
Threat-Aware Selection for Target Engagement

Daniel Biediger and Aaron T. Becker

Abstract— This paper investigates the scheduling problem
related to engaging a swarm of attacking drones with a single
defensive turret. The defending turret must turn, with a limited
slew rate, and remain facing a drone for a dwell time to
eliminate it. The turret must eliminate all the drones in the
swarm before any drone reaches the turret. In 2D, this is an
example of a Traveling Salesman Problem with Time Windows
(TSPTW) where the turret must visit each target during the
window. In 2D, the targets and turret are restricted to a plane
and the turret rotates with one degree of freedom. In 3D, the
turret can pan and tilt, while the drones attempt to reach a
safe zone anywhere along the vertical axis above the turret.
This 3D movement makes the problem more challenging, since
the azimuth angles of the turret to the drones vary as a
function of time. This paper investigates the theoretical optimal
solution for simple swarm configurations. It compares heuristic
approaches for the path scheduling problem in 2D and 3D
using a simulation of the swarm behavior. It provides results
for an improved heuristic approach, the Threat-Aware Nearest
Neighbor.

I. INTRODUCTION

Quadcopter UAVs (Unmanned Aerial Vehicles or drones)
have become ubiquitous among technology enthusiasts, hob-
byists, filmmakers, public safety departments, and military
interests. These small drones have many potential mili-
tary uses, from squad-level reconnaissance to direct attacks
against military targets. In addition, it is no longer just the
military that has access to these types of drones. Civilian
drones can be used, out of the box, for illicit reconnaissance
of military activity, or can be equipped with improvised
explosive devices, chemical weapons, or incendiary weapons.
This allows for inexpensive and improvised aerial strike
capabilities. Incidents have already arisen from rogue drones
performing illegal, unauthorized, and possibly nefarious fly-
bys of military assets. Recently, an incident involving the
USS Kidd [1] saw a swarm of 4-6 drones under unknown
control fly by a US Destroyer group off the coast of Cali-
fornia, constituting a significant breach in security.

One solution to the problem of hostile drones is engage-
ment by land or ship-based gun turrets that fire either projec-
tiles or directed energy. An example of the former is a CIWS,
or Close In Weapon System [2]. A standard CIWS consists
of a gun turret, typically a multi-barrel rotary cannon, which
allows this defensive system to generate a high fire rate
(above 4,000 rounds per minute), paired with sophisticated
sensor arrays, such as radar or infrared, for tracking of

This work was supported by the Alexander von Humboldt Foundation and
the National Science Foundation under Grant Nos. [IIS-1553063, 2130793,
1849303].

Department of Electrical and Computer Engineer-
ing, University of Houston, Houston, TX 77204 USA
{debiediger,atbecker}@uh.edu.

Fig. 1. This work is motivated by the challenge of a defensive turret
engaging a swarm of attacking drones.

targets, and computerized targeting algorithms to allow for
friend or foe identification. These systems are designed to
track and engage airborne targets that present a potential
threat to the safety of a ship. While many quadcopter drones
are significantly smaller than most targets a CIWS engages,
they are still valid targets for a CIWS. The efficiency and
implementation of tracking and engagement algorithms differ
greatly between standard targets, such as cruise missiles and
aircraft, and slower, but more maneuverable drones. Much
current research work is focused on directed energy weapons,
where high intensity energy (often laser light) is directed at a
target [3], [4]. A directed energy system requires a non-zero
dwell time during which the energy is focused on the target.

