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Abstract.—Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples,
especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models
directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved
under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide)
species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging
problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm
that learns to extend species trees using single genes without prespecified models. In simulations and on real data, we
show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show
that DEPP can update the multilocus microbial tree-of-life with single genes with high accuracy. We further demonstrate
that DEPP can combine 165 and metagenomic data onto a single tree, enabling community structure analyses that take
advantage of both sources of data. [Deep learning; gene tree discordance; metagenomics; microbiome analyses; neural

networks; phylogenetic placement.]

In recent years, phylogenetic inference has found wide-
spread application in identifying organisms that make
up a biological sample (Hebert et al. 2003; Seifert et al.
2007; Munch et al. 2008). Microbiome analyses often
rely on phylogenetic analyses to identify species present
in an environment sampled using the 165 rRNA gene
amplicon sequencing or whole metagenome shotgun
sequencing data (Handelsman 2004; Langille et al. 2013;
Sunagawa et al. 2013; Matsen 2015; Nguyen et al. 2014;
Truong et al. 2015; Asnicar et al. 2020). Using the
phylogenetic context, we can identify species even when
exact matches to the reference data sets are not present.
Similarly, outside microbiome analyses, identifying new
and known species using (meta)barcoding and genome
skimming data rely on phylogenetic analyses (Kress et al.
2009; QUICKE et al. 2012; Ballesteros and Hormiga 2018;
Bohmann et al. 2020).

In these high-throughput applications, phylogenetic
placement—adding a new sequence onto an existing
reference tree—is sufficient, and the more challenging de
novo reconstruction is neither necessary nor always more
accurate (Janssen et al. 2018). Phylogenetic placement has
a long history of method development (Felsenstein 1981;
Desper and Gascuel 2002; Mirarab et al. 2012; Matsen
et al. 2010; Berger et al. 2011; Barbera et al. 2019; Balaban
et al. 2020). However, these algorithms are designed to
add sequences from a single gene family onto a tree
showing its evolutionary history (i.e., the gene tree).
Phylogenetic relationships change across the genome
(Maddison 1997; Degnan and Salter 2005) due to pro-
cesses such as horizontal gene transfer (HGT) (Ochman
et al. 2000), and accounting for such discordance is a
subject of much recent method development (Warnow
2017). Given data from individual genes, it must be
assumed that they have evolved on a gene tree, not

the species tree. Thus, existing methods place on gene
trees but use the gene tree as a proxy for the species
tree, hoping that their differences are not consequential.
For example, species identification using marker genes
such as 16S or COI (e.g., Konstantinidis and Tiedje 2005;
Zaneveld et al. 2010) implicitly assumes that the gene
tree is close enough to the species tree to allow accurate
identification of the species by placement on the gene
tree. More recently, Rabiee and Mirarab (2020) and Mai
and Mirarab (2022) enabled inserting a new taxon onto
a species tree by minimizing quartet distance, but this
approach requires genome-wide data.

Users of phylogenetic placement often face a question:
given query sequence data from a single gene (or a
handful of genes), is it possible to place the query onto
the species tree (a goal we name discordant placement).
The correct position of a query on the species tree is not
always determinable from a single gene. Nevertheless,
the gene tree is related to the species tree, and gene
data have some information about the correct placement
on the species tree, giving us hope that discordant
placement can be achieved with sufficient if imperfect
accuracy.

The ability to extend a species tree using single-gene
data would be useful in studying ecology. Microbiome
analyses are split between metagenomic and 16S data,
which remain mostly disconnected. Accurate discordant
placement methods would enable researchers to add
16S samples onto species trees and treat them as if
they were metagenomic samples, albeit with less signal
and more uncertainty. Thus, it would become possible
to combine 16S and metagenomic data (Fig. 1) in
downstream analyses such as sample differentiation
(Matsen and Evans 2013) using methods such as
UniFrac (Lozupone and Knight 2005) and taxonomic
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FIGURE 1. Overview of the method. Top: an illustration of discordant placement and the overall process. A neural network model is trained
from a given reference tree, however inferred, and reference sequences labeled by the leaves of the tree. The model maps sequences to embeddings
in k dimensions. Once sequences are embedded, phylogenetic placement is performed using distances between embeddings of the query and
reference species. Middle: the structure of the CNN model and both training and placement processes. The training process minimizes the
difference between Euclidean distances in the R¥ space and the square root of tree distances across all pairs of species. The placement process
computes Euclidean distances between embeddings of the query and references. The resulting distance vector is placed using weighted least
square error minimization (APPLES). Bottom: The process for combining 16S and metagenomic samples using DEPP.

profiling. In particular, the ability to add all types of
data, including 16S, metagenome-assembled genomes
(MAGS), and marker genes on the same backbone tree
using the same algorithm will be helpful in ensuring
consistency for downstream applications. For example,
we often have a large number of 16S samples and a
smaller number of metagenomic samples (presumably
with better differentiation ability) available to study
the impact of microbiome on a phenotype. Inserting
all samples onto the same tree will enable probing
the associations between composition of samples and
phenotypes using a unified analysis. Similarly, the ability
to place eukaryotic species sampled only through their
barcode genes (e.g., COI) on species trees will greatly
benefit ecology research.

How can we approach the discordant placement
problem? One solution is to misuse the existing methods
and simply assume the species tree and the gene
tree are the same. However, it is unclear how these
methods are expected to behave when the sequence
data have not directly evolved on the tree. The standard
phylogenetics methods are model-based: they assume

data have evolved on a tree according to a model of
sequence evolution (e.g., GTR Tavaré 1986) and infer
the tree using maximum likelihood, Bayesian sampling,
or model-corrected distances (Warnow 2017). While this
paradigm has enjoyed much success, the performance
of those methods is less predictable in the face of
deviations from assumptions of the model (Halpern
and Bruno 1998; Sullivan and Swofford 2001; Lartillot
et al. 2007; Naser-Khdour et al. 2019; Jermiin et al. 2020).
In particular, the impacts of gene tree discordance are
poorly understood. We suggest that instead of relying
on the dominant paradigm, discordant placement can
be approached using machine learning.

As early as the 1990s, researchers attempted phylogen-
etic inference using general purpose machine learning
models, such as neural networks. Dopazo and Carazo
(1997) formulated the problem as unsupervised learn-
ing and designed a neural network that reflected the
tree shape. More recently, the success of deep neural
networks (DNNSs) in solving other challenging problems
has motivated efforts to adopt DNNs in phylogenetics.
Zou et al. (2020) and Suvorov et al. (2020) have used a
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semisupervised approach with two steps: for every four
species (a quartet), classify the input data to one of the
three possible quartet topologies, then combine these
quartet trees. This formulation raises a question: where
are we to find labeled training data in the high volume
needed by DNNs? Both papers turn to simulations for
an answer: use complex models to simulate data on
known trees, from which we then train the model. The
point of these methods is to use complex generative
models that can be sampled but do not avail themselves
to scalable inference. However, learning from simulated
data runs the risk of missing relevant parts of the
huge parameter space and model misspecification. As
Zaharias et al. (2022) recently showed, these methods can
have lower accuracy than standard methods in careful
benchmarking.

Phylogenetic placement offers a way to use general
purpose models without simulations. Given a reference
tree, however computed, and sequence data which are
a function of the tree, we can use the reference data
to train a machine learning model (such as a DNN)
that can place a query sequence onto the reference tree.
The reference tree may be a species tree inferred using
large numbers of genes, using complex models, and
perhaps after spending much computational resources.
Such reference data are increasingly available. For
example, several comprehensive trees were published
recently with tens of thousands of microbial species
(Zhu et al. 2019; Asnicar et al. 2020; Parks et al.
2020) using 120400 genes, with analyses that took
>200,000 h of CPU and GPU time in one case. These
available trees are excellent candidates for providing the
training data.

