
A Multidimensional Blockchain Framework For
Mobile Internet of Things

Hussein Zangoti1 2, Alex Pissinou Makki3, Niki Pissinou1, Abdur R. Shahid4, Omar J. Guerra1∗, Joel Rodriguez1∗
1School of Computing and Information Sciences, Florida International University, Miami, FL, USA
2Faculty of Computer Science & Information Technology, Jazan University, Jazan, Saudi Arabia

3College of Engineering, University of California, Berkeley, CA, USA
4Department of Computer and Information Systems, Robert Morris University, Moon, PA, USA

1{hzang001, pissinou, oguer022, jrodr173}@fiu.edu, 3alexpissinoumakki@berkeley.edu, 4shahid@rmu.edu

Abstract—The adoption of blockchain in the Internet of
Things (IoT) has been increasing due to the various benefits
that blockchain brings, such as security and privacy. Current
blockchain models for mobile IoT assume there are fixed,
powerful edge devices capable of providing global communication
to all the nodes in the network. However, due to the mobile
nature of IoT or network partitioning problems (NPP), nodes
can move out of a cell area and split into smaller independent
peer-to-peer subnetworks. Existing blockchain structures either
do not support the network partitioning problem or have limi-
tations. This paper introduces a multidimensional, graph-based
blockchain structure, that utilizes k-dimensional spatiotemporal
space, to address the challenges of applying blockchain in
mobile networks with limited resources. Experimental results
show that a multidimensional blockchain structure can improve
scalability and efficiency as the blockchain grows in size, similar
to logarithmic growth, and reduce the longest chain length
by more than 99.99% compared to the traditional chain-based
blockchain structure.

Index Terms—Multidimensional, Blockchain, IoT, WSN, Cryp-
tography, Binary Search Trees, Network Partitioning, Mobility.

I. INTRODUCTION

Blockchain presented by Nakamoto [1] is a time-stamped
append-only log technology that is usually decentralized,
immutable and has led to innovative applications in many
areas such as finance, healthcare, distributed systems, voting,
industry, and real estate. When integrating blockchain into
other domains with limited resources, such as mobile IoT,
which is the focus of this paper, there are multiple challenges
to address. Traditional IoT blockchain systems rely on high
network connectivity, which implies they depend on fixed,
powerful edge devices capable of continuously providing
global communication to all the nodes Karlsson et al. [2].
However, considering the mobility nature of IoT, nodes can
split into smaller and independent peer-to-peer subnetworks
due to the absence of edge devices. Existing blockchain
structures either do not support the network partitioning prob-
lem or have limitations such as poor efficiency or resource
consumption Al Sadawi et al. [3], Wang et al. [4].

* Part of this work is supported by the NSF under Grant No. 185190 and
1801552 for the Florida International University REU and RET programs,
respectively.

A chain-based blockchain usually aims to grow on a single
chain (i.e., the longest chain) in which blocks are ordered by
their creation time. When a network split occurs, two or more
subnetworks can continue adding blocks to their blockchains,
creating distinct blockchain copies. This scenario is possible in
mobile networks, and the data from all subchains or blockchain
copies could be equally important. When these subnetworks
attempt to merge again, chain-based consensus algorithms
usually favor selecting the blockchain copy with the longest
chain and appending any future blocks on the longest chain.
This approach also ignores other blocks from sub-chains or
forks, which can be crucial for future use.

Traditional blockchain systems are designed in a single
chain or a linear-based structure Nakamoto [1] (we will use
linear-based and chain-based interchangeably). This type of
structure can result in undesirable performance in terms of
scalability, throughput, and confirmation time Wang et al. [5].
In addition, chain-based data structures can result in com-
putation, storage and communication overheads as observed
by Xu et al. [6]. Moreover, Li et al. [7] pointed out that a
single chain structure can experience centralization concerns
because powerful nodes have a higher chance of generating the
next block. Another concern is high transaction fees because
transactions are processed by powerful miners that require
high resource consumption. Several graph-based structures,
such as Directed Acyclic Graph or DAG-based blockchain,
were introduced to address these bottlenecks. Literature im-
provements include developing DAG-based blockchains that
can process or confirm transactions in parallel, requiring fewer
communications, computations, and storage overhead [8]–[11].
Despite all the benefits of the DAG structure, a large-scale
DAG-based blockchain, such as IoT scale, consumes higher
computations than traditional linear-based blockchains Wang
et al. [4].

Our contributions in this paper include developing a graph-
based blockchain structure that is immune to the dynamic
merge and split nature of mobile IoT systems while main-
taining data consistency and trust in a trustless environment.
Another contribution is designing a blockchain system that
can improve scalability and efficiency over existing blockchain
systems by utilizing an efficient algorithm using binary search



Bentley et al. [12] for blockchain operations.
The rest of this paper is organized as follows: Section II

presents an overview and background knowledge related to
this paper. Section III highlights and summarizes some of
the related work. Section IV describes the preliminaries and
system assumptions. Section V shows the proposed model. In
Section VI, we discuss the simulation setup and experimental
results. And lastly, Section VII presents the conclusion of this
paper.