II. RELATED WORK

Control of anti-aircraft artillery has a long and rich history.
Of note is Norbert Wiener’s seminal work on predicting the
movement of targets [5], and related research during World
War II [6]. Our paper investigates a variant of this problem,
where the trajectories of the drones are known in advance,
but the time window for engaging the drones is limited. In
2D, this allows representing the problem as a Travelling
Salesman Problem with Time Windows (TSPTW). If each
time window is from 0 to the time when the drone reaches
the turret, the minimum-time successful path for the turret
is given by the solution to the TSPTW. The time constraints
make this problem more difficult than solving a TSP. The
best heuristic results for the Traveling Salesman Problem
with Time Windows are given by Boland et al. in [7]. They
use an integer programming technique using partially time-
expanded networks. These networks are used interactively
to contract upper as well as lower bounds until the optimal

http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
http://nsf.gov/awardsearch/showAward?AWD_ID=2130793
https://nsf.gov/awardsearch/showAward?AWD_ID=1849303

solution is reached, or a computation time limit is reached.
Their solver produces close to optimal results on a variety of
benchmark problems (up to 200 cities) with a computation
time limit of five hours. An approach based on time buckets,
presented in [8], provides a method for finding lower bounds
for Branch-Cut algorithms.

In the cases where the turret can survive visits by drones,
or where the turret has insufficient time to visit all the targets,
the turret’s goal is to maximize the number of drones visited.
This problem (in 2D) can be represented as a Prize Collecting
Travelling Salesman with Time Windows (PCTSPTW). Re-
cent work using heuristics to solve by Dogan and Alkaya [9]
find good solutions for up to 60-city PCTSPTW problems.

If more than one turret engages the drones, this problem
can be modelled as a Vehicle Routing Problem with Time
Windows (VRPTW). Google OR-Tools [10] provides code
for solving this problem. These algorithms’ performances
scale with the number of drones, and computation times
are measured in minutes or hours, making them currently
unsuited for online problems. Moreover, in 3D unless the
trajectories of the drones are straight lines directly into the
turret, the relative azimuth to the drones will change with
time. This changes the amount the turret must move in eleva-
tion to travel between targets over time. These time-varying
distances are beyond the abilities of [7], [9], [10]. Such
trajectories can arise when the drones use an indirect attack
strategy. There exists a cylindrical safe-zone extending along
the z-axis of the turret where a drone becomes unreachable.
We showed in [11] that this is due to a kinematic singularity
in the turret and it is reasonable for the drones to exploit
it. Similar challenges exist for other drone trajectories, such
as drones executing evasive maneuvers or if multiple turrets
exist, due to parallax. Considering these challenges, and with
a desire for an online solution, this paper focuses on heuristic
approaches to the challenge.

III. PROBLEM STATEMENT

A. Optimal targeting sequence: 2D

Consider a top-down, planar version of the targeting
problem, like the one shown in Fig. 2. The n drones are
confined to the plane and are all moving radially inward at
velocity v m/s. The turret can rotate at angular velocity !

rad/s and must visit all n drones before any can reach the
turret’s position at the origin. Assume that visiting a drone
requires a dwell time of ⌧ seconds and that only one drone
can be visited at a time.

If the initial position of each drone relative to the turret is
angle �i and radial distance from the turret is some nominal
distance d

⇤ plus an individual distance di for each drone in
the swarm, such that the minimum di is zero. Given d

⇤ +
di, for i 2 [1, n], di 2 [0,1),�i 2 [�⇡,⇡], what visiting
sequence minimizes the required d

⇤?
Equivalently, find the minimum d

⇤ � 0 over all visiting
sequences, since this correlates to the minimum time to
complete the sequence.

Fig. 2. One frame from a 2D drone swarm simulation with n = 100
drones. The center turret defends against drones in a 2D multi-spiral wave
formation. The red colored drone is currently engaged and the gray drones
have already been visited.

The base case, if n = 1 is
�i

!
+ ⌧ =

d
⇤ + di

v
, (1)

d
⇤ =

✓
�i

!
+ ⌧

◆
v � di. (2)

The d
⇤ can be lower bounded by the drone that reaches

the turret first:

d
⇤
c � max

i2[1,n]

✓✓
�i

!
+ ⌧

◆
v � di

◆
. (3)