Why do we turn to black-box machine learning
models for discordant placement? Discordant placement
weakens the connection between sequence data and the
reference tree. While the sequence data are still assumed
to be a function of the reference tree, we avoid the
assumption that sequence data have evolved directly
on the tree according to a specific Markov model. A
compelling reason to use machine learning is that it
provides ways to learn general functions. By avoiding
explicit mechanistic models, machine learning has the
potential to build general models that map sequences
onto trees even when the tree and the sequences are
not fully compatible, enabling placement onto species
trees using single genes. Such a model would, in effect,
simultaneously place sequences onto a gene tree and
reconcile (Doyon et al. 2011) the differences with the
species tree.

In this article, we introduce the Deep-learning Enabled
Phylogenetic Placement (DEPP) framework (Fig. 1).
Given a reference tree, inferred in any way, and some
sequence data labeled by leaves of the tree but potentially
evolved on a tree incongruent with the reference tree,
DEPP learns a neural network to embed sequences in
a high-dimensional Euclidean space, such that pairwise
distances in the new space correspond to the square root
of tree distances. Given such a model, the placement
of new sequences can proceed by computing the

embedding, computing distances, and using distance-
based phylogenetic placement.

MATERIALS AND METHODS

Discordant Phylogenetic Placement

The standard phylogenetic placement takes as input a
reference tree T, its associated sequences S, and a query
sequence g. The output is the best placement of g on
T, which consists of a specific position of a particular
edge of T and the length of a new terminal branch.
In this article, we assume the relationship between
the reference tree and sequences is indirect. Thus, S
(typically sequences from a single gene) does not directly
evolve on T (typically a species tree) but is influenced by
T. Also, T can be inferred from any source of data (not
just S). We define the discordant phylogenetic placement
as the problem of finding the best placement of the
query on T using S despite disagreements between S
and T. The meaning of “best placement” depends on
the context. When the discordance between data and
the reference tree is because T is a species tree but the
sequence data come from a single gene, we define the
ideal placement as the true placement of the species on
the species tree. This definition is meant to enable the
application laid out before; namely, updating the species
tree and identifying samples using a single gene. If this
problem could be solved completely accurately, we could
build species trees using single genes, and we could fully
identify samples using their marker genes. Alternative
definition of “best” could be imagined. For example, we
could seek the place of queries that would minimize
the distance between the updated tree and the true
gene tree; such definitions may be appropriate for other
applications.

Background on Distance-Based Estimation

Let T denote a rooted phylogenetic tree on a set of n
taxa {t,‘}Z’-‘:1 represented as leaves and each branch labeled
with its length. The tree T defines a distance matrix
where each entry d;jeRT is the path length between
leaves i and j. A distance matrix may or may not be equal
to that of some tree, but when it does match a tree, it
matches a unique tree and is called additive (Buneman
1974). Assume we are given a set of sequences S, and
each s; €S corresponds to a leaf t;. Computing distance
between sequences produces a sequence distance matrix.
These distances can converge to additivity if computed
under the correct statistical model. For example, under
the Jukes and Cantor (1969) (JC) model, iln(l — %h)
asymptotically converges to additivity where h is the
hamming distance between sequences. Note that in
discordant phylogenetic placement, traditional methods
for obtaining distances from S would not match dj; as
the sequences have not evolved on the reference tree
directly.
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Placement as Supervised Learning

We approach discordant placement using supervised
learning (Fig. 1). The training data are T and S, and
our model is a convolutional neural network (CNN).
We use a distance-based approach and express the
training data as {((s;.sj),djj)}, where s;,5;€S are pairs
of reference sequences and d;; is the distance between
taxa i and j on the tree T. Due to the discordance,
which leads to model mis-specification, using JC or
similar distances may not be accurate. Instead, we use
machine learning to compute distances. In addition,
since real data sets almost always include missing
data, we use machine learning to also reconstruct the
missing parts of a sequence to obtain more accurate
distances.

Learning objective—To compute distances, we build a

CNN that embeds sequences in the RF space; we
then use distances between embeddings as estimates of
phylogenetic distances. The use of embeddings enjoys
a theoretical justification. As de Vienne et al. (2012)
showed and Layer and Rhodes (2017) elaborated, for any
tree T, there exists a collection of points P={®(t)};_;

in the R"~! Euclidean space such that the distance
between the points ®(¢;) and ®(t) equals to | /d;;. Thus,

if sequences are a function of the tree, there must exist
an embedding that corresponds to the tree, and we use
machine learning to find an embedding that minimizes
the divergence between embedding distances and (the
square root of) distances on the given reference tree.
More precisely, we treat the reference tree T and
sequences S as training data and seek a model that
maximizes the match of Euclidean distances between
embeddings and the square root of phylogenetic dis-

tances in the reference tree (i.e., ,/d;;). The square root

is to match the theory by de Vienne et al. (2012) and
Layer and Rhodes (2017). To make our goal precise, we
need to define a measure of matrix similarity. While
any metric can be used (and measures such as log-
determinant divergence have shown promise, e.g., Xie
et al. 2018), here, we simply use mean squared error,
seeking:

arg;)ninz (|| D(si) — D(s)) ”2 _J;ﬁ>2’
L]

where ®:{A,C,G, T}L—>Rk is an embedding of
sequences in the Euclidean space, and dj; give pairwise
path distances in the reference tree T. While we focus
on nucleotides here, a similar formulation can be used
for amino acid sequences or any type of character
data. Note that the estimated distance of i and j is
(@G-

Motivated by strong evidence in distance-based phylo-
genetics that weighting down long distances improves
accuracy (Fitch and Margoliash 1967; Beyer et al. 1974;

Gascuel 2000; Desper and Gascuel 2002; Balaban et al.
2020), we define a weighted version of the objective
function:

1 2
argqr)ninzd—ij<||¢(5i)_q’(sj) ||2_\/d—if) M)
L]

Embedding size. The Layer and Rhodes (2017) (LR)
formulation requires n — 1 dimensions, which introduces
some challenges. According to the theory, the number of
dimensions needs to increase by one after inserting the
query. Our supervised learning formulation does not
allow that (the embedding size is fixed after training).
Thus, there is no guarantee that the embeddings remain
correct after addition, even if they are before addition.
However, we note that, in LR embeddings, adding a
leaf would require simply dividing one of the n—1
dimensions into two dimensions, leaving the rest of the
embeddings intact. Thus, one can hope that having one
less dimension has a minimal practical impact. More
broadly, for large n, training models with n-dimensional
embedding is impractical. Thus, we often set k<n—1,
and the gap can be more than an order of magnitude for
some of our tests described below. In practice, we use a
rule of thumb to select the default k (which the user can
change), setting k=10,/n, rounded to the nearest power

of 2 from below (i.e., 2L7108,(100m)] ).

Model structure and training

CNN. We use a convolutional neural network (Fig. 1).
Nucleotide sequences are encoded using 4-bit one-hot
binary vectors; we refer to each bit as a channel. Gaps
can be encoded as all zeros (DEPP version < 0.1.13) or by
setting all four channels to 411 (0.1.13 < v). Moreover, as
detailed below, we can use a separate model to guess the
bestvalues torepresenta gap (v >0.2.0). Toaccommodate
reference species that have multiple copies of a gene, we
change the encoding so that instead of a binary vector,
it includes the frequencies of the nucleotide characters
among the gene copies. These encodings provide the
input “features” that are processed through three linear
convolutional layers, each followed by a nonlinear layer
and a fully connected linear layer.