II. OVERVIEW

A. Blockchain

The oldest form of blockchain dates back to 1990 by Haber
et al. [13] which describes how to cryptographically seal and
time-stamp a digital document. The oldest running form of
blockchain, from 1995 - present, is by the New York Times
[14] using the work presented by Haber et al. [13]. The term
blockchain became more popular with the introduction of
bitcoin in 2008 by an anonymous entity known as Satoshi
Nakamoto [1]. A blockchain system consists of a peer-to-
peer (P2P) network where each node stores a copy of a
distributed ledger (or distributed database) Hsiao et al. [15]. A
blockchain consists of blocks that are chained together using
hash values Wu et al. [16]. Each block can store committed
digital interactions that can happen in the blockchain network
Yaga et al. [17]. Committed digital interactions can include
the amount of digital assets sent from one account to another,
temperature readings, logs, or any kind of data to be stored.
The blockchain grows over time by appending valid blocks to
the blockchain by special nodes called miners or forgers Zheng
et al. [18], Al Sadawi et al. [3]. Blockchains are also designed
to achieve some of the following goals: First, eliminating the
need to have a trusted third party. For example, blockchain
does not require any intermediary or central authority to
perform valid transactions, and nodes in blockchain systems
can agree on the trustfulness of any block using consensus
algorithms Dai et al. [19]. Additional goals include achieving
user privacy by concealing users’ private information while
keeping records publicly available, and ensuring data integrity
and immutability. There are three types of blockchains public
(such as Nakamoto [1] and Ethereum [20]), private, and
consortium blockchains Xu et al. [21].

To achieve trust in a blockchain, the system uses consensus
algorithms that allow nodes to agree on any block’s validity
and trustfulness before appending it into the blockchain Dai et
al. [19]. Some of the most widely used consensus algorithms
are proof of work (PoW) Back et al. [22], Nakamoto et al.
[1], proof of stake (PoS) Bentov et al. [23], delegated proof
of stake (DPoS) Larimer et al. [24], and practical Byzantine
fault tolerance (PBFT) Castro et al. [25]. For more details
about consensus protocols, we refer to this paper Xiao et al.
[26]. In (PoW), miners compete to solve a computationally-
expensive mathematical puzzle. The more hashing power a
node has, the more work it can do and the higher the chance to
solve the puzzle, mine the next block, and receive the reward
Wu et al. [16]. With blockchain systems that use PoS, the

Fig. 1. Merkle Tree Structure Bao et al. [29].

consensus algorithm requires miners or forgers to lock assets
before being selected to be validators and forging any block. In
general, forgers with higher locked assets (stake) are assumed
to be more trustful and have higher chances to forge the next
block Dorri et al. [27]. This paper applies PoS as a consensus
algorithm since it does not require extensive computations,
which is more suitable for lightweight IoT devices.

B. Merkle Tree

A Merkle tree, proposed by Merkle et al. [28], is a balanced
hash tree that stores hash values, see Fig. 1. Many research
works utilize the Merkle tree architecture in distributed com-
puting, such as bitcoin. Some of the Merkle tree’s major
applications include comparison and verification of data Bao
et al. [29]. Every leaf node in the Merkle tree is labeled with
a hash that is generated from its data content. Every non-
leaf (parent) node is labeled with a hash that is generated
by concatenating the hashes of its children. Hashing the tree
works as a bottom-up approach starting from the leaf nodes up
to the root node. In the end, a unique Merkle hash is assigned
to the root node. This Merkle hash is used in blockchain
systems and is stored in the block header. The final Merkle
hash represents proof of the validity of all transactions within
the block. One thing to note is that any modification to any
transaction will result in a different Merkle root hash value
Wu et al. [16],Wang et al. [4], Li et al. [30].

Fig. 1 depicts a simple example of the Merkle tree. The
structure is divided into two parts. The first part contains the
Merkle tree, and the second part is the data to be hashed, in
our case, block transactions. For instance, the leaf node H1

stores the hash value of transaction T1, and the hash value is
calculated using the hashing function H(T1) using Merkle et
al. [28], the same applies to other transactions. Moving up in
the tree, every non-leaf node concatenates its children’s hashes,
hashes them, and stores a new hash value. In the example, the
non-leaf node H12 concatenates H1 and H2 and assigns a
new hash to H12 as follows, H12 = H(H1|H2). This process
continues until the root node is reached, and the root node
H1234 assigns the root hash to be H1234 = H(H12|H34).



Fig. 2. A k-d tree structure with 2-dimensions Bentley et al. [12].

C. k-d Tree

A k-d tree, introduced in the 1970s by Bentley et al. [12], is
a multidimensional binary search tree. The k symbol indicates
the number of dimensions, formally known as discriminators.
The k-d tree takes sets of inputs or points and sorts them in a
k-dimensional space; see Fig. 2. The k-d tree is a useful and
efficient data structure for cases like range search and nearest
neighbor search Moore et al. [31].

Fig. 2 shows a 2-d tree which represents a set of points
{A, ..., F} in a plane. In the tree, the circles represent the
points; and the squares represent null leaf spaces that can
accept the next input or node. At first, root node A splits
the domain or points with a vertical line into two sub-
domains (B and C). Both subdomains in this example have
an approximately equal size number of points. The splitting
process continues until no splitting is required. Nodes at
discriminator 0 split a set of points with a vertical line while
nodes at discriminator 1 split a set of points with a horizontal
line Bentley et al. [12].

D. Merkle k-d Tree

A Merkle k-d tree consists of a k-d tree with a Merkle tree
representation of the k-d tree as described in Sections II-B
and II-C. These are the main building blocks of the proposed
model. The multidimensional blockchain is an immutable k-d
tree, and the Merkle tree is a modifiable representation of the
multidimensional blockchain, more details in Section V.

III. RELATED WORK

Several works were proposed to address the issues of
scalability, throughput, and confirmation time when using
chain-based blockchain structure. Examples of these works
include sharding Wang et al. [32], sidechain Back et al.
[33], and cross-chain Zamyatin et al. [34]. In sharding, the
system divides pending transactions into smaller pieces called
shards in order to process them in parallel Zamani et al.
[35]. Sidechain, an additional solution to improve traditional
blockchain structure, allows digital assets to be transferred
between the main chain and sidechains Wu et al. [16]. Cross-
chain can help improve traditional blockchains by establishing
communication between multiple blockchains and allowing
digital assets to transfer between them. Although these ap-
proaches can enhance chain-based blockchain functionality,

their backbone structures are still based on a chain-based
blockchain structure Wang et al. [5] which is not suitable for
wireless mobile networks. In addition, chain-based structures
can suffer from linear growth scalability and inefficiency.
The end of this section (Subsection III-A) will explain why
graph-based blockchains are more suitable for mobile wireless
networks than chain-based blockchains.

Shahid et al. [36] proposed a lightweight, scalable
blockchain system for resource-constrained Internet of Things
devices called “Sensor-Chain.” Their proposed model allows
nodes to split into multiple networks based on regions, and
each network has its independent blockchain. The model also
enables blockchains to merge by aggregating blocks into a
single block, saving storage resources. However, the model
periodically erases some historical blocks when aggregating
blocks after the merge. This produces a fundamental issue
because the missing historical blocks could contain critical
data and negatively impact data availability and consistency.
Furthermore, the model uses a chain-based blockchain struc-
ture, which is not favorable to recourse-constrained devices
due to the poor overall performance metrics discussed earlier.

Due to resource limitations in IoT, many researchers pro-
posed approaches to offload the blockchain data towards more
centralized IoT resources such as edge, fog, or Roadside Units
(RSU), where full nodes are located and can store the entire
blockchain. A DAG-based blockchain system was proposed
by Yang et al. [37] to enable a lightweight and secure data
storage structure for resource-constrained Vehicular Social
Network devices (VSNs). Another work suggested aggregating
the blockchain data through base stations, roadside infras-
tructure, or service providers. Danzi et al. [38] proposed a
blockchain system for lightweight IoT devices with delay and
communication tradeoffs. In their work, the blockchain data is
aggregated in periodic updates to reduce the communication
cost of the IoT clients. Each IoT client is connected to a
set of blockchain networks through wireless base stations.
Memon et al. [39] proposed a blockchain based DualFog-
IoT system with three configuration filters that can specify
the type of incoming requests. These filters are Real-Time,
Non-Real Time, and Delay Tolerant Blockchain applications.
The DualFog architecture splits the fog layer into two parts.
Fog Cloud Cluster where it communicates with the cloud,
and Fog Mining Cluster which includes a group of trusted
fog devices that are responsible for mining for blockchain-
based applications. However, all the nodes must maintain
communication with all other nodes or at least with one full
node that’s always connected through edge/fog devices.

Kim et al. [40] proposed a graph-based blockchain system,
called Binary Blockchain, that can split and merge blockchains
to handle the mining congestion problem. Mining congestion
is a major problem in blockchains which can cause higher
transaction confirmation time. The Binary Blockchain system
splits chains when the load goes above a threshold and reduces
the number of chains when the load goes below a threshold.
However, the proposed model must maintain communication
between other multiple subchains using sync blocks. These



sync blocks were introduced to ensure balance mining between
multiple chains. In our proposed model, we assume that a split
of forgers can work together without maintaining any type of
communication with all network participants.

Geng et al. [41] proposed a solution for tasks accomplish-
ment assurance in blockchain systems for IoT. The system uses
a DAG-based blockchain to ensure nodes can participate in
one-to-many and many-to-one tasks accomplishment without
acting maliciously. The authors addressed the incapability of
single-chain blockchain to support one-to-many and many-to-
one dependencies. Their solution involves branching/merging
of a DAG blockchain to support one-to-many and many-to-
one dependencies that satisfies recognizability, compatibility,
and authenticability.

Laube et al. [42] proposed a graph or DAG-based
blockchain model where a block can have one or multiple
parent/child blocks. Their work is the first to solve the split
and merge problem (network partitioning problem) caused
by nodes’ mobility in mobile ad hoc networks (MANETs)
using DAG. However, their model does not detect topology
changes such as network split and only relies on flooding
to disseminate data, maintain communication, and passively
detect changes in topology. Not being able to actively detect
topology changes can cause issues with adjusting consensus
for each split Cordova et al. [43]. Our model can actively
detect topology changes and adjust consensus accordingly,
even when the network is dealing with the network partitioning
problem using the work proposed by Morales et al. [44].

A. Summary of related works

In summary, most related works, such as [32]–[36] use
a chain-based blockchain structure that stores all the data
on a single chain, limiting the processing/mining of trans-
actions/blocks due to the mining competitiveness Wang et
al. [32]. All miners or forgers can work on a single chain,
which could result in them doing the exact operations and
cause wasted valuable resources such as computational power,
communication, and storage. Furthermore, only working on
a single chain does not allow nodes to process/add blocks
to the public ledger simultaneously, affecting the system’s
overall throughput.Considering mobile wireless networks, they
usually tend to have resource-constrained devices, making
chain-based blockchain structures an unfavorable fit for them.
Instead, our model uses a graph-based blockchain which has
shown to have an overall better performance, as seen in Wang
et al. [32].

Many related works, such as [37]–[39], [45], [46] assume
there are fixed, powerful devices (or high connectivity) capable
of continuously providing global communication to all the
nodes at all times. However, due to the mobility nature of IoT
and MANETs, nodes can split into smaller and independent
peer-to-peer subnetworks due to the absence of edge devices.
Our model is partition-tolerant and does not require high net-
work connectivity or fixed, powerful edge devices to provide
connectivity to all nodes at all times.

Current graph-based blockchains, such as DAG-based
blockchains [7], [37], [42], [47], [48], have a better partition
tolerance because the blockchain structure can adapt to the
dynamic changes in network typologies. However, they can
suffer from the following limitations. First, some rely on full
connectivity to all nodes using edge devices. Second, although
they can perform better than chain-based blockchains, the
DAG structure does not intrinsically order blocks, but partial
ordering is possible as in Karlsson et al. [2] and Liu et al. [49].
For ledgers to achieve consensus, they may need to traverse to
ancestors’ blocks Geng et al. [41]. Third, a large-scale DAG-
based blockchain consumes higher computational resources
than traditional linear-based blockchains Wang et al. [4]. Our
model can always order blocks which can help facilitate the
split and merge of blockchains by efficiently scanning and
adding blocks between multiple blockchains.