The d
⇤ can also be lower bounded because each drone

must be visited, requiring a dwell time for each drone
and a variable time to transition between the drones in
the sequence. Without loss of generality, assume that the �

angles are sorted from [0, 2⇡]. A path that visits all the drones
can then either turn counterclockwise and end at angle �n

for a total angular path length of �n, or turn clockwise and
end at angle �1 for a total angular path length of 2⇡ � �1.
Alternately, a short path could take advantage of a gap in
the drone angles: the turret could turn counterclockwise to
drone i, then reverse and continue clockwise until it reaches
drone i+1, for a total path length of 2�i +(2⇡��i+1). Or
the turret could turn clockwise to drone i + 1, then reverse
and continue clockwise until it reaches drone i, for a total
path length of 2(2⇡ � �i+1) + �i. The lower bound on the
time to visit all the drones is then

t� = n⌧ +
1

!
min

8
>><

>>:

2⇡ � �1,

�n,

mini2[1,n�1] 2�i + (2⇡ � �i+1),
mini2[1,n�1] 2(2⇡ � �i+1) + �i

9
>>=

>>;

(4)

Given an ordering for visiting the drones, we can determine
the minimum d

⇤. Let the time of visitation of drone i be ti.
Then ti+⌧ d⇤+di

v , which can be rearranged to (ti + ⌧) v�
di d

⇤. Given a set of n drones and an ordering sequence
� that assigns a visit time ti to each drone, then

d
⇤ = max

i2[1,n]

⇣
(ti + ⌧) v � di

⌘
. (5)

Given a sequence � of drones to visit, the turret al-
ways turns the shortest angular distance between successive
drones. Consider a set of drones evenly spaced in a circle
around the turret, as in Fig. 8. From (5), because the time
required to visit each of the drones is bounded, there is
a definite starting distance, beyond which the swarm can
always be defeated. For swarms starting closer than this
distance, the turret does not have enough time to complete
a tour.

For a set of drones arrayed in a complex spiral pattern,
like the one in Fig. 2 the boundary is not as clear. If all the
drones in this swarm start beyond the distance in (5), then the
turret is assured success by sweeping through the formation.
Similarly, if all the drones in the swarm start closer than
this distance, the turret will not have sufficient time to visit
them all before the swarm reaches it. In the circle formation,
all drones start at the same radial distance, but for the spiral
waves, the drones start at different radial distances. This leads
to the possibility that some of the drones may start closer
than the corresponding d

⇤ for a circular formation, while
others start farther away. In this case, we cannot guarantee
the turret’s victory, and may need more complex strategies
to ensure its success.

There are two basic strategies to approach this problem:
select the next closest proximal threat to the turret, or select
the next target that is nearest to the current turret orientation.
The Proximal Threat (PT) approach focuses on the next
immediate threat to the turret; the drone that will arrive the
soonest. The Nearest Neighbor (NN) approach ensures that
the next target will be engaged quickly and without passing
over any targets. In 2D, it functions like a sweep over all
drones, selecting the shortest gap to the next target.

To pursue the PT targeting approach, select from all n

drones the drone j that reaches the turret first according to
(3). This is the base case. ⇡(1) = j, and d

⇤ is given by (3).
Next, we visit j, and from there, determine which drone will
reach the turret first according to an updated (3) with drone
j removed and all radial distances and angles updated. We
designate this drone k, and add it to the end of ⇡; updating,
if needed, the required d

⇤.
By continuing to grow ⇡, selecting the next drone that

increases d
⇤, every drone can be visited by the resulting

d
⇤. This is not dynamic programming, because it assumes

that we can always append the next drone to our existing
sequence (at the end), without needing to permute the drones
already in our sequence.

B. Planar Turret against infinite lines of drones

We can compare these strategies by considering a number
of infinite lines of drones, radiating away from the turret,

at set angles from the turret. Each drone is separated by s

meters radial distance from the next drone in line, see Fig. 8.
The initial distances for the drones in each line is important.
Let d0(t) be the distance from turret at time t for the first
drone at angle 0 radians, and let d⇡(t) be the distance from
turret at time t for first drone at angle ⇡ radians. To defeat
a single line of drones, the first drone must be d

⇤ � ⌧v

distance from the turret so that it can be visited before it
reaches the turret. By the same argument, s � ⌧v.

