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Abstract

Existing secure database management systems (DBMSs) focus
on security and privacy of data but overlook semantic properties,
such as the correctness and ACID properties of transactions. Enforc-
ing these properties is crucial to the functionality of applications. If
these guarantees do not hold, catastrophic losses could result.

To address this issue, we present Litmus, a DBMS that can provide
verifiable proofs of transaction correctness and semantic properties
including atomicity and serializability. Litmus features a co-design of
both the database and the cryptographic parts. We evaluate a proof-
of-concept prototype of Litmus on the YCSB and TPC-C benchmarks
and show that under reasonable cryptographic assumptions it can
process more than 17,000 transactions per second (txn/s) verifiably.
Our result shows a promising practical direction considering that
PayPal runs on average 115 txn/s and VISA 2000-4000 txn/s. The
proofisabout 30kB per verification batch and verifies with a constant
time of 300 seconds. Litmus can extend to verify consistency as well.
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1 Introduction

Organizations are increasingly moving important databases to
public cloud platforms. For example, state and local governments use
Amazon Web Services to host databases for criminal records [2]. Such
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outsourcing can reduce hardware and labor costs, but also exposes
an organization to data-integrity risks. An attacker that breaches the
DBMS can tamper with its contents. In the case of a voter-registration
database, an attacker could selectively modify registration data for
voters from one political party. An even more problematic scenario
is if the organization is unable to detect that a breach has occurred
and thus it does not know that it needs to restore the database from
backup. Unfortunately, there is ample evidence that such breaches
occur often [1, 15] and that cleaning up from them is costly [39].
An additional risk of database outsourcing is the cloud provider’s
DBMS not actually providing the atomicity, consistency, isolation,
and durability (ACID) properties that the provider claims to pro-
vide. Software bugs [65] are not the only source of such correctness
failures. It has been reported that Machine-Learning-as-a-Service
(MLaaS) providers have incentives to lower the service quality as
observed in [27]. Similarly, for Database-as-a-Service (DBaaS), risk
could also originate from dishonest attempts by the cloud providers
to cut costs at the expense of database integrity. For example, running
the TPC-C benchmark at a lower isolation level can yield 2.5X better
throughput compared to that with serializability [23]. Such ACID fail-
ures are commonplace, even in widely deployed database systems [33,
35], and they sometimes even lead to business bankruptcy [53].
Existing solutions test whether a database provides serializability
by analyzing the log history [55], or the internal scheduler choices
[16, 31, 41,52, 71]. They either include an independent trusted veri-
fier that is powerful enough to run SAT/SMT solvers and report to the
clients, or assume the client itself is capable of handling the analysis.
We present Litmus, a verifiable outsourced DBMS that provides
verifiable atomicity and serializability. It allows data owners to out-
source data storage and query processing to the cloud without expos-
ing them to the risk of data-corruption attacks or semantic property
violations. With Litmus, the cloud provider will (as it does today)
maintain an outsourced database on behalf of the owner. But the Lit-
mus client additionally maintains a small cryptographic digest of the
database state. Whenever the owner issues queries, the provider will
execute the query and then prove to the owner that the query’s result
is consistent with the owner’s digest. If the database state changes
while executing a query (e.g., the balance of an account is increased),
the cloud will also provide a new digest along with a proof that the
new digest accurately represents the state of the old digest with the
query applied. To exploit parallelism, the owner can submit multiple
transactions (a verification batch) and get a single digest reflecting
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the new data states, and a succinct aggregated proof that these trans-

actions were executed correctly at the designated isolation level.

Verifying such a proof is computationally cheap. With this type of

verifiable DBMS, an attacker who compromises the server can at

best mount a denial-of-service attack (and the owner will notice).

To break data integrity, the attacker must compromise the owner it-

self, which is equivalent to the no outsourcing scenario. Hence, the

promise of verifiable DBMSs is that they can give the same level of
integrity protection as a local database with the cost savings and
convenience of the cloud.

We target the use case of critical cloud computing scenarios where
mistakes could have catastrophic consequences. Compared to a lo-
cal cluster, a cloud service, even with the overhead of verification,
can provide both elasticity and robustness at a lower cost. We eval-
uated a proof of concept prototype of Litmus with YCSB and TPC-C
workloads. Litmus with multiple parallel provers is able to verifi-
ably process over 17k txn/sec for simple workloads (YCSB) and 280.6
txn/sec for more complex workloads (TPC-C). We believe Litmus
has practical applications in the real world, given that Paypal han-
dles on average 115 transactions per second and the VISA network
has a demand of around 2,000-4,000 transactions per second!.

In this paper, we make the following contributions.

e We present Litmus, a practical and general verifiable database
system that provides cryptographic guarantees on data integrity,
execution correctness, and transaction semantic properties. Using
Litmus blocks the type of attacks described in ACIDRain [65].

e We propose, and use in Litmus, a lightweight authenticated dic-
tionary (AD) scheme based on RSA accumulators that supports
key non-existence proofs, which may be of independent interest.

e We improve the DBMS’s performance over naive schemes by or-
ders of magnitude by co-designing the DBMS and cryptography.
For example, batching non-conflicting transactions enables aggre-
gation of cryptographic proofs.

2 Background and Goals

We introduce the goals for our verifiable database and where we
must extend existing work to achieve them. A transaction is a se-
quence of operations (e.g., read, write, insert, or delete) that a client
sends to a database. A database guarantees ACID for transaction
processing, which refers to the following four properties [46]:

e Atomicity. Either all or no operations of a transaction occur in
the database (i.e., all or nothing).

e Consistency. Any given database transaction must obey se-
mantic invariants including constraints, cascades, and triggers.
A transaction cannot leave the database in an invalid state.

e Isolation. Anisolation level defines when a transaction’s effects
can be observed by another concurrent transaction. Verifying
isolation is more difficult than the other three properties since
it involves the coordination of multiple transactions.

e Durability. Effects of committed transactions will survive per-
manently, even if the system crashes.

It is non-trivial to enforce the isolation level since the DBMS can
choose any transaction interleaving. Identifying correct interleav-
ings from the exponentially large space of interleavings is proven to
be NP-complete [7, 43]. We choose to utilize cryptography to force

1Source: https://en bitcoin.it/wiki/Scalability
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the DBMS to provide a proof of behaving honestly. Finally, we note
that enforcing durability without special hardware is almost impos-
sible because whether or not the storage is physically permanent is
not discernible by software.

2.1 Challenges

There are many challenges in designing such a verifiable DBMS:
(1) It is not clear how to provide proofs of inter-transaction proper-
ties like serializability. Theoretically, sending the logic of the whole
DBMS into the verification framework can solve the problem assum-
ing the source code is carefully reviewed. Reality is more challenging
because modern DBMSs are complex and cryptography has special
requirements on the input logic. (2) Existing cryptographic tools are
computationally heavyweight, posing a practicality challenge. (3) To
justify the motivation of database delegation, the client is assumed
to be lightweight with limited memory.

For the first challenge, we observe that it is not necessary to verify
the entire DBMS. We can decouple runtime execution details from the
information that needs to be verified. We achieve atomicity and seri-
alizability proofs by encoding transactions one-by-one into crypto-
friendly formats, adding extra constraints to ensure data integrity.

To address the second challenge, Litmus features a co-design of
both the database part and the cryptographic part. We select a batch-
based concurrency control (CC) algorithm that identifies a subset
of non-conflicting transactions. Witnesses of correctly executing
non-conflicting transactions can aggregate into a single succinct
one. When the contention level of the underlying workload is not
high, this improves the computational overhead of the proving sys-
tem by orders of magnitude. Further, we parallelize the provers at
the task level. This further improves the prover throughput while
maintaining a blackbox use of the verifiable computation technique.
Finally, for the third challenge, our design lets the client only keep
a constant-sized digest, and verify a succinct proof.

2.2 Building Blocks

We now discuss the building blocks of Litmus. We use a verifiable
computation framework to prove that transactions execute correctly
and their atomicity and isolation properties are guaranteed. We pro-
pose a lightweight weakly-binding authenticated dictionary scheme
to verifiably track the changes on the data. Finally, we specifically de-
sign the CC algorithm to process transactions in batches [59], which
enables aggregation of cryptographic computations and witnesses.
We discuss how these building blocks work together in Sec. 4.

Verifiable Computation (VC): This is a cryptographic protocol
that enables a (usually computationally limited) client to delegate
expensive computation to an untrusted server.

The computation is described as a cryptographic circuit. Formally,
we define a gate to be a tuple (d;,do, f : F4*% — {yes no}), where d;
isthe in-degree, d, is the out-degree, and f is a function representing
the semantic evaluation of the gate. For example, an AND gate on
boolean values will have in-degree 2, out-degree 1, and a function
f(x1,x2,y1) that outputs yes if and only if y; =x1 Ax2. Given a set of
gates G (e.g., AND, OR,NOT, and 2-FANOUT for a boolean circuit, or
ADD and MUL for an arithmetic circuit), a cryptographic circuit is a
directed acyclic graph where each node is a gate in G, and the edges
connecting two gates are wires. During evaluation, we assign a value
to each wire such that for all the gates, the values of the wires satisfy
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f=yes. There are always two special gates in G, the INPUT gate and
the OUTPUT gate, where an INPUT gate does not have inward edges,
but emits the corresponding circuit input as its output. Similarly,
an OUTPUT gate absorbs values from other gates and semantically
reports these values as the output of the whole circuit. For simplicity,
we use C(x) =Yy to indicate that when the INPUT gates emit values
in x, the OUTPUT gates will report the values y as the output.

Given a circuit C known by both the server and client, the veri-
fiable computation scheme proceeds as follows (after a trusted setup
as necessary): (1) the client sends x to the server; (2) the server com-
putes y =C(x) and generates a proof 7, and sends it to the client; (3)
The client verifies 7 against x, y and C efficiently.

A verifiable computation is correct if and only if, when the claimed
output 'y equals C(x), the proof verification always passes. It is sound
if and only if, when the verification passes, there is only an expo-
nentially small chance that the server could cheat by not computing
correctly. Litmus generates program code (e.g., in the C language) of
afunction that will return false if the transaction semantic properties
are violated. Then, it compiles the function into crypto circuits using
compilers like Frigate [40], extracts interleaving hints from CC algo-
rithms, and applies a VC scheme on the circuit and the interleaving
hints. The VC scheme guarantees that if the function returns true and
the proofs pass verification, the client knows that the transactions
were executed correctly and the semantic properties are preserved.

Weakly-Binding Authenticated Dictionaries: Anauthenticated
dictionary (AD) scheme enables a client to securely outsource a dic-
tionary to an untrusted server. The client only keeps a succinct digest
of the dictionary. The server is able to provide verifiable key-value
pair lookups for the client. When the dictionary changes, the digest
gets updated accordingly. A weakly-binding AD guarantees the cor-
rectness and soundness properties (Sec. 6.1.1) if the digest updating
is trusted. In contrast, a strongly-binding AD works against a mali-
cious updater. In Litmus, we let the client as well as the delegated
computation maintain an AD to track the database state. The client
itself is trusted and the delegated computation is guaranteed correct
by the VC framework. Therefore, a weakly-binding AD is sufficient.

Deterministic Reservation: Thisisa CC algorithm that processes
transactions by batches [9, 59], which we call processing batches to
distinguish from the verification batch (the number of transactions
submitted by the client). It identifies a maximal non-conflicting sub-
set of transactions, as described in Section 7. In our design, determin-
istic reservation helps the authenticated dictionary scheme “merge”
the non-conflicting transactions and provide aggregated proofs of
data integrity. This reduces the workload of the VC framework.

2.3 Related Work

Verifiable computation (VC) is a powerful technique to prove the
correctness of a program execution where a client offloads the compu-
tation to an untrusted computer, while being able to efficiently verify
the result. By using general-purpose VC tools [5, 6, 8, 10, 14, 19, 49—
51, 62, 63], we can, in theory, construct a verifiable database system
that satisfies the cryptographic properties of Sec. 3 by compiling the
whole DBMS into a giant circuit. Even though it shows promising
asymptotic results [47], it would still incur an impractical compu-
tational overhead due to large constant factors. Litmus only verifies
essential parts of the database and parallelizes the provers to achieve
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a practical throughput.

Authenticated Data Structures: Cryptographicaccumulators[25],
multiset hashes [20], vector commitment [18], and authenticated

dictionaries [60] are widely used in verifiable data storage in var-
ious settings. For example, [32] uses Merkle trees to keep track of
the data on the server. vChain [64, 69] proposes new authenticated
data structures based on bilinear mapping groups to verify queries

on blockchains. Similar to vChain, Litmus also allows batched verifi-
cation and utilizes aggregation to boost the performance. However,
different from vChain, Litmus targets OLTP transactions on a cloud

database, while vChain allows expressive queries on blockchains,
where the blocks are immutable (read-only). Besides data integrity,
works like [68] use authenticated data structures and attribute-based

signatures to authenticate queries with fine-grained access control

and protect data privacy against unauthorized users.

Verifiable databases in the single-transaction setting: vSQL[73]
and IntegriDB [74] construct VC schemes that handle processing of
anon-trivial subset of SQL, one query at a time, while Litmus focuses

on concurrent transactions with read and write operations.

Verification of concurrent systems: Recent work considers the
task of verifying general-purpose computations in a concurrent
setting [54]. Orochi [54] is a system for verification of PHP web ap-
plications. Spice [48] addresses the verifiable concurrent execution
problem, and provides low-level mutual-exclusion primitives. Since
none of these works consider verification of a transaction’s ACID
properties, they are orthogonal to our work.

Checking serializability: Recent work has proposed using ex-
ternal programs to verify the serializability of transactions in a
DBMS [16, 31, 36, 41, 52, 55, 56, 56, 70? , 71]. These programs take
the traces from a transactional database and verify whether the ex-
ecution is serializable. These techniques either require the DBMS to
both generate these traces and send them to a verifier (which is likely
impractical), or use SAT or SMT solvers to compute a possible se-
quential interleaving [56]. Works like Elle [35] require the database
to make data acesses into list operations to keep track of the history
of the tuples; we evaluate Elle in Sec. 8.3. Other approaches that pro-
vide verifiable serializability include [30, 32]. Haeberlen et al. applies
to general distributed systems settings, where the nodes are uniform
and at least one node is honest [30]. Compared to the classic Merkle-
tree approach, [32] is novel in decoupling the data owner and clients,
and introducing postponed verification; this enables the server to pro-
cess transactions in parallel. In particular, [32] resembles the Merkle
tree baseline in our evaluation (c.f. Sec 8) and their evaluation is con-
sistent with our observation (<20 txn/s at 100% verification level).

3 Cryptographic Formalization
We now present a sketch of the cryptographic framework that we

use to formalize ACID properties. We focus on verifying serializabil-
ity, the highest level of isolation, and atomicity, though the formalism
naturally extends to other isolation levels as well as consistency (as
defined by invariants before and after applying transactions). We
discuss durability separately in Sec. 9.

Formally, we model the database state as a bitstring D € {0,1}* (as
some encoding of a dictionary). We model a transaction T: {0,1}*
—{0,1}*x{0,1}* as a function that maps the old database state D
to a new database state D’ and an output value v. For example, the
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output value v could be the result of a transaction that updates a data-
base row and then executes a SELECT query. A verifiable database
scheme is then a tuple of algorithms as follows:

e Digest(D)— §. Compute a constant-sized cryptographic digest §
of the database D.

Execute(D,7") — (D’,V,n). Given a database state D and a list of
transactions 7, apply the transactions to the database (in some or-
der) to produce a new database D’, a list of output values ‘V (one
per transaction), and a proof 7 of computation correctness.
Verify(7,6,8’,V,x) — {0,1}. Given a list of transactions 7, a di-
gest § of the old database state, a digest §’ of the new database
state, a list of output values V, and a claimed proof of correctness
7, check the proof and output “1” if and only if the proof'is valid.

For simplicity, we omit the cryptographic security parameter and
the public parameters of the scheme. For a verifiable database system
to be useful, it should be correct and sound. Informally, correctness
states that an honest database server is able to convince an honest
client that it has correctly executed a list of transactions.
Definition 1 (Correctness): A verifiable database scheme (Digest,
Execute, Verify) is correct if for all lists of transactions 7~ and all
database states D € {0,1}%,

S8 « Digest(D),

Pr| Verify(7,6,8",V,m)=1: (D',V,x) «Execute(D,7), | =1.

8" «Digest(D’)

Informally, a verifiable database scheme is sound for serializability
if, for all lists of transactions 7 ={Tj,...,T, }, whenever an adversary
produces digests 6, &', a list of outputs V =(vy,...,05), and a proof 7
that the verifier accepts, this adversary “must know” corresponding
databases Dy and D, and a permutation o on {1,...,n} that “explain”
the new digest 8 of the database state and the outputs in V. Namely,

(a) d=Digest(Dy),

(b) fori=1,..., n:

(c) &’ =Digest(Dy).
We formalize this notion of “knowledge” with an extractor &%)
with a oracle access to the adversary A as follows.