IV. PRELIMINARIES

This section presents an overview of the blockchain model,
notations, assumptions, and proposed model.

The blockchain model uses Proof-of-Stake (PoS) for the
consensus mechanism. Proof-of-Work (PoW) is considered
a computationally expensive consensus algorithm; therefore,
PoS seems more logical for mobile, wireless, and lightweight
devices because it does not require a lot of computation to
forge the next block. Instead of competing to forge the next
block, a node (forger) is selected to forge the next block
at fixed time interval fT (check Table I for notations). The
selection is based on uniform random mining, and every node
at the initialization has the same chance to mine the next block.
The forger gathers all transactions, prepares an mkdBlock,
adds and broadcasts the block to all peers in the network, in
which every peer will verify the new block and add the block
to the blockchain T.

A. System Model and Assumptions

The proposed model consists of a set of IoT devices and
a plane that is divided into smaller regions called cells. Each
cell can contain a set of IoT devices and a local blockchain.
A blockchain split happens when a group of nodes tries to
split into two or more groups, each with its dedicated cell.
A merge can happen when certain conditions occur: 1) when
two or more local networks meet in a single cell. 2) when a
local network gets access to a full node that stores the entire
blockchain and is always connected to the Internet using, for
example, RSU or edge devices Cordova et al. [43]. To ensure
the authenticity and integrity of transactions in a graph-based
blockchain, the block creator signs all transactions within the
block as in Karlsson et al. [2]. Transactions contain sensor
readings such as temperature readings. Another assumption is
a single or multiple nodes can move from one cell to another.
Our model can actively detect topology changes and adjust
consensus accordingly even when the network is dealing with
the network partitioning problem using Morales et al. [44].
Each local blockchain network can work independently with-
out relying on other blockchain networks. Nodes are assumed



TABLE I
NOTATIONS

Symbol Meaning
T Merkle k-d blockchain (MKDBC)

block An arbitrary block
mkdBlock A Merkle k-d block in a T

hash The hash of block or mkdBlock
mhash The Merkle hash of mkdBlock

tx Transaction abbreviation
cT Current time
gT Genesis time
fT Forge time interval
C A cell or region
C Set of all cells
sC spatial constraint
s A sensor
S A set of sensors
S Set of all sensors
G local network
Gt

i A local network of nodes in cell i at time t
G Set of all local networks
n Total number of sensors
V t
i Set of vertices of local network Gt

i
Tt
i A local Merkle k-d blockchain in network Gt

i
TgT MKD blockchain at genesis time gT
cDim Current dimension
tDim Total number of dimensions of T, ranging from 0 to k

to be mobile within a cell using Random Way-point Mobility
found in Hyyti et al. [50] and Reference Point Group Mobility
(RPGM) for group trajectory based on Hong et al. [51]. Each
node is capable of performing simple data aggregation tasks
such as finding max, min, mean, etc. Pumpichet et al. [52]. The
proposed model does not require any additional powerful de-
vices since nodes participating in the blockchain can perform
all the necessary operations. In addition, the model utilizes
a permissioned version of blockchain where a centralized
authority controls who participates in the blockchain and
assigns a public and private key for each node. Each node
has the same genesis block. We also assume that nodes reveal
their identities to each other using a privacy-preserving method
such as Li et al. [53]. The nodes achieve consensus using
proof of stake (PoS) consensus algorithm as in Bentov et al.
[23]. The consensus algorithm is set to have finality, which
means the consensus protocol does not allow the presence of
equally valid blocks or subchains. This is achievable using
many approaches, such as applying three consensus phases
before committing any request. The three phases are: pre-
prepare, prepare, and commit as in Xing et al. [54], Castro
et al. [25]. Another approach is the NEAR protocol [55]
which can achieve finality in one round of communication.
And lastly, the work by Ethereum [56] to implement single-
slot finality for Ethereum in around 16 seconds.

V. THE MULTIDIMENSIONAL OR MERKLE k-D
BLOCKCHAIN FRAMEWORK

The Merkle k-d blockchain model (MKDBC) consists of
two major components, as shown in Fig. 3. The first one is
a multidimensional blockchain. Unlike traditional blockchain

models where blocks are structured as a linear-chain, the
MKDBC structures and sorts blocks in a way similar to a k-d
tree Bentley et al. [12], see Section II-C. The (genesis block,
previous block) in MKDBC have the same analogy as the
(root, parent) in k-d trees, respectively. The block components
of MKDBC are similar to any other traditional block except in
the block header; we have an extra field that stores the block
dimensions as a list of k values where k is the number of
dimensions of the blockchain or [Dim0, Dim1, ..., Dimk].

The second component of MKDBC is a Merkle tree repre-
sentation of the entire blockchain using the method designed
by Merkle et al. [28], see Section II-B. The primary goals of
using the Merkle tree are to provide an extra layer of security
and as a tool for fast comparison and verification of blocks;
more details in Section VI. Each time a block is added to the
multidimensional blockchain, the Merkle tree gets updated.
Generating and updating the Merkle hash tree is an efficient
process since it only needs a few modifications to the tree
rather than searching and updating the entire tree Merkle et al.
[28]. The Merkle tree is stored separately from the blockchain
since the Merkle tree is not immutable and requires frequent
updates each time a block is added to the blockchain.

Because nodes are highly mobile in mobile wireless net-
works, our model utilizes spatiotemporal data, such as co-
ordinates and time, as discriminators or dimensions for the
multidimensional blockchain. Although it’s possible to adjust
the blockchain dimensions based on the application, we de-
cided to use coordinates and time dimensions for simplicity
and the randomness of nodes’ movements. The randomness
generated from node movements turned out to be helpful in
balancing the multidimensional tree; more explanations about
this are in Section. VI. The process of blockchain split and
merge is shown in Fig. 4. The rest of this section will explain
the algorithms of our model.