The nearest neighbors method fails to defeat two infinite
lines of drones with equal spacing s, with one line of drones
at 0 radians and the other at ⇡ radians. The next nearest target
is the one just behind the current target in line. Because there
are infinite drones, the turret fails at time v ·d⇡(0), when the
first ignored drone behind it arrives.

Selecting targets based on their proximal threat will cause
the turret to switch between the lines after each visit. If

s < 2v
⇣
⌧ +

⇡

!

⌘
, (6)

the proximal threat protocol will also fail; it spends more
time moving back between targets than is does in dwell time
on the targets.

A better strategy is to switch lines after visiting k drones
in a line. The turret must be able to visit k drones in the
first line, rotate to the other line and visit k drones, and then
rotate back before the (k + 1)th drone in the first line has
moved closer than the first drone’s initial position.

The times for these actions is given by the following
relation

2
⇣
k⌧ +

⇡

!

⌘
 ks

v
. (7)

This bounds the minimum separation distance s.

2v
⇣
⌧ +

⇡

k!

⌘
 s (8)

There is also a bound on the initial minimum distance for the
second line of drones d⇡(0). The turret must visit k drones,
then turn ⇡ radians, and then visit the next drone before it
arrives

⇣
k⌧ + ⌧ +

⇡

!

⌘
v d⇡(0). (9)

A plot that compares the minimum values for s and d⇡(0)
as a function of k for representative ⌧,!, and v values is
shown in Fig. 3. The distance d⇡(0) grows linearly with k

and the s asymptotes toward 2⌧v.

IV. NOTATION

Any path ⇡ is a sequence of targets for the turret to engage.
Each target is selected, in turn, and the turret rotates to point
at the drone. This is followed by tracking the target for a
dwell time. This marks the respective drone as destroyed
and removes it from the set of alive drones.

The problem is then defined as follows. Given the initial
bearing from the turret to the drone �i, and initial distances
di, and drone velocities vi, for i 2 [1, n], find the path ⇡ that
maximizes the desired criteria.

dπ (0)

s

5 10 15 20
k

1

2

3

length

Two infinite lines of drones at 0 and π

v=1m/s,τ=
1

10
s,ω=

2π
3
rad/s

Minimum s for proximal threat protocol

τ·v

... ...
!"#!(0)

' ''

(((

Fig. 3. The required separation distance s decreases inversely with k,
the number of drones visited between switching lines. The initial starting
distance for the second line d⇡(0) grows linearly with k.

For a given path ⇡, the visit time for drone i is Tv(⇡, i).
The indicator function (⇡, i) is 1 only if the turret visits
drone i before the drone reaches the turret, and T1(⇡) is
the arrival time of the first drone to reach the turret without
being visited.

Tv(⇡, i) =

⇢
1 ⇡ visits drone i before di/vi

di/vi else (10)

(⇡, i) =

⇢
1 ⇡ visits drone i before di/vi

0 else (11)

T1(⇡) = min
i2[1,n]

Tv(⇡, i) (12)

A. Success conditions for metrics

Given these definitions, we can now define the optimal
policy under different success conditions. (1) maximize life
is ⇡ML, (2) maximize visits is ⇡MV , and (3) just visit is
⇡JV .

⇡ML = argmax
⇡

✓
min

i2[1,n]
(Tv(⇡, i))

◆
(13)

⇡MV = argmax
⇡

0

@
X

i2[1,n]

⇢
(⇡, i) di/vi T1(⇡)

0 else

1

A

(14)

⇡JV = argmax
⇡

0

@
X

i2[1,n]

(⇡, i)

1

A (15)

There are two simple heuristic approaches, as alternatives
to the optimal solver: Proximal Threat (PT) and Nearest
Neighbor (NN). The PT approach selects the target that is
closest to reaching its goal as the next target. It seeks to
remove the most urgent time threats and prolong the life
of the turret. The NN approach selects the next target that

is easiest to reach from the current position; the nearest
neighbor in the state space. It spends the least time moving to
the next target and seeks to maximize visits. Both approaches
are fast and deterministic, but are greedy and easily exploited
by different swarm configurations. In addition there is a
strategy that extends and improves upon these approaches:
Threat-Aware Nearest Neighbor.

