each memory hierarchy, the shape and size of the PE array, and the NoC de-
sign [15], and the dataflow is described by both the NoC design and the loop size/order. Specifically,
we construct a generic accelerator search space as shown in Table 2 by leveraging the commonly
used nested for-loop accelerator description [17, 60, 93, 95, 98] that naturally bridges the accelera-
tor’s micro-architectures and dataflows with DNNs’ network parameters. Next, we introduce each
accelerator parameter listed in Table 2:

Loop-order. The orders of the loops within each memory hierarchy, each of which has a total of
n data dimensions. As such, n loops correspond to an n-item ordering problem. To be compatible
with the proposed network search, where each accelerator parameter should have all possible
choices parameterized by the corresponding y vector (see Equation (6)), we formulate the loop-
order search as a problem of picking one choice from a total of n options without replacement for
n times (e.g., n = 6 considering the number of data dimensions in DNNs).

Loop-size. The size of each loop in the for-loop description. The product of all loop-sizes asso-
ciated with each data dimension needs to be equal to the corresponding algorithmic dimension,
because the nested loops’ size as a whole dictates the total number of execution iterations. Then,
intuitively, the possible choices for a certain loop’s size are all the choices that the corresponding
data dimension can be factorized into.

The NoC Design. The parallel execution patterns of the MAC operations when accelerating
DNN s on an accelerator (e.g., those described in Section 4.3.1), which is determined by the PE array
style. In this work, we consider three NoC options following the common practice, as inspired by
SOTA accelerators [17, 95, 98]:

e Parallelizing the computation over the output partial sums, where the dimensions of output
channels, output rows, and output columns are executed in parallel;

o Parallelizing the computation over the kernels, where the dimensions of output channels
and input channels are executed in parallel;

e Parallelizing the computation over both the kernel and output dimensions, where the dimen-
sions of output channels, kernel rows, and output columns are executed in parallel.

The Maximum Number of PEs. The maximal number of PEs in the design, which can range
from 1 to a specified value determined by the area constraint and the tradeoff between the storage
and computation partition. The PEs will be inter-connected with a pre-designed pattern according
to the adopted NoC design, e.g., Figure 3 gives an example of parallelizing the kernels among the
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PEs in the NoC across the input and output channel dimensions. In this work, where the latency
is the primary objective, the maximum number of PEs is thus set to the hardware platform limit,
e.g., the available Digital Signal Processing units (DSPs) in the given FPGAs. If other metrics
like energy consumption are prioritized, then our proposed framework can automatically search
for designs balancing the tradeoff between the consumed power and latency.

Layer assignment. The assignment of all the layers to be executed on a fixed number of
sub-accelerators, which is set to 10 for this work, unless specified otherwise.

With maximum number of PEs fixed and all other parameters above taken into consideration,

the space size can explode up to ~10.

4.3.3  The Search Algorithm of Our DAS Engine. To efficiently explore our constructed generic
accelerator search space, our DAS engine iteratively updates the accelerator design choices in a
differentiable manner. In particular, we parameterize the choice of each accelerator design factor
with a vector y and learn to update y based on the objective formulated as:

S
v = min Y GS(y*) LEDN(GS(y"), ... GS (), (©)
Y s=1

where y* defines the probability distribution of the choices for the sth accelerator design pa-
rameter, GS(y*) denotes Gumbel-Softmax sampling [28] of the sth accelerator parameter y*, and
LEW (GS(y'),...,GS(y®)) is the hardware cost of the target network on the sampled accelerator
characterized by the S sampled design factors GS(y?), ..., GS(y°). To be more specific, we apply
Gumbel-Softmax sampling [28, 53] to sample only one choice GS(y*) from all the options corre-
sponding to the sth accelerator parameter. Once all the accelerator parameters are sampled, the
corresponding accelerator’s acceleration cost is estimated using SOTA accelerator performance
estimators, where in this work, we adopt the performance estimator in Reference [89] for our pro-
totyped FPGA-based accelerators. After that, we multiply the resulting acceleration cost by the
sampled GS(y°) and update the y based on the continuous relaxation of Gumbel-Softmax during
backward pass [82] for gradient estimation. When the gradient-based optimization converges, we
derive the final accelerator by selecting the parameter options with the highest probability (i.e.,
vs) for each accelerator parameter. Note that we use the number of MACs as the complexity cost
during the network search stage (see L»4C in Equation (4)) for better search efficiency, and we
adopt the estimated accelerator cost during the accelerator search stage to better align with

HW
Lcost
the actual acceleration cost.