Algorithm 1, lines 1 - 5, start with initializing
an empty Merkle k-d blockchain or T. Later, the

Fig. 3. The multidimensional blockchain structure with 3 dimensions or k =
3, the dimensions are 0, 1, 2.



Fig. 4. The process of split and merge in multidimensional blockchains.

Algorithm 1 MKDBC Management
Input: Current time: cT . Genesis time: gT . Forge time inter-

val: fT . Set of all local networks: G.
Output: Updated MKDBC Tree: T

1: T← ∅
2: insertMkdBlock(T,mkdGenesisBlock) See

Algorithm 3
3: updateMerkelHash(T,mkdGenesisBlock)
4: for each s ∈ S do
5: download(TgT )
6: end for
7: if (cT − gT ) mod fT == 0 then
8: for each Gt

i ∈ Gt do
9: Forger ← selectForger(V t

i )
10: newMkdBlock ← creatMkdBlock(Forger)
11: insertMkdBlock(Tt

i, newMkdBlock), See Algo-
rithm 3

12: end for
13: end if

blockchain gets the first mkdBlock as a genesis block using
insertMkdBlock function, and the Merkle hash is updated
using updateMerkleHash. Once the genesis block is added
to the blockchain and the Merkle hash is updated, every node
will download a copy of the blockchain at the genesis time
or TgT . As mentioned in Subsection IV-A, for any node to
join the network, the node is required to have a copy of the
blockchain at the genesis time or TgT . This is possible because
we are using a permissioned type of blockchain where there
is a centralized entity controlling who joins the network. The
reason why we require a node to have at least a copy of TgT

is to apply some balance to the blockchain tree as it grows in
size, which will be explained further in Section VI-A. Finally,
lines 7 - 11 show whenever it is time to forge a new block, a
forger will be selected in each local network Gt

i to forge the
next mkdBlock.

Algorithm 2 MKDBC Management During Mobility
Input: Two MKD Blockchain Trees: T. Set of local networks:

G. Set of cells: C. Set of sensors: S
Output: Updated MKD Blockchain Tree: T

1: if S.Ccur ̸= Cnew cell then
2: Tm ← blockchainToMerge(Tcur,Tnew cell)
3: Tk ← blockchainToKeep(Tcur,Tnew cell)
4: Aggregator ← selectAggregator(V t

m, V t
k )

5: for each mkdBlockm ∈ Tt
m do

6: if mkdBlockm /∈ Tt
k then

7: newMkdBlockm ←
creatMkdBlock(Aggregator)

8: insertMkdBlock(Tt
k, newMkdBlockm), See

Algorithm 3
9: end if

10: end for
11: delete(Tt

m) from either S.Ccur or Cnew cell

12: S.Ccur ← Cnew cell

13: Gt
new new ← Gt

new new ∪Gt
curr

14: V t
m.download(Tt

k) from peers V t
k

15: end if

Algorithm 2 handles nodes’ mobility management or when
nodes are moving from one region to another. Lines 1 - 3 check
if a set of nodes S.Ccur is joining a another cell Cnew cell.
First, the algorithm decides which blockchain to keep Tk and
which blockchain to merge Tm. There are many factors to
choose from, but for simplicity, we chose to merge blockchains
based on their sizes or to merge the smaller blockchain with
the larger one. Secondly, after deciding which blockchain to
keep and which one to merge, lines 4 - 8 select an aggregator
node to handle the blockchain merge. Each block in Tm will
be scanned and merged, if needed, into Tk. The merge also
utilizes the same method of adding blocks as in Algorithm 3.
Lines 11 - 14 delete the blockchain from either the current
or new cell, depending on which blockchain to merge and
keep, update their cell/network information, and download the
blockchain Tk after the merge is complete.

Algorithm 3 describes a recursive function insertBlock
which inserts or forges block into the Merkle k-d blockchain T
as an mkdBlock. The insertion method is a modified version
from the k-d tree insertion found in Section II-C or Bentley
et al. [12]. Algorithm 3 starts by taking multiple inputs which
include the MKDBC tree: T, the block to be forged: block, a
parent block to compare with: mkdBlock, current dimension:
cDim, and the total number of dimensions of T: tDim. At the
first iteration, lines 1 - 3 check if the first parent mkdBlock
or T.root is null, however, the model assumes all nodes have
the same genesis mkdBlock and hence the algorithm will skip
lines 1 - 3. Next, at line 4, the algorithm checks whether block
is a duplicate at the current dimension in T or not. Later, at
line 6 - 9, the algorithm continues to recursively scan the tree
cycling between each dimension until it hits a null or a space
that accepts the next block. The algorithm hits a null leaf at
line 1 where block will be forged and placed in T at the proper



Algorithm 3 insertMkdBlock
Input: MKDBC Tree: T. The block to be forged: block.

A parent block to compare with: mkdBlock. Current
dimension: cDim. Total number of dimension of T: tDim

Output: MKDBC Tree with the new forged block: T
1: if mkdBlock == null then
2: mkdBlock ← forgeBlock(block)
3: updateMerkleHash(T,mkdBlock), See algorithm 4

4: else if block == mkdBlock.data then
5: return ’duplicate block’
6: else if block[cDim] < mkdBlock[cDim] then
7: mkdBlock.left←

insertMkdBlock(T, block,mkdBlock.left, (cDim+
1) mod tDim, tDim)

8: else
9: mkdBlock.right←

insertMkdBlock(T, block,mkdBlock.right, (cDim+
1) mod tDim, tDim)

10: end if

location.
Algorithm 4 presents a recursive function to update the

Merkle hash of the entire MKDBC tree. The update function
is called immediately after forging any new block. Calculating
or updating the Merkle hash is an efficient process and does
not require scanning or updating the entire tree but rather one
branch of the tree Merkle et al. [28]. The update function
takes the MKDBC tree T and an arbitrary block or mkdBlock
in T. At line 1, the algorithm starts with finding the parent
block of block in T. The method used to find the parent
block is similar to the k-d search as in Section II-C. Finding
the parent block also gives access to the parent’s child
blocks. Lines 2 - 11 check if block is the root of T; if the
condition is met, the function terminates since there is no need
to update the Merkle hash of T. Next, if block is not the root
of T, block will be compared to check if it is the right or
left child of parent and update T.parent.hash accordingly
using the method in Section II-B. In summary, the recursive
function updateMerkleHash(T, block) starts from the most
recently forged block, and applies all the necessary Merkle
hash updates to the root or genesis block.

