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Abstract
Hydrogen is a clean renewable energy with potential for future environmental sustainability. The main challenge in hydro-
gen production via methanol steam reforming (MSR) is carbon monoxide (CO) formation that deactivates the catalyst. In 
this study, the effect of zinc (Zn) and cerium (Ce) on copper–mesoporous carbon (MC)-catalyst (Cu–MC) for MSR was 
investigated. The highest surface area (380.5 m2/g), observed for the Cu–MC prepared by one-pot (OP), decreased after 
incorporation of Ce and Zn. The temperature programmed reduction (H2-TPR) studies showed a decrease in the reduction 
temperature of CuO. The metal oxides were well distributed over the MC support based on scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM) studies. The MSR studies yielded methanol conversion of 65 and 68% 
for Ce-loaded Cu–MC prepared by OP and wet-impregnation (WI) methods at 300 °C and 250 °C, respectively. Addition 
of Zn to Cu–MC decreased methanol conversion, significantly, to 46%, at 300 °C. Both catalysts showed higher hydrogen 
selectivity, > 90%, with a lower CO selectivity for the Zn–Cu–MC catalyst. The Ce–Cu–MC (WI) catalyst showed good 
stability for 42 h with high H2 selectivity, > 90%, and methanol conversion of 40% at 250 °C.
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1  Introduction

Combustion of fossil fuels releases greenhouse gases like 
carbon dioxide (CO2), carbon monoxide (CO), and nitrogen 
oxides (NOx) which have been polluting the atmosphere. 
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These gases can trap heat in the atmosphere, making them 
significant contributors to global warming and climate 
change [1]. In recent years, greenhouse gas emission has 
increased dramatically due to the extensive use of fossil 
fuels. This problem triggered many researchers to develop 
alternative fuels as energy resources. Hydrogen is considered 
an important candidate which has the highest energy den-
sity (143 MJ/kg) compared to any other known fuel. More 
significantly, the combustion of hydrogen for energy is a 
carbon-free process that produces water only as the byprod-
uct; it is indeed a promising and viable route to reduce the 
greenhouse gases that cause global warming [2].

Hydrogen is a significant feedstock in industrial applica-
tions including hydrocracking, desulfurization processes, 
ammonia synthesis, Fischer–Tropsch synthesis, fertilizer 
for agriculture, and fuel cells [3–5]. More specifically, fuel 
cells have been used for generating electricity by electro-
chemical reactions. It has very low emissions of pollutants 
and is highly efficient compared to fossil fuels [6]. Hydro-
gen is believed to be a valuable clean alternative energy 
source for fuel cell applications [7]. Hydrogen-powered 
proton exchange membrane fuel cells (PEMFC) provide an 
effective and more economical option to generate energy 
[8]. Currently, hydrogen used for fuel cells is generally pro-
duced by reforming processes. The major challenge is the 
production of undesired carbon monoxide that reduces the 
lifetime of the platinum electrode [9]. So, researchers are 
trying to develop catalysts that can reduce the amount of 
carbon monoxide in the reforming process. Another chal-
lenge for fuel cell applications is the transportation, storage, 
and safety concerns of hydrogen due to its unique properties. 
To overcome these problems, it is necessary to look for new 
technologies for on-site hydrogen production from different 
energy resources [10].

Several methods such as water electrolysis, hydrocarbon 
reforming, and photocatalysis have been studied to produce 
hydrogen over the years [11]. As mentioned above, hydro-
carbon reforming has been extensively used for hydrogen 
production from renewable and non-renewable resources. 
The reforming process is known as catalytic reforming, 
which is the chemical process that breaks down the hydro-
carbon and alcohol to produce H2 [11]. Different types of 
reforming processes such as steam reforming, partial oxida-
tion, dry reforming, and auto-thermal reforming are used to 
produce H2 [12]. Steam reforming produces the maximum 
amount of H2 compared to all other reforming processes. 
Steam reforming of alcohols such as methanol [13–15], 
ethanol [16, 17], and glycerol [18–20] has been the major 
focus of steam reforming in recent years. The advantage of 
an alcohol is that it can react with water vapor and produce 
enough hydrogen gas at lower temperature [21]. Methanol 
steam reforming (MSR) is highly favorable due to its much 
lower conversion temperature and optimum for its high 

hydrogen-to-carbon ratio. In addition, the absence of a C–C 
bond in methanol makes it viable for commercial hydrogen 
production via steam reforming in the temperature range of 
200–300 °C [11].

Steam reforming reactions, shown below, take place in 
three different steps. The first reaction shown in Eq. (1) is 
the primary reaction. Methanol reacts with the water, pro-
ducing carbon dioxide (CO2) and three moles of hydrogen. 
This reaction is endothermic requiring energy to initiate the 
reaction [22]. During the main reaction (MSR), two side 
reactions commonly occur. In Eq. (2), decomposition of 
methanol produces one mole of carbon monoxide (CO) and 
two moles of hydrogen. The carbon monoxide produced then 
undergoes a water–gas shift reaction shown in Eq. (3) [23]. 
In the water–gas shift reaction, carbon monoxide reacts with 
water and produces one mole of carbon dioxide and hydro-
gen. The by-product of the MSR reaction is carbon monox-
ide; if the concentration of CO increases, it can poison the 
catalyst and deactivate its function. The water–gas reaction 
is necessary to convert the undesired CO into carbon dioxide 
so that the catalyst can remain active. The active catalyst 
produces hydrogen while keeping a minimal amount of car-
bon monoxide in the steam reforming process [22, 24].