Algorithm 1 NEAREST NEIGHBOR(T)
1: n |T | . T are the pending targets
2: Set the working path ⇡ ;
3: for iteration 1 to n do
4: Select the nearest target j, move, and engage
5: Update drone simulation
6: if a drone reaches the turret then
7: return No Feasible Path
8: else
9: Remove j from T and append it to ⇡

10: end if
11: end for
12: return Success with Path ⇡

B. Threat-Aware Nearest Neighbor

The algorithm for Threat-Aware Nearest Neighbor
(TANN) is written in Alg. 2. It relies on generating an
initial feasible path ⇡ using the NN approach, and makes
adjustments to address failures in the path plan. Targets are
visited in turn as a simulation of the movements of the targets
proceeds. If the path generation is successful, the successful
path is returned. If the turret loses in the simulation, the
first failed target is added to the end of the path and a
previous target is removed from the path. The target selected
for removal is the one that would have had the highest laxity,
if it had not been engaged. This includes the time required
to return to the target after completing path ⇧. As in real-
time computing literature, laxity is defined as the maximum
time a task can be delayed and still complete within its
deadline. This corresponds to the previously-engaged target
that is most easily overlooked and postponed until later. The
simulation and planning then restarts, using the current path
as a starting point for the simulation. We count one iteration
as looking ahead once, and can repeat the process of looking
ahead to the next target that causes the path planning to fail.

V. 2D SIMULATION

To simulate the behavior of drones and turrets, we de-
veloped a simple 2D simulation in Python. We model the
drones as points, moving at their top speed of v = 10m/s
directly toward the turret. The turret moves with a limited
slew rate of ! = ⇡/2 rad/s, but no inertia, to face the
drones. It then holds on a drone for a ⌧ = 0.5 s dwell time,
to simulate an energy-weapon discharge. The simulation uses
an event-based system to mark an uneven passage of time.
The events include: a turret rotating to face a new target, a
turret tracking a target, and drones arriving at the turret. Each
time the turret completes a “visit” to a drone, it must select a

Algorithm 2 THREAT-AWARE NEAREST NEIGHBOR(m)
1: Set the working path ⇧ ;
2: for iteration 1 to m do
3: ⇡ [⇧,NearestNeighbor([1, . . . , n]\⇧)]
4: if Simulation fails due to drone i then
5: Include i in ⇧
6: Select j 2 ⇧, s.t. j has highest laxity
7: Remove j from ⇧
8: else
9: return Feasible Path ⇡

10: end if
11: end for
12: return No Feasible Path

new target to pursue. It can apply one of the target selection
policies: Nearest Neighbor, Proximal Threat, Threat-Aware
Nearest Neighbor, or follow the path pre-computed by an
off-line solver.

The optimal solution for visiting all the targets in the
shortest time is the solution to a TSP problem with Time
Windows (TSPTW). For easy time window constraints, the
computation is quick using the OR-tools, in [10]. Unfortu-
nately, as the time window constraints become more strict,
the computational effort increases. This makes the optimal
solver marginally useful for 2D problems: it finds an shortest
path, but the computation time often exceeds the simulated
time of an engagement.

A. 2D Simulation Results

For all simulations, we determine the minimum d
⇤ by

using a binary search. The range for d
⇤ is initialized to

[v⌧, v·n(⇡/!+⌧)]. The binary search continues to the nearest
meter.

The performance of NN and PT for a set of n drones
arranged in a vertical line at x = d

⇤, arranged from angle
� 2 [�⇡/4,⇡/4], evenly spaced in Cartesian coordinates,
is shown in Fig. 4. These show that NN is clearly superior
for this distribution because the PT approach swivels back-
and-forth between the two nearest drones, while the NN
eliminates all drones from � = [0,⇡/4] before engaging the
rest. As the number of drones increases, the time required
to engage the swarm increases. This allows for additional
movement time for the drones and moves the nominal
starting distance required for the turret to win farther away.