VI. EVALUATION

A. Simulation Setup

For the simulation, we used 80 nodes on a grid with
size m × n. All nodes get a copy of the initial blockchain,
which only includes the genesis block. Blocks are similar
to any other traditional blockchain except for an extra field
that stores the block dimensions; the dimensions used are
[x coordinate, y coordinate, time]. The order of dimen-
sions is critical, as we will see later. The main goal of
ordering is to allow the multidimensional blockchain to grow
as balanced as possible on both sides of the genesis block.
To achieve some balance in the blockchain tree, we set the

Algorithm 4 updateMerkleHash
Input: MKDBC Tree: T, An arbitrary block: block
Output: Updated MKDBC Tree: T

1: parent← getParentBlock(T, block), See Section II-C
2: if block == T.root then
3: return
4: else if block == T.parent.left then
5: T.parent.mhash←
6: hash(block.mhash|T.parent.right.mhash), See Sec-

tion II-B
7: return updateMerkleHash(T, parent)
8: else
9: T.parent.mhash←

10: hash(T.parent.left.mhash|block.mhash)
11: return updateMerkleHash(T, parent)
12: end if

genesis block dimensions, in this case, the coordinates, as the
mid-point of the grid or 50. Since nodes are highly mobile and
travel randomly within the grid, future blocks can be added on
both sides of the genesis block. In addition, to allow additional
balance to the blockchain tree, we set time as the last in
the dimension list [x coordinate, y coordinate, time]. This
is crucial because time is an incremental value, and if we set
time to be the first dimension, the blockchain will only grow
on one side of the blockchain tree, in this case, the right side.
If time is the first dimension, the genesis block will have a
time dimension set to 0, and any future block will have time
dimension > 0 and hence will be added to the right side of
the blockchain tree.

For node mobility, we implemented two mobility models,
Reference Point Group Mobility (RPGM) based on this work
Hong et al. [51] and Random Waypoint Mobility Bettstetter
et al. [57]. In RPGM, the nodes within a group are uniformly
distributed inside a circle, and the circle center represents the
group center Sichitiu et al. [58]. In addition, the group center
travels on a random trajectory, and all nodes move at a random
velocity ranging from 0 to 1. The code to generate these types
of movements is publicly available on GitHub [59].

B. Experimental Results

Fig. 5 shows a summary of 835,000 blockchain snapshots
captured throughout the simulation. The goal is to find the
maximum chain length or height in the multidimensional
blockchain and compare it with: 1) the traditional chain-
based blockchain height such as Nakamoto [1] and 2) a
balanced k-d tree height Bentley et al. [12] (best case sce-
nario). It’s essential to consider the blockchain height because
having longer branches results in more comparisons (i.e.,
more resource consumption) to do any operation, such as
appending/merging/scanning blocks, in the multidimensional
blockchain. First, we grouped the blockchain snapshots based
on their blockchain sizes in an increment of 50 where group
one includes all the blockchains with sizes ⩾ 0 and ⩽ 49 and
so on. Then for each group, we calculated the maximum chain



Fig. 5. The longest chain height or length, averaged per blockchain size for the
multidimensional blockchain (MKDBC), compared with a traditional chain-
based blockchain [1], and a balanced binary tree [12]. Lastly, the cumulative
average of MKDBC longest height is represented by the line

length or height per snapshot and found the total average of
the maximum chain length of the group. Based on Fig.5, the
average maximum chain height, of all MKDBC blockchains
with a size around 8000 blocks, is roughly 55. And the
maximum chain height, of a traditional blockchain with 8000
blocks, is 8000. Comparing the maximum height of MKDBC
with the traditional chain-based blockchain, we can see that
MKDBC can reduce the maximum chain length by more than
99.99%. This means, on average, it only scans less 0.01% of
the total blocks to find the place to forge or merge the next
block in MKDBC. This reduction allows the multidimensional
blockchain to perform efficiently as the blockchain grows; the
next Fig. 6 will demonstrate this. Some could argue that a
smaller sub-chain length (leaf block to genesis block) can
allow malicious nodes to redo the work of that particular
sub-chain. This is one of the reasons we use a Merkle tree
representation of the multidimensional blockchain, which is
to verify whether a sub-chain is valid relative to the entire
blockchain or has been compromised. Any modification to any
sub-chain will result in a different Merkle hash for the entire
multidimensional blockchain. An important observation is that
traditional blockchain systems’ height or chain length grows
linearly, and the chart can only cover a height up to 150 for
a blockchain with 150 blocks. However, the MKDBC height
stays relatively similar to a logarithmic growth, showing signs
of efficiency and scalability as the model grows.