4.4 RT-RCG: The Complexity and Time Cost of the DNS and DAS Engines

4.4.1  The Complexity of the DNS and DAS Engines. The algorithm complexity of our DNS en-
gine is tied with that of the supernet training, because we adopt the DNAS algorithm as mentioned
in Section 4.2 where the supernet weights and network architecture parameters are updated at the
same time. Additionally, picking the final network structure with the highest probability requires
an additional complexity of O(k), where k denotes the number of possible operations per block
and equals 9 considering our search space defined in Section 4.2. However, the entire DNS process,
including re-training the final picked network, can finish within a GPU hour of 0.5, given the DNS
search space size of 9!* in this work.

The algorithm complexity of our DAS engine is proportional to that of the Gumbel-Softmax,
which is O(n) with n denoting the number of choices for each hardware design parameter. Thanks
to the efficient hardware cost estimator [89], the entire DAS process only takes about 10 minutes
with our space size being 107.
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Note that our differentiable search method enables a much more directed and efficient search
trajectory. Thus, there is no need to exhaustively evaluate every design choice within the search
space, leading to a much shorter search time than that of an exhaustive search. Additionally, the
search is terminated when the minimized objectives become stable.

4.4.2 The Amortized One-time Search Cost. For a given task, e.g., ECG reconstruction for a
specific patient, merely a one-time effort is required to generate the network structure and its
accelerator, and thus the search time cost is amortized throughout the implementation. Once the
network structure and accelerator design are, respectively, generated by the DNS and DAS engine,
they will be fixed throughout the task. If there are minor changes to the task settings like the
patient’s heart conditions, then the network’s parameters (weights) can be fine-tuned with the
patient’s newly generated heart samples without the necessity of changing the network structure
and accelerator design. The fine-tuning process can be conducted using a standard DNN training
procedure on an external computer in a few minutes, considering the setup described in Section 5.1.
Basically, the search only needs to be redone when there are necessary drastic changes, e.g., the
change of the entire training dataset.

4.4.3 Generalization of the Searched Designs. The searched network structure and its acceler-
ator together with the final fully trained network weights can be generalized to distinct patients’
heart samples if the search and training is conducted on a diverse patient dataset, i.e., the searched
designs (i.e., the network structure, accelerator design, and trained parameters) are expected to
be effective for new patients, which are not present in the pre-trained dataset. As such, no addi-
tional cost or complexity are incurred for this generalization, as the original search and training
process can holistically take the diverse training dataset into consideration. This is validated in
Section 5.3, where the searched networks and accelerator designs consistently perform well on
the newly included patients. This generalization capability can be significantly meaningful to real-
life applications, where collecting data samples for new patients may not always be possible, and
the search cost can thus be amortized across different patients.

5 EXPERIMENT RESULTS

In this section, we present the evaluation results of our proposed RT-RCG framework. Starting
with the introduction to our dataset and experiment setup, we evaluate the effectiveness of the
RT-RCG searched networks under various settings, including (1) patient-specific reconstruction
(see Section 5.2), (2) reconstruction generalized to a new patient (see Section 5.3), and (3) robust
reconstruction with deficient EGM channels (see Section 5.4). After that, we evaluate RT-RCG’s
hardware acceleration performance as compared to two SOTA DNN accelerators [85, 97], one edge
platform [58], and a CPU platform, followed by the ablation studies on the initial latency and under
a constrained search space.

5.1 Experiment Setup

Clinically Collected Dataset. To evaluate the effectiveness of the RT-RCG framework, data
was collected retrospectively from 14 patients undergoing cardiac ablation for premature ventric-
ular contractions, where both the ECG and EGM signals were recorded simultaneously during the
cardiac ablation procedure and each record of the database is composed of:

o Twelve standard surface ECG channels, namely, leads I, II, III, aVR, aVL, aVF, and V1:Vé.
e Five EGM channels measured by electrodes on a catheter placed inside the Coronary Sinus.

Specifically, the data was obtained from patients undergoing cardiac ablation procedures and was
retrospectively collected under a protocol approved by an institutional review board at Baylor St.
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Table 3. The Number of Heartbeat Samples for Each Patient and the Patient ID in Our
Clinically Collected Dataset

Patient ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of heartbeats (N) 4,765 2,309 401 1,752 3,934 3,017 2593 6,635 3,102 2326 5497 1591 1827 2917

Luke’s Medical Center [5]. During these procedures, the routine is to record both the surface ECG
and the EGM signals via the mapping catheter. For each patient, the EGM was obtained from the
coronary sinus. By virtue of the procedure, the recordings for each patient are of different lengths
and contain a mix of sinus rhythms and diseased heartbeats, providing a diverse dataset to better
emulate real-world scenarios while also making it more challenging to achieve high performance
reconstruction on this dataset. This also means that the number of heartbeats (i.e., N in Table 3)
are different for different patients. In our experiment, the data for each patient was first randomly
shuffled and then segmented into halves, with the first half of concurrent ECGs and EGMs being
used during the search/training step and the second half for testing and performance evaluation.
The patient number and corresponding number of heartbeats are summarized in Table 3.

Algorithm Experiment Setup. Algorithm training setup: All the DNN training is carried out
on a machine with one NVIDIA 2080TI GPU and an AMD EPYC 7742 64-Core power processor.
Throughout the training, we use an Adam optimizer with a batch size of 16, a learning rate of 1E-3,
and a weight decay factor of 1E-3. During the training, we incorporate the Pearson correlation
coeflicient between the network output and the ground truth (i.e., corresponding real-measured
ECG signals) into the loss function (see Equation (3) in Section 4.1). Network search setup: We
adopt the one-level optimization as in References [36, 84] and a fixed temperature of 1 for the
Gumbel-Softmax function. We reuse the above training setting for the supernet weights and adopt
an Adam optimizer with a constant learning rate of 1E-3 for the architecture parameters. We then
derive the operations with the highest probability for each searchable block at the end of the search.
Algorithm evaluation setup: To evaluate the reconstruction efficacy, we calculate the correlation
between the reconstructed ECG signals and the real-measured ones on the half of the dataset for
testing and performance evaluation. Specifically, we first convert the network output that is in the
time-frequency domain to its time domain counterpart using the inverse STFT, and then calculate
the Pearson correlation coefficient between the reconstructed signals and the original ECG signals,
which are time-series waveforms.

Accelerator Experiment Setup. Accelerator search setup: Considering the real-time recon-

struction goal, we adopt the commonly used Frames Per Second (FPS) metric. However,
other metrics can be easily plugged into our RT-RCG framework, depending on the specifica-
tion of the target applications and the user-specified preference. During the accelerator search
process, RT-RCG makes use of a SOTA accelerator performance predictor AutoDNNChip [89]
to obtain a fast and reliable estimation to guide the search towards the optimal solution.
Accelerator evaluation setup: For evaluating FPGA-based accelerators, we adopt a Xilinx ZC706
evaluation board [87] with the same DSP limit as the baselines [85, 97] for a fair comparison.
Specifically, we adopt a standard Vivado HLS design flow [86], where the FPS is obtained from
the HLS synthesis results for our searched accelerators and the baseline ChaiDNN [85]. For
DNNBuilder [97], we utilize their open source simulator to obtain its acceleration results. For the
CPU baseline, we evaluate the achieved FPS of the networks being executed on an AMD EPYC 7742
64-Core CPU. For the edge platform baseline, we consider a commonly used edge device [48, 68, 80],
i.e.,, the NVIDIA Edge GPU Jetson TX2 [58], where the networks are compiled using TensorRT [59],
a C++ library for high-performance inference on NVIDIA GPUs. Additionally, the device is con-
figured to be in max-N mode to make full use of the available resources following [80].
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Fig. 4. The average Pearson correlation coefficient between RT-RCG’s reconstructed and real-measured ECG
time-series signals across all the 14 patients in our dataset, when considering (1) Blue: patient-specific re-
construction from five channels of EGM (see Section 5.2), (2) Grey: reconstruction generalized to new pa-
tients (see Section 5.3), and (3) Orange: patient-specific reconstruction with merely one EGM channel (see
Section 5.4).