(Dj, v;) <—T0(i)(Di_1), and

Definition 2 (Soundness — Serializability): A verifiable database scheme
(Digest,Execute, Verify) is sound for serializability if there exists a
probabilistic polynomial time (p.p.t.) extractor & s.t. for any p.p.t. ad-
versarial database server A, for all lists of transactions 7 ={Tj,...,T, }
that Pr[Verify(7,A(7")) = 1] is non-negligible, the extractor A
outputs databases (Do, D;,) and a permutation o on {1,...,n} such
that the following quantity is negligibly close to 1 in the (implicit)
security parameter:

Digest(Dg) =&
foralli€ {1,...,n}: 8,8', V., 1) — A(T),

(D3,v1) —To(i(Diz1) * (Do, Dp.6) — EA(TY |
Digest(D,,) =6’

Pr

Note that this definition also implies atomicity because no trans-
actions are partially executed. Extensions of this definition allow
capturing other isolation levels and consistency.

4 System Overview

This section presents an overview of the verifiable database sys-
tem. We assume a single client that interacts with a single database
server. In the DBaaS setting, the single client is the organization
that delegates the database, which might be the proxy of millions
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Figure 1: Overview of the Proposed Verifiable Database — The system
contains three modules as shown in the top left corner: (1) the verifiable
DBMS with (1.a) a normal DBMS system, (1.b) the wrapped transactions, (1.c)
the memory integrity provider, and (1.d) the VC prover; (2) the (optional)
trusted third-party setup; and (3) the client.

of real users and submit many transactions. In Sec. 7, we introduce
concurrency where the client submits a batch of transactions.

In this section, we focus on the verification of Atomicity and Iso-
lation (namely, Serializability) of the database. We will discuss Con-
sistency and Durability in Sec. 9. To provide verifiable isolation, we
need a global scope for transactions because the isolation property
places constraints on the interleaving of transactions. We introduce
the concept of wrapped transaction to help the VC scheme han-
dle the interleavings. A wrapped transaction is a set of transactions
“glued” together, with the logic of the memory integrity checker (c.f.
Section 6.1.1) plugged into each transaction. Specifically, before ev-
ery transaction starts to run its own logic, it first runs the checker
to see if the provided memory digest along with the memory mod-
ifications are consistent with its local digest. If the check passes, the
transaction continues, otherwise it aborts by directly returning 0.

As shown in Figure 1, the system contains three key modules: (1)
The server hosts the normal DBMS, receives transactions from the
clients, and creates a wrapped transaction; The server also con-
tains the memory integrity provider and the VC prover. (2) The
optional key generator can be the client itself or a trusted third-
party, or be implemented by another VC instance if the client wants
the server to carry the heavy computation (as the key generation
logic is fixed, there is no circular dependency on the key generation).
Alternatively, we can use a universal VC scheme, where the keys do
not depend on the circuits, making key generation a one-time cost; (3)
The client is the organization or program that submits transactions.

We now describe the modules in greater detail. The client is a
commodity machine that does not have to be computationally strong.
Before the system starts, we assume that the client has stored enough
information to define a group of transactions, e.g., a stored procedure
with a set of input parameters. The client first sends the transactions
to the server. Then, it passes the transactions to the circuit compiler
to obtain the circuit representation of each of the transactions. Upon
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receiving the circuit of the wrapped transaction (c.f. (1b)) from the
server, the client tries to match the local circuits and the circuit of the
wrapped transaction sent from the server. Then, the client sends the
circuit to the key generator. The client also contains the verifier part
of the VC framework, which takes in the verification key from the
key generator and the proof generated from the server, and outputs
a single bit indicating whether the proof is accepted or rejected.

The optional key generator takes in the circuit and a sufficient
amount of randomness, and produces the proving key ¢ and the
verification key 7. The proving key is sent to the server and the
verification key is sent to the client.

We now describe the four components of the server.

(1a) Normal DBMS: Thisis a full-fledged database system. Theoret-
ically, it can run any valid CC algorithm like two-phase locking (2PL)
or optimistic concurrency control (OCC). However, we choose to use
the deterministic reservation CC algorithm in Litmus (see Section 7.1)
to reduce the size of the circuit by aggregating the cryptographic wit-
nesses of a set of non-conflicting transactions into a single succinct
witness. Because this CC algorithm is deterministic, the client by it-
self may be able to infer the transaction interleaving and produce the
whole circuit. The key generation may start even before the server
finishes running all the transactions, escaping the critical path of per-
formance. The normal DBMS also generates runtime traces, namely,
the transaction interleaving and data updates, which closely resem-
bleslogging records. Just like a DBMS could support data logging and
command logging, the traces could be as small as a few bytes indicat-
ing the transaction order and their inputs (as in command logging),
or an extensive list of all the data changes (as in data logging).

(1b) Transaction Wrapper and Circuit Compiler: The trans-
action wrapper is a tool to plug a memory integrity check into the
starting point of every transaction in a group, and merge them into
a single transaction. It takes in a group of transactions as well as
the specification of the memory integrity checker, and outputs a
circuit representing the wrapped transactions. This is similar to com-
pilers adding instrumentation to source code to add features to the
program (e.g., producing traces for debuggers). The wrapped trans-
action generated by the transaction wrapper is then compiled into
logic circuits acceptable to the verifiable computation scheme. The
circuit is analogous to the binary program produced by a compiler. It
expresses the same logic but in a more low-level representation. The
circuit is then used by the key generator to generate the proving key
and the verification key, and by the prover to provide cryptographic
proofs of the circuit being evaluated correctly.

(1c) Memory Integrity Provider: The memory integrity provider
helps the circuit keep track of data changes and provides proofs on
the values read from the database. It listens to runtime traces of con-
currency control algorithms and generates a sequence of memory
digests. The difference between each consecutive pair of memory
digests reflects a modification by a subset of transactions.

(1d) Prover: The VC prover takes in the proving key, the circuit
generated by the transaction wrapper, and the inputs supplied by
the memory integrity provider. It outputs a proof indicating the
transaction’s output is correct with respect to the input transactions.
Generating the proof is usually computationally heavy and the run-
ning time depends on the size of the circuit. However, the size of the

1482

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

final proof is not necessarily long, and the client can verify the proof
even in constant time for some existing VC constructions.

5 Authenticated Dictionary Scheme from RSA

Before diving into the details of the system, we discuss a useful
cryptographic primitive to guarantee data integrity in Litmus.

We propose a new weakly binding AD scheme that only needs
a constant length of storage and a constant number of arithmetic op-
erations for each verification. The AD scheme is based on an RSA
accumulator [13]. One might argue that it is trivial to build a weakly
binding AD from an RSA accumulator by simply hashing the key-
value pairs into distinct primes. However, we believe the naive con-
struction is not suitable for databases because it does not efficiently
supportkey non-existence proofs. Transactions only visit a few spots
in the memory compared to the vast memory space. If we adopt the
naive approach, the client has to encode all memory values into the
accumulator, which is catastrophic in terms of running time. Our
approach efficiently supports key non-existence proofs so that the
server can prove that the requested key was not previously accessed,
and provide an initial value, say 0, previously agreed with the client.

5.1 Prime Categorization

At a high level, our construction relies on categorization of prime
numbers to accumulate multiple types of information at the same
time. Specifically, we use a dynamic universal RSA accumulator as
the building block. We categorize prime numbers into three cate-
gories that each contains an infinite number of primes. We use the
first category to encode keys, the second category to encode val-
ues, and the last category to encode the relationship between keys
and values. This construction enables us to produce constant-sized
proofs of lookups and to verify such proofs with a constant number of
operations. These properties make our AD scheme circuit-friendly.

Categorization of Prime Numbers: A categorization of prime numbers
isasetofdisjoint subsets cat =(Py,Ps,...,[P;), such that | J;P; =P, where
Pis the set of all the primes. A categorization scheme consists of two
deterministic algorithms (Sample,Verify) that satisfy the following:

e Sample(A,i,nonce) takes in the bit-length A and a categorization
index i € [I]. It returns a prime number p € P; with A bits.
o Verify(p,i) takes in a number p and a categorization index i € [[].

It returns a bit yes/no indicating whether or not p € P;.

We say a categorization cat is feasible if and only if Sample and
Verify are probabilistic polynomial time bounded by A, Sample out-
puts a unique prime number for a nonce. The following holds.
Definition 3 (Correctness): For any bit-length A, a categorization
index i € [I], and any nonce, we have

Pr[Verify(Sample(A,i,nonce),i)=yes| =1.

Definition 4 (Soundness): For any adversary A, any bit-length A and
a categorization index i € [I], we have

Pr[Verify(p,i)=yesAp ¢P;:(p,i) <—A(1A)] =0.

A simple way to construct a finite number of prime categories
is by modulo residue. For example, P; :={+1 (mod 8)} NP, Py:={3
(mod 8)}NP, and P3:={5 (mod 8)} NP form three categories. The
reader might worry that proving modulo operations involves ex-

pensive range proofs on the residues. We let the circuit include
dedicated wires for all the possible residues {1,3,5,7} for an odd
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prime. To show that a residue is well-defined, we assert it to be equal
to one of {1,3,5,7}. Hence, the server can simply provide the quotient
q and residue r. A single constraint p = 8 +r suffices to show the
category (we handle primality tests separately). Examples include
17€Py, 11€Py, and 13 €Ps.

5.2 Assumption and Interfaces
The AD scheme relies on the strong RSA assumption [3].

Definition 5 (Strong RSA Assumption): Given two primes p and g of
bit-length A, let N :=pq. It holds for all p.p.t. adversary A that

Pr[u* =a (mod N): (u,x) — A(a,N),a ¢ Zy] <negl(d).
Before we dive deeper, we provide the definition of ADs.

Definitions: An AD scheme consists of the following APIs.

Setup(11) — (pk,vk). Returns the proving and verification keys.

Commit(pk,D) — d. Returns a digest d of the dictionary D.

Update(pk,D,d,K,V)— d’. Update the digest d by setting the value
of the key k € K to be V (k). Return the new digest d’.

ProveLookup(pk,d,D,V,K)— . Returns a lookup proof = that each
k €K has value V (k).

VerLookup(vk,d,K,V, ) — {yes,no}. Verifies the proof that each
k €K has value V(k) in the dictionary with digest d.

ProveNoKey(pk,d,D,K) — r. Returns a non-membership proof m that
there does not exist any key value pair (k,0) with k € K in the
dictionary with digest d.

VerNoKey(vk,d,K, ). Verifies the proof x that each k € K does not
exist in the dictionary with digest d.
A weakly binding authenticated scheme observes two properties,

namely, correctness and weak key binding.

Definition 6 (Correctness): An authenticated dictionary scheme is

correct if, ¥ public parameters (pk,vk) « Setup(14), V dictionaries

D with digest d <~ Commit(pk,D), the following hold:

o LOOKUP CORRECTNESS: ¥ sets ofkeys K, if 7 = ProveLookup(pk, D, K, V)

and V(k)=D(k), Vk €K, then VerLookup(vk, d, K, V, 1) =1.
e KEY NON-MEMBERSHIP CORRECTNESS: Y K, if 7 =ProveNoKey(pk,

d, D, K) and Vk € K, k is not in D, then VerNoKey(vk, d, K, 7)=1.
Definition 7 (Weak Key Binding): V adversaries A running in time
poly(X), there exists a negligible function negl(-), such that the fol-
lowing inequalities hold:

Lookup Soundness:

(pk,vk) < Setup(1%),
(D.K.K',V,V' . ,7") — A1 pk,vk):
d=Commit(pk,D)
VerLookup(vk,d,K,V,7)=1A

VerLookup(vk,d,K’,V’,7")=1 A
FkeKNK' s.t. V(k)# V' (k)

Pr <negl(A).

Key Non-membership Soundness:

(pk,vk) « Setup(14),
(D,K.K',V,m,7") — A1, pk,vk):
d=Commit(pk,D)
VerLookup(vk,d,K,V,m)=1A
VerNoKey(vk,d,K’,7")=1 A
JkeKNK’

Pr <negl(A).

5.3 Extending RSA Accumulators to AD

Now we are ready to extend an existing dynamic universal RSA
accumulator scheme (e.g. [11]) to a weakly binding authenticated
dictionary scheme, given a feasible categorization of prime numbers.
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For simplicity, we first define
H(k,v)=Sample(A,0,k)-Sample(4,1,0)- Sample(A,2,h(k,v)),

where h(k,v) is a collision-resistant hash function.

Setup(11) — (pk,vk). Sample an RSA group G» with generator g. Set
pk=gand vk=g. The order of G, remains secret.

Commit(pk,D) — d. For each key-value pair (k,v) € D, we sample
three primes from each of the categories. The primes correspond
to the key, the value, and the relationship of the key and value
(represented by a hash h(k,v)). Formally, we compute

d(_gl—](k,u)ED [H(k.0)]

ProveLookup(pk,D,K) — . Denote the dictionary after removing
the key-value pairs with keys k € K as D\K. We produce a digest
of this sub-dictionary, serving as the proof. Similar to Commit,
the proof equals

. (_gn(k,u)eD\K [H(k,0)]

VerLookup(vk,d,K,V,r)— {yes,no}. Checks whether
alwwexnHE)] — g

Update(pk, D,d,K,V) — d’. We first compute 7 < ProveLookup
(pk,D,K), then build the new digest d’ based on 7:

d/ «— ﬁn(kyv)ED\K[H(k,U)] )

ProveNoKey(pk,d,D,K) — {A,B}. We compute (A, B) = Bezout(S,
[1xex Sample(4,0,k)), where Bezout(x,y) returns the Bezout co-
efficients A,B s.t. Ax+By=1 for x,y with ged(x,y)=1.

VerNoKey(vk,d,K,A,B) — {yes,no}. Checks whether

JA. ( g]_[kGKSampIe(/LO,k))B .

One important property that enables our optimization in Sec. 7

is aggregability. As shown in the ProveLookup and VerLookup in-

terfaces, we can aggregate a number of lookups into a set of keys

and provide a single proof for all of them. This means we can batch

non-conflicting transactions and prove/verify the memory access

once for all their lookups. This property is widely used in RSA ac-
cumulators [12]. Our AD scheme inherits this property.

As an example, suppose we want to compute a digest d of dictio-

nary D where D[1] =2, D[3] =4. Then, d = gH(l’Z)'H(3’4). To prove

D[1] =2, the server needs to compute 7 = gH(3’4)

H(1,2)

as the proof. To
verify, the client can check if 7 equals d. If the dictionary oth-
erwise does not contain the key-value pair (1,2), the server has to
compute 7 from d itself. By the Strong RSA Assumption, it is diffi-
cult to compute
it is not likely to produce a proof passing the verification.

The reader might wonder why we only used Sample so far but
not Verify. The reason is that, given that the circuit is computation-
ally weak and deterministic, it is impractical for the circuit to sample
prime numbers on its own. It needs the prover to supply candidates of
Prime numbers as auxiliary inputs, and it calls Verify to test primality
andits category (e.g., via Pocklington [42, 45]). Pocklington adds extra
conditions to the Fermat primality test to make the conditions suffi-
cient. Specifically, if there exists an integer a and a prime p such that
aN"1=1(mod N), p|N-1, p>VN-1,and ged(a™¥ D/ —1 N)=1,
then N is prime. With this result, the server can provide a small
prime number pg and prove its primality through a deterministic pri-

dl/H12), Therefore, even if the server is malicious,
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mality test, and “boost” it up by providing (r,a) s.t. r < po, ged(a” —
1, rpo+1)=1,a"?° =1 (mod rpo+1) = N =rpo+1. This is a prime
number by Pocklington. This process can be repeated multiple times
to reach a prime number that is large enough. Whenever the circuit
calls Sample on a nonce, the server needs to provide the prime num-
ber and po,ﬁpo,{a i»ri, 7 } to the circuit, where TTp, is the deterministic
primality proof for po, and {x;} are the proofs that a; and r; satisfy
the conditions. To make the whole process deterministic, the choice
of certificates a;,r; depends on the nonce. The nonce could be a key, a
value, or a hash value from akey-value pair. As the length of the prime
number only depends on the security parameter A, we only need to
boost O(4) times. For example, if we already know pg =59 is a prime,
to prove 827 is also a prime, we can pick a=2, r =14 as our certificate.

6 Single-Threaded 2PL Baseline

We present a baseline system that provides verifiability of atom-
icity and isolation properties. Although Litmus’s server can work
with any CC algorithm if it can access transactions’ interleaving in-
formation, we use single-threaded 2PL to simplify our discussion.
We also extend the design to multiple threads in Sec. 7.

6.1 Server

We first present Litmus’s memory integrity model. Next, we dis-
cuss its transaction wrapper and circuit compiler. Lastly, we explain
how a normal database interacts with these components.

6.1.1  Memory Integrity. The memory integrity scheme uses authen-
ticated dictionaries to maintain data integrity. The core design phi-
losophy of our memory integrity model is to make the circuit as
small as possible. Existing works do not suit our purpose because
they either need a variable length digest (e.g., Merkle Tree) or re-
quire significant time to verify. We use the same approach as Pantry
to enable a memory access interface for circuits [14]. As shown in
Algs. 1 and 2, the memory integrity model consists of two parts — the
provider and the checker. The provider runs natively on the server
and generates proofs for values read by the transactions. The checker
runs as a part of the circuit and checks the proofs. The server and
the client agree on the initial state (go,Dg) before the protocol starts.
We require an consistent initial digest, namely go = Commit(pk,Dy).
The initial digest does not have to cover all the possible memory
addresses. For example, Dy could be empty.

The memory integrity provider maintains two variables, S and
acc. The former (S) tracks the product of the elements, and acc stores
the latest AD digest. The provider also maintains a dictionary to
keep track of the memory changes. It initializes S to be the product
of the hashes of the key-value pairs in Dy and acc to go. It holds that
go=¢°. Due to our AD scheme, the digest go and the initial product
so do not have to include initial values for all the memory addresses
since initializing the memory is a significant cost for the client.

When the system calls GenReadProof (Alg. 1), Litmus computes
the corresponding proofs for the client and returns them. It first
checks if the memory address is in the local cache D. If yes, it returns
a lookup proof 7= gs/ H(k2) Otherwise, it returns a non-existence
proof of the key k, indicating that no values have been written to
the address k, and the circuit should accept an initial value.

The UpdateWrite operation is simpler (Alg. 1). It reads the old
value at address k from the dictionary D, and computes the lookup
proof w=¢5/H®&) Then_ it updates the digest to be 7/7k?) and the
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Algorithm 1: Memory Integrity Provider (on the Server
Side) with initial database state agreed as (go,Do).

Input: AgreedInitState = {go,Do }

1 S=[(k,v)ep, H(k,v):acc=go; D=Dy :
2 Func GenReadProof (k, v):
if k isin D then

‘ return 7 =g
else

|  return (A,B)=Bezout(S,Sample(A,0,k));
Func UpdateWrite (k,v):

/% initialization x/

S/H(k.0) ; /* generate the lookup proof */

/* non-existence proof */

e %N U e W

o' =D[k]; /% old value */

7 =GenReadProof(k,v’); /x must be a lookup proof x/
10 acc:nH(k'”); /* update the digest */
1 S=S/H(k,v’)-H(k,0); /% update the product x/
12 Dlk]=wv; /* update the dictionary */
13 return

Algorithm 2: Memory Integrity Checker (inside the
Wrapped Transaction) with initial database state (go,so).

Input: AgreedInitState = (go,So)
1 Global variable acc maintained by a dedicated wire;
2 FuncMemInit ():
3 | acc=go;
4 FuncMemCheck (k, v, 77,A,B):
5 if 7H(*2) —acc or (acc? - gBHK:Y) = g and v=0) then
6 ‘ returnl; /* verification passes */
7 return 0
8
9

/* initialize the local digest */

Func MemUpdate (k, o', v, 7):
if 7H(®9)1=acc then
/% verification failure */

10 return0;

k,v)

11 acc = rH( /* update the local digest */

12

return 1

product S accordingly. Finally, it updates D. Note that if we assume
no blind writes, it gets the value of r for free.

The memory integrity checker consists of three interfaces,MemInit,
MemCheck, and MemUpdate. Before a transaction starts, the circuit
first invokes MemCheck (Alg. 2) to determine whether the read val-
ues are correct according to its local digest, namely, 77 (k') = ace. I
this fails, it checks whether the proof indicates that the address was
not accessed before so the value should be an initial value. If both
fail, the function returns 0, indicating the integrity is compromised.

Afterthe transaction finishes execution, the circuit runsMemUpdate
(Alg. 2). The server provides auxiliary inputs: the address k, the old
value v/, the new value v, and the lookup proof 7 of the pair (k, ). It
first checks if 7 is valid. The circuit can skip the verification if we as-
sume no blind writes since 7 is already verified in the read operation.
Lastly, the circuit updates acc to be 7H%:0),

There are no loops in the pseudo-code in the memory integrity
checker. Every variable has a fixed length (only depending on the
security parameter) except A and B. The only concern here is comput-
ing large exponentiation. We can address this by letting the server
provide the result directly with a Proof-of-Exponent [11]. This tech-
nique can shrink down the size of A and B to be constants. Overall,
the memory integrity checker only contributes a constant number
of gates to the circuit per memory access in the transaction?.

6.1.2  The Transaction Wrapper. This component takes in a list of
transactions {7; } and the runtime traces RuntimeTraces, and builds
a single wrapped transaction (represented as a function) from
{T;} by chaining them sequentially and inserting memory integrity

2The memory integrity checker performs exactly three exponentiations, two multiplica-
tions, three comparisons, and two boolean operations per request. This logic produces a
constant number of gates in the circuit.
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Algorithm 3: The Serial Transaction Wrapper

Algorithm 4: The Workflow of the Server

1 Func TransactionWrapper (A set of transactions {T; }, runtime traces RuntimeTraces):

2 /* Construct the wrapped transaction */

3 Construct a graph 7 with nodes {T; } and edges (T; — Tj) € RuntimeTraces;

4 Perform topological sort on 7~ and get a list of transactions (T;)<:

5 Func WrappedTransaction (ReadVals, memproof):

6 MemInit ();

7 AllCommit = 1;

8 for each T; in(Tj)< do

9 if MemCheck (ReadVals, memproof) then
CommitFlag;, WriteVals = T;.run (ReadVals);
CommitFlag; = CommitFlag;+MemUpdate (WriteVals);
AllCommit = AllCommit * CommitFlag;;

else

14 ‘ AllCommit = 0;

return AllCommit;

return the function code of WrappedTransaction;

checking code before each transaction starts. It constructs a graph
representing transactions and their partial orders decided by the
CC algorithm. Then, it performs a topological sort on the transac-
tions such that the partial orders are all satisfied. Next, it builds the
wrapped transaction. The wrapped transaction takes in inputs of (1)
read values passed by the memory and (2) the proofs of the memory
digests. It initializes the local memory digest. Then, it runs the trans-
actions one by one and for each transaction T; in the list, it checks
if the corresponding read values provided by the input are correct
by using the memory integrity proofs. It runs the transaction with
the read values. While running the transactions, it collects the writ-
ten values and updates the local memory digest accordingly. If any
of the memory integrity checks fail, the return value of the wrapped
transaction will start with a 0 bit if evaluated correctly by the server.
The wrapped transaction does not need to represent a sequential
chain of transactions. As we will discuss in Sec. 7, forming a wide
network of transactions is better for performance; the shape of the
returned wrapped transaction is critical for exploiting parallelism.

6.1.3  Circuit Compiler and Circuit Matcher. The circuit compiler
compiles the wrapped transaction into a monolithic circuit on the
server side, and compiles each transaction into separate circuits on
the client side. The client runs the circuit matcher to determine if
the circuit claimed by the server matches the local sets of circuits.

The compiler converts the description of the wrapped transaction
(in high-level programming languages or in LLVM-like representa-
tions) into a Rank-1 Constraint System. A carefully designed circuit
compiler can optimize the structure of the circuit without changing
the underlying logic. This is similar to what modern compilers do
to re-order instructions for multi-issue architectures.

A malicious server is free to generate any circuit it prefers and
pass it to the client and the prover. Therefore, the client must check
whether the wrapped transaction circuit is valid or not. First, it
checks whether the logic of the transactions is consistent with that
in the wrapped transaction. Secondly, the circuit matcher checks if
the memory integrity checker in the circuit is correctly plugged in.
One can reduce these two tasks to pattern matching problems as the
same transaction logic would be compiled into the same circuit, and
a known memory integrity checker also results in a known circuit
description. Later, in Sec. 7, we will show how to extend Litmus to use
a deterministic CC algorithm with fixed batch sizes. In this case, the
client does not need to perform circuit matching since it can locally
produce the transaction interleaving (if the writesets do not depend
onthereadset). Instantiations of such deterministic circuit compilers
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Input: A previously agreed initial statue of the database AgreedInitState
1 Initialize DB.Data[*].LastReader =DB.Data[x].LastWriter=0;
2 Upon receiving message (MSG_TXN,{7; }) from the client:
3 Initialize the memory accumulator acc=Acc.Accumulate(AgreedInitState);
4 Initialize the proof list proofList « [ ], the read values readList « [ ];
5 DB.Run ({T;});
6 When T; reads an item DB. Data[ k]:
7 Acquire the shared read lock on DB.Data[k];
8 Append (DB.Data[k].LastWriter — T;) to RuntimeTraces;
9 Append T; to DB.Data[ k].LastReader;
Append (k,DB.Data[k]) to Tj.read_set;
Append GenReadProof(acc,k,DB.Data[ k]) to T;.proofs;
When T; writes an item DB.Data| k| with a new value :
Acquire the exclusive write lock on DB.Data[ k];
Append (DB.Data[k].LastWriter — T;) and
(DB.Datal k].LastReader — T;) to RuntimeTraces;
DB.Data[k].LastWriter=T;;
DB.Data[k].LastReader=0;
Call UpdateWrite(acc,k,v);
When a transaction T; commits:
Append T; proof's to proofList;
Append T;.read_set to readList;
When the database finishes execution, get the runtime traces
RuntimeTraces= {(T; — T})};,j and the final output y;
C=CircuitCompiler(TransactionWrapper({T; },RuntimeTraces));
Send (MSG_WRTXN,C) to the client;
Upon receiving message (MSG_PKEY,o) from the third-party:
Initiate the prover VC.Prove on C and o;
Feed readList and proofList as circuit inputs to the prover;
Feed RuntimeTraces as auxiliary information to the circuit to the prover;
Get the proof 7 from the prover and send (77, y) to the client;

exist and can be re-purposed for our verifiable DBMS [17, 40].