The following evaluation chart or Fig. 6 shows the time
the MKDBC takes to forge or merge a block in a unit of
time (normalized), where 1 is the maximum recorded time.
The dots represent the forging time of more than 20,000
random blocks from random blockchains of different sizes.
Unlike traditional blockchain, where blocks are appended
to the end of the chain with almost no time, our model
requires searching the multidimensional blockchain for the
right location to append the next block. Luckily, the MKDBC
utilizes a binary search operation to find the right place to
forge the next block. The details on how to search and forge

Fig. 6. Time to forge a block in the multidimensional blockchain (MKDBC),
normalized to a unit of time where 1 is the maximum recorded time.

the next block are explained in the recursive Algorithm 3. As
shown in Fig. 6, the time to search and forge blocks shows
an efficient and scalable growth. Finally, we will point out
observations using the same graph to demonstrate another
practical use of multidimensional blockchain for mobile IoT
with network partitioning problems. Fig. 6 shows a cluster
of blocks, between blockchains with sizes ranging between
1 - 1000, with higher than normal forging time. The reason
is that those blocks were forged in blockchains that stayed
relatively stationary in particular areas (we will call them
stationary blockchains). Since we’re using coordinates as the
first and the second dimensions, the blockchain continued to
grow largely on one side of the multidimensional blockchain,
resulting in longer than normal sub-chains or branches (More
details in Section VI-A). The higher the branches, the more
time it takes to forge or merge blocks since it involves more
traversing and comparisons. Interestingly, the forging time
declines as those stationary blockchains start to grow, move,
and merge with other blockchains. The transition from being
stationary blockchains to becoming more active or mobile can
help in adding additional balancing to the blockchain tree and
produce blockchains with shorter branches or heights, resulting
in improving the forging time.

VII. CONCLUSION

This paper presents a multidimensional graph-based
blockchain model that eliminates the need for having fixed
and powerful peripherals for mobile IoT. The model can
allow a blockchain system to function even when dealing
with the network partitioning problem while maintaining the
blockchain’s security and privacy. Experimental results show
the multidimensional blockchain can achieve: efficiency by
having to scan only a few blocks (fewer comparisons) for
any blockchain operations, and scalability by achieving per-
formance similar to logarithmic growth. In future work, we
plan to study the effect of dimensionalities on the performance
of the multidimensional blockchain. We will investigate the
impact by experimenting with different numbers and kinds of
dimensions.



REFERENCES

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash sys-
tem.(2008),” 2008.

[2] K. Karlsson, W. Jiang, S. Wicker, D. Adams, E. Ma, R. van Renesse,
and H. Weatherspoon, “Vegvisir: A partition-tolerant blockchain for
the internet-of-things,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 1150–1158.

[3] A. Al Sadawi, M. S. Hassan, and M. Ndiaye, “A survey on the
integration of blockchain with iot to enhance performance and eliminate
challenges,” IEEE Access, vol. 9, pp. 54 478–54 497, 2021.

[4] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” Ieee Access, vol. 7, pp. 22 328–
22 370, 2019.

[5] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “Sok: Diving into dag-based
blockchain systems,” arXiv preprint arXiv:2012.06128, 2020.

[6] M. Xu, C. Liu, Y. Zou, F. Zhao, J. Yu, and X. Cheng, “wchain: a fast
fault-tolerant blockchain protocol for multihop wireless networks,” IEEE
Transactions on Wireless Communications, vol. 20, no. 10, pp. 6915–
6926, 2021.

[7] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu,
“Direct acyclic graph-based ledger for internet of things: Performance
and security analysis,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1643–1656, 2020.

[8] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol,” Cryptology ePrint Archive, 2016.

[9] H. Pervez, M. Muneeb, M. U. Irfan, and I. U. Haq, “A comparative
analysis of dag-based blockchain architectures,” in 2018 12th Interna-
tional conference on open source systems and technologies (ICOSST).
IEEE, 2018, pp. 27–34.

[10] G. Birmpas, E. Koutsoupias, P. Lazos, and F. J. Marmolejo-Cossı́o,
“Fairness and efficiency in dag-based cryptocurrencies,” in International
Conference on Financial Cryptography and Data Security. Springer,
2020, pp. 79–96.

[11] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” Ieee Access, vol. 8, pp. 16 440–16 455, 2020.

[12] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[13] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” in
Conference on the Theory and Application of Cryptography. Springer,
1990, pp. 437–455.

[14] H. Treiblmaier and T. Clohessy, Blockchain and Distributed Ledger
Technology Use Cases. Springer, 2020.

[15] S.-J. Hsiao and W.-T. Sung, “Employing blockchain technology to
strengthen security of wireless sensor networks,” IEEE Access, vol. 9,
pp. 72 326–72 341, 2021.

[16] M. Wu, K. Wang, X. Cai, S. Guo, M. Guo, and C. Rong, “A comprehen-
sive survey of blockchain: From theory to iot applications and beyond,”
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8114–8154, 2019.

[17] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology
overview,” arXiv preprint arXiv:1906.11078, 2019.

[18] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International Journal of Web
and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[19] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094,
2019.

[20] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[21] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and
P. Rimba, “A taxonomy of blockchain-based systems for architecture de-
sign,” in 2017 IEEE International Conference on Software Architecture
(ICSA). IEEE, 2017, pp. 243–252.

[22] A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.
[23] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of

stake.” IACR Cryptol. ePrint Arch., vol. 2016, p. 919, 2016.
[24] D. Larimer, “Delegated proof-of-stake (dpos),” Bitshare whitepaper,

2014.
[25] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in

OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[26] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[27] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Lsb: A
lightweight scalable blockchain for iot security and anonymity,” Journal
of Parallel and Distributed Computing, vol. 134, pp. 180–197, 2019.

[28] R. C. Merkle, “A certified digital signature,” in Conference on the Theory
and Application of Cryptology. Springer, 1989, pp. 218–238.

[29] Z. Bao, W. Shi, D. He, and K.-K. R. Chood, “Iotchain: A
three-tier blockchain-based iot security architecture,” arXiv preprint
arXiv:1806.02008, 2018.