As  detailed in Appendix C of the
Supplementary material available on Dryad at
https:/ /doi.org/10.6076 /D14G68, a convolutional layer
applies a set of parameterized kernels by convolving
them across its input (i.e., using the dot product of
the kernel entries and the input). Convolutional layers
are usually used as feature extractors, and multiple
layers are used to detect high-level abstraction from
the input. Here, we use them to enable the model to
go beyond the traditional ii.d models of sequence
evolution and capture k-mer signatures. The first
convolutional layer takes as input L features, each
encoded as four channels, and outputs an 8 x L matrix
by applying a kernel size of 1 (but applied to all four
input channels). The next two convolutional layers
each have a kernel size of 5 (i.e., operating on 5-mers).
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The input of each layer is padded with zeros on both
sides so that the output has the same length as the
input. The input to the second convolutional layer is
added to the output of the third convolutional layer,
forming a residual block, which is a cornerstone of deep
learning (He et al. 2016). Using residual blocks can help
solve the vanishing gradient problem, which is why
they are commonly used, including for sequence data
analyses (Killoran et al. 2017; Zou et al. 2020). To enable
the model to capture nonlinear relations, after each
convolutional layer, we use a nonlinear layer built using
the continuously differentiable exponential linear unit,
which has performed well in other contexts (Barron
2017). The last layers are fully connected, taking features
from outputs of convolutional layers and producing
the final embeddings or the probability vectors. This
layer aggregates the signal from convolutional layers.
Each activation in the output is connected to all the
inputs, and the output is a weighted sum of all the
inputs.

Handling missing data. Multiple sequence alignments
almost always include gaps, which may represent
missing data or indels. While indels may represent
real signal, just like traditional maximum likelihood
phylogenetic models, we can treat gaps as missing data.
We can do so by leaving the one-hot encoding ambiguous

(e.g., setting all four channels to }I). An alternative is
to amputate the missing data. Motivated by the BERT
(Devlin et al. 2018) model used extensively in NLP,
DEPP includes a reconstruction neural network to guess
the best encoding for missing data (implemented since
v0.2.2). The input of the model is a sequence with
missing data (gaps) encoded as a one-hot vector, and
the output is the reconstruction of the sequence where
the sites with gaps are probability vectors inferred by
the model. During training, we randomly select sites
and label them as gaps to provide supervised signal
for learning the reconstruction objective. This learning
objective is the Kullback-Leibler divergence between the
one-hot encoding of the letter and the output probability
vector:

argmin »  Dxr(Ii0;) )

i€Dmask

where Dy,qk are randomly chosen masked sites, and I;
and O; are the one-hot encoding of the letter and the out-
put probability vector for the site i. The reconstruction
model, which consists of three convolutional layers and
one fully connected layer, is trained separately from the
DEPP encoder. At the time of testing /placement, a query
sequence is first run through the reconstruction model
to fill in the gaps, and the output of the reconstruction
network is fed into the DEPP encoder to generate
embeddings.

Training. We trained the model with Eq. 1 as the loss
function for DEPP encoder and Eq. 2 as the loss function
for reconstruction network using the stochastic gradient
descent algorithm RMSProp, which divides the gradient

by a running average of its recent magnitude to speed
up training (Tieleman and Hinton 2012). The batch size
is fixed to 32. We check the training loss every 50 epochs
and stop the training when the value of the loss function
fails to decrease in two consecutive checks. The model
with the optimal objective function value is chosen.

Placement.—Once the CNN model is trained, we use it to
map a given query sequence g to a vector of distances
Di...Dy. For data sets with missing data (gaps) we
compute two sets of distances, {D;}i_; and {D Y
using the models with and without gap reconstructlon
respectively. The final distances is set to the weighted
sum of the distances, that is, (1—oc)Di+ocD§, where a
is the proportion of the sites with gaps in the query
sequences. The weighted sum is used to reduce the
impact of reconstructed bases (which are guessed, as
opposed to being observed) on the final distance and
will be empirically tested. Given these distances, we then
place g onto T using distance-based placement (Balaban
etal. 2020), which uses dynamic programming to find the

placement with the minimum Z —1D; 2(D dq,(T))
where dql(T) represents the tree-based distance between
the query and each taxon i (Fig. 1).

Uncertainty calculation.—In principle, bootstrapping, the
dominant method used in phylogenetics, can be used to
estimate uncertainty around distances and thus place-
ments. However, bootstrapping assumes i.i.d models,
and convolutional networks like DEPP do not treat
input as ii.d. Moreover, bootstrapping would require
retraining our model on each replicate bootstrap, which
we do not afford. Instead, we measure the uncertainty
using a subsampling procedure recently proposed by
Rachtman et al. (2021) based on solid grounds from
the nonparametric support estimation literature. For
each query, we randomly select m sites and mask
them as gaps. The masked sequences are input to the
pretrained DEPP model, which produces a distance
vector corresponding to the distances from the query to
backbone species. We  repeat this step r times and get r

distance vectors D;...D;. A correction is then applied to
the r distance vectors as

~ m - _
D= /;(Di—D)—i—D,

where D is the average over D;, D is the distance vector
corresponds to the sequence with no site masked, and n

is the length of the sequence. We use D; for placement
and get 7 placements for each query, which are then used
to calculate support of the placements by counting the
number of times each edge is chosen. In our experiment,

we choose r =200 and set m :n/logo'l(n).

The \/% term adjusts for the increased variance of
estimates obtained from fewer data points. For a stat-
istically consistent estimator 6, of a parameter 6 based
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6 SYSTEMATIC BIOLOGY

on n data points, if there is some rate of convergence t,

such that t,, (6, — ) weakly converges to sone distribution
as n— oo (Assumption 2.2.1 of Politis et al. 1999), then,

under forgiving conditions, the distribution of (6, —6,)

converges to that of 1, (8, —6) as n— oo as long as b— 0o
and b/n— 0 (see Theorem 2.2.1 in Politis et al. 1999).
While the choice of 1, is not obvious in general, by central
theorem limit, for any estimator that can be described as
the sum of independent random variables, t,=+/n is
the correct choice. Motivated by this observation, we set

Ty =+/1 which gives us the /% correction term, noting

that we have no proof that the rate of convergence of our
estimator is proportional to /n (or for that matter, that
our estimator is consistent). We will evaluate the support
values empirically.

DEPP implementation details—We implemented DEPP
using PyTorch and treeswift python packages (Moshiri
2020) and trained the models on 2080Ti NVIDIA GPUs.
The embedding size k is set to 128 for data sets with 200
taxon and 512 for larger data sets (including the real web-
of-life [WoL] data set). Other hyperparameters are fixed
to their defaults (Table S2 of the Supplementary material
available on Dryad) unless otherwise specified. DEPP
is trained on the reference tree and is used to compute
distances that are then fed to APPLES-II (Balaban
et al. 2022), used identically to APPLES-II+]JC (see
below). Branch lengths of the backbone tree provided
to DEPP are re-estimated using RAXML-8 (Stamatakis
2014) under the GTR+CAT model. Given more than one
gene, DEPP has two options: concatenating genes or
computing a summary of distances. For each query, we
can compute the distance between a query and backbone
species j according to each of the N genes, obtaining

D} D]N (ignoring missing genes). We summarize all D;
values by setting D; to the average of all D; values that fall

between 25 and 75 percentiles of all D]’: values (to remove
the impact of outlier genes).

Methods Compared

We compared DEPP v.0.2.2 (unless otherwise spe-
cified) to three methods.