6.1.4  Normal Database and Concurrency Control. To verify the iso-
lation property, we need to track runtime traces (namely, transac-
tional dependencies) and guarantee memory integrity. We track
transactional dependencies because the circuit should follow the in-
terleaving of real transaction execution (otherwise the read values
and proofs provided by the memory integrity provider are inconsis-
tent). Furthermore, the dependency information can serve as hints
to the VC prover to prepare the proofs faster. We make the following
changes to the 2PL algorithm to obtain transactional dependencies,
and prepare memory integrity proofs and memory digest updates.

We add two metadata fields to the data items, LastReader and
LastWriter, indicating the set of last readers and last writers, re-
spectively. The server initializes all of the data items in the database,
and sets DB.Data[*].LastReader and DB.Data[«].LastWriter to
empty. Upon receiving a message (MSG_TXN, {T;}) from the client,
the server initializes acc, the memory digest on the server side. It
then sets RuntimeTraces to be an empty set. In addition, the server
also initializes the list of proofs of memory integrity to be empty.
Then, the normal DBMS starts processing the transactions.

Upon a read request on address k from the transaction T;, the
server firstruns normal 2PL to fetch the shared read lockon DB . Datal[k].
Then, it infers a partial transaction order (DB.Data[k].LastWriter
— T;) by looking at the LastWriter field of the data item, and en-
forces Read-After-Write dependencies. The server adds T; to the
LastReader, and a tuple (k, DB.Data[k]) to the read set of T;. The
server generates amemory integrity proof and appendsit to T;.proofs.

For a write request to address k from the transaction T;, the
server first runs the 2PL logic to fetch the write lock on DB. Datal[k].
Then, the server creates the partial order information by appending
(DB.Datalk].LastWriter — T;) and (DB.Data|k].LastReader —
T;)toRuntimeTraces.Itthenresetsthe LastReaderandLastWriter
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fields, and notifies the memory integrity provider to update the digest
with a new write on k with value v.

When a transaction T; commits, the proofs and read set of T; are
appended to the proofList and readList, respectively. After all
the transactions are finished, the server stores RuntimeTraces and
the final output of the transaction set, denoted as y. The output y
will start with a bit that indicates if any memory integrity check has
failed. Also, y can include other information depending on the appli-
cation. Then, the server calls TransactionWrapper with {T;} and
RuntimeTraces, and sends back the compiled circuit C to the client.
Recall that the client will check this circuit with its local circuits cor-
responding to each transaction. If the check succeeds, the client noti-
fies the key generator to produce keys. Upon receiving the message
(MSG_PKEY, o), the server then starts the prover with the readList
and proofList, as well as the RuntimeTraces as auxiliary informa-
tion to speed up the proving process. When the prover produces the
proof 7, the server sends it along with the output to the client.

6.2 Client

When Litmus’s client sends a batch of transactions {T;} to the
server, it also compiles each transaction T; into a small circuit ¢;. The
client then waits for the circuit C of the wrapped transaction from
the server. The client tries to match the circuit C with its local cir-
cuits {c;} by pattern matching. If successful, the client sends C to
the key generator and gets the verification key back. Upon receiving
the proof 7 and the commit result y, it checks if the proof x is valid
with respect to y (i.e., contains an 1 bit, indicating whether all the
memory checks passed), the circuit C, and the transactions {T;}, us-
ing the verification key 7. If the verification passes, the client accepts
the output and the proof; otherwise, the client rejects.

6.3 Verifying Atomicity and Isolation

We contend that Litmus’s design guarantees atomicity and iso-
lation. For atomicity, the wrapped transaction in Sec. 6.1.2 chains
the transactions sequentially, and so evaluating the circuit implies
the effect on the database is equivalent to running the transactions
one by one. The DBMS cannot partially execute a transaction if the
wrapped transaction evaluates honestly. For isolation, the memory
integrity model guarantees that the server can never cheat on the
data values. Every read operation will return the latest written value
to the designated memory address. Therefore, the result that the
client receives is exactly the same as what comes from an honest
server in an ideal world, which runs the transactions sequentially.

7 Extension to Multi-Threading

In Sec. 6 we described a single-threaded baseline. In this section,
we present an extended design and optimizations to make Litmus
practical. Parallelism provided by modern multi-core architecture
is crucial to efficient verifiable DBMSs. However, it is non-trivial for
VC frameworks to work in parallel. Existing works on VC require
that the whole circuit to be evaluated is ready before the proto-
col starts. Apart from this, they are designed and described for a
single-threaded machine because parallelizing the process has lim-
ited theoretical interest. There is little work that parallelizes the steps
inside the VC framework efficiently outside of [58, 72].
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Algorithm 5: Deterministic Reservation

Input: A set of transactions 7 = {T; } and the batch size m
1 R=[00,00,...,00]; /* size n x/
2 Func Reserve (T;):
Run Tj;
Whenever T; readsDB.Data [x]:
T;.read_set.insert(x);
if x isin T; WriteVals then
| returnT;WriteVals[x]
return DB.Data [x]
9 Whenever T; writesval toDB.Data [x]:
T; WriteVals.insert(x,val);
Atomic do:
if T;.p <R[x] then
/* smaller number means higher priority
‘ R[x]<T;.p

® a9 Gk W

*/

Func Commit (T;):

/* Check the reservations

for x € Tj.read_setUT; .WriteVals do
if T;.p <R[x] then

return no

*/

/* Apply the updates

for x,val € T; WriteVals do

22 | DB.Data[x]«wval

return yes

Func Process (7,m):

Generate priorities T p for every transaction T € 77
do

*/

Reset Rtobe [o0];
Take m transactions as 7~ from 7~;
In parallel call Reserve(T) forall T € 77;
In parallel compute r7=Commit(T) forall T € 77;
Provide a non-conflicting batch B={T|rp =yes};
T —T\B

while 7 # 0;

7.1 Concurrency Control

We use the deterministic reservation protocol that processes trans-
actions by batches as the CC algorithm for the normal DBMS part [9,
67]. For each batch, it runs two phases in parallel. Alg. 5 shows the
pseudocode for the algorithm. It allocates a global array of reserva-
tion R and sets it to be infinity. Given a set of transactions 7" and a
batch size m, the entry function Process first assigns a determinis-
tic and unique priority T.p for each transaction T. Then, it processes
them in batches. For every batch, it first calls Reserve(T) in parallel
on each transaction T in the batch. Any for-loop parallel framework
like OpenMP would be sufficient. Then, it computes the return value
rr of Commit(T) for each transaction T in parallel. Lastly, it collects
all the transactions with rr =yes as the non-conflicting batch, adds
it to RuntimeTraces, and removes these transactions from 7.

The Reserve function runs the transaction and collects its read
set and write set. Additionally, for every write operation, it also at-
tempts to reserve the key by setting R[x] to be the priority of T;,
if T; has a higher priority (7;.p is smaller), where x is the key. The
Commit function first checks if all the reservations are still valid. If
any other transaction overwrites the reservation, the function re-
turns no right away as there is a conflict. Otherwise, it applies the
batch to the database. Finally, the function returns yes.

Deterministic reservation identifies subsets of transactions that
can be executed in parallel without conflicts. These transactions are
perfect for the transaction wrapper since they can be merged to-
gether. And this brings several advantages:(a) Reduce the number
calls to the memory integrity checker. Exploiting the aggregability
of our AD scheme, we can prove and verify a processing batch of
non-conflicting transactions with a single proof. This reduces the
size of the circuit and the number of auxiliary inputs. Both contribute
to reducing the prover computation. (b) Simplify circuit matching.
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The client can locally compute the same interleaving as that on the
server thanks to the determinism, and generate fewer circuit pieces.
(c) Flatten the circuit by reducing its depth. The depth of the circuit
is critical for the prover efficiency for some VC frameworks [28].
Moreover, if the transactions are generated from the same template
or stored procedure and are similar to each other, we have parallel
repetitions of similar structures in the circuit. This repeated struc-
ture pattern can be utilized to apply a specially designed proving
algorithm [57] that improves the prover efficiency.

When the contention level of the underlying benchmark workload
is not high, the improvement in terms of throughput is significant.
As we will show in Sec. 8, enabling batching yields a throughput
gain of around 10X. Because the CC algorithm is deterministic, the
client is able to produce the same batch of transactions if their write
targets do not depend on the read values (as in YCSB and the subset
of TPC-C we evaluated). If the transactions’ writeset depends on the
read values, our current design lets the server send the circuit as well
as the read sets and write sets to the client. The client can validate
the correctness of interleaving by checking whether the transactions
in the same batch are non-conflicting or not using a hash table that
maps accessed keys to transaction IDs. Alternatively, we can encode
the non-conflicting property as a check in the circuit. Given two
variables X and Y, the relationship X # Y can be encoded using an
auxiliary input Z provided by the server s.t. Z-(X—Y)=1. This trick
helps the server prove the transactions access different places.