The slopes of the lines in Fig. 4 indicate the effectiveness
of the target selection strategies. The Nearest Neighbor
approaches show a more shallow slope than the PT approach.
The NN policies select the closest targets with the minimum
movement cost to the turret. In contrast, the PT approach
can rotate a significant amount to engage the next proximal
threat. This additional variable cost is reflected in the steeper
slope and in some variability in the exact path length. As
a result, the PT spends more time moving between targets
allowing the swarm more time to reach their target. In order
to succeed using the PT targeting, the same number of drones
must be further away when compared to NN.

0 100 200 300 400 500
1uPber of Drones Q

0

500

1000

1500

2000

2500

0
in
iP
uP
 D
ro
ne
 S
tD
rt
in
g
D
is
tD
nc
e,
 G
*
(P
)

11
3T
TA11 (5)

Fig. 4. The minimum starting distance for a turret using different targeting
approaches against a 2D linear formation (see schematic in Fig. 8).

0 100 200 300 400 500
1uPber of Drones Q

0

1000

2000

3000

4000

5000

0
in
iP
uP
 D
ro
ne
 S
tD
rt
in
g
D
is
tD
nc
e,
 G
*
(P
)

11
3T
TA11 (5)

Fig. 5. The minimum starting distance for a turret using different targeting
approaches against a 2D double-line linear formation (see schematic in
Fig. 8).

Interestingly, there is a similar behavior in Fig. 5, but with
two different slopes. In this case the drones are arranged with
half at x = d

⇤, arranged from angle � 2 [�⇡/4,⇡/4] evenly
spaced in Cartesian coordinates, and the remaining half at
x = �d⇤, arranged from angle � 2 [⇡3/4,⇡5/4] evenly
spaced in Cartesian coordinates. The difference appears be-
tween swarms with even and odd numbers of drones. Due to
the symmetry of the even numbers of drones have successive
nearby proximal targets. Odd numbers of drones require
constant switching between the lines in front and behind.
This leads to significantly more time spent moving for the
odd-numbered swarms as the PT solution rotates almost
2⇡ to eliminate four drones at a time. The Threat-Aware
Nearest Neighbor with a look-ahead of 5 shows slightly
better performance than the NN. Here, the most present threat
are the drones closer to the positive and negative x-axis.
Once past these critical drones, the others are farther away
and can be dispatched easier. By focusing on these targets
slightly out of order it is possible to improve over the purely
NN solution.

The minimum starting distance for a turret using different
targeting approaches against a multi-spiral wave formation
are shown in Fig. 6. These results show the minimum starting
distances for drone swarms of up to 500 in increments of
5. It includes the NN, PT, and TANN targeting policies
with different amounts of look-ahead. Placing the drones
in a multi-spiral wave formation causes Nearest Neighbor

Fig. 6. The minimum starting distance for a turret using different targeting
approaches against a multi-spiral wave formation (see schematic in Fig. 2).

to perform worse than Proximal Threat. The NN approach
ignores the threat of drones approaching it and progresses
around to each nearest angular target, including those that
are in the outer bands of the formation. The PT approach
performs much better because it explicitly targets the next
threatening drone. The trade-off is more time spent moving
to engage targets.

The Threat-Aware Nearest Neighbor approach balances
the performance of the two. Adding a single look-ahead
step improves the performance over simple NN, for no
noticeable change in computation time. Using five steps of
look-ahead, improves the performance to be better than the
PT approach. It requires less than half a second on a 3.6
GHz Intel processor to execute the path planning for 100
drones. This increases to about two seconds of computation
for 200 drones, as the operation is O(n2). Including 20 steps
of look-ahead improves the performance further, especially
as the number of targets increases. It provides up a 50
percent increase in performance over the base NN approach;
reducing the minimum starting distance by a third.