5.2 RT-RCG’s Searched Algorithms: Patient-specific Reconstruction

In this subsection, we evaluate RT-RCG’s searched networks in a patient specific setting, where all
the search, training, and testing are based on the data collected from the same patients. This is to
mimic the case where the pacemakers are customized to each patient. Specifically, for our clinical
dataset, which contains sinus and diseased heartbeats of the 14 patients, we equally split it into
two subsets for training and testing, respectively.

To thoroughly evaluate RT-RCG’s searched networks, we consider all of the 14 patients in a
patient-specific manner and plot the resulting correlation (between the constructed ECG and the
real-measured ECG signals) in Figure 4 (the blue curve). We can see that the ECG signals recon-
structed by RT-RCG’s searched networks are highly correlated with the real-measured ones across
all of the 14 patients, as evidenced by the resulting Pearson correlation coefficient value ranging
from 0.952 ~ 0.983, which is much improved as compared to the correlation value of 0.84 achieved
with the SOTA method [63] using time delay neural networks. This improvement implies that RT-
RCG’s searched networks can accurately predict ECGs that are close to the corresponding real-
measured ones as compared to the ones reconstructed by the SOTA method in Reference [63].

5.3 RT-RCG’s Searched Algorithms: Reconstruction Generalized to New Patients

In this subsection, we evaluate the efficacy of our RT-RCG’s searched networks when being gen-
eralized to new patients. Specifically, the networks are searched and trained based on the data of
all patients with one of the patients excluded and then tested on the excluded patient. By doing
so, this experiment can evaluate the searched networks’ generalization capability to unseen new
patients, i.e., how well the networks dedicated to a set of patients can perform when adapted to
other patients. As shown in the grey curve in Figure 4, the correlation between the reconstructed
and real-measured ECG signals is consistently higher than 0.93, except for Patients 1, 2, and 3,
whose heartbeat samples are very distinct from the remaining ones, implying the importance of
searching/training the algorithms on diverse patients before being generalized to other patients to
ensure the efficacy. Overall, the above experiments indicate the excellent generalization capabil-
ity of RT-RCG’s searched networks. We can expect improved performance if RT-RCG’s searched
networks are obtained based on more data with diverse ventricular conditions, paving the way for
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Fig. 5. Visualizing the reconstructed ECG signals under different experiment settings together with the corre-
sponding real-measured ones for Patient 4, where the x axis is the time sample and the y axis is the normalized
voltage of the waveforms.

developing “one-for-all” reconstruction algorithms that can save a large amount of the time and
effort needed to collect data for each target patient; this is particularly useful when pre-collecting
data for the target patient is not possible.

5.4 RT-RCG’s Searched Algorithms: Reconstruction Robustness under
EGM Deficiency

In practice, pacemakers only utilize 1-5 EGM channels and it is an imperative function of pacemak-
ers to work with only one channel of EGM. Aiming towards practical uses, we thus evaluate our
RT-RCG’s searched networks under such scenarios, considering the most extreme case where only
one out of the five EGM channels is available. Specifically, we search and train the networks based
on data with only one EGM channel and evaluate the correlation between the reconstructed and
real-measured ECG signals under the patient-specific setting (similar to Section 5.2). While we ob-
serve consistent results when picking different EGM channels as the one to be used, we here show
the observations when picking the first channel. As shown in the orange curve (i.e., “1-channel”)
in Figure 4, we can see that the reconstruction quality under this extreme scenario is surprisingly
close to that of the normal setting with all EGM channels on, achieving a correlation ranging from
0.942 to 0.983. Furthermore, Figure 5 shows that the reconstructed ECG from only one channel of
EGM does not have noticeable degradation when compared with the original ECG signals. This
set of experiments demonstrates the excellent robustness of RT-RCG’s searched networks in the
presence of EGM channel deficiency.