Main reaction:

Side reactions:

Noble metals such as Rh, Ir, Pt, Ru, and Pd, have shown 
high activity in steam reforming of alcohols [25], and Rh 
is regarded as one of the most active among the noble met-
als [26]. However, the high cost of noble metals hinders 
them from scale-up and commercialization [27]. In contrast, 
copper, as a low-cost metal, is highly active in methanol-
reforming [25]. However, copper-containing catalysts suffer 
from deactivation due to the changes in the oxidation state, 
sintering, or coke deposition on the catalyst [11]. Various 
promoters are usually added to increase the stability of the 
copper-based catalyst and the hydrogen yield in MSR [27]. 
For example, the addition of Ni to the copper monometallic 
catalyst significantly increases its resistance to deactivation 
[28].

In addition to metals, the use of support with high sur-
face areas plays an important role in improving catalytic 

(1)

Methanol steam reforming reaction:
CH3OH + H2O → CO2 + 3H2ΔH = 49.5 kJ∕mol

(2)
Decomposition of Methanol:
CH3OH → CO + 2H2ΔH = 90.6 kJ∕mol

(3)
Water - gas shift reaction:
CO + H2O → CO2 + H2ΔH = − 41.2 kJ∕mol
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performance. The use of copper catalyst on CeO2 support, 
reported by Liu et al., suggests that the cerium (IV) oxide 
favors the dispersion of copper particles and enhances the 
stability of Cu, resulting in enhanced performance in MSR 
[29]. Zinc oxide, as the catalyst support, has also shown 
enhanced CO2 selectivity in MSR [30]. This is due to its 
ability to promote low-temperature water–gas shift reactions. 
In this paper, we have used two inexpensive metals, i.e., Ce 
and Zn, as the promoters in the copper-based catalysts for 
MSR using mesoporous support such as mesoporous carbon 
(MC). Mesoporous materials have been widely used as cata-
lysts due to their ordered pore structure, large pore volume, 
and chemical inertness. More specifically, mesoporous car-
bon (MC) has been used for ethanol steam reforming [31]. 
However, it was not used for MSR, and suppression of CO 
has not been investigated with effective promoters. Consid-
eration of the advantages of mesoporous carbon as catalyst 
support with high surface area for metal loading, high pore 
volume for mass transfer, and proven improvement in etha-
nol steam reforming at a lower temperature [31], prompted 
us to investigate it as the support for MSR in the presence of 
Cu-catalyst and promoters. In other studies, the mesoporous 
carbon showed better results at lower temperatures, mak-
ing it ideal for methanol steam reforming [31]. Mesoporous 
carbon has physicochemical properties, such as electron con-
ductivity and ideal hydrothermal stability [31], essential for 
development of robust catalysts for fuel cell applications. 
Extensive characterization of the catalysts containing CeO2 
and ZnO as promoters and the effect of these metals on their 
performance in MSR are reported in this paper.

2 � Experimental

2.1 � Materials and Methods

Copper(II) chloride dihydrate (CuCl2 2H2O), cerium(III) 
nitrate hexahydrate (Ce(NO3)3  · 6H2O), and zinc nitrate 
hexahydrate (Zn(NO3)2 ·6H2O) salts, resorcinol and for-
maldehyde were used as copper, zinc, cerium and carbon 
resources. Pluronic F127 was used as a template and sodium 
hydroxide pellets (NaOH) were used to control the pH of 
the solution. Absolute ethanol was used as the solvent. All 
materials were purchased from Sigma-Aldrich.

2.2 � Catalyst Preparation

2.2.1 � One‑Pot Synthesis of Cu on MC, CuCe on MC 
and CuZn on MC Catalysts

Copper (Cu) on MC was synthesized by the one-pot hydro-
thermal method as described by Amini et al. [31]. In a 
beaker, 1.3 g of resorcinol was dissolved in 20.8 g of pure 
ethanol. Then, 0.04 g of sodium hydroxide was dissolved 

in the as-prepared solution, and 2.9 g of formaldehyde was 
added. Then the solution was mixed for 30 min until the 
solution was homogeneous and transparent. During this 
time, in another beaker, 2.6 g of the F127 template was dis-
solved in 15.6 g of ethanol at 30 °C, and then 0.3 g of copper 
chloride and 0.3 g of cerium nitrate were added and dis-
solved into this solution. After the first solution was com-
pletely clear, it was added dropwise to the second solution 
containing the metal precursor. After titration, the solution 
was stirred at 25 °C for 2 h. To evaporate the ethanol, the 
solution was kept at 25 °C for 24 h and then heated in the 
oven at 110 °C for 24 h. Finally, the catalyst was carbonized 
in an Ar atmosphere at 700 °C for 2 h with a heating rate 
of 1.5 °C/min. Cu, Ce and Zn-based MC materials were 
prepared following a similar procedure. The catalysts syn-
thesized by one-pot method are denoted as Cu on MC (OP), 
CuCe on MC (OP), and CuZn on MC (OP).

2.2.2 � Wet‑Impregnation Synthesis of CuCe on MