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Abstract—This article presents a fast full-chip electromigration
(EM) aware IR drop constrained optimization framework, named
GridNetOpt, for on-chip power grid networks accelerated by
deep neural networks (DNN). Compared to the existing linear
programming-based methods, the new method employs more
flexible conjugate gradient-based optimization to size the wire
width of the power grids. To mitigate the high cost of sensitivity
calculation of the adjoint network using full-chip IR drop analysis
at every iteration step, the sensitivity is computed via a trained
conditional generative adversarial network (CGAN). The new
method exploits the differentiable characteristics of DNNs for
fast sensitivity computation. The sensitivity, which is the node
voltage with respect to wire resistance, will guide the search
direction during the optimization process. In order to consider
more accurate EM failure effects, the training data is obtained
from the power grids under different wire widths and current
loads analyzed by a state-of-the-art full-chip multi-physics-based
coupled EM-IR drop analysis tool. This is in contrast with
the existing linear programming-based methods, in which only
immortal wires or wires with non-zero resistance can be dealt
with. Numerical results on a number of synthesized power
grid benchmarks from ARM Cortex-M0 processor designs show
that the proposed GridNetOpt can lead to at least an order of
magnitude speedup over the conjugate gradient-based method
using the traditional adjoint network method. Compared to
the previous localized power grid fixing work with GridNet,
GridNetOpt leads to smaller area overhead for all the benchmarks
we tested. It can also reduce IR drops for power grid circuits
with immortal wires, which is not possible with the localized
GridNet method.

I. INTRODUCTION

On-chip power distribution networks (PDNs) are a crucial
backbone for feeding power to all transistors from top metals
on a chip, because they directly affect chip performance and
reliability. At the same time, electromigration (EM) remains
the top failure mechanism for copper-based interconnects in
all the subnanometer technologies. The International Roadmap
for Devices and Systems (IRDS) [2] predicts that the allowable
current density will continue to decrease due to EM while the
required current density to drive the gates will continue to
increase. As a result, the EM-related aging and reliability will
become worse for current 5nm and below technologies.

EM is a physical phenomenon of the migration of metal
atoms along the direction of the applied electrical field. Atoms
migrate along the trajectory of conducting electrons. For prac-
tical VLSI chips, the on-chip power supply networks are most
susceptible to EM failures because of large and unidirectional
current densities [3], [4]. Due to EM aging effects, voids may
be formed in the interconnects of the power grid networks,
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which can lead to resistance increase of the wire segment,
or even open circuit, making the IR drop of the power grids
increase. Therefore, EM-induced aging and IR drop changes at
the target lifetime have to be taken into consideration to make
the PDN more robust. We notice that EM effects may also
lead to hillocks or extrusion at the anode nodes of the wires,
which may bring about short circuits. However, the majority
of the EM failures are due to void nucleation [5] and hence
we focus on the void-induced EM failure in this work.

To design robust PDNs in the physical synthesis flow, the
wires have to be properly sized after the topology of the PDN
has been determined to minimize the area and meet the IR
drop requirement at the target lifetime. Many research efforts
have been investigated in the past based on nonlinear or linear
optimization methods [6], [7], [8], [9], [10], [11]. Early works
were mainly based on Black’s EM model. This is also the
requirement widely adopted in industry today – EM constraint
is simply represented as the maximum allowed current density
of individual wire segments to avoid nucleation. Recent studies
indicate that we have to analyze all the wire segments of the
entire interconnect wire simultaneously [12], [13], [14], [15],
[16], [17], [18].

To alleviate the above drawback, some works use new multi-
segment EM models to size the power grids to fix the EM
failures and IR drop violations came up. Zhou et al. [19]
proposed a power grid network sizing method based on a
multi-segment EM immortality check criteria. It automatically
considers all the wire segments and their interactions within an
interconnect tree. However, the EM immortality constrained
optimization is still too conservative as it requires all the
interconnect trees to be immortal, i.e., void nucleations are not
allowed. To further mitigate this issue, Moudallal et al. [11]
proposed to directly consider EM-induced IR drops instead
of EM constraints on the time-varying power grid networks.
It can consider post-voiding resistance change of wires based
on finite difference analysis of EM-induced stress in multi-
segment wires. Then the resulting nonlinear problem is solved
by applying successive linear programming. This method,
however, may suffer high computational costs if the number of
violation nodes is large as the sensitivities of those violating
nodes needs to be computed by solving the circuit matrices.
Furthermore, this method has the limitation in which wires
can only be sized up, which restricts its application in many
practical problems.

On one hand, Chang et al. [20] introduced a learning-
based EM violation waiver system, which investigates every
EM violation and takes an expert decision to either ignore
the violation (waive-off) or resolve it (must-fix) in the de-
sign. However, the proposed method cannot directly perform
the EM violation fixing. On the other hand, deep neural
networks (DNN) have propelled an evolution in machine
learning fields and redefined many existing applications with
new human-level AI capabilities. DNNs such as convolution
neural networks (CNN) have been applied to many cognitive
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applications such as visual object recognition, object detection,
speech recognition, natural language understanding, etc. due
to dramatic accuracy improvements in those tasks [21].

Recently, generative adversarial networks (GAN) [22]
gained much traction as they can learn features (latent
representation) without extensively annotated training data.
GAN-based methods have been applied for solving several
EDA problems such as layout lithography analysis [23], sub-
resolution assist feature generation [24], and analog layout
well generation [25] and high level thermal analysis [26] and
electromgration analysis [27].

Inspired by the modeling power of the DNN/GAN for
2D images, in this article, we try to mitigate the limita-
tions on the existing EM-aware power grid optimizations.
We develop a new fast EM-aware optimization framework,
called GridNetOpt, for full-chip power grid network sizing
and fixing. It capitalizes on the power of fast GAN-based
full-chip IR drop estimation method, which not only provides
fast EM-induced IR drop estimation, but also enables fast
and scalable sensitivity computation for optimization via the
inherent differential function of trained GAN models. The key
contributions of this paper are as follows:

• First, the new method applies a more general and
flexible conjugate gradient based optimization framework
instead of the existing sequence of linear programming
method. To be more specific, it only requires sensitivity
information to size any given power grids, with or without
mortal wires. Compared to the successive linear program-
ming method [11], the proposed method does not have
the limitation of reducing the IR voltage drop by only
widening the wires of the given power grid, and there is
no need to solve matrices to get sensitivities.
• Instead of using the traditional adjoint network-based
sensitivity computation method, which requires full-chip
IR drop analysis at every iteration step, we propose to use
a deep learning based model for sensitivity computation.
Once the model is trained, obtaining sensitivity will be
much simpler and faster. The trained GAN model not
only provides the IR drop information at the target aging
time but also provides the critical sensitivity information
of node voltage with respect to the wire resistance or
width. The sensitivity computation cost is marginal for
any given power grid designs with the same topology by
taking advantage of the auto-differentiation function of
the DNN model.
• We leverage the previously proposed GAN-based full-
chip IR drop analysis tool GridNet [1] for fast IR drop
estimation. GridNet is trained using 2D EM-induced IR
drop maps of power grid designs at different aging time
under different wire widths and current workloads. The
EM-induced IR drops of those power grids are simulated
from a coupled EM-IR analysis tool, EMspice [28], which
computes time-varying EM-induced IR drop and can
handle both early failure (open circuit) and late failure
(non-zero resistance) cases.
• Numerical results on a number of synthesized power
grid benchmarks from ARM Cortex-M0 processor de-
signs show that the proposed GridNetOpt can lead to
an order of magnitude or more speedup over the conju-
gate gradient-based method using the traditional adjoint
network method. Compared to the previously proposed
localized power grid fixing method with GridNet, Grid-
NetOpt can lead to smaller area overhead for all the
benchmarks we tested due to global optimization nature.

It can also reduce IR drops for power grid circuits with
immortal wires, which is not possible with the previous
method.

This paper is organized as follows: Section II reviews the
related preliminary works. Section III presents the details of
the GAN-based EM-aware IR drop prediction approach. Sec-
tion IV shows the formulation of the new EM-induced voltage
constrained optimization and its solution method. Section V
introduces the optimization strategies, including the fast gradi-
ent calculation via deep neural networks. Experimental results
and discussions are summarized in Section VI. Section VII
concludes the paper.

II. RELATED WORKS

In this section, we summarize some related literature on
physics-based EM-induced IR analysis and machine learning-
based IR drop analysis methods.

A. Full-chip EM-induced IR drop analysis
EM aging process typically leads to resistance increase or

even open-wire segments. For on-chip mesh-structured power
grid networks, due to its inherent design redundancy, a few
wire failures may not immediately result in a significant IR
drop increase. But as more wires nucleate, the IR drop will
eventually lead to timing violations. As a result, the power grid
networks become time-varying networks with time-varying
IR drops due to the EM-induced aging process [14], [15],
[29], [28]. On the other hand, the failed wire segments alter
the current distributions of all the interconnect wires, which
may further accelerate the failure process. Hence, one has
to consider the interplay between the two physics: electrical
characteristics and hydrostatic stress in the interconnect wires.

EMspice [28], [30] is a full-chip coupled EM-IR drop co-
simulation tool that considers the dynamic interplay between
the hydrostatic stress and electrical characteristics in a power
grid network. The tool consists of a finite difference time
domain (FDTD) solver for EM stress and a linear network
DC solver for IR drop, which can be described as

Cσ̇(t) = Aσ(t) +PI(t), (1)

Vv(t) =
∫
ΩL

σ(t)
B dV, (2)

M(t)× u(t) = PI(t), (3)
σ(0) = [σ1(0), σ2(0), ..., σn(0)] , at t = 0 (4)

Specifically, in the nucleation phase, hydrostatic stress is
modeled by the Korhonen’s equation with zero-flux boundary
condition at the terminals and initial stress condition. After the
FDTD process [31], the partial differential equation will be
converted to the linear time invariant (LTI) system as shown
in Eq. (1). Suppose we have n nodes, then C is an n × n
identity matrix and A is an n × n coefficient matrix. Note
that σ(0) denotes the initial stress at t = 0. In the incubation
phase [17], a void starts to form, the void volume and stress
distribution of the remaining wire are correlated by the atom
conservation equation as shown in Eq. (2), where Vv(t) is the
void volume, ΩL is the volume of the remaining interconnect
wire and V is the volume of the wire.

In the growth phase, the void continues to grow and thus
the wire resistance starts to increase. Modified nodal analysis
(MNA) is applied to calculate IR drops as shown in Eq. (3).
M(t) is the conductance matrix of the power grid network.
It is time-varying because wire resistance changes with EM
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failure process. P is a b×p input matrix, where p is the number
of inputs. u(t) represents the node voltages of the network and
I(t) contains the current sources from the function blocks of
the chips. The above equations are solved together, and finally,
the resulted IR drops and EM failure hotspots at the target
aging time are reported. In this work, we use data simulated
from the open-source tool EMspice to train the DNN models.

B. Machine learning accelerated IR drop estimation
In general, IR drop analysis is concerned with voltage drop

estimation from given current or power sources, which can be
time-varying for dynamic analysis. Numerical techniques are
well developed and perform IR drop analysis well on power
grids, such as hierarchical methods, random walk methods,
Krylov-subspace methods, multi-grid techniques, and vector-
less verification methods.

Several machine learning-based IR drop analysis meth-
ods have been proposed based on various deep neural net-
works [32], [33], [34], [35], [36]. Those methods typically aim
to replace the standard full-chip IR drop analysis tool such
as ANSYS RedHawk, via data-driven learning and feature
selection. For instance, Lin et al. [32] proposed a full-chip
dynamic IR drop analysis based on some power and physical
features extracted from cells and layouts. Fang et al. [33]
tried to improve the scalability by training the models for the
localized region of the layout. Xie et al. [35] proposed a CNN-
based model transferable across different designs that is able
to incorporate design-dependent features during preprocessing.
Ho et al. [34] focused on incremental IR drop prediction
and mitigation. The gradient boosting framework uses more
electrical and physical features for training. Chhabria et
al. [36] proposed a CNN-based generative network method,
called IREDGe, to predict on-chip temperature and IR drop
contours. Temperature and power grid analyses are mapped to
image-to-image and sequence-to-sequence translation tasks. A
good summary of recent work on machine learning-based IR
drop analysis can be found at [37]. These machine learning
methods indeed have achieved significant progress in IR drop
estimation. But none of them takes EM aging effects into
consideration.

III. DNN-BASED FAST EM-INDUCED IR DROP
PREDICTION

A. The overall workflow of the GridNetOpt framework
Fig. 1 shows the overall workflow of the proposed Grid-

NetOpt framework. The workflow consists of three phases:
training, inference and optimization. The first two phases
are also called GridNet. The training phase is shown in
Fig. 1(a), the yellow block shows how the power grids are
generated. Then in the red block, we use EMspice [28], the
coupled EM-IR analysis tool, to simulate the EM-induced IR
drop for synthesized power grid network. In the blue block,
GridNet receives the EM-induced voltage from 0 to Ttarget

aging years as well as the initial power grid. Electrical and
geometrical information are extracted afterwards. The training
process is shown with dashed arrows. Fig. 1(b) illustrates the
inference phase and the sensitivity-based full-chip power grid
optimization flow. GridNet has two outputs, one is default -
the EM-induced voltage of all nodes at a specific aging year.
The other is optional - the sensitivity information: sensitivity
of node voltages with respect to the input resistances. These
sensitivities can be obtained as a by-product from the differ-
entiable DNN model as we will show later. The sensitivity

information will then be utilized for power grid optimization
in the chip design flow. After the power grid is incrementally
updated, the GridNet model predicts new EM-induced voltage.
If the IR drop violations remain unaddressed, GridNetOpt will
perform the next round of fixing and prediction iteratively until
all the IR drop violations are eliminated.

B. Feature selection for GridNet
Given a mesh-structured power network, we can look at

the node voltages u(t) and the input current sources I(t)
in Eq. (3). For the DNN-based modeling, the input features
should include both I(t) and M(t). M(t) is represented by
the resistance vectors of wire segments in the power grid
networks. The resistance of a wire segment depends on its
length and cross-sectional area that is proportional to wire
width. Since we deal with mesh-structured power grids, the
topology of wire connections is implicitly presented if all the
wire resistance or features are pre-ordered (as a vector) based
on the counting order. As a result, the GridNet model is able
to deal with different workloads, i.e., I(t) and initial wire
resistances (different M at t = 0) under the same power grid
structure.

C. Training data preprocessing and representation
The preprocessing step extracts the electrical features and

geometries from raw layouts. After preprocessing, the work-
load samples will be represented in a customized scheme.

1) Data preprocessing: Given a specific design, Synopsys
IC Compiler II (ICC II) takes a synthesized gate-level netlist
and a standard cell library as input, and then automatically
creates the circuit layout. In the preroute (design planning)
step, one important procedure is performing power network
synthesis. As shown in Fig. 2(a), the power and ground
network are generated based on the constraints that the user
defines. It consists of VDD power nets, VSS ground nets, and
external power supplies. The results later are used to examine
the voltage drop, resistance, and EM effect. Fig. 2(b) shows
the voltage drop from the same power grid and the unit is mV.
Since our goal is to obtain EM-induced IR drops which contain
aging effect, we dumped the power grid information including
layout geometry, layer, via, as well as branch currents for later
simulation.

Having a sufficient amount of training data is a crucial
requirement for machine learning approaches. The DNN-based
EM-induced IR drop prediction requires a lot of power grid
samples and their corresponding ground truth EM-induced IR
drop along with the aging time. However, synthesizing a large
number of designs and dumping their power grid information
is not realistic. We first synthesized three power grid designs,
and then for each design, we randomly generated 12k different
workloads respectively. The network samples have the same
topology as the synthesized designs. Although they have the
same number of power strips, they differ in the branch width
and length. Note that different workloads can have different
EM impacts, thus the wires can be sized properly later on.

2) Data representation: Representation of data has a
tremendous impact on the behavior of deep neural networks.
To preserve the geometric and spatial relationship, we first
encode the EM-induced voltage at each node into a matrix
and then convert the matrix to a color image, as illustrated
in Fig. 3. Either Python API matplotlib.pyplot.imshow() or
MATLAB API image() can display the scalar data as an image.
Each pixel stands for one voltage value of one node, the
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(a) (b)

Fig. 1. Proposed GridNetOpt framework: (a) GridNet training flow; (b) GridNet prediction flow and GridNetOpt optimization flow.

(a) (b)

Fig. 2. (a) Power and ground networks of Cortex-M0 DesignStart; (b) Voltage
drop map of the power network of (a).

length and width information are discarded, while the relative
position of each node and its voltage value are kept. Such
compact representation will dramatically reduce the image size
compared with the representation from Fig. 2(b), which will
further speed up the training process.

As the pixels in our images are real voltage values, they
usually do not change dramatically, e.g., the maximum voltage
value is 1.05V and most values fall in the range [0.7 1.05]. The
channels of input are real resistance and current, thus they have
the same numerical problem. Such a small numerical range is
not suitable for neural networks. As a result, we rescaled all
data in the training to the range between -1 and 1.

D. The proposed GridNet architecture

GAN is a neural network model widely used in unsuper-
vised machine learning tasks. A traditional GAN is composed
of two separate deep neural networks, one is generator G and
the other is discriminator D, there is no control on modes of
the data being generated. In the Conditional GAN (CGAN)
model, the generator learns to generate a fake sample with a

(a) (b)

Fig. 3. Compact IR drop image of power grid networks (a) Design 2: 4k
nodes; (b) Design 3: 16k nodes.

specific condition rather than a generic sample from unknown
noise distribution.

GAN can be seen as an enhanced version of CNN because
the loss function not only consists of L2-loss between the
ground truth and the predicted result, but also the score given
by discriminator, which is a trainable loss function given by
another CNN model. This makes the GAN perform at least
the same as a CNN model if we use zero-weight to cancel out
the discriminator’s score in the loss function.

Back to our problem, GridNet does not generate voltage
maps from the random noises, instead, the inputs are the se-
lected electrical and implicit geometrical features of the power
grid networks and aging time. In order to implicitly learn the
distribution of the voltage and map it to the corresponding
2D voltage image, we use a CGAN as the backbone for our
model.

In this work, we also tried an additional CNN model, which
has exactly the same architecture as that of the generator in
our proposed GAN model. The only difference is the loss
function used in the training phase. The loss function of GAN
consists of two parts, i.e., discriminator’s output which reflects
the quality of the generator’s output, and the L2 difference
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between the generator’s output and the ground truth, while
the loss function of CNN preserves only the L2 difference
part but discarded the discriminator-related part as there is no
discriminator in CNN-alone architecture. The results proved
that the CGAN model can produce higher accuracy and
smoother node voltage images.

Fig. 4 shows the full model structure in training process.
Once the model is trained, only the generator G is preserved
for inference. To make the GAN model learn the temporal
dynamics of EM-induced IR drops, we propose to use the
time variable as the continuous condition for both generator
and discriminator, which was demonstrated to be effective for
financial market risk analysis [38].

Fig. 4. The CGAN architecture for EM-induced voltage estimation.

The five channels in our input tensor are column resistance,
row resistance, current source, wire length and aging time
separately. We employ an encoder-decoder architecture as our
generator that is widely used in image-to-image applications.
The input is downsampled through a series of convolutional
layers until a bottleneck layer, at which the latent features
are extracted and then reversely upsampled through transposed
convolutional layers. The generator is trained to extract useful
latent features from the input and then reconstruct the output
voltage map basing on this information.

Take a power grid design with 120 rows and 120 columns as
an example, there are five channels of input for the generator:
the column resistance image imgcol ∈ R119×120×1, the row
resistance image imgrow ∈ R120×119×1, the current source
image imgcur ∈ R120×120×1, wire length l, and aging time
t. t and l are expanded into R128×128×1 by channel-wise
duplication, respectively. In addition, the three images are
all expanded to the same size, such that imgcol, imgrow,
imgcur, l and t can be concatenated depth-wise. Specifically,
the missing columns and rows are filled with zeros. In this
example, size 120 × 120 is close to 128 × 128. We padded
equally, i.e., 4 zero entries, on each side of the matrix so that
the resulting image is sized to 128× 128. The resulting input
x given to the generator is a 128 × 128 × 5 tensor with all
entries normalized as described in the previous section. If the
dimensions are larger than 128, e.g., it is more than 128 but
smaller than 256, then an additional layer in the generator and
discriminator should be introduced before the 128×128 layer.
In other words, the input image should be sized to 256× 256
instead of 128 × 128. Moreover, if the dimensions are even
larger than 256, then another extra layer should be introduced
before the 256 × 256 layer, and so on and so forth. If the
dimensions are less than 128, e.g., it is less than 64, then we
have to remove the 128× 128 layer from the model and size
the input image to 64× 64 instead of 128× 128. Similarly, if
the dimensions are even smaller, then more layers have to be
discarded.

The output of the generator is a voltage map, which is
denoted as G(x). Either the generated G(x) or the real EM-

induced voltage image y is fed into the discriminator D alter-
natively together with its corresponding workloads and aging
time x as the condition input. The output of the discriminator
is denoted as D(G(x), x) or D(y, x) depending on whether the
generated or the real EM-induced voltage image was inputted.
In the training process, we use the Wasserstein Distance [39]
as the measurement of the difference between the real and
the generated EM-induced voltage image distribution to take
advantage of higher stability and convergence possibility.

Note that image-based DNN IR drop analysis like GridNet
and IREDGe [36] are very scalable. In general, the power
grid meshes on a chip are very sparse. When the chip gets
bigger we can select different pixel resolution for the layout
images. We can also leverage existing highly efficient GPU-
based computation framework to train GAN or CNN models
for large images.

E. Fast sensitivity calculation using the automatic differenti-
ation in DNNs

One important observation for all the deep neural networks
including the GAN model is that they are all differentiable
with respect to the model weights. Thus, training can be per-
formed through the automatic differentiation scheme, specifi-
cally the back-propagation algorithm, with sensitivity/gradient
information.

In this work, we leverage the automatic differentiation to
compute the sensitivity information between the output and all
of the input resistance through GridNet. To be specific, we can
compute the partial derivatives of one output voltage map with
respect to every input resistance in one back-propagation of
the generator DNN network. It is exactly the same technique
employed in the training process, and the cost of usingthe
Tensorflow tf.gradients() API is the same as one inference.
The only difference is that the derivative is taken with respect
to the input of the generator instead of the trainable variables
in the model. In other words, one has to perform one inference
using GridNet to compute sensitivity for b resistances for one
output node. Our sensitivity calculation is similar to the adjoint
network-based approach [40]. However, such method requires
two simulations of EMspice for each output node. In our case,
we do not require computing the sensitivities for all the output
nodes, instead, we only focus on a few nodes that have IR
drop violations, which makes the sensitivity computation much
more efficient.

IV. NEW EM-INDUCED VOLTAGE CONSTRAINED
OPTIMIZATION PROBLEM

A. Problem formulation

Let G = {N,B} be a power grid network with n nodes
N = {1, ..., n} and b branches B = {1, ..., b}. Each branch i
in B connects two nodes p and q with current flowing from
p to q. li, wi, and gi are the length, width, and conductance
of branch i, respectively. ρ is the sheet resistance. The width
wi of branch i is

wi = ρ
li
ri

= ρligi (5)

We remark that in the following notations, we only consider
power networks for the sake of simplicity. The formulation
of ground networks can be easily obtained for the same
optimization framework.
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1) Objective function: We can express the total routing area
of the power grid network in terms of sheet resistance, branch
length, width, and conductance as follows

a =
∑
i∈B

liwi =
∑
i∈B

ρl2i gi (6)

The objective is to minimize the area of the power grid
network. Assume that the topology and physical locations of
the network are fixed, ρl2i will become a constant and can be
expressed as αi, then the objective function is simplified as

a =
∑
i∈B

αigi (7)

2) Constraints: The constraints that need to be satisfied for
a reliable power grid network are shown as follows.

1. EM-induced voltage drop constraints: When a void is
nucleated and the interconnect enters into the growth
phase, an increase over time in branch resistance will
happen and may lead to time-varying node voltages.
Suppose vj,t is the node voltage of the leaf node j at ag-
ing time t, which is a nonlinear function of conductances,
the voltage drop is limited by a constant

vdd − vj,t ≤ u (8)

where vdd is the supply voltage and u is the bound of the
IR drop. In real design, normally a voltage drop of less
than 10% vdd is acceptable.

2. Minimum width constraints: Usually, different layers
have different requirements for the width of the metal
wires

wi ≥ wi,min (9)

where wi,min is the minimum metal line width.
According to Eq. (5), the above equation can be rewritten
as

gi ≥
wmin

ρli
(10)

3. Kirchhoff’s current law (KCL): We express Kirchhoff’s
current law in terms of node voltages∑

(j,k)

(vk − vj) gjk = ij (11)

where ij is the current demand at node j and each k
indicates a neighboring node of node j. In our approach,
we view node voltages as functions of conductance, so it
is implicitly satisfied.

B. Penalty method

The power grid optimization aims to minimize objective
function (7) subject to constraints (8) and (9). It will be
referred as problem P. Problem P is a constrained nonlinear
optimization problem.

The penalty method is adopted to solve problem P . By
adding a penalty term to the objective function that prescribes a
high cost for the constraint violations, the original constrained
problem is approximated with a sequence of unconstrained
problems.

1) Penalty function formulation: We adopt a penalty func-
tion as follows

f = a+ pt = a+ β ·
∑
j

c2j,t (12)

where a is the network area of function (7), pt is the penalty
term and β is the penalty parameter. For the voltage drop
constraint violation

cj,t =

{
0, if vj,t ≥ vdd − u

vj,t − (vdd − u) , else
(13)

Eq. (13) is further simplied as

cj,t = vj,t − (vdd − u) , for all j ∈ Evdrop (14)

where Evdrop represents a set of indexes of the nodes that
violate voltage drop constraint in the power grid network.

Minimum width constraints are not added into penalty func-
tion (12), the reason is that the proposed algorithm simply sets
the branches that do not satisfy minimum width constraints
with the minimum metal line width. The original constrained
problem P is transformed to the problem of minimizing the
penalty function (12) with minimum width constraints (9).

Moudallal et al. [11] observed that the IR drop vdd − vj,t
is a monotonically increasing function with respect to time, in
other words, vj,t1 ≥ vj,t2 for 0 ≤ t1 ≤ t2. Although branch
resistance increase does not necessarily lead to an IR drop
increase, this assumption holds in most cases. With this, we
restrict our attention to the target aging time T , then Eq. (14)
becomes

cj,T = vj,T − (vdd − u) , for all j ∈ Evdrop (15)

2) Optimization scheme: We first analyze the network for
node voltages and branch currents while considering its aging
time t and then identify the constraint violations. Generally,
penalty method transforms the original constrained optimiza-
tion problem into a sequence of unconstrained minimization
problems. Back to our problem, the conjugate gradient method
is adopted to update branch widths during each iteration,
the process stops when all the constraints are satisfied. The
solution procedure can be described as follows.

1. Obtain the initial conductance vector G(0), set an initial
value of penalty parameter β and error bound εb > 0.

2. Solve the unconstrained minimization problem (12),
obtain the current conductance vector G(k).

3. If pt < εb, then stop; else, update penalty parameter β,
set k = k + 1, and go to step 2).

Note that penalty parameter β cannot be a constant because
different power grids need different β. In addition, small β
may result in overconsideration of the objective function while
large β may lead to an ill-conditioning problem. If we set the
ratio of penalty terms to objective function as a constant r, then
we will get the initial β0 and can start minimizing the penalty
function. β is updated automatically in the next minimization
iteration, i.e., βk+1 = βk ·r ·a/pt. The process continues until
all the constraints are satisfied.

V. OPTIMIZATION STRATEGIES

A. Conjugate gradient method
In the penalty method, the efficiency of solving uncon-

strained minimization dominates the execution time. The
conjugate gradient method, which is a method between the
steepest descent method and the Newton method, deflects the
direction of the steepest descent method by adding to it a
positive multiple of the direction used in the last step. This
method only requires the first-order derivatives but overcomes
the steepest descent method’s shortcoming of slow conver-
gence. At the same time, the method does not need to save
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and compute the second-order derivatives that are needed by
the Newton method.

We notice that the conjugate gradient method has been used
for the IR drop and current density constrained optimiza-
tion [41] and for on-chip decap optimization as well [42].
The work in [41] shows that the gradient-based optimization
method is more scalable than linear programming-based meth-
ods [8]. However, this method is still based on Black’s EM
model, which adds current density constraints for each wire
segment. It cannot optimize the power grids with nucleated
wires for a target lifetime. In our approach, a more complicated
physics-based EM model is applied to solve the EM-induced
IR drop optimization problem over the target lifetime, such
problem involves extensive computation-intensive simulations
of full-chip PDNs.

In this work, we utilize the Fletcher-Reeves (F-R) conjugate
gradient method. The algorithm is shown as Algorithm 1.

Algorithm 1 Unconstrained power grid area minimization
algorithm
Input: Current conductance vector G.
Output: New conductance vector G.

1: k := 0.
2: Set initial descent direction to negative direction of the

gradient P (k) = −∇f
(
G(k)

)
.

3: /*F-R conjugate gradient method*/
4: repeat
5: Line search to determine a nonnegative scalar λ(k)

opt that
minimizes f .

6: Update conductance vector G(k+1) = G(k) + λkP
(k).

7: Choose new descent direction P (k+1) =

−∇f
(
G(k+1)

)
+

∥∥∇f
(
G(k+1)

)∥∥2∥∥∇f
(
G(k)

)∥∥2 P (k).

8: k := k + 1.
9: until

∥∥∇f
(
G(k)

)∥∥ < εFR

B. DNN-based fast EM-induced IR drop estimation

The conjugate gradient optimization framework requires
the sensitivity of penalized objective with respect to wire
conductance or width. It actually requires intensive full-chip
coupled EM and voltage (IR drop) analysis using EMspice
as we will show later. Such circuit-level multi-physics-based
full-chip power grid simulations are very expensive and even
prohibitive for large problem sizes.

In this work, we build machine learning-based models based
on the physics-based simulation to accelerate the sensitivity
calculation. Since we are seeking the task as an image trans-
forming problem and GAN has already been proved to be
successful in all kinds of image applications among different
DNN candidates, we select to employ conditional GAN (Grid-
Net) to estimate EM-induced voltage maps via a supervised
learning process based on the physics-based simulation data
from EMspice. Details of this CGAN architecture have already
been introduced in Section III-D.

C. Gradient calculation for the objective function

In the first step of the F-R conjugate gradient method, we
analyze the network and derive the node voltage and current

flow. From Eq. (12), the partial differential of penalty function
with respect to conductance can be expressed as

∂f

∂gi
=

∂a

∂gi
+

∂pt
∂gi

(16)

The first term of Eq. (16) is equal to the constant αi and the
second term can be expanded easily

∂f

∂gi
= αi + β ·

∑
j

∂vj,t
∂gi

· 2 · cj,t, for all j ∈ Evdrop (17)

Since our main focus is to ensure that the EM-induced voltages
at target time T do not have violations, it is enough to search
for a solution that decreases voltage drops at time T .

∂f

∂gi
= αi + β ·

∑
j

∂vj,T
∂gi

· 2 · cj,T , for all j ∈ Evdrop (18)

Thus, the gradient of penalty function f with respect to
conductance vector G is

∇f (G) =

[
∂f

∂g1
,
∂f

∂g2
, . . . ,

∂f

∂gi
, . . . ,

∂f

∂gb

]T
(19)

D. Gradient calculation via merged adjoint network
Traditionally, the adjoint network method has been proposed

to calculate the partial differential of the node voltages with re-
spect to branch conductance [40]. The adjoint network method
can compute the sensitivity of one node voltage with respect
to all resistance or conductance, but the cost of computing the
sensitivities for all the node voltages can be very high. Instead
of solving all adjoint networks separately, the merged adjoint
network method only needs to solve circuit equations twice
to calculate the final gradient of the objective function [42]:
one is for the original network and the other is for the merged
adjoint network. In this work, we implement merged adjoint
networks for performance comparison.

Let N and N ′ (j) be the original network and the adjoint
network, respectively. The two networks have the same topol-
ogy and conductance values. By running EMspice simulator,
we can easily obtain conductance matrices of N and N ′ (j) at
time T . The only difference between the two networks is that
all the absorbing current of N ′ (j) is set to zero except node
j. Since EMspice also tells the node voltages for N at time
T , we only have to build B (j) to solve the branch voltages
for N ′ (j).

B (j) = [0, 0, . . . ,−1, 0, . . . , 0]
T (20)

Let vi,T and v′i,T denote branch i’s voltage of N and N ′ (j),
the partial differential of node voltage vj with respect to the
conductance of branch i is computed by

∂vj,T
∂gi

= vi,T × v′i,T = (vp,T − vq,T )×
(
v′p,T − v′q,T

)
(21)

Then Eq. (18) becomes

∂f

∂gi
=αi + 2 · β · (vp,T − vq,T )

×

∑
j

v′p,T (j) cj,T −
∑
j

v′q,T (j) cj,T

 (22)

Suppose V ′ (j) is a vector formed by the node voltages of
N ′ (j), we have

v′p (j) = CpV
′ (j) , v′q (j) = CqV

′ (j) (23)
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where Cp = [0, 0, . . . , 0, 1, 0, . . . , 0] with 1 appears at index
p, and Cq = [0, 0, . . . , 0, 1, 0, . . . , 0] with 1 appears at index
q.

Therefore, Eq. (22) can be rewritten as

∂f

∂gi
=αi + 2 · β · (vp,T − vq,T ) (Cp − Cq)

×

∑
j

cj,TV
′ (j)

 (24)

E. Fast gradient calculation via deep neural networks

As mentioned earlier, sensitivity computation by adjoint
network methods based on the detailed multi-physics EMspice
simulation is very computationally expensive. To mitigate this
issue, we propose to use the DNN-based model for sensitivity
computation.

The objective of problem P is to minimize the power grid
area while ensuring that the functional modules work properly
at the target EM aging time T . Note that Eq. (5) holds only
before the interconnect enters into the growth phase. Once
the growth phase starts, the resistance starts increasing as the
current starts to flow through the more resistive barriers of the
copper wire. In other words, the decrease in conductance gi
does not have an impact on the wire width wi.

Let us add subscript time t to illustrate. Back to our EM-
induced voltage drop constrained problem, the sensitivity value
s we expect is ∂vj,T /∂wi, which means the partial differential
of the node voltages at aging time T with respect to the branch
width. According to Eq. (18), what we need to calculate is
∂vj,T /∂gi. Since the width does not change during the EM
process, i.e., wi,T = wi,0, it indicates that gi here should
be gi,0. The rationale behind this is that we have to update
conductance matrix G(k) for the next iteration, and updating
G(k) implies updating width W (k), however, only the initial
W (k) can be modified.

In EMspice, the coupled EM and IR simulation undergoes
complex stress evolution and the change of EM-induced
voltage drop with respect to time is nonlinear. From initial
time 0 to target time T , the resistance of branch i may
increase or remain unchanged, while the width of branch i
always unchanged. It is impossible to express those partial
derivatives with equations. Therefore, by applying the above
merged adjoint network method, we can easily get ∂vj,t/∂gi,t,
but cannot obtain ∂vj,T /∂gi,0.

As presented in Section III-E, we leverage the automatic
differentiation scheme in GridNet to compute the sensitivity
information for GridNetOpt. Specifically, we assume that we
have m violation nodes at time T whose node voltages are
represented by vj , j ∈ {1, ..,m}. The CGAN model is able
to give the estimated sensitivity values in milliseconds. Then
we can compute the following partial sensitivity matrix Sm×b

easily

Sm×b =


∂v1,T

∂g1,0

∂v1,T

∂g2,0
. . .

∂v1,T
∂gb,0

∂v2,T

∂g1,0

∂v2,T

∂g2,0
. . .

∂v2,T
∂gb,0

...
...

. . .
...

∂vm,T

∂g1,0

∂vm,T

∂g2,0
. . .

∂vm,T

∂gb,0

 (25)

More importantly, this automatic differentiation scheme is
able to tell ∂vj,T /∂ri,0 (∂vj,T /∂gi,0) directly, which is more

reasonable to employ in our problem. With this, Eq. (18) via
deep neural networks becomes

∂f

∂gi
= αi + β ·

∑
j

∂vj,T
∂gi,0

· 2 · cj,T , for all j ∈ Evdrop (26)

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiment setup
The proposed EM-aware IR drop constrained power grid

optimization is implemented in Python with the TensorFlow
library. The experiments are carried out on a Linux server
with 2 Xeon E5-2698v2 2.3GHz processors and Nvidia Titan
X RTX GPU with 24 GB memory.

In order to validate our work, we start from the power
grid of the Cortex-M0 DesignStart processor, which is a 32-
bit processor that implements the ARMv6-M architecture and
is placed and routed using ICC II with Synopsys 32/28nm
Generic Library. The power grid of Cortex has two layers,
and there are 1k nodes in total.

Power grid information obtained from ICC II is then fed
into the power grid parser. The information includes but is
not limited to structure, node location, wire layer, wire length,
current source, voltage source, and resistance values. The
netlist format extracted from the grids is consistent with IBM
power grid benchmarks [43]. In order to obtain enough power
grids with different EM conditions, we generate lots of IBM-
format power grid networks so that different workloads with
different EM conditions can be tested and verified.

We train our CGAN model using three different de-
signs/topologies and the size of the trained model varies with
the grid size. Each design has a dataset containing 12k samples
(workloads and aging time, EM-induced IR drop). Design
1 comes from Cortex-M0, Design 2 and Design 3 are self-
synthesized power grids with a format similar to Design 1. As
shown in Fig. 3(a), Design 2 has 4k nodes, 128 interconnect
trees and 4 external power supplies. Design 3 is demonstrated
in Fig. 3(b), and it has 16k nodes, 256 interconnect trees and
9 external power supplies. The maximum allowable IR drop
is set to 10% Vdd and the target EM lifetime T is 10 years.
For each workload, we collect the EM-induced IR drop results
obtained by EMspice at 11 discrete aging time instants (0 to
10 years).

We randomly select 15% workloads for testing and the
remaining 85% are assigned for the training set. Our training
and test data are separated on design basis, which means
that the designs in the test dataset were never seen by the
model during the training process. This ensures that the results
of testing reflect the generalizability of the model. We have
to emphasize that the designs in test dataset are to some
extent similar to the ones in training dataset, otherwise it is
impossible for the model to generalize to these unseen designs.
During the training phase, all samples are randomly permuted
at the beginning of every epoch.

B. EM-induced IR drop prediction results
1) Accuracy: Once the GridNet model is trained, the gen-

erator is preserved and serves as the model for inference.
The model can take any power grid workload for a certain
topology as input and give the predicted EM-induced voltage
at a specified aging year. The predicted results from GridNet
are compared with the baseline, which are the simulation
results from EMspice. To evaluate the estimation error, we
employ the root-mean-square error (RMSE) as the metric. We
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evaluate our trained GridNet model on the testing set which
was set aside during the training phase. The random generation
process guarantees that there is no overlap between these two
datasets. The details and results are shown in Table. I.

TABLE I
PREDICTION RESULTS OF DIFFERENT DESIGNS

circuit # nodes # voltage sources VDD (V) RMSE (mV)
Design 1 1024 2 1.05 5.697
Design 2 4096 4 1.05 6.100
Design 3 16384 9 1.05 3.922

A total number of 1800 different workloads out of 12k
workloads are tested for each design. For each workload, 11
voltage images at 0 to 10 discrete aging years are generated.
As can be seen from Table I, comparing all 19800 generated
EM-induced voltage images with the baseline on Design
1. GridNet achieves an average RMSE of 5.697mV, which
represents about 0.57% error for a 1.05V power supply. The
maximum RMSE is 16.48mV, which is 1.57% of the power
supply. We observed that prediction from GridNet seems to
be more accurate on larger IR drop values, the reason will be
investigated in our future research.

PG-a and PG-b are different workloads, they are picked
from Design 1 to demonstrate different patterns. PG-a is
a power grid with one mortal interconnect and the initial
maximum IR drop is 58.75mV. After one year, the resistance
of the mortal interconnect begins to increase due to EM
aging and the value is changing over time. After 10 years,
the maximum IR drop becomes 59.54mV, indicating the EM
lifetime meets the 10-year target. In contrast, the predicted
IR drop in the initial state and after 10 years are 57.93mV
and 59.95mV, respectively. Fig. 5(a) presents the correlation
between the predicted EM-induced IR drop and baseline from
0 year to 10 years, with a one-year interval, e.g., the purple
dots indicate IR drop at 10 years. The errors of all predicted
values are less than 11.42mV. The average error is 0.4035mV,
with a standard deviation of 0.7525mV.

PG-b is a power grid with 6 mortal interconnects and its
EM-lifetime is just 3 years. Initially, the real maximum IR
drop is 84.47mV whereas the predicted maximum IR drop
is 82.34mV. After 3 years, the EM-induced values become
84.58mV and 85.56mV for the baseline and predicted values,
respectively. From the 4th year, wire resistance starts to
increase, which has a large impact on the whole grid. As a
result, both the baseline and predicted one have the maximum
IR drop larger than 110.83mV, resulting in a power grid failure.
Finally, in the 10th year, the baseline and the predicted IR
drop value are 133.99mV and 127.39mV, respectively. From
Fig. 5(a) and Fig. 5(b), the correlations for different years in
the first figure have similar patterns. In contrast, the second
figure looks different, the data for the first few years are
concentrated in the lower part and the data for the last few
years are distributed throughout the whole figure. The reason
is that the EM effect is more clearly reflected in PG-b, which
has a larger resistance increase.

The accuracy of the model on a new design is determined
by the similarity between this new design and the ones that the
model was trained on. If the accuracy is not acceptable, then
it probably means that the model requires further re-training
or fine-tuning.

2) Speed: To compare the EM-induced voltage analysis
speed between GridNet and the baseline EMspice, we ran-
domly pulled the designs from the training and testing set.
The total computing time on the 500 different workloads

(a) (b)

Fig. 5. Predicted IR drop versus the baseline of (a) PG-a; (b) PG-b.

from Design 1 is 31.26h and 10.0s for EMspice and GridNet,
respectively, indicating that about 11232 or 104× speedup
over EMspice. For EMspice, the time cost on the estimation
of a single design varies from 0.57s to 427s depending on
the EM immortality condition. For GridNet, however, the
inference speed is steadily around 5ms for all the designs.
The computing cost of GridNet is invariant to immortality
conditions, which makes it much more suitable for larger-scale
designs and leads to better scalability.

As for larger designs, the speedup becomes more significant
because the simulation time for EMspice grows considerably.
For instance, obtaining the EM-induced IR drop results of
some cases for Design 3 at the 10th aging year takes more
than 1.5h. If applying the proposed GridNet, the inference time
will be around 10ms, indicating that the speedup will be more
than 5 × 105. When training from scratch, the training loss
of Design 3 took around 68 hours to converge. If the model
has to be extended to a new design variant, it just requires
fine-tuning which should take much less time and the specific
time cost depends on, again, the similarity of this new design
and the ones in training dataset.

C. EM-aware IR drop constrained power grid optimization
results

We further compare the proposed method to two methods,
the conjugate gradient method based on adjoint network ap-
proach – CG with merged adjoint network and the sequence
of linear programming based method proposed in [19] – SLP.
In the SLP method, the optimization subjects to the multi-
segment EM immortality constraint considering saturation
volume of voids [44].

The power grid optimization results are shown in Ta-
ble II. The power grids used in our experiments are selected
randomly. In Table II, we try to list the cases that can
cover different situations. circuit lists the power grid network
benchmarks. D1-PG1 - D1-PG4 have the same structure as
the synthesized Cortex-M0 DesignStart processor (Design 1),
each of them has 64 interconnect wires and thousands of
nodes but they differ in wire resistance, length, width, and
current sources. In contrast, D3-PG7 - D3-PG9 come from
the aforementioned Design 3, which have approximately 16k
nodes and 256 interconnect wires. Therefore, the initial EM
conditions of these benchmarks are different, such as the
number of immortal wires. Can’t opt means the tool cannot
optimize the designs due to the presence of mortal wires.

In Table II, column 6 to 8 and 3 to 5 report the number of
iterations (# iter), the reduced area ratio (area reduced) with
respect to the original area and the total computation time
(time) of GridNetOpt and the adjoint network method with
EMspice, respectively. From the results shown in the table,
the area from both methods can be reduced after optimization
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TABLE II
GLOBAL OPTIMIZATION COMPARISON: COMPARISON BETWEEN PLAIN CG METHOD USING MERGED ADJOINT NETWORK [41] AND GridNetOpt

circuit SLP [19] CG with merged adjoint network [41] GridNetOpt
area reduced (%) # iter area reduced (%) time (s) # iter area reduced (%) time (s) speedup

D1-PG1 16.96 4 34.79 982.18 6 33.95 57.93 17.34
D1-PG2 20.07 5 35.65 1631.45 4 37.32 44.63 36.55
D1-PG3 can’t opt 5 31.69 1632.23 5 29.52 47.61 34.29
D1-PG4 can’t opt 6 14.25 2826.75 7 17.07 66.06 42.79
D2-PG5 can’t opt 4 19.10 2078.06 6 19.19 57.48 36.15
D2-PG6 can’t opt 4 15.15 1826.90 5 15.33 39.00 46.83
D3-PG7 can’t opt 2 6.51 7806.35 2 9.96 21.72 359.37
D3-PG8 can’t opt 2 5.91 12635.89 3 7.22 157.43 80.26
D3-PG9 can’t opt 2 2.92 9621.64 4 4.29 52.74 182.45

TABLE III
THE COMPARISON OF PLAIN CG METHOD AND GridNetOpt ON D1-PG1

iteration CG with merged adjoint network GridNetOpt
time (s) area (µm2) # failed node time (s) area (µm2) # failed node

1 473.94 0.5592 1003 13.78 0.5592 1014
2 179.28 0.6131 781 13.30 0.6130 967
3 172.94 0.6367 207 12.30 0.6309 901
4 156.03 0.6783 0 11.35 0.6494 773
5 finish finish finish 7.07 0.6681 343
6 N/A N/A N/A 0.13 0.6871 0

TABLE IV
THE COMPARISON OF PLAIN CG METHOD AND GridNetOpt ON D3-PG8

iteration CG with merged adjoint network GridNetOpt
time (s) area (µm2) # failed node time (s) area (µm2) # failed node

1 7235.24 0.1672 743 145.29 0.1672 751
2 5400.65 0.1748 0 10.19 0.1722 43
3 finish finish finish 1.90 0.1724 0

and the area reduced ratio is similar. This demonstrates that
our work achieves comparable optimization results compared
to other conjugate gradient-based optimization works. Column
1 shows the optimization results from the saturation volume-
based EM immortality constrained SLP method. Among the
9 test examples, only D1-PG1 and D1-PG2 are initially EM
immortal, thus can be optimized through the SLP optimization
within 2 iterations. In contrast, the other 7 examples contain
mortal wires and cannot be performed successfully with this
method. We notice that the reduced area ratio of the power
grids from Design 3 is not big, the reason is that the test cases
we used are already well-designed, the optimization space left
is not large enough.

With GridNetOpt, we are able to meet the power grid life-
time target much faster than using the adjoint network method
with EMspice, which would be a great advantage especially
when the optimization space is not that large because designers
do not want to wait for a long time to only seek for a reduction
potential. For example, in the D1-PG4 case, the lifetime of the
whole power grids is predicted to be greater than 10 years and
the maximum voltage at T does not exceed 10%Vdd. There is
1 mortal wire and 44 violation nodes in total. Note that the
lifetime definitions of individual interconnect wire and power
grid network are different. The power grid lifetime refers to
the earliest time t that EM-induced voltage violations of a

power grid occur, here, we do not care about the earliest time
t but cares about if there exist IR drop violations at target
time T . By utilizing the by-product sensitivity information,
we are able to get the optimization direction much easier as
no complex numerical calculation is required. By iteratively
solving the unconstrained minimization problem and updating
the conductance vector and penalty parameter, the power
grid meets the lifetime target after 7 iterations. Even though
GridNetOpt achieves better area reduction than using the
adjoint network approach for this case, the optimization time
of the former is less. There is no obvious relationship between
reduced area and the number of iterations of the two methods,
e.g., GridNetOpt went through more iterations for the D1-PG1
case.

We remark that comparison with SLP is not an apple to
apple comparison as the two methods actually have different
constraints as we explained earlier. Here we just show that
SLP can’t optimize many of the PDN circuits, which however
can be optimized by the proposed method. Furthermore, note
that we did not directly compare with [11]. The reason is that
this method depends on properties in which wire width can
only be sized up (increased). For the proposed method, we can
start with any power grid network to optimize the wire widths
to their best possible values (size up or size down). Further,
this method essentially is an SLP-based method, existing
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TABLE V
COMPARISON OF LOCALIZED FIXING WITH GridNet [1] AND GLOBAL OPTIMIZATION GridNetOpt

circuit # mortal wires # failed node localized fixing with GridNet [1] GridNetOpt
area increased (%) time (s) area increased (%) time (s)

D1-PGL1 3 2 0.446 1.62 0.379 0.15
D1-PGL2 6 13 0.765 3.91 0.506 0.31
D2-PGL3 4 3 0.151 1.07 0.125 1.64
D2-PGL4 7 9 0.352 1.86 0.020 1.81
D3-PGL5 0 45 can’t opt can’t opt 0.080 8.04
D3-PGL6 2 39 0.204 3.63 0.0996 8.66

work has shown that the conjugate gradient optimization
method is much more scalable than linear programming-based
methods [41]. In addition, we can extend our approach to
statistical based optimization using Monte Carlo or other fast
variational methods [45], which will be our future works.

Table III presents the detailed comparison on the D1-
PG1 case. The number of violation nodes comes from the
GridNet CGAN model. In this circuit, the original area is
1.040µm2 and it is an EM immortal case. At the beginning
of conjugate gradient-based optimization, the wire width is
all set to its minimum, thus the area for optimization is
0.5592µm2. GridNet predicts that this circuit will have 1014
voltage violation nodes at the 10th aging year while EMspice
simulates that it has 1003 voltage violation nodes. The con-
jugate gradient optimization with GridNet and merged adjoint
network method undergo 6 and 4 iterations respectively to
eliminate IR drop violations. Finally, GridNetOpt achieves
33.95% area reduction while CG with merged adjoint network
makes 34.79% area reduction. However, the overall time of
the latter is more than 17 times longer than the former. In
contrast, EM immortality constrained SLP-based optimization
only goes through 2 iterations, since the immortality constraint
is more strict than the 10-year target lifetime and this method
requires that all the branches within an interconnect tree have
the same wire width, it only achieves 17.38% area reduction.

Table IV shows the comparison on the D3-PG8 case,
which is an EM mortal power grid with an original area
of 0.1858µm2. With minimum width, the area becomes
0.1672µm2 and GridNet predicts that the number of nodes
that violate the threshold voltage is 751. The first optimization
iteration takes a relatively long time, after 3 iterations, all
the voltage violations are eliminated. In contrast, due to the
long simulation time of EMspice, the CG with merged adjoint
network method takes 3.5 hours to finish the optimization
process. As a result, we achieve about 80x speedup over
existing CG-based approach.

Consider both area reduction and computation time, Grid-
NetOpt gets similar area reduction but much better speedup
(about 10x or more) for all the cases, we can conclude that
it outperforms the plain CG method using adjoint networks
for EM-induced IR drop constrained power grid optimization
problem.

D. Comparison of localized fixing with GridNet and global
optimization GridNetOpt

Last but not least, we compare the proposed global opti-
mization GridNetOpt with our previous work: localized fixing
with GridNet [1].

For fair comparison, we set all branches to their minimum
width and only allow a few failed nodes at target aging time

T . The comparison results are shown in Table V. There are
6 test cases in total, and each design topology has 2 cases.
Design D1-PGL2 is a power grid with 6 mortal wires and
its predicted lifetime is 7 years. At target aging time T ,
there are 13 voltage drop violations. GridNetOpt completes
the optimization process in 1 iteration whereas the localized
fixing method undergoes 2 iterations.

As we can see that GridNetOpt achieves better results
in terms of area overhead for all the benchmarks than the
localized fixing method, because the former can perform
global optimization versus the localized fixing in [1]. As for
computation time, the two methods are similar. The D3-PGL6
case only has 2 mortal wires, the localized method is very
efficient while the global method becomes more expensive
when the chip size gets larger.

We note that design D3-PGL5 has zero mortal wires but
it has voltage violations at design time. After 10 years, the
violation number is still 45. GridNetOpt is able to optimize the
power grid in 1 iteration. However, the localized fixing method
cannot perform the fixing as it needs to know vulnerable
branches (mortal branches) to start from. Of course, one can
find some local branches of the violating nodes to size, but it
is not relevant to the EM-induced IR drop optimization.

VII. CONCLUSION

In this paper, we proposed a novel optimization framework,
called GridNetOpt, for on-chip power distribution networks
considering EM-induced IR drop constraints at the target
aging time. GridNetOpt employs a conjugate gradient-based
approach to size the wire segments, which is capable to con-
sider all the EM failure situations, including immortal wires
and mortal wires, for EM-aware power grid area optimization
with a target lifetime. The optimization framework is further
empowered by the data-driven learning-based time-varying IR
drop modeling using deep neural networks. The new method
can naturally leverage the differentiable feature of deep neural
networks for fast sensitivity computation of node voltage with
respect to wire resistance or width. Numerical results on a
number of synthesized power grid benchmarks from ARM
core CPU designs show that the proposed GridNetOpt can lead
to an order of magnitude or more speedup over the conjugate
gradient-based method using the traditional adjoint network
approach. Compared to the localized power grid fixing with
GridNet, GridNetOpt can lead to smaller area overhead for
all the benchmarks we tested. It can also reduce IR drops for
power grid circuits with immortal wires, which is not possible
with the localized GridNet method.
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