5.5 RT-RCG’s Searched Algorithms: Visualizing the Searched Network and
Reconstructed ECG Signals

To better understand and visualize RT-RCG’s searched networks, here, we provide a visualization
to show RT-RCG’s searched network and RT-RCG’s reconstructed ECG signals. First, as an illustra-
tive example, we visualize the searched network for Patient 4 under a constraint of 28.87M MACs,
as illustrated in Figure 6(c). In particular, this searched network contains 36 layers excluding the
pooling and upsampling layers and a total of 28.87M MACs. In addition, the searched networks

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 29. Pub. date: March 2022.



RT-RCG 29:17

7X7 3X3
EGM =1 cony conv - 3> ECG
5X5 77
Maxpool CONV DECONV| Upsample

Searchable || sxs | %

Maxpool Blocks DECONV| Upsample

(a) The reconstruction algorithm pipeline

DDDDDDID

K3E6 K3E3 K3E1 K5E6 K5E3 K3E1 C3 C5  skip
(b) The choices for the searchable blocks

Input from Output to
Maxpool DECONV

(c) The RT-RCG's searched network structure given a constraint of 28.87 MACs

Input from Output to
Maxpool DECONV

(d) The RT-RCG's searched network structure given a constraint of 31.38 MACs

Input from Output to
Maxpool DECONV

(e) The RT-RCG's searched network structure given a constraint of no more than 15 layers

Fig. 6. An illustration of the (a) reconstruction algorithm pipeline, consisting of the fixed earlier blocks,
searchable blocks, and fixed later blocks, (b) choices for the searchable blocks following Reference [82], and
the RT-RCG’s searched network structures when given a constraint of (c) 28.87 MACs, (d) 31.38 MACs, and
(e) no more than 15 layers. In (b), KaEb denotes a convolutional building block with a kernel size of a and a
channel expansion ratio of b, and Ca denotes a standard convolution layer with a kernel size of a.

under different MACs constraints are similar in terms of the kernel size and expansion ratio choices,
yet with different preferences in the networks’ depth. As shown in Figure 6(d), when the number
of MAC:s is increased to 31.38M, the proposed DNS opts to reduce the frequency of skip connec-
tions, while the layer structures in terms of kernel sizes and expansion ratios are similar to those
under a constraint of 28.87M MACs. Second, Figure 5 visualizes the reconstructed ECG signals of
RT-RCG’s searched networks under various settings, when the reconstruction is performed using
(1) 5 EGM channels and (2) 1 EGM channel, or generalized to new patients. While we observe
consistent results across different patients, here, we only show the visualization for Patient 4 for
a better illustration. We can see that the reconstructed ECG signals are close to the real-measured
ones when the network structure in Figure 6(c) is used, with the largest deviation happening when
the algorithm is generalized to a new patient, as expected.

5.6 RT-RCG’s Searched Accelerators: Achieved FPS over SOTA DNN
Accelerators/Platforms

In this subsection, we evaluate RT-RCG’s searched accelerators by comparing their achieved
FPS with that of (1) two SOTA DNN accelerators (DNNBuilder [97] and ChaiDNN [85]), (2) the
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Table 4. The Achieved FPS of the RT-RCG’s Searched Accelerator and the
Four SOTA DNN Accelerators/platforms Given the Same Network
(See Figure 6(c)), Network Bit Precision, and Clock Frequency
(Except for the Edge GPU and CPU Cases)

Platform Clock frequency ~ # of PEs  Bit precision FPS

DNNBuilder [97] 200 MHz 435 16 228
RT-RCG 200 MHz 428 16 427 (1.87x)

ChaiDNN [85] 200 MHz 212 8 401

RT-RCG 200 MHz 185 8 696 (1.73X)

Jetson-TX2 [58] 1.3 GHz / 32 1,190 (183.07 @ 200 MHz)
RT-RCG 200 MHz 870 32 229 (0.19% w/1.3 Ghz; 1.22X w/200 Mhz)
CPU [2] 2.25 GHz / 32 21(3.23 @ 200 MHz)
RT-RCG 200 MHz 870 32 229 (11.39% w/1.3 Ghz; 70.90x w/200 Mhz)

Where the number of PEs indicates the peak usage of the processing elements,
corresponding to the number of used DSPs for FPGA-based accelerators.