Although Litmus also supports non-deterministic CC algorithms
(Sec. 6), we justify our choice of deterministic CC algorithms here.
For a non-deterministic algorithm, the client cannot produce the
wrapped circuit itself because the interleaving on the server is likely
different and therefore, the circuit would be different. The server has
to send the circuit to the client for it to perform pattern matching. This
adds to communication cost and increases latency. However, batch-
ing techniques are still feasible as long as the CC algorithm, which is
not necessarily deterministic, can produce batches of non-conflicting
transactions. Note that when the CC algorithm is not deterministic
and does not work by exploiting non-conflicting batches, like the
2PL baseline in Sec. 8, our multi-core optimization does not apply.

7.2 Pipelining Provers

Following the determinism of the CC algorithm, the transaction
wrapper and the memory integrity provider are able to work on their
own and do not have to wait for the traces from the normal database
part. This not only enables the merging of non-conflicting transac-
tions, but also directly increases parallelism and reduces interaction
between components inside the server.

We enable parallel proving without modifying the underlying
VC framework. Namely, we break the whole circuit into sequential
pieces that each consist of multiple transaction batches, and let a sin-
gle thread work on the proof of a single part of circuit. As shown
in Figure 2, we use a dedicated thread (dispatcher) to read runtime
traces from the normal database module. Once the dispatcher gathers
enough transactions for a circuit piece (e.g., Batch 1-5), it launches
anew thread to work on generating the circuit for the transactions
and generating the proofs. If all the proofs generated by the prover
threads are valid, and the values passing through connecting circuit
parts are consistent, the client is convinced of the correctness and se-
mantic properties. Fortunately, the values between connecting parts
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Figure 2: Litmus Pipelining — We start multiple provers with each pro-
ducing on a number of batches.

are only the memory digest and the single bit indicating if all the pre-
vious checks are successful. The cost of checking consistency is min-
imal. Enabling multiple provers yields an extra gain of around 25x%.

8 Evaluation Results

We have built a preliminary verifiable database system [66] with
prover pipelining and evaluated it against the Yahoo Cloud Serving
Benchmark [21] and the TPC-C benchmark [37] OLTP workloads.

The YCSB benchmark mimics a cloud database service with a ta-
ble of 10 million rows with each row storing 1kB data. In total, the
database system hosts 10G in-memory data if not stated otherwise.
We also tested a larger YCSB table (see Sec. 8.2). The access pattern of
the rows follows the Zipfian distribution with the Zipfian parameter
0=0.6. Each transaction accesses two rows where each access has a
50% chance to be a write operation or otherwise is a read operation.

The TPC-C benchmark simulates 64 data warehouses and per-
forms entry orders on them. We include two types of transactions
Payment and New Order, which cover around 90% of all the TPC-C
transactions per the specification. Moreover, we further assume that
customers are selected based on IDs only and the transactions do
not insert into the HISTORY table because no transactions read from
this table. In this way, the writing targets of transactions do not de-
pend on the read values. Therefore, the server does not have to send
the interleaving to the client, which can produce the circuit by itself.

We tested both of the benchmarks with a real DBMS, PostgreSQL,
by BenchBase [24]. For YCSB, PostgreSQL has a throughput of 5759
txn/sec. For TPC-C New Order and Payment, PostgreSQL reaches
a throughput of 506 txn/sec and 1337 txn/sec, respectively.

We instantiate the VC framework with Pequin [51]. We bypassed
the compiler, and hand-wrote the circuits of the transactions and
memory integrity checker to guarantee efficiency and determinism.
The backend of Pequin is a zero-knowledge succinct non-interactive
argument of knowledge (zk-SNARK) protocol that produces the final
proof showing that the arithmetic constraints are actually satisfied.
Specifically, the backend is built based on the libsnark project, an
optimized version of the Pinocchio scheme [44].

Our implementation serves as a proof of concept. It consists of only
the server side software as we determined that the server efficiency
decides the throughput of the DBMS. We include key generation on
the critical path, which can be done in parallel as our CC algorithm
is deterministic. For interaction between the client and the server,
we simulate a thread sleep of 1 ms or 100 ms. The implementation
assumes division-intractability for large integers of shape x + P, where
P is a pre-sampled large prime number. The underlying curve we
use in the proving system is BN-128 [4], and the RSA group is small.

We run Litmus on a machine with two Intel Xeon 5218R CPUs (20
cores per CPU, 2x with hyperthreading). The machine has a 173 GB
RAM. We include the following baselines for comparison.
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Figure 4: Throughput vs Verification Batch Size - TPC-C

Litmus-DRM is the Litmus system using Deterministic Reserva-
tion with Multiple Provers. It uses a processing batch size of 81,920
for the CC algorithm. If not explicitly specified, this baseline uses
4 threads for the normal database component, 1 thread for the
runtime tracing, and 75 threads for the provers.

Litmus-DR is the same as Litmus-DRM except with a single prover.
Litmus-2PL is the Litmus system using the 2PL algorithm in Sec. 6.
AD-Interact-1ms/100ms is an interactive baseline that follows the
vSQL style interaction between the server and the client for every
transaction. The client maintains a digest and performs lookup
proof verification locally. By issuing the transactions sequentially,
serializability and atomicity are guaranteed. The simulated la-
tency for the network roundtrip is set to 1 ms to mimic a LAN
connection, and 100 ms to mimic a connection across countries
(e.g., from Los Angeles to Tokyo), respectively.

Merkle Tree is the folklore approach to realize authenticated data
delegation. For every lookup and every update, the server needs
to supply a Merkle path consisting of O(logn) hashes. The client
maintains the root of the Merkle tree. We use SHA-256 as the un-
derlying hash algorithm. To make sure the experiment finishes
in a reasonable time, we use a smaller table with only 1024 rows.
No-Verification-2PL/DR runs 2PL / Deterministic Reservation at 64
threads without any verification or any logging/traces collection.
They serve as performance upper bounds.

8.1 Throughput and Latency

The first experiment evaluates the runtime performance of Lit-
mus by measuring the throughput when the verification batch size
changes. We run the baselines with a single verification batch.

For all the baselines, the results in Figure 3a show that throughput
increases when the verification batch is larger because the verifiable
framework has overhead that grows sublinearly with the number of
constraints (namely, the circuit size). When the circuit is larger, the
amortized overhead becomes smaller. Litmus-DRM reaches 17,638
txn/sec when the number of transactions in a batch is 2.6m. This is
two orders of magnitude slower than the no-verification baseline,
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and 24.7x faster than Litmus-DR, which uses a single prover thread
achieving 714.2 txn/sec at 82k transactions. The peak performance
of Litmus-DR is 12.6X faster than Litmus-2PL because it exploits ag-
gregation and transaction parallelism. Litmus-2PL is slower than
the deterministic reservation baselines due to less parallelism.

The interactive baselines plateau when the number of transac-
tions is larger than 320. The network latency becomes the bottleneck.
Further, the interactive baseline with simulated network latency
of 1ms starts to perform worse when the total number of transac-
tions increases. This is due to the computational overhead of the AD
scheme. Every single update of the digest invalidates all the proofs.
The server has to either compute the witnesses from scratch when
needed, or cache the proofs and update them for every digest up-
date. Both methods become more expensive when the number of
elements is larger. For the Merkle Tree baseline, the computation
overhead of SHA-256 degrades throughput. Our data collection pro-
cess stops when the lines start to plateau as the slow baselines take
an unacceptable amount of time to finish on large workloads.

The second experiment results in Figure 3b show the average
latency of the transactions for each of the baselines. The latency
covers the time period from the point when the user sends the trans-
action to the server to the point when the transaction commits and
the user receives the proof(s). The latency for Litmus baselines is
comparatively higher since the proving algorithm of the VC frame-
work has a significantly long critical path. Among these baselines,
Litmus-2PL has the highest latency since all the transactions not only
compile into a deep circuit, but also go into a single proof. On the
contrary, Litmus-DRM generates a smaller circuit and utilizes multi-
ple provers, with each prover processing a smaller circuit piece. The
transactions in those pieces that finish earlier have a smaller latency.
The deterministic reservation no-verification baseline starts with a
higher latency than the 2PL counterpart, as the CC algorithm needs
to wait for a large batch. The latency of the interactive baselines
remain stable because the latency is dominated by the simulated net-
work roundtrip when the number of transactions is smaller than
1,000. Then, the latency starts to get dominated by the computation,
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Processing Batch Size

as we can see clearly for the interactive-1ms baseline.