EPA-ng. (Barbera etal. 2019) This maximum likelihood
method is widely used but is not designed for discordant
placement. Nevertheless, we test it for placing gene data
on the species tree, with branch lengths re-estimated
using RAXML-ng, under the GTR+T" model.

INSTRAL. (Rabiee and Mirarab 2020) This method
updates a species tree given input gene trees (already
updated to include the query) and accounts for discord-
ance by maximizing the quartet score. Here, input gene
trees are inferred using FastTree-II (Price et al. 2010) or
RAXML. Results with FastTree or RAXML give similar
results (Fig. S16 of the Supplementary material available
on Dryad), so in the main paper, we use the results

with input tree built by FastTree-II. While INSTRAL does
account for discordance, it requires at least two genes and
is designed for cases with many genes.

APPLES+JC. We use APPLES in its default settings
where it computes distances using Jukes—Cantor (JC)
model (Jukes and Cantor 1969) chosen because Balaban
et al. (2020) found no evidence that more complex mod-
els improve accuracy. The branch lengths of reference
trees are re-estimated based on the JC model using
RAXML-ng (Kozlov et al. 2019). APPLES also includes
two options dy, and by, to setw,; =0 (i.e., ignore distances)
for at most nn— by, reference taxa per query when 8; > dyy.
We use d;;; =0, by, =5 for all data sets.

Data Sets

Simulated data set. For studying the gene tree and
species tree discordance due to incomplete lineage
sorting (ILS), we use a published simulated data set
(Mirarab and Warnow 2015), with 200 ingroup species
and gene trees that are discordant with the species
tree due to ILS. The data set contains model conditions
corresponding to high, medium, and low ILS, each with
50 replicates. We arbitrarily selected the first 2°,...2°
genes for each replicate.

We also simulated a second data set that consists of
gene trees and species trees discordant due to HGT in
addition to low levels of ILS. We used Simphy 1.0 (Mallo
et al. 2016) to simulate 10 replicates, each with 10,000
ingroup species and 500 genes. Species trees are simu-
lated using 108-generation birth-death process (Kendall
1948) with birth and death rates set to 5x10~7 and
4.167 x 1077, respectively. This would lead to low levels
of ILS—average normalized RF distance between species
and gene trees due to ILS is 0.03. In addition to ILS,
each gene goes through HGT at a rate drawn from
lognormal distribution with p~N (—18,0.4),0%=0.75.
Simphy uses a HGT model that reduces the probability
of transfer proportionally to the distance between source
and recipient. The combined effect of ILS and HGT leads
to 0.44 (normalized RF) median gene tree discordance.
Given true gene trees simulated using Simphy, we
simulate alignments with length ranging between 231
and 2054 using Indelible (Fletcher and Yang 2009). Since
training a model on 10,000 species takes considerable
computational resources, we then pick five genes per
each replicate. To do so, we ordered the genes by the
number of species that are horizontally transferred and
pick 50th, 150th, 250th, 350th, and 450th genes in that the
ordered gene list to ensure our test cases include genes
with different level of HGT.

WoL marker genes. Zhu et al. (2019) built a species
tree of 10,575 prokaryotic genomes using ASTRAL-
MP (Yin et al. 2019) from 381 marker genes and
computed mutation unit branch lengths using 100 sites
randomly selected from each of the 381 marker genes.
We categorized the marker genes into three equal-sized
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groups based on the rank of quartet-distance (Sand
et al. 2013) between their gene tree and the species tree.
For each discordance category, we selected the 10 most
commonly present genes among all species (Table S3
of the Supplementary material available on Dryad).
The mean gene tree discordance with the species tree,
measured using the quartet distance, is 0.18, 0.34, and
0.50 in low, medium, and high discordant groups. Gene
alignments are available from Zhu et al. (2019).

WOoL rRNA genes. 16S and 5S rRNA genes were predicted
using RNAmmer (Lagesen et al. 2007) and aligned
using UPP (Nguyen et al. 2015). In genomes with
multiple copies of 16/5S, we train and test DEPP on all
copies and re-estimate backbone tree branch lengths for
APPLES+]C using an arbitrary copy. Due to their wide
usage in microbiome analyses, we also perform analyses
with three regions of 165 commonly used in amplicon
sequencing: V3+V4 (=~ 400 bp), V4 (100 bp), and V4
(150 bp). We removed from 16S data sets any predicted
sequence output by RNAmmer that was shorter than half
of the average sequence length (removing less than 1%
of species; see Table 54 of the Supplementary material
available on Dryad).

Traveler’s diarrhea microbiomes. Quality-controlled 16S
rRNA gene amplicons and manually curated MAGs
were derived from a study by Zhu et al. (2018),
which identified novel pathogenic profiles from the
fecal samples of 22 Traveler’s diarrhea (TD) patients
as compared with seven healthy traveler (HT) controls.
The 16S rRNA amplicon sequence variants (ASVs) were
generated using Deblur from QIIME 2 and are 250
bp long. The 381 marker genes were identified using
PhyloPhlAn on the translated protein sequences inferred
by Prodigal from the contigs included in each MAG. This
protocol is identical to that used in the WoL study.

Evaluation Procedure and Leave-Out Experiments

To ensure query sets (i.e., testing data) are separate
from the training data, we removed 5% of species (10 and
500 for simulations with 200 and 10,000 backbone taxon
and ~445 for real data) from the species tree to obtain
reference trees. We did not re-estimate species trees after
removing queries. These left-out species are used as the
query. The reference tree is the true species tree for the
simulated data setand the ASTRAL tree for the WoL data
set (Zhu et al. 2019). For the simulated data set, branch
lengths of the backbone species tree are estimated using
sites randomly selected from the genes we used in the
experiments (32 genes for ILS data and 5 genes for HGT
data) with each gene providing 500 sites. For WoL data
set, branch lengths of the species tree are available from
the original study (estimated under GTR+I" from 100
randomly selected sites from 381 marker genes). Training
is done using DEPP v(0.2.2. For testing, each query taxon
is placed independently, and the result is compared
against the full reference tree before pruning the query
(i.e., the true tree for simulations and the ASTRAL tree
for WoL). The error metric we report is the number of

edges between the position on the reference tree and the
inferred placement. In total, we have 8934 and 25,000
test cases for the ILS simulated and HGT simulated data
respectively and 14,616 test cases for the WoL data set.
INSTRAL fails in 66/9000 tests; we exclude these cases
for all the methods.

In addition, we categorize test cases by their level of
ILS, level of HGT, and phylogenetic signal. We compute
the level of ILS by measuring the Robinson and Foulds
(1981) (RF) distance between true gene trees and the
species tree. The phylogenetic signal is a function of
many factors, including sequence length, tree height, and
the rate of evolution. Here, to quantify the lack of signal,
we use the RF distance between true gene trees and those
estimated using FastTree-II (Price et al. 2010). These two
measurements are per backbone tree. In contrast, we
measure HGT levels on a per query basis by inspecting
species close to the query species in the true gene tree
and their placement in the species tree. Specifically, for
the five nearest species in the gene tree to the query ¢
(denote them by N5), we compute the sum of their path
length (number of branches) to g in the species tree. Note
that this sum can never be less than 17, which is the
value obtained if N5 are the five closest leaves to g in the
species tree and the topology is identical and balanced.
We measure HGT as the average path length of N5 above
17; thatis, (=17 + ;N €4.1)/5 Wheree,  is the number of
branches from the query g to species i in the species tree.
Thus, 0 means the query is placed in a similar context in
the gene tree and there is no HGT close to that leaf, while
a high value indicates that the species close to the query
in the gene tree are far away from it in the true species
tree, indicating recent HGT.