Table 5. The Resulting Subgroups for the DNNBuilder Implementation
of the Searched Network Shown in Figure 6(c), which is to Enable
DNNBuilder’s Feasible Implementation of DNNs with over 15 Layers

Group ID 1 2 3 4 5 6 7 8 9

LayerID (1) (2,3) (4~13) (15~18) (19~26) (27~33) (34) (35) (36)

Note that each subgroup assumes one pipeline stage and layers within each
subgroup share the same pipeline stage.

edge GPU (Jetson TX2 [58]), and (3) a general DNN deployment platform (an AMD EPYC 7742
64-Core CPU [2]) under the same conditions. Specifically, we ensure that the reconstruction algo-
rithm (i.e., the searched network for Patient 4 under 28.87M MACs, as shown in Figure 6(c)) and
the network precision be the same as the baselines’. The comparison results are summarized in
Table 4. We can see that RT-RCG’s searched accelerator consistently achieves a better FPS than all
of the four baselines, based on the same network structure and hardware constraints. Specifically,
the RT-RCG searched accelerator improves the achieved FPS, which in turn can be translated to
processed heartbeat samples per second, by 1.87X, 1.73%, 1.22X, and 70.90X%, as compared to the
DNNBuilder, ChaiDNN, the edge GPU, and the CPU, respectively. This set of experiments indi-
cates that the integrated DAS engine of RT-RCG is effective and RT-RCG’s automatically searched
accelerator can even outperform expert-designed SOTA DNN accelerators, paving the way for the
fast development of reconstruction accelerators.

More details regarding the experiment settings for each baseline are described below:

DNNBuilder. For the comparison with the SOTA DNN accelerator named DNNBuilder, we
adopt a DSP limit of 450, a 16-bit precision, and a frequency of 200 MHz to be the same as the
original setting in DNNBuilder [97]. As the reported DNNBuilder design uses a layer-wise pipeline
micro-architecture, it requires to constrain the maximum number of DNN layers to be smaller than
15, for meeting the DRAM access bandwidth constraint, as shown in their open source codes [97].
To support RT-RCG’s searched networks, which has more than 15 layers, we first divide the net-
work into 9 subgroups with each having some layers from the original network processed sequen-
tially and then execute these subgroups in a pipeline fashion based on the open source design
of DNNBuilder. The subgroups are formed to balance the latency among them and thus maxi-
mize the achieved throughput of DNNBuilder given the specific DNN structure. Specifically, the
9 subgroups for the network (see Figure 6(c)) are shown in Table 5. Note that we also evaluate
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Table 6. The Start-up Latency and FPS of the RT-RCG
Generated Accelerator Given the Network Generated
for Patient 4 (See Section 5.2) under
Different Platforms

Platform #of PEs  Start-up latency (ms) FPS

ChaiDNN [85] 212 3.01 401
RT-RCG 185 3.29 (+9.3%) 696 (+73.6%)
RT-RCG-latency 171 2.39 (+20.6%) 419 (+4.5%)

RT-RCG’s searched accelerators over DNNBuilder when constraining RT-RCG’s network search
space to have networks with smaller than 15 layers, as discussed in Section 5.8.

ChaiDNN. We also benchmark RT-RCG’s searched accelerator with another SOTA FPGA DNN
accelerator named ChaiDNN [85], with its DietChai_z variant enabled to optimize its performance
under more resource-constrained scenarios. Specifically, we select its 128-compute-DSP mode that
results in a DSP limit of 212 when accelerating the given searched network.

Jetson TX2. When comparing with the edge GPU Jetson TX2, which is a commonly used IoT
device, we set the DSP limit to be 900 (the maximum amount available), so our implementations
have roughly the same power consumption as the edge GPU Jetson TX2. Note that the operating
clock frequency of Jetson TX2 is 1.3 GHz, which is far higher than the maximum supported stable
frequency of our platform ZC706. We thus scale the Jetson TX2’s throughput to that corresponding
to a frequency of 200 MHz for a fair comparison as shown in Figure 6(c), under which the achieved
FPS of the RT-RCG’s searched accelerator outperforms the edge GPU by 1.22X.