B. 3D Simulation

In 3D, the optimization problem is even more difficult
than the 2D. As the drones move in indirect attack, seeking
to exploit the safety region above a turret, their azimuth
angles change. This means that the angular distance between
targets changes as the targets move. This means that offline
solvers will not generate the overall optimal solution. Fig 7
shows the distribution of starting distances for the full
factorial set of all possible paths through a 12-drone swarm
in a cylindrical formation. The inset in this figure is a
schematic of this swarm in three dimensions on the surface
of a cylinder. The possible paths through the drones were
computed and simulated to determine the best path providing
the smallest d⇤ where the turret wins. After approximately
one hour of computation on an 3.6 GHz Intel processor, the
optimal path allowed for a nominal swarm starting radius of
133m. The OR-tools offline computation, assuming that the
drones would not change relative position, generated a path
allowing for a a nominal swarm starting radius of 135m after
approximately 180 s. The NN, PT, and TANN approaches
found a similar solution for a starting radius of 135m after

100 125 150 175 200 225 250 275 300
1oPinDl SwDrP StDrting DistDnFe, G * (P)

0.00

0.01

0.02

0.03

0.04

0.05

)r
DF
tio
n
of
 3
Dt
hs

)ull)DFtoriDl
11 (135P)
37 (135P)
7A11 (135P)

Fig. 7. Path length histogram for all possible permutations of sequences for
12 drones in a 3D cylinder formation (479 million paths). The optimal path
sequence will visit all drones for a swarm starting approximately 133m
nominal distance. The total computation time was approximately one hour.
The heuristic solutions for NN, PT, and TANN can handle a swarm starting
at 135m with computation times from less than one second to a few
seconds.

less than a second for the two former cases and a few seconds
for the latter case.

C. 3D Simulation Results

The addition of the third dimensions opens up an addi-
tional challenge for path planning. Fig. 10 shows a schematic
arrangement of drones along the bottom half of a hemisphere
around a turret. These drones are placed according to a
Fibonacci spiral [12]. While they are all the same radial
distance from the turret, the drones at higher latitudes are
closer to the axis above the turret where they can exploit
a weakness in the pan-tilt turret. Similar to the 2D weave
pattern, this results in a difference in the threat profile of the
different drones. As these drones proceed in horizontal flight,
their azimuth angle from the turret will change, complicating
the path selection, as the distances between targets change
with time. Applying PT selection, the turret consistently
favors the high latitude drones and proceeds down the rings
of drones. This accounts for the smoothness of the line as the
number of drones increases. It also causes the turret to bypass
intermediate targets in favor of clearing rings of targets. This
also means that the turret spends a significant portion of
the engagement moving between targets. In contrast, the NN
and TANN approaches show variations as the specifics of
the paths vary slightly with slight changes in the number
of drones. The precise details of the spacing cause slightly
different paths, and the approaches can find shorter paths
when the number of drones increases. The NN and TANN
(5) approaches perform significantly better than the PT
approach. They tend to find paths along the diagonal spirals,
but can miss the final drone at the highest latitude, as its
azimuth angle moves it out of consideration. While the
TANN approach can handle some of these drones, there is
only small advantage of the TANN approach over NN.

Fig. 8. Swarm formations in 2D with n = 100 drones. Line (a), Double
Line (b), Circle (c), and Two Radial Lines.

Fig. 9. The minimum starting distance for a turret using different targeting
approaches against a truncated hemisphere with a Fibonacci spiral. (See
schematic in Fig. 10.)

VI. CONCLUSIONS AND FUTURE WORK

This work introduced a problem related to the TSPTW,
where a turret must visit and neutralize a set of drones
that are trying to reach the turret. We produced optimal
results for a canonical arrangement of targets, and then
built 2D and 3D event-based simulators. These simulators
were used to test and compare several heuristics against
representative 2D and 3D swarms. For the most simple
swarm configurations and small numbers of drones, a greedy
approach selecting the nearest target is fast and produces
optimal or near-optimal results. For other swarms, accounting
for the proximal threats yields better performance, with more
look-ahead providing better results. These heuristics can
serve as performance benchmarks for additional approaches
that include additional look-ahead, local optimization, and
branch and bound. Future work will improve the heuristics,
and investigate performance for drone paths that represent
evasive maneuvers as in [13].

Fig. 10. Targets arranged in a truncated hemisphere using a Fibonacci
spiral [12].

REFERENCES

[1] D. Hambling, “Mystery drones kept buzzing U.S. destroyers
during exercises off california,” Mar 2021. [Online]. Available:
https://www.forbes.com/sites/davidhambling/2021/03/24/mystery-
drones-kept-buzzing-us-destroyers-during-exercises-off-california/

[2] K. Fong, “CIWS: The last-ditch defence,” Asian Defence Journal, vol.
Naval Forces, July/August 2008.

[3] H. T. Obering, “Directed energy weapons are real ... and disruptive,”
PRISM, vol. 8, no. 3, pp. 36–47, 2019. [Online]. Available:
https://www.jstor.org/stable/26864275

[4] C. Lyu and R. Zhan, “Global analysis of active defense technologies
for unmanned aerial vehicle,” IEEE Aerospace and Electronic Systems

Magazine, vol. 37, no. 1, pp. 6–31, 2022.
[5] P. Galison, “The ontology of the enemy: Norbert Wiener and the

cybernetic vision,” Critical inquiry, vol. 21, no. 1, pp. 228–266, 1994.
[6] D. Mindell, “Automation’s finest hour: Bell labs and automatic control

in World War II,” IEEE Control Sys Mag, vol. 15, no. 6, p. 72, 1995.
[7] N. Boland, M. Hewitt, D. M. Vu, and M. Savelsbergh, “Solving the

traveling salesman problem with time windows through dynamically
generated time-expanded networks,” in Integration of AI and OR Tech-

niques in Constraint Programming, D. Salvagnin and M. Lombardi,
Eds. Cham: Springer International Publishing, 2017, pp. 254–262.

[8] S. Dash, O. Gunluk, A. Lodi, and A. Tramontani, “A time bucket
formulation for the traveling salesman problem with time windows,”
INFORMS Journal on Computing, vol. 24, pp. 132–147, 02 2012.

[9] O. Dogan and A. F. Alkaya, “A novel method for prize collecting
traveling salesman problem with time windows,” in Intelligent and

Fuzzy Techniques for Emerging Conditions and Digital Transforma-

tion. Cham: Springer International Publishing, 2022, pp. 469–476.
[10] L. Perron and V. Furnon, “OR-Tools,” Google. [Online]. Available:

https://developers.google.com/optimization/
[11] D. Biediger, L. Popov, and A. T. Becker, “The pursuit and evasion of

drones attacking an automated turret,” in IEEE/RSJ IROS, 2021, pp.
9677–9682.

[12] D. P. Hardin, T. Michaels, and E. B. Saff, “A comparison of popular
point configurations on s2,” arXiv preprint arXiv:1607.04590, 2016.

[13] D. Biediger, A. Mahadev, and A. T. Becker, “Investigating the sur-
vivability of drone swarms with flocking and swarming flight patterns
using virtual reality,” in IEEE CASE. IEEE, 2019, pp. 1718–1723.

https://www.forbes.com/sites/davidhambling/2021/03/24/mystery-drones-kept-buzzing-us-destroyers-during-exercises-off-california/
https://www.forbes.com/sites/davidhambling/2021/03/24/mystery-drones-kept-buzzing-us-destroyers-during-exercises-off-california/
https://www.jstor.org/stable/26864275
https://developers.google.com/optimization/

	Introduction
	Related Work
	Problem Statement
	Optimal targeting sequence: 2D
	Planar Turret against infinite lines of drones

	Notation
	Success conditions for metrics
	Threat-Aware Nearest Neighbor

	2D Simulation
	2D Simulation Results
	3D Simulation
	3D Simulation Results

	Conclusions and Future Work
	References