[30] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused streams:
Enabling authentication of sliding window queries on streams,” in
Proceedings of the 33rd international conference on Very large data
bases, 2007, pp. 147–158.

[31] A. W. Moore, “Efficient memory-based learning for robot control,” Ph.D.
dissertation, 1990.

[32] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, 2019, pp. 41–61.

[33] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling
blockchain innovations with pegged sidechains,” URL: http://www.
opensciencereview. com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, vol. 72, 2014.

[34] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok: communication across
distributed ledgers.” 2019.

[35] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, 2018, pp. 931–
948.

[36] A. R. Shahid, N. Pissinou, C. Staier, and R. Kwan, “Sensor-chain:
a lightweight scalable blockchain framework for internet of things,”
in 2019 International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2019, pp. 1154–1161.

[37] W. Yang, X. Dai, J. Xiao, and H. Jin, “Ldv: A lightweight dag-
based blockchain for vehicular social networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 6, pp. 5749–5759, 2020.

[38] P. Danzi, A. E. Kalør, Č. Stefanović, and P. Popovski, “Delay and
communication tradeoffs for blockchain systems with lightweight iot
clients,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2354–2365,
2019.

[39] R. A. Memon, J. P. Li, M. I. Nazeer, A. N. Khan, and J. Ahmed,
“Dualfog-iot: Additional fog layer for solving blockchain integration
problem in internet of things,” IEEE Access, vol. 7, pp. 169 073–169 093,
2019.

[40] Y. Kim and J. Jo, “Binary blockchain: Solving the mining congestion
problem by dynamically adjusting the mining capacity,” in Interna-
tional Conference on Applied Computing and Information Technology.
Springer, 2017, pp. 29–49.

[41] T. Geng, L. Njilla, and C.-T. Huang, “Smart markers in smart contracts:
Enabling multiway branching and merging in blockchain for decentral-
ized runtime verification,” in 2021 IEEE Conference on Dependable and
Secure Computing (DSC). IEEE, 2021, pp. 1–8.

[42] A. Laube, S. Martin, and K. Al Agha, “A solution to the split & merge
problem for blockchain-based applications in ad hoc networks,” in 2019
8th International Conference on Performance Evaluation and Modeling
in Wired and Wireless Networks (PEMWN). IEEE, 2019, pp. 1–6.

[43] D. Cordova, A. Laube, G. Pujolle et al., “Blockgraph: A blockchain for
mobile ad hoc networks,” in 2020 4th Cyber Security in Networking
Conference (CSNet). IEEE, 2020, pp. 1–8.

[44] D. C. Morales, P. B. Velloso, A. Laube, G. Pujolle et al., “C4m: A
partition-robust consensus algorithm for blockgraph in mesh network,”
in 2021 5th Cyber Security in Networking Conference (CSNet). IEEE,
2021, pp. 82–89.

[45] M. Xu, F. Zhao, Y. Zou, C. Liu, X. Cheng, and F. Dressler, “Blown: a
blockchain protocol for single-hop wireless networks under adversarial
sinr,” IEEE Transactions on Mobile Computing, 2022.

[46] J. Yuan and L. Njilla, “Lightweight and reliable decentralized reward
system using blockchain,” in IEEE INFOCOM 2021-IEEE Confer-



ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2021, pp. 1–6.

[47] M. Cao, L. Zhang, and B. Cao, “Toward on-device federated learning:
a direct acyclic graph-based blockchain approach,” IEEE Transactions
on Neural Networks and Learning Systems, 2021.

[48] F. Guo, F. R. Yu, H. Zhang, H. Ji, M. Liu, and V. C. Leung, “Adaptive
resource allocation in future wireless networks with blockchain and mo-
bile edge computing,” IEEE Transactions on Wireless Communications,
vol. 19, no. 3, pp. 1689–1703, 2019.

[49] Y. Liu, K. Wang, K. Qian, M. Du, and S. Guo, “Tornado: En-
abling blockchain in heterogeneous internet of things through a space-
structured approach,” IEEE Internet of Things Journal, vol. 7, no. 2, pp.
1273–1286, 2019.

[50] E. Hyytiä and J. Virtamo, “Random waypoint mobility model in cellular
networks,” Wireless Networks, vol. 13, no. 2, pp. 177–188, 2007.

[51] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility
model for ad hoc wireless networks,” in Proceedings of the 2nd ACM
international workshop on Modeling, analysis and simulation of wireless
and mobile systems, 1999, pp. 53–60.

[52] S. Pumpichet, N. Pissinou, X. Jin, and D. Pan, “Belief-based cleaning
in trajectory sensor streams,” in 2012 IEEE International Conference on
Communications (ICC). IEEE, 2012, pp. 208–212.

[53] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang,
“Creditcoin: A privacy-preserving blockchain-based incentive announce-
ment network for communications of smart vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 7, pp. 2204–2220,
2018.

[54] J. Xing, D. Fischer, N. Labh, R. Piersma, B. C. Lee, Y. A. Xia, T. Sahai,
and V. Tarokh, “Talaria: A framework for simulation of permissioned
blockchains for logistics and beyond,” arXiv preprint arXiv:2103.02260,
2021.

[55] A. Skidanov, “Doomslug vs pbft, tendermint, and hotstuff,” Feb 2020.
[Online]. Available: https://near.org/blog/doomslug-comparison/

[56] Ethereum.org, “Paths toward single-slot finality.” [Online]. Available:
https://notes.ethereum.org/@vbuterin/single slot finality

[57] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa, “Stochastic properties
of the random waypoint mobility model,” Wireless networks, vol. 10,
no. 5, pp. 555–567, 2004.

[58] M. L. Sichitiu, “Mobility models for ad hoc networks,” in Guide to
Wireless Ad Hoc Networks. Springer, 2009, pp. 237–254.

[59] A. Panisson. [Online]. Available: https://github.com/panisson/pymobility


