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ABSTRACT

Table search aims to retrieve a list of tables given a user’s query.
Previous methods only consider the textual information of tables
and the structural information is rarely used. In this paper, we
propose to model the complex relations in the table corpus as one
or more graphs and then utilize graph neural networks to learn
representations of queries and tables. We show that the text-based
table retrieval methods can be further improved by graph-based
predictions which fuse multiple field-level information.
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1 INTRODUCTION

A massive number of tables extracted from the Web have been used
in various research tasks such as question answering [4], entity
linking [3, 23] and table augmentation [2, 5, 10, 21]. Previous table
search methods [6-8, 16, 17, 22] either treat a table as a regular or
multifield document. The structure of a table is underutilized. Chen
et al. [7] slice a table into smaller pieces and select only the most
salient ones for final ranking. However, the structure information
across different tables is missed. As a structured document, a table
itself can be naturally viewed as a graph. The words appearing in
the same column or row usually have certain relationships. Such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °21, November 1-5, 2021, Virtual Event, QLD, Australia

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11...$15.00
https://doi.org/10.1145/3459637.3482140

Bethlehem, PA, USA

relationships can hardly be captured by models which treat the table
as flat texts. As shown in Figure 1, we know that “Euro” and “United
States Dollars” are two different types of currencies since they
appear in the same column “Currency”. If the table is flattened into
a sequence, the existing methods [7, 14, 22] for text retrieval will
neglect the semantic relationship between table attributes/headers
and table values.

Page Title: List of circulating currencies

Section Title: List of circulating currencies by state or territory

Caption: The list denotes the circulating currencies by all countries
and territories across the world.
Table T;:

Austria Euro EUR
Germany Euro EUR

United States United States dollar usb

Figure 1: An example of a Web table with page title and sec-
tion title as context fields.

In this work, we propose a graph neural network-based method
for ad hoc table retrieval. By explicitly modeling the table corpus as
one or more graphs, we directly encode the structural information of
the table which is often ignored by previous methods. Our principal
contributions are: We propose a novel multi-graph neural network
method for ad hoc table retrieval. We propose table-based pointwise
mutual information (TPMI) to calculate the semantic correlation
of terms in the table corpus. The experimental results demonstrate
that our proposed method outperforms baselines and can improve
the performance of previous sequence-based methods.

2 METHOD

In this section, we introduce the details of our proposed Multi-
Graph NEural networks for Table Search (MGNETS for short).

2.1 Problem Statement

In the task of table search, given a query q usually consisting of
several keywords q = {ki, ka, ..., k;}, our goal is to rank a set of
tables D = {71, T3, ..., T, } in descending order of their relevance
scores with respect to g. Each table T; has corresponding context
fields {pi1, ..., pir }- A data table is a set of cells arranged in rows
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Figure 2: An example of constructed graphs from a table.

Table 7; :

and columns like a matrix. Each cell could be a single word, a
real number, a phrase or even sentences. The first row of a table
is the header row and consists of header cells. The context fields
associated with a table instance depend on the source of the dataset.
For example, a table from Wikipedia usually has caption, page title,
and section title as context fields as shown in Figure 1.

2.2 Graph Construction

To construct the graph G for table search, we first need to define
the nodes set V and edges set & of the graph. We have two types
of nodes in the graph. Every unique term that appears in the data
tables or context fields is represented as a term node v; € V.Every
data table has a corresponding table node v € V . We add an
edge between two nodes if they have a co-occurrence relationship.
We list the possible types of edges below.

Table-Term Edges. A term node can be from either a table or a
context field of a table. A table-term edge (vT, v;) € & is constructed
if the term ¢ occurs in the table T or any context fields of table T.
We can also treat queries in the training set as another context field.

Term-Term Edges. In previous work of applying graph neural
networks for text classification [13, 20], a fixed size sliding window
is applied on all documents in the corpus and the pointwise mutual
information (PMI) between two terms is calculated to determine
the corpus-level co-occurrence. Unlike a text document, a data ta-
ble has a non-linear structure so that defining the co-occurrence
relationship using a fixed size sliding window and calculating the
PMI is not directly applicable. Instead of using a fixed size sliding
window, we treat every column or every row as the sliding window.
For a data table with r; rows and ¢; columns, there are r; + ¢; con-
text windows. Now we define the table-based pointwise mutual
information (TPMI) score for term pair #; and t;:

P(t;, t}) C(t;,tj) xC

TPMI(1;, 1)) = logp(ti)P(tj) = log C(t)C(t)) W

where C = ¥, (r; + ¢;) corresponding to the total number of
sliding windows in all data tables, C(t;) is the number of rows
and columns containing ¢; and C(t;, t;) is the number of rows and
columns containing both ¢; and t;. A positive TPMI score indicates
two terms are semantically correlated. We add (t;, t;) into & if two
table terms t; and ¢; have a positive TPMI score.

Multi-graph Construction. We can construct one heteroge-
neous graph which contains all types of edges mentioned above.
However, the semantic relation of a term pair in one field does not
imply the relation in another field and constructing a graph with
all possible edges could result in ambiguous semantic meanings.
Therefore, we construct multiple subgraphs and each subgraph
captures certain semantic relations among nodes. In this paper, we

construct two subgraphs Gy = (Vy, &Ey) and G, = (V, E¢):

Va={VruVu} YV, = {Vy UV}
Ea = {(v3,9))|(vi,v5) € &, 05,05 € Vy}
Ec = {(vi,0))|(01,0)) € &, 05,05 € Ve}

where Vr is the set of nodes representing data tables, V;, repre-
sents all term nodes in data tables, and V., represents the nodes
constructed from context fields. The first subgraph contains term
nodes from data tables while the second subgraph contains term
nodes from context fields. An example of constructed graphs G;
and Gy; from table T; is shown in Figure 2. G; can be constructed
by merging all G4; for T; € D. G. can be constructed in a similar
way. Note that table nodes are implicitly connected by term nodes.

2.3 Multi-graph Encoder

After obtaining the constructed graphs G; and G., we can employ
graph neural networks to learn the embeddings of nodes. The rep-
resentation learning process of GNN models can be divided into
two steps: neighborhood aggregation and combination [19]. The
k-th layer of a GNN model is:

hR) = (O (1) () ((p1E=1) e N(o)})) )

where hz(,k) denotes the feature for node v € V at k-th layer, N'(v)
denotes the neighborhood nodes of v € V. (//(k) is the aggregation
function at k-th layer which aggregates the representations of v’s
neighbors. gzﬁ(k) generates the node representation of v at the k-th
layer by combining its representation from the previous layer and
aggregated neighbor representations. For different GNN models, the
aggregate/combine functions are different [12, 15, 18]. In this paper,
we use Graph Isomorphism Network (GIN) [19] as the multi-graph
encoder to learn node embeddings in Gy and G,:

k k k k- k-
B =MLP (1 + e N ) )

uEN(vd)

B = MLP® (@ R Y nEY) @
ueN(vc)

where ¢ and ec(k) are learned parameters. Multi-layer percep-

trons (MLPs) are used to obtain features at k-th layer from ag-
gregated node embeddings. We initialize the node embeddings
h[(io) e RVl and hgo) € RIVel with one-hot encoding features for
vg € Vyand vc € V, respectively. After stacking I layers of GNN
models, we obtain [ + 1 embeddings for each node in G; and G,.

2.4 Pooling Layer

The community has been studying how to design readout functions
at the node level for node classification and graph level for graph
classification [12, 15, 18, 19]. In this section, we propose to learn
query and table representations from node embeddings obtained
from Section 2.3.

Given a query table pair (g, T;) and G4, we can find the set of
nodes Vy € V; and Vy; © Vy constructed from query g € Q
and table T; respectively. To learn the representation of g and T;
in G4, we can use the graph-level readout function which has
been previously used in graph classification. However, to learn the
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Figure 3: An illustration of the overall framework. From the corpus we construct two different graphs. After the message
propagation through the multi-graph encoder, we learn query and table representations from each graph. We obtain the final
ranking score from graph-based prediction and also the text-based prediction from a text encoder.

representation of a query or a table at k-th layer, we operate on the
subsets of nodes instead of all the nodes:

h;’;) = sum({h$" 0 e V), P = sum({hF 10 e Vi) (5)

In experiments not shown here, we find that summation of node
embeddings is more effective than mean pooling or max pooling.
Equation (5) does not require additional parameters which makes
it computationally efficient. Therefore, we use it for the initial
node embeddings which are one-hot encoding features. Inspired by
SimGNN [1], we use the following attention-based pooling function
to learn query/table representations for other layers (k > 0):

-

ho =HL - o(HL) - Mean(HU) W) )
T

my =1 o MeanFw) )

where Hés) e RIValxd, Ht(lk) € RIVilxd genotes node embeddings

of the query and the table respectively; Mean(-) calculates the av-
erage embedding after the node embeddings are transformed by a

trainable weight Wl(k) € R%*d_Note that Wl(k) is a shared parame-
ter. o(-) is the sigmoid function and its output can be considered as
the weights for query/table nodes so that the final representation
is the weighted sum of all node embeddings.

Given the context fields of T; and g € Q, we obtain the query
representation h((;z) and context field representation hg.c) from G,
in a similar way based on Equations (5 - 7).

2.5 Ranking Layer

(k)
qc />

In Section 2.4, we generate the query representation (h;’;) and h
table representation (hg()) and context field representation (hg.c))
from each layer of the multi-graph encoder with a pooling layer. In
order to predict the final relevance score of a given query table pair
(q, T;), we first generate the single-graph predictions where each
uses different graph information. In the following, we show how
to generate the prediction based on features learned from G;. First,
the query representation and table representation are fed into two
separate multi-layer perceptrons (MLP):

r(k k k k k k
hy = MLPS (D, =ML () @)

Then a neural tensor network (NTN) is used to generate the predic-
tion at k-th layer (Equation (9)).

(k)
(k) _ 7T R) () ) o (P (k)
Yg =hog Wy by + W [hg&) +b) ©)

ti

We use a linear layer to combine the predictions from all layers.

Yg = [y{(io); s y((il)]W4 + by (10)
The prediction y. based on the embeddings of G. is similar to the
steps in Equations (8-10). Another linear layer is used to combine
the predictions from different graphs: y; = [yg;yc]Ws + b3. Our
method can be easily extended to have more than two graphs. For
example, we can build separate graphs for each context field and
combine predictions for each graph. For the purpose of explanation,
we construct only one graph for all the context fields.

We can also predict the relevance score between ¢ and T; only
based on text information: y; = TextEncoder(q, text;) where Text-
Encoder(-) can be any previous table retrieval method which treats
tables as text documents and text; is the text representation of a
table(e.g. the concatenation of terms in T; and its context fields).
We obtain the final relevance score y by combining the graph-
based and text-based predictions with a linear transformation: y =
[ye; yg]We + ba.

2.6 Model Training

To learn the parameters, we optimize the model with pointwise
mean square loss as in (7, 22]: £ = % Zﬁl(yi —4)%+ p-|0])?
where y; is the prediction from our model and g; is the ground
truth for i-th training sample. © denotes all trainable parameters
and S controls the L2 normalization which can affect overfitting.

3 RESULTS & ANALYSIS

3.1 Experimental Settings

Dataset. To evaluate the performance of MGNETS, we utilize the
WikiTables benchmark [22] which includes 1.6M tables extracted
from Wikipedia articles and each table has three context fields:
page title, section title and caption. We also treat table headers as
an additional context field. We evaluate the results using NDCG@5,



Table 1: Performance comparison with baselines. The super-
script T denotes statistically significant improvements over
all other methods.

Model MAP P@5 NDCG@5 NDCG@10
Multi-field BM25  0.4596 0.3273 0.4365 0.5049
STR 05711 0.3927 05762 0.6048
ConvKNRM 0.5561 0.3800 0.5556 0.5901

MGNETS-Conv 05912 (+6.3%) 0.3907 (+2.8%) 0.5910 (+6.4%) 0.6168 (+4.5%)
BERT-Row-Max 0.6146 0.4080 0.6167 0.6322

MGNETS-BERT 0.6339 (+3.1%) 0.41807 (+2.5%) 0.6373(+3.3%) 0.6490% (+2.7%)

NDCG@10, P@5 and MAP. All results are tested for statistical
significance using the paired Student’s t-test at 95% confidence.
Parameter Settings. We implement our models using Pytorch
and DGL!. The node embedding size is fixed to 50. For all multi-
layer perceptrons, we use two layers. The Adam optimizer [11] is
used to optimize all models. Five-fold cross validation is used to
obtain the final evaluation metrics and we use the same splits as
[7] for fair comparison. All the models are trained with 100 epochs.
In terms of other hyperparameters, we apply a grid search method
here: learning rate is searched in [16_6, 3e70, 1e7%,3¢7%, 172, 3e_2],
and L2 normalization coefficient is tuned in [5¢7¢, 57>, 574, 5¢73].
We only use one layer of GIN in the multi-graph encoder.
Baselines. We compare to the following: Multi-field BM25 [14],
which is an unsupervised method that treats tables as multifield
documents and ranks tables with combined BM25 scores from each
field; STR [22], which proposes multiple embedding-based features
and different strategies to generate ranking features from those em-
beddings. A random forest fits the ranking features in a point-wise
manner; Conv-KNRM [9] where convolutional neural networks
are used to learn n-gram soft matching signals between queries
and documents; and, BERT-ROW-MAX [7], the previous state-of-
the-art method using BERT as the backbone. It selects the most
important rows with max salience selector and concatenates them
with context fields as BERT input. Due to limited computational re-
sources, we use the BERT-base-cased? instead of BERT-large-cased
as in the original paper to initialize the BERT component. We use
Conv-KNRM or BERT-ROW-MAX as the text encoder in MGNETS,
named as MGNETS-Conv and MGNETS-BERT respectively.