Figures 4a and 4b show the performance of Litmus and baselines
on TPC-C New Order transactions and Payment transactions. We
scanned the processing batchsize for deterministic reservation and
found that a smaller processing batch is preferable for both TPC-C
transactions. The performance of both no-verification baselines are
stable for New Order and Payment, because deterministic reserva-
tion has a small batch size. For New Order transactions, the peak
performance of Litmus-DRM is only 280.6 txn/sec. This is because
New Order transactions execute more queries, leading to more cryp-
tographic gates. The results are similar for Payment transactions.

8.2 Sensitivity Study

We next discuss the sensitivity of Litmus to parameters including
processing batch size and the number of prover threads.

Figure 5a shows how the throughput of the deterministic reser-
vation baselines change when the processing batch size changes.
The x-axis is the batch size and the y-axis is the throughput. Both
of them are in log scale. We can observe that the no-verification
baseline remains stable with batch size, because the bottleneck of no-
verification is the underlying workload contention. However, for the
Litmus baselines, we can see that the throughput grows as the batch
size increases due to the larger batch size enabling better exploitation
of parallelism and thus the system incurs less prover computational
cost. Finally, the throughput decreases because the prover capac-
ity gets saturated while a too large batch harms the performance
of CC. We can see a factor of up to 36.2Xx between the Litmus-DRM
and Litmus-DR because of prover pipelining. Figure 5b presents the
latency information. When the processing batch size is extremely
small, the deterministic reservation CC scheme degrades to a sequen-
tial scheduler, incurring significant latency. The latency improves
with larger batch sizes, and plateaus when the batch size increases be-
yond 10%. The latency of the no-verification baseline increases when
the batch size is large, because the too large batch size slows down
the synchronized portion of the deterministic reservation algorithm.

Figure 6 shows the throughput and latency of Litmus-DRM when
the number of prover threads changes. We see that the throughput
scales well up until 40 threads and starts to plateau when there are
more than 60 prover threads. As for the average latency, it drops
quickly from 514.3 seconds to around 100 seconds when there are
more than 40 prover threads.

Figure 7 shows the time breakdown of Litmus-DRM running a
verification batch of 2.6m transactions while varying the number
of prover threads. We can observe that with a smaller number of
prover threads, runtime trace processing (including computing the
memory integrity witnesses) takes around 18% of the time. However,
as we increase the number of prover threads, key generation and
proving gradually take a greater percentage of the time, ending up
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with 51% and 38%, respectively. The verification takes a modest and
stable proportion regardless of the number of prover threads. Since
we hand-wrote the circuit, the circuit generation always takes min-
imal time (not noticeable in the figure). The size of the proofs are
constant, namely, 312 bytes per prover thread and 30 KB in total. It
takes the client around 300 sec to verify each proof. The key pair has
alarge size, but we can use universal VC schemes (Sec. 9) where key
pairs are not necessary.

Figure 8 shows how the throughput changes with the contention
level of the workload. We observe that all three deterministic reserva-
tion baselines are impacted heavily. Since a higher contention level
makes more transactions conflict with each other, each round of de-
terministic reservation produces a smaller non-conflicting batch.
Therefore, it needs more rounds to finish processing the transactions.
This directly affects the performance of Litmus with deterministic
reservation as it cannot benefit from aggregating a large number
of transactions. Note that, the proving capability depends only on
the circuit size, which does not change with the contention level.
When the contention level is high, the performance of Litmus is close
to the no-verification baseline with DR because the performance
is bounded by the CC algorithm. Comparatively, the 2PL baselines
are less sensitive to the contention level. The interactive baselines
performance increases since a higher contention level brings better
cache utilization.

Figure 9 shows how Litmus performs for varying table sizes. We
observe that throughput decreases slowly as the table size doubles.
However, we ran out of memory at a 160G YCSB table, as our ma-
chine only has 173 GB RAM and we need to allocate space for the
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traces. We can project that Litmus has promising performance for
even larger in-memory databases.

8.3 Comparison with Elle

To understand how Litmus performs compared to alternatives,
we evaluated Elle [35] with our codebase. Elle verifies serializabil-
ity by inferring from the transaction read values and write values.
Specifically, it changes all the write operations into list appends to
get a history of value versions. It looks for inconsistency between
transaction commit orders and the actual value histories.

We ran the no-verification baseline with the YCSB benchmark and
stored the list appending traces into the RAM disk to avoid perfor-
mance impacts from storage I/O. Elle reads and analyzes the traces,
and outputs the result. For fairness, we exclude the time of Elle read-
ing the traces, and include only the actual analyzing time. With 3.5m
txns3, Elle spent 576 sec, reaching a throughput of ~ 5.5k txn/sec.
This is at the same level as reported in [35].

Both Cobra [55] and Elle are trace-based, which means they must
expose the trace to a trusted entity (a strong verifier able to infer the
dependency graph) or the client itself. In contrast, Litmus’s client
only needs to obtain a single constant-sized proof and verify it in
constant time. Moreover, Elle requires changes to the table schema
(replacing fixed-length values into var-length lists) to make accurate
inferences, and is designed to perform offline tests for software bugs,
but not for a continuous/growing history. In the case where an ac-
tive adversary is involved, it might exploit the incompleteness of Elle
and perform violations with an irrecoverable history. Different from
Elle, Litmus checks correctness properties on the fly and provides
protection on the exact transactions submitted by the client. Mean-
while, Elle relies on the server to honestly provide a full history, and
the client to run an inference algorithm to look for serializability
violations.

9 Discussion

We next discuss some of our design insights and future directions.
As mentioned in Sec. 2, the motivation of Litmus is untrusted cloud
DBaaS services. One use case is critical cloud computing scenarios
where mistakes could have catastrophic consequences. Examples in-
clude financial institutions and criminal records. Our design supports
large databases because the digest is constant-sized and verification
takes only constant time. The prover running time depends only on
the complexity of transaction logic, but not directly on the data size.

Why Cryptography: Compared to the interactive baseline, Lit-
mus lets the client delegate the “interactive verifier” onto the server.
Cryptography ensures that the verifier is working correctly. This
delegation enables (1) aggressive exploitation of parallelism and
aggregability because the server now has the freedom to re-shape
the verifier circuit for better performance, and the sequential order
is not necessarily materialized within the server (e.g., determinis-
tic reservation only produces batch-by-batch order); (2) network
communication becomes internal data exchange, saving significant
overhead; and (3) lightweight clients, which do not need to per-
form heavy transaction replays, (e.g., scanning the whole database
requires sending the whole database to the client in [32]).

3We could not push it further because Elle exhausted our server’s 173 GB memory.
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Universal Verifiable Computation: We currently use Groth16 [29]
to instantiate the verifiable computation primitive. However, this
comes with a trade-off regarding the trusted setup. Namely, we as-
sume a trusted third-party needs to know the circuit before the
proving starts. In our evaluation, we only implemented the server
side that performs the trusted setup for the client; there is a secu-
rity issue because the server might generate a malicious setup that
allows it to cheat. This is not a problem for the situations in our eval-
uation, where the transactions’ logic (i.e., circuits) is fixed and the
setup only needs to be done once.

However, if the transactions are not generated from a fixed tem-
plate, the client has to generate the setup for every new circuit. This is
computationally expensive, violating our assumption that the client
is lightweight. A better alternative is to replace the instantiation
with a universal verifiable computation framework like Plonk [26],
whose setup is circuit-independent.

Real-time Transactions and Hybrid Approach: Our current
design has a fundamental issue of having long latency. Due to the
current status of cryptographic tools, the latency of verification is
inevitable for batched verification. To address this, we propose two
solutions: (1) we can include a hybrid mode, where Litmus can switch
between batch verification and interactive verification in real-time.
The memory digest of these two modes are compatible. Whenever
a client needs faster responses, it can mark the transactions so that
the DBMS executes them in the interactive mode that has a lower
throughput because it cannot take advantage of aggregations, but it
will have a lower latency. (2) We can decouple the transaction results
and the cryptographic proof; i.e., Litmus can issue the results to the
client as soon as they are ready. The client receives the proof from
the server asynchronously. There also could be special transactions
that check for application invariant properties.

Consistency and Durability: A consistent transaction changes
the database only in certain ways. In a bank system, the rule could
be that the sum of all balances remains the same after a transfer
transaction. To verify consistency, we apply similar methods, but
specializing the memory integrity checker into customized check-
ers. Durability guarantees that once a transaction is committed, it
will remain committed even if the system crashes. To provide veri-
fiable durability, we have to rely on external shared storage because
there is no way to guarantee that the server has written to the disk
without letting the client have access to it. One approach would be
to design new hard drives with secure enclaves [22, 38]. We believe
recent advances in in-storage computation that enable data storage
to perform programmable tasks [61] may be promising.

10 Conclusion
We proposed a potential solution to data integrity issues and at-

tacks on transaction semantic properties in database outsourcing.
The Litmus system not only prevents a malicious server from return-
ing wrong results, but also provides an answer to ‘ACIDRain attacks’
[65] by preventing attackers from exploiting isolation levels.
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