CPUs. Considering that CPUs are currently the mainstream computing platforms, we also eval-
uate RT-RCG’s searched accelerator over an AMD EPYC 7742 64-Core processor given the same
network. For a fair comparison, we adopt a DSP limit of 900, which is the maximum available DSP
resource on our adopted ZC706 board. Note that the power consumption of the CPU is ~225W,
which significantly dwarfs that of the ZC706 board, which is ~10W.

Discussion and Implication. There are several levels of implication from our experiments (in-
cluding the latency evaluation in Table 6). First, we can see that our proposed RT-RCG indeed can
automatically generate (1) reconstruction networks that can provide high-quality reconstruction,
which outperforms SOTA techniques and has excellent generalization capability, and (2) acceler-
ators to run the reconstruction networks achieving a better acceleration efficiency than diverse
SOTA accelerators/platforms under the same conditions. Second, the performance achieved by
RT-RCG shows that it is indeed possible for doctors to remotely monitor the status of pacemakers
and patients via reconstructed ECG signals, given the achieved FPS. Specifically, in our case, such
real-time monitoring is possible, as the achieved FPS (229 ~ 606 FPS in our proposed RT-RCG) is
much higher than the required 2 FPS (the highest input rate in our dataset is 2 Hz, as it requires
at least 0.5 s to collect each piece of input). More importantly, the high FPS achieved is necessary,
as it implies that real-time intervention is possible, especially considering that certain cardiac pa-
tients, particularly patients diagnosed with lethal ventricular arrhythmias, under which the higher
the FPS, the sooner doctors can respond to provide the necessary intervention in life-critical sit-
uations. Despite the promising reconstruction efficacy and efficiency achieved by RT-RCG, our
effort in this article is merely a heuristic step towards next-generation pacemakers equipped with
real-time monitoring and intervention. In particular, the energy cost of the RT-RCG framework
currently implemented on FPGA is still way higher than the stringent energy consumption re-
quired by the pacemakers. We recognize that applying RT-RCG searched networks and accelera-
tors to real-world pacemakers would require ultra-energy-efficient ASIC implementation, which
we leave as one of our most exciting future works.
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Table 7. The Reconstruction Accuracy of the Searched Network with the Constraint of <15 Layers,
Compared with the Searched Network in Figure 6(c) Searched without the Layer Number Constraint

Patient ID 1 2 3 4 5 6 7 8 9 10 1 12 13 14

36-layer-net 0.9613 0.9524 0.9678 0.9634 0.9668 0.9730 0.9622 0.9784 0.9830 0.9727 0.9610 0.9735 0.9589 0.9821

15-layer-net 0.9601 0.9463 0.9641 0.9640 0.9674 0.9714 0.9626 0.9762 0.9829 0.9656 0.9571 0.9620 0.9580 0.9824

Improvements from 36-layer  -0.0012  -0.0061 -0.0037  0.00057  0.00058 -0.0016 0.00041 -0.0022 -0.00011 -0.0071 -0.0039 -0.011 -0.00088  0.00026

Table 8. RT-RCG’s Searched Accelerators vs.
DNNBuilder When Constraining the Networks
to Have Fewer Than 15 Layers

Platform #0of PEs  Network MACs (M) FPS
DNNBuilder-36-layer 435 28.87 228
DNNBuilder-15-layer 441 24.23 340 (+49.1%)

RT-RCG-36-layer 428 28.87 427 (+87.3%)
RT-RCG-15-layer 433 24.23 447 (+96.1%)