Case Study on TD

For ASV placement, a single model is trained using
DEPP v.0.2.2 with the reference tree set to the WoL
species tree (backbone tree) and backbone sequences
coming from V4 region of 165 (~250 bp). The trained
model is applied on the ASV in the TD data set to
calculate the distance matrix between the sequences
in the studied data set and the backbone sequences.
We removed one gene (p0150), where all backbone
sequences were gapped for at least half of the sites.
Finally, we train a model using DEPP v.0.2.2 on the
remaining sequences, giving us 380 models in total. We
release and maintain these reference DEPP models for
public use (see Data and Code Availability); v1.0.0 of the
database is used in these analyses.

For placing MAGs, first, we used UPP to extend the
alignments of all 380 marker genes to include the markers
identified in the TD data set. Given these alignments,
we used DEPP and the 380 trained models to compute
distances between query marker genes and backbone
WoL species, resulting in 380 distance matrices. We then
use the distance-summary option of DEPP (i.e., mean
distance in the interquartile range) to summarize all
distances and use APPLES-II for placement.
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To compare pairs of samples, we use weighted UniFrac
(Lozupone and Knight 2005; McDonald et al. 2018). A
feature table containing the frequency of ASVs or the
number of reads matching a MAG in each sample is
available. We use the feature table and the placement
tree to calculate weighted UniFrac between each pair of
the samples using QIIME 2 (Bolyen et al. 2019). We then
use the PERMANOVA (Anderson 2001), as implemented
in QIIME 2, to compare the HT group and the TD

group (the number of permutation is set to be 106 —1).
To visualize the correlation between samples, we apply
principal coordinates analysis (PCoA) on the weighted
UniFrac distance matrix using QIIME-2 (Halko et al.
2011; Legendre and Legendre 2012), picking the top 3
coordinates for visualization.

We calculated a MAG coverage metric for each sample
to represent the proportion of sequencing data covered
by a MAG. It equals (3 _;cpLiCi)/(Q_;en LiCi), where M
is the set of contigs constituting MAGs, N is the set of all
contigs in a metagenome assembly, L is the length (bp)
of a contig, C is the coverage of a contig as determined
by the average number of times each nucleotide of the
contig is included in any sequencing read recruited to
the contig.

RESULTS

Evaluation on Simulated Data Sets

DEPP training and parameter sensitivity.—We start by
evaluating DEPP on simulated data sets, testing the
ability to train the CNN model in reasonable times. As
the training epochs advance, the loss function (1) drops
rapidly and stabilizes after around 500 epochs in a typical
case (Fig. S1 of the Supplementary material available on
Dryad). Here, training, which is a one-time process for
each reference tree, finished in around 20 min for the 200-
taxon data set and 260 minutes for 10,000-taxon data set,
on a machine with one 2080Ti NVIDIA GPU and 8 CPU
cores. Placement of 1000 queries took 4 seconds for the
200-taxon and 30 s for the 10,000-taxon data sets using a
single CPU core. On the small 200-taxon data set, EPA-ng
has an advantage in terms of running time. However, in
thelarger HGT data set (10,000-taxon), DEPP placements
are faster than the alternatives with half the running time
of EPA-ng. In terms of the memory usage, APPLES+]C
has the lowest memory consumption, while the memory
usage of DEPP is 9-fold lower than EPA-ng on the larger
data set.

DEPP is mostly robust to weighing schema, with all
four schemes tested resulting in statistically indistin-
guishable performance (Table S2 of the Supplementary
material available on Dryad). Models with more para-
meters, that is, deeper network or larger embeddding
size, tend to have better performance but also longer
training time. For example, for the 200-taxon tree, the
time for training a model with one residual block is
around 15 min while this number goes up to 20 min
when the model has five residual blocks. Reducing
the number of residual blocks from five to one or

reducing the embedding size to 32 reduce the accuracy
significantly (Table S2 of the Supplementary material
available on Dryad). In our final model, we use five
residual blocks for backbone tree with 200 taxon and
one residual block for the rest of data set to trade-
off performance and training time. Note that while
the preliminary results motivated the choice of default
settings used in the rest of analyses, we did not select
the optimal settings for this data set and have not tested
various settings on other data sets (thus, hyperpara-
meters are not overfit to the data). The use of the gap
reconstruction model dramatically improves accuracy
when the query has 40% or more gaps, and the use of
the weighted approach results in further reductions in
error (Fig. S17 of the Supplementary material available
on Dryad).

Comparison to other methods.—We now compare accuracy
of DEPP to distance-based APPLES-II (Balaban et al.
2022) used with the standard JC model, maximum
likelihood method EPA-ng (Barbera et al. 2019), and
the quartet-based discordant-aware method INSTRAL
(Rabiee and Mirarab 2020). Note that APPLES-JC and
EPA-ng are not designed for discordant placement using
a single gene, and INSTRAL is designed only for data
sets with many genes (at least two but ideally many
more). However, since no existing method is designed
for discordant placement, we had to compare it to these
existing methods.

ILS discordance. On the 200-taxon data set, DEPP is
comparable to EPA-ng and outperforms APPLES+]C
and INSTRAL when given a single gene (Fig. 2a,c).
While DEPP and EPA-ng have similar average error
rates overall, DEPP has fewer cases with error above 10
edges (Fig. 2a). When the gene tree discordance level
is medium (or low), DEPP, EPA-ng, and APPLES+]C
have similar average error, which is as low as 1.5
edges (or 0.9 edge) on average but DEPP has a shorter
error tail (Fig 2a). DEPP has the lowest mean error
among the methods when discordance is high (3.38
edges for DEPP versus 3.50 for EPA-ng and 4.31 for
APPLES+]C). For context, random placements on these
species trees would give a placement error of 14 edges
on average (empirically computed). Furthermore, DEPP
outperforms other methods in difficult cases when the
phylogenetic signal is weak (Fig. 2b).

All methods experience a sharp rise in the error
when the phylogenetic signal weakens (Fig. S5a of
the Supplementary material available on Dryad) or
discordance increases (Fig. S5b,c of the Supplementary
material available on Dryad). According to an ANOVA
test (Table S1 of the Supplementary material available
on Dryad), both gene tree discordance and signal have
a significant impact on the placement error (P-value<
10_20). However, these two factors combined explain
only around 15% of the variance in error for DEPP and
EPA-ng.

Asthenumber of concatenated genes increases, unsur-
prisingly, the mean errors of all methods reduce (Fig. 2c).
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FIGURE 2. Results on simulated data sets. a) Empirical cumulative distribution function (ECDF) of the placement error on a single gene for
high, medium, and low discordance (69% 34%, and 21% mean RF). INSTRAL needs at least two genes. b) Sensitivity to gene properties on ILS
data. Error comparison between DEPP and other method using a single gene on (left) different level of true gene tree discordance (RF distance
between true gene trees and the species tree) and (right) different level of gene signal missing (RF distance between true gene trees and estimated
gene trees) combining all discordance levels. y-axis: the error of DEPP minus error an alternative method. Hallow squares: mean error difference.
¢) Mean and standard error of placement error versus the number of genes on ILS data. d) ECDF of the placement error on HGT data. e) Error
comparison between DEPP and other method on different level of HGT. HGT is measured by } ;.. eg,i, where N5 is the five closest species on

the gene tree and ¢, , is the number of branches between queries and species i on species tree.

Computing per-gene distances and summarizing them
instead of concatenating them increases accuracy under
some conditions but reduces accuracy under others
(Fig. S2 of the Supplementary material available on
Dryad). DEPP, EPA-ng as well as APPLES+]C are more
accurate than INSTRAL for low numbers of genes (<4)
but not for more genes. In fact, as the number of
genes increases to 32, INSTRAL starts to have the best

accuracy, a result consistent with the theory as INSTRAL
is statistically consistent under ILS.

We further examine the example cases where DEPP
performs well or poorly. We compare the ML phylo-
genetic distances computed using RAXML on the true
species tree versus distances computed by DEPP for low
and high error cases (Fig. 3). Both high- and low-error
cases seem to result in unbiased distances computed
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FIGURE 3.  Examples of phylogenetic distance calculation using DEPP. Phylogenetic distance on the true species tree (in units of substitution
per site) versus the distance calculated by DEPP for a) examples with high error (11 edges of error) and b) examples with zero error. Dashed
line: identity line. High errors correspond to long terminal and short internal branches; see Figure S3 of the Supplementary material available

on Dryad for trees.

in the training set; however, high error examples have
higher variance. The high variance can be attributed to
a lack of signal: two identical sequences in the gene
may belong to different parts of the species tree, a
problem that the model cannot overcome. At the time
of testing (e.g., for a query), distances are systematically
overestimated in cases with high error, and a large range
of values are estimated for pairs with equal ML distances.
In some cases, DEPP assigns small distances to some
reference species that have high distances to the query
(Fig. 3; bottom left).

Examining example trees shows that these cases of
high error tend to correspond to novel query taxa; that
is, those on long branches on sparsely sampled clades
(Fig. S3 of the Supplementary material available on
Dryad). Queries with higher terminal branch lengths
lead to higher error (Fig. S4 of the Supplementary
material available on Dryad); however, it appears that
the shortest of branches also have a higher error, perhaps
because distinguishing very similar taxa requires strong
signal. Similarly, queries with a large clade as the sister
tend to be more difficult for DEPP (Fig. S4 of the
Supplementary material available on Dryad). Trees that
lead to high error tend to have long terminal branches
and short branches close to the root, a condition that
corresponds to rapid radiations; in contrast, easy cases
are those with shorter terminal branches and long
branches closer to the root (Fig. S3 of the Supplementary
material available on Dryad).

HGT discordance. On the 10,000-taxon data set, which
includes HGT, EPA-ng has the best overall accuracy, with
DEPP coming as a close second (mean error: 2.43 and

2.80, respectively). However, these average performances
mask larger differences as HGT levels change. Breaking
down the data set by the HGT level per query taxon, we
observe that DEPP has slightly worse accuracy than EPA-
ng for the queries with low or medium HGT level but
better accuracy with high levels of HGT. DEPP has the
largest advantage with the most challenging cases when
gene sequences moved far away; e.g., error for DEPP is
3.5 edges better than EPA-ng and 0.9 edges better than
APPLES+]C on average with the highest level of HGT.

The Real WoL Data Set

We then tested DEPP on the real WoL data set using
30 marker genes, preselected to represent the range
of discordance among all 381 genes, in addition to
16S and 5S. We tested DEPP, EPA-ng, and APPLES+]C
using both novel queries (left-out) and observed queries
(training data). Despite the size of the data sets, neither
DEPP training nor placement was prohibitively slow. For
example, on the 16S gene with 7407 species, training
takes 240 min and uses 5 GB of memory using a
2080Ti NVIDIA GPU. Placement of 800 queries on the
backbone takes less than 40 s using a single core. At
the placement time, for the 30 marker genes leave-
out experiments, DEPP is faster than both EPA-ng and
APPLES+]JC (Table S5 of the Supplementary material
available on Dryad). Moreover, DEPP, once trained (a
one-time process) uses ten times less memory than
EPA-ng.

Given large backbone trees such as WoL, a query
sequence will have a considerable chance of matching
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FIGURE4. Results on the WoL data set. a) Mean and standard error of placement error for APPLES+]C, EPA-ng and DEPP, applied to novel
queries and known queries, on the species tree from WoL data set, which is treated as the ground truth. The x-axis shows genes, ordered by their
quartet distance to the reference species tree (shown parenthetically). For novel queries, the placement is performed in a leave-out fashion. For
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comparison on TRNA genes. We cut the x-axis at 15 for better visualization; see Figure S11 of the Supplementary material available on Dryad for

the full range.

a species present in the reference tree. Under such
conditions, DEPP has better performance over all the
genes compared with EPA-ng and APPLES+]C (Fig. S6 of
the Supplementary material available on Dryad). DEPP

has close to perfect accuracy for all genes except the
multicopy genes 165 and 5S (Fig. 4a and Fig. S6 of
the Supplementary material available on Dryad). For
these genes, the error slightly increases; DEPP finds
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the optimal placement in 91% (16S) and 73% (5S) of
cases but, on average, has an error of 0.32 (16S) and
1.13 (5S) edges. Patterns of error do not change whether
we train DEPP using the weighting scheme described
before or by simply selecting an arbitrary copy (Fig. S7 of
the Supplementary material available on Dryad). While
APPLES+]C and EPA-ng also had low error levels for
many genes, they had considerable error levels on the
training data sets for eight and three genes, respectively
(Fig. S6 of the Supplementary material available on
Dryad).

In the most interesting case, when the query sequences
are novel (i.e., are not in the training set), both DEPP
and EPA-ng greatly outperform APPLES+]C (Fig. 4a).
On average, the placement error of DEPP (2.17 edges)
and EPA-ng (2.15 edges) is much lower than APPLES+]C
(3.34 edges). Moreover, EPA-ng and DEPP have low error
about the same number of times (respectively, 89% and
88% of DEPP and EPA-ng placements have four edges or
less error). However, DEPP is less often far away from
the optimal placement. For example, on average, the
maximum error of DEPP for each gene is seven edges
lower than EPA-ng; or, the placement error of EPA-ng is
larger than 15 edges in 3.1% of cases compared to 2.4%
for DEPP. Thus, just like the simulated data set, DEPP
has fewer cases of high error.

Across all 32 genes, in 85% of tests, DEPP and EPA-
ng find a placement within 3 edges of the optimal
placement; for the full-length 16S gene, this value is 91%
for DEPP and 87% for EPA-ng. A random placement
on a tree with 10,575 leaves is, on average, 26 edges
away from the optimal placement. Our results are also
consistent with using 165 as a marker gene, which among
the 32 genes had one of the lowest mean error rates (1.43
edges). Finally, note that similar to simulated data sets,
accuracy of DEPP is a function of the accuracy of its
distances. Calculated distances have very little bias and
high variance where DEPP works well (Fig. S9 of the
Supplementary material available on Dryad) but high
variance and bias when it works poorly (Fig. 510 of the
Supplementary material available on Dryad).

Going beyond a single gene, given 50 randomly
selected genes, DEPP used with distance summary
strategy was able to place within three branches of the
optimal placement in 94% of cases, with a mean error of
only 0.98 edges (Fig. S12 of the Supplementary material
available on Dryad). Accuracy slightly degrades if we
concatenate genes instead of summarizing distances
among them (e.g., mean error increases to 1.6 edges).
Thus, DEPP can not only place using single genes, but
it can also place with high accuracy given data from
multiple genes.