3.2 Results and Discussion

Overall Performance. We start by comparing the performance
of MGNETS with all other baselines, as reported in Table 1. We
can observe that our proposed MGNETS-BERT achieves the best
performance across all evaluation metrics. As a strong interaction-
based neural IR model, ConvKNRM underperforms the feature-
based STR model, which indicates that the table retrieval task should
not be treated as a traditional document retrieval task. Combining
both text-based predictions and graph-based predictions, MGNETS-
BERT outperforms BERT-ROW-MAX by 2.5 — 3.3% and MGNETS-
Conv outperforms ConvKNRM by 2.8 — 6.4%. The results verify the
effectiveness of our designed framework where the multi-graph
information can benefit methods where only text information is
used. However, we do not claim our method to be the new state-of-
the-art method, since our goal is to study whether the learned graph

https://github.com/dmlc/dgl
Zhttps://huggingface.co/bert-base-cased

Table 2: Ablation study of our framework.

Model MAP P@5 NDCG@5 NDCG@10
MGNETS-BERT 0.6339 0.4180 0.6373 0.6490
MGNETS (graph Only) 0.5812 0.3913 0.5823 0.6072
GNETS (Q) 0.5753 0.3913 0.5748 0.6065
GNETS (Q,:) 0.5634 0.3820 0.5657 0.6003
GNETS (G,) 05701 0.3860  0.5678 0.5975
BERT-ROW-MAX (table) 0.5859  0.3933  0.5784 0.6061
ConvKNRM (table) 05403 03787  0.5382 0.5746

features can provide additional signals. It is possible that combining
other designed features can further improve the performance such
as in Chen et al. [7], which is beyond the scope of this paper.

Ablation Study. To evaluate the effectiveness of several key
components in MGNETS, we performed ablation studies as shown
in Table 2. The 2nd line in Table 2 shows the result when the text
encoder was removed. Encouragingly, MGNETS still performs bet-
ter than all baselines in Table 1 except BERT-ROW-MAX. Without
ConvKNRM as the text encoder, the performance of MGNETS-Conv
does not decrease too much compared with MGNETS (graph only).

We also compare the performance of the model when using a
single graph instead of multiple graphs. GNETS is the model that
only operates on one graph and outputs a single graph-based pre-
diction. GNETS (G,) achieves better results than GNETS (G.) on
all metrics except NDCG@10. This indicates that the features in
data tables could be more effective than features in context fields.
We can see that even with all types of edges, GNETS (&) under-
forms MGNETS, which suggests it is more difficult for graph neural
networks to extract features from one single heterogeneous graph
than from separate graphs. One possible reason is that edges con-
structed from different fields may have different semantic meanings
and constructing a single heterogeneous graph could result in an
ambiguous semantic space.

We further show the results of baselines (last 2 lines in Table 2)
when only using data tables as input (i.e., no context fields). The
NDCG@5 scores of BERT-ROW-MAX and Conv-KNRM decrease
by 6.2% and 3.7% respectively, while GNETS (G;) has similar per-
formance with GNETS (G). It verifies our observation that the text-
based methods are less effective to extract features from flattened
tables where structure information is underutilized. The results also
indicate that our proposed methods are more robust when context
information is missing.

4 CONCLUSIONS

In this paper, we propose a graph-based solution MGNETS to ad-
dress the task of table retrieval. We first study how to model the
table corpus as one or more heterogeneous graphs and then uti-
lize graph neural networks to learn the representations of queries
and tables from complex structures. Experimental results demon-
strate the features learned from multiple graphs can improve the
text-based neural IR models. Future work might investigate more
sophisticated relations in the table corpus and achieve a better
understanding of semantic meanings in different fields.
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