5.7 RT-RCG’s Searched Accelerators: Achieved Latency over SOTA DNN
Accelerators/Platforms

As ECG signals can be used to detect irregular ventricular rhythms that trigger a corresponding
alert mechanism [70], where the latency from the occurrence of the rhythms to the mechanism
being triggered, denoted as start-up latency, can be of great significance to the patients’ health
and life, the latency of the EGM-ECG conversion contributing a considerable portion of the whole
pipeline is thus important. Therefore, we also evaluate RT-RCG’s searched accelerators over SOTA
DNN accelerators/platforms in terms of this latency. Note that the achieved start-up latency and
FPS have a tradeoff relationship. An advantage of our RT-RCG framework is that users can cus-
tomize their own desired tradeoff given their priority and conditions. As shown in Table 6, we
provide two searched accelerators of RT-RCG, which favor the achieved start-up latency and FPS,
respectively, with the former achieving a 27.36% better start-up latency at a cost of 38.8% lower FPS.
We can see that RT-RCG’s automatically searched accelerators achieve a smaller start-up latency as
compared to the baseline under the same hardware constraint, i.e., 20.60% over the expert-designed
accelerator ChaiDNN [85]. This set of experiments again validates the effectiveness of our RT-RCG
framework’s DAS engine.

5.8 RT-RCG’s Searched Accelerators: Constrained Networks with <15 Layers

As mentioned in Section 5.6, the baseline DNNBuilder [97] adopts a layer-wise acceleration micro-
architecture, which favors networks with fewer than 15 layers. To validate the general efficacy of
our RT-RCG framework, here, we present experiments where we constrain the network search
space to ensure that the searched networks have fewer than 15 layers and then compare the ac-
celeration performance of RT-RCG’s searched accelerator with that of the DNNBuilder baseline
under the patient-specific setting. Specifically, we adaptively adjust A in Equation (4) when the
depth of the derived network surpasses 15 layers by doubling A. As shown in Figure 6(e), with
the number of layers being constrained to 15, the searched network contains only a 16.07% lower
number of MACs as compared to the unconstrained case (see Figure 6(c)), while Table 7 indicates
that our RT-RCG framework’s DNS engine is able to adapt to different constraints while main-
taining the networks’ performance (i.e., reconstruction quality in terms of the correlation): 0.9601
vs. 0.9613 for Patient 4. In particular, RT-RCG results in a wider network under this depth con-
straint to maintain the network capacity and thus reconstruction efficacy. Meanwhile, as shown
in Table 8, we can see that (1) DNNBuilder’s achieved FPS is improved by 49.1% as compared to
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the unconstrained case presented in Section 5.6, which has a 36-layer network, under the same
DSP constraint, and (2) RT-RCG’s automatically searched accelerator again outperforms the ex-
pert designed accelerator DNNBuilder with a 23.94% higher FPS. This set of experiments together
with the ones in Section 5.6 validates the general effectiveness of our RT-RCG framework across
different network search spaces and accelerated networks.

6 CONCLUSION

The costly and time-consuming hospital visits required for patients with implanted pacemakers
and the recent advances in the IoT technologies have motivated an increasing need for remote
monitoring of pacemakers to reduce hospital visit costs and to provide continuous monitoring
and potential real-time intervention, which can be life-critical under some irregular and infre-
quent ventricular rhythms. However, the signals provided by pacemakers and the ones doctors
use for diagnosis during in-person clinical visits are different, with the former being EGM signals
and the latter being ECG signals, calling for high-quality and real-time ECG reconstruction from
the recorded EGM signals. To this end, we propose, design, and validate a first-of-its-kind frame-
work dubbed RT-RCG, which can automatically search for (1) efficient DNN structures and then
(2) corresponding hardware accelerators to implement the ECG-EGM reconstruction process, re-
spectively, tackling both the reconstruction efficacy and efficiency. Specifically, RT-RCG integrates
a new DNN search space tailored for required ECG-EGM reconstruction to enable automated
search for DNNs that conduct ECG reconstruction with much improved quality over SOTA solu-
tions and incorporates a differentiable acceleration search engine that can automatically generate
optimal accelerators to accelerate the resulting DNNs from the previous step. Extensive experi-
ments and ablation studies under various settings consistently validate the effectiveness and ad-
vantages of the proposed RT-RCG at leading to higher reconstruction quality and better reconstruc-
tion efficiency as compared to SOTA reconstruction algorithms and DNN accelerators. Our RT-
RCG has made the first heuristic step towards automated generation of ECG-EGM reconstruction
DNN s along with the matched accelerators, which enable real-time critical intervention in instant
response to irregular and infrequent ventricular rhythms that require timely treatment, paving the
way for more pervasive remote monitoring of the pacemakers via ECG-EGM reconstruction.
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