Testing performance on rRNA genes 16S and 55, aver-
age error for DEPP is lower than EPA-ng or APPLES+]C
for both genes (Fig. 4c). Mean error for DEPP over all
rRNA data is 2.48 edges compared to 2.81 for EPA-ng
and 3.47 for APPLES+]C. For full-length 16S, DEPP and
EPA-ng find the optimal placements about the same
number of times; however, DEPP is more often close to the
optimal placements (e.g., 91% of queries are within three

edges for DEPP compared to 87% for EPA-ng and 80%
for APPLES+]JC). When given short amplicon-length
sequences, the advantage of DEPP over alternatives
becomes more substantial. For example, given 100 bp
amplicons from the V4 region, DEPP has an average
error of 3.4 edges while the average error of EPA-ng
and APPLES+]C are 4.12 and 4.94 edges, respectively.
While 3.4 edges of error may sound high, note that
insertion of a 100 bp read into a species tree is clearly
a difficult task. Comparing performance on different
rRNA genes, for 16S data, longer sequences give better
performance for all the methods (Fig. 4). Interestingly, 55
sequences (which are ~100 bp) have better accuracy than
16S V4 region sequences with the similar length, possibly
indicating that 55 carries more phylogenetic signal or less
discordance with the species tree.

Support accuracy. We test our method of measuring
support on 30 marker genes of WoL data versus the
support values generated by EPA-ng. Support values are
vastly different between EPA-ng and DEPP. While EPA-
ng tends to produce 100% support for a single placement
for most queries, DEPP generate far more placements,
most withlow support (Fig. 5a). Across all 12,727 queries,
EPA-ng generates only 14,355 placements versus 163,110
produced by DEPP. DEPP estimates full support for a
single placement for only 9.8% of queries whereas EPA-
NG produces full support for 85% of queries. Because of
its high confidence in its unique placement, no threshold
of EPA-NG support can produce low levels of false
positive detection (Fig. 5b), in contrast to DEPP, which
can produce FPRs close to zero. Comparing FPR and
recall, DEPP can achieve the same recall level as EPA-NG
with far lower levels of FPR (Fig. 5b).

Both EPA-NG and DEPP support values tend to
be higher in distribution for correct placements than
incorrect placements (Fig. 5a,c). However, DEPP support
values show a much larger gap between correct and
incorrect branches and are more predictive of accuracy
compared to EPA-ng (Fig 5a,c). Both methods clearly
overestimate support so that even branches with 100%
support are often incorrect; for example, only 66%,
71%, and 76% of the DEPP placements with support
>0.9, >0.95, and >0.99 are correct. However, the over-
estimation problem is worse for EPA-ng, which gives
high support in the vast majority of cases (Fig. 5c,d).
Overall, 62% of wrong placements with EPA-ng have
100% support, compared with only 0.2% for DEPP.

Case Study on Combined 165 rRNA and Shotgun
Metagenomic Data

We next studied how adding the MAGs and 16S rRNA
ASVs onto the same tree enables new analyses. We used
the data set by Zhu et al. (2018) with gut microbiomes
from seven healthy controls (HT) and 22 patients with
TD, all of whom were sampled using both 165 amplicon
sequencing and metagenomics with available MAGs
and ASVs. We added the ASVs and MAGs onto the
same WoL backbone tree using DEPP (see Materials and
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FIGURES.  Support of the placements. a) Empirical cumulative distribution function (ECDF) of the supports. b) Receiver operating characteristic
(ROC) curve. TP, TN, FP, EN is defined by correct placement with support above the threshold, incorrect placement with support below the
threshold, incorrect placement with support above the threshold, correct placement with support below the threshold respectively (support
threshold step size: 0.5%). ¢) Correlation between support and the correctness of the placements (area of each dot is proportional to the number of
placements it contains). d) Correlation between support and placement accuracy. x-axis: cumulative support of the top placements (placements
with highest supports); y-axis: proportion of the cases when the correct placements are among the top placements. These figures are using
163,110 placements for DEPP and 14,355 placements for EPA-ng in total across 12,727 queries on 30 marker genes of the WoL data set.

Methods section) obtaining two placement profiles for
each subject. We compare pairs of profiles using the
weighted UniFrac (Lozupone and Knight 2005) distance.

The UniFrac distances of the MAG profile of a sample
to the ASV profiles of other samples were higher on
average than its distance to the ASV profile of the same
sample in all except one case (Fig. 6a). In nine samples,
the MAG profile had a lower distance toits own ASV than
any other sample. The intrasample distances between
the ASV and MAG profiles substantially reduced as the
MAGs represented a larger proportion of the sequencing
data of each sample (Fig. 6a; P-value =0.001), whereas
distances across samples slightly increase (P-value =
0.02). As a result, the gap between inter- and intrasample
distances grew substantially with higher MAG coverage
(Fig. 6a).

Placements on a single tree enabled us to visualize all
ASV-and MAG-informed community structures using a
unified Principal Coordinates Analysis (PCoA) (Fig. 6b).
This results show that for some samples, ASV and
MAG placements indicate extremely similar community
structures while for others, there is a substantial dis-
agreement between the two. The intrasample distances
in the PCoA plots tend to be shorter for high coverage
MAGs (Fig. S13a of the Supplementary material available
on Dryad).

MAGs and ASVs can both distinguish healthy and
diseased samples (P-values: 0.019 and 0.024 using the
standard PERMANOVA method), but MAGs provide a
higher statistical power that implies a larger effect size
(Fig. 6¢). While the median ASV distances between pairs
of TD samples are similar to distances between TD and
HD samples, both intragroup median MAG distances
are lower than intergroup MAG median. Furthermore,
combining two type of data, 165 and MAG, which is
enabled by DEPP, provides a large separation with much
larger F statistics and increased statistical significant
(P-values: 0.002) (Fig. 6¢).

Despite the substantial agreement between MAG and
ASV placements, there are also differences. For three
samples (78, 10, 80,152), the ASV/MAG agreement is
low compared to the background distance levels. Zhu
et al. (2018) characterized these samples as suffering
from the co-infection of multiple Enterobacteriaceae
organisms (Escherichia, Enterobacter, Klebsiella, and Cit-
robacter), which increased the challenge of accurately
binning contigs from these closely related microbes—
a possible explanation for the relatively low congruence.
In addition, there are several groups that are found by
MAGs or ASVs but not the other (Fig. 6e and Fig. 515
of the Supplementary material available on Dryad).
The MAG placements include a clade representing
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FIGURE 6. Combined MAG and ASV results on the TD data set. a) For every sample, the UniFrac distance (y-axis) is shown between its MAG
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data covered by the MAGs). For intersample comparisons, we show all pairs of comparisons (small dots), the mean and standard error (large
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Distances. Each sample is represented with two connected dots, one for MAG and one for ASV. Examples of samples where ASV and MAG have
very low distances are highlighted in green. Nine samples dominated by E. coli are highlighted with a solid border. c¢) Distribution of UniFrac
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phylogenetic tree (the lightest shade of grey: backbone taxa).

Saccharibacteria which is not represented in the ASV
placements. This group of bacteria is classified under the
candidate phyla radiation, which has distinct physiolo-
gical and genetic characteristics from all remaining
bacteria. Commonly used 165 rRNA primers have
reduced sensitivity in capturing the Saccharibacteria
group (Castelle and Banfield 2018) that, according to Zhu
et al. (2018), may be responsible for the disease status.
On the other hand, the ASV placements include several
clades under Cyanobacteria not found by MAGs. These
may represent the commonly seen contamination from
chloroplasts of dietary plants in 16S analyses (Di Rienzi
et al. 2013), a problem that does not afflict metagenomic
assembly.

Beyond the detected groups, branch lengths also
reveal interesting patterns. While MAGs tend to be
placed close to the tips, a majority of ASV placements are
deep in the tree (Fig. 6d). These more basal placements
of ASVs are consistent with the lower phylogenetic
signal included in short sequences, which can lead to
less specific characterizations. Shorter terminal branches
highlight the advantage of MAGs versus 165 rRNA
amplicons in understanding microbiome compositions.

We observed substantial correlation (r2: 0.57; P-
value <107°) between the Faith’s phylogenetic (alpha)
diversity computed using ASV and MAG placements
(Fig. S14 of the Supplementary material available on
Dryad). These strong but imperfect correlations once
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again show the two sources of data capture similar but
subtly different patterns. Overall, due to the more basal
placements discussed earlier, alpha diversity measured
using ASV tends to be higher. Several low alpha diversity
cases are related to nine TD samples reported by
Zhu et al. (2018) to be dominated by Escherichia coli.
The first axis in the combined PCoA analysis clearly
separates these samples from others using MAGs, but the
separation is less strong using ASVs, a pattern observed
if PCoA analyses are performed separately for ASV
and MAGs (Fig. S13b,c of the Supplementary material
available on Dryad).

DIscussiION

We introduced a deep-learning approach for extend-
ing an existing phylogenetic tree without a need for
prespecified models of sequence evolution or gene tree
discordance. Our approach learns how to add new taxa
by capturing patterns in an existing reference set. Thus,
it uses the backbone alignment and tree to learn a
model that maps sequences onto the tree. This automatic
learning of the model eliminates the need for assuming
rigid models. Given a correct sequence evolution model
and no discordance, we see no reason machine learning
should be more accurate than traditional phylogenetics.
The novelty of DEPP is in its ability to learn from
data without knowing the model. For example, in
our simulations where the GTR+Gamma model of
sequence evolution and MSC or HGT models of gene
tree discordance were used, DEPP was able to match
the accuracy of maximum likelihood placement (and
surpassed it when discordance was high) without any
direct knowledge of the underlying model. Note that
once its modelis trained (a one time process per reference
tree), DEPP provides substantial running time and
memory advantages compared to EPA-ng, even when
their accuracy is similar (Table S5 of the Supplementary
material available on Dryad).

The model misspecification in our analyses came
from gene tree discordance, but other forms of model
misspecification exist and should be explored in future.
Moreover, other reasons for discordance (e.g., the ref-
erence tree may be the taxonomic tree or built from
morphological data) can also be imagined and provide
potential use cases of DEPP. Finally, beyond accuracy,
saving computational effort can provide a compelling
reason to use black-box methods. If an expensive model
is used to infer a tree, perhaps a black-box model
can learn its essential features so that the tree can be
extended further without repeating the effort. Such an
approach would be presumably cheaper than applying
the expensive model to the entire data set. We leave the
exploration of such applications to future work.

The specific formulation that we chose, embedding
sequences in high-dimensional spaces, allowed us to
define a loss function that can be easily optimized using
back propagation. One can argue that the ideal loss
function for placement would be one that evaluates

the accuracy of the final placement, not the distances.
Designing such loss functions would be easy enough.
However, optimizing a loss function with discrete
components (e.g., the placement branch) will loose the
differentiability of the loss function, which is necessary
for backpropagation using standard methods. Finding
ways to perform backpropagation in partially differenti-
able spaces like phylogenetic placement is an interesting
topic for future work.

Here, we trained our model on backbone trees
that ranged in size from 200 to 10,000 species. While
deep learning is believed to require extremely large
labeled data sets for training, we were able to train
DEPP, which has a moderate number of layers, with
only 200 species because we use pairwise information.

Thus, with 200 species, we have (2(2)0) =19,900 observed
pairwise distances for training. Nevertheless, it is reas-
onable to expect that as reference trees become more
densely sampled, the accuracy of DEPP would increase.
Moreover, recall that our embedding is much smaller
than size of the tree. Our results indicate that while
theory suggests we need n—1 dimensions for Euclidean
embedding of trees, far fewer dimensions suffice in
practice; we had to reduce k from 128 to 32 to observe
substantial drops in accuracy on simulated data (Table 52
of the Supplementary material available on Dryad). Note
that LR embedding states that n—1 dimensions are
sufficient, but it does not state that n —1 dimensions are
necessary. Future work should explore recent advances
in hyperbolic neural networks (Ganea et al. 2018) and
hyperbolic distances (Tabaghi and Dokmani¢ 2020) to
overcome limitations of Euclidean distances.

Our choices of hyperparameters such as k and the
training parameters such as the stopping criterion were
based on preselected values that were not fine-tuned
on any data set. In extensive simulations, this simple
procedure was necessary due to computational reasons.
When applying in practice on real data, it is possible to
fine-tune all the hyperparameters using a validation set.
We can first randomly select a subset of the reference
species as the validation set, use these as testing data
to tune the parameters for the given data set, and then
train one last time with all the data with the fine-tuned
parameters. Note that such a procedure will require
repeated training and can be slow, and our preliminary
results (Table S2 of the Supplementary material available
on Dryad) show that the gain in accuracy obtained can
be small.

Our results on the real prokaryotic data set shed light
on the ability of DEPP to overcome horizontal transfer in
some butnot all cases. HGT is the main cause of gene tree
discordance in prokaryotes, even for the marker genes
such as 165 (Gogarten et al. 2002). However, despite
relatively low levels of error overall, a small tail of
placements far away from the optimal species placement
with errors >20 edges is observed for many genes (Fig. S8
of the Supplementary material available on Dryad). This
long tail may be a signature of horizontally transferred
genes pointing to a very different position on the species
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tree than the genome-wide position. When HGT events
are observed in the training data, DEPP has a chance
to learn them and account for them. However, when an
HGT eventis novel (not seen among training data), DEPP
has no way of recovering the correct position given just
that one gene. These novel HGT events are a likely source
of those infrequent cases of large error.

Similar to unobserved HGT events, unobserved
sequence patterns can negatively impact the accuracy
of DEPP. For the cases with high errors, we observe
distances being overestimated, especially when the ML
distances are low. We attribute this bias to the inability
of the model to easily take advantage of novel data (e.g.,
changes in sites that are invariable in training data). We
hope to remedy this limitation of our model in future
work by more explicit modeling of unseen data, data
augmentation, or changing the loss function.

The most immediate use of DEPP is in connecting
165 and metagenomics, as we demonstrated in our case
study. DEPP often places 165 within three branches of the
correct edge in the species tree; thus, while some errors
remain, DEPP results enable combined 165 and metage-
nomic analyses with high accuracy. The current practice
to combine results from 165 and metagenomic data is to
use each data type to perform taxonomic identification
and use the resulting classification in downstream
analyses. Taxonomic classification clearly has less res-
olution than phylogenetic placement. DEPP (and more
broadly, discordant placement) allows a phylogenetic,
instead of taxonomic, approach for combining data.
Once sequences from all the data types are added to
the same tree, many downstream measurements, such
as UniFrac distances and beta diversity, can be measured
on the combined data. Our case study demonstrated that
DEPP is capable of resolving real microbial community
structures using either 16S amplicon or metagenomic
data. Moreover, on this data set, we observed improved
ability to distinguish healthy and diseased samples by
combining 165 and MAG data. Thus, combining both
sources of data can reveal patterns that are relevant to the
pathogenic profiles of the samples and the clinical status
of the subjects. We saw remarkable levels of agreement
between MAGs and ASV data in our case study, but
also disagreements. While our data tended to provide
evidence supporting the advantages of metagenomics
over 165 amplicons, some limitations of MAGs were
also revealed. Thus, due to pros and cons of each
data type, the two sources of information are likely to
remain complementary. Given 16S and metagenomic
data, DEPP can add all samples to the same underlying
tree, and this unified view of multiple data types enables
downstream statistical analyses (e.g., Unifrac) to analyze
both sets of samples jointly.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.6076 /D14G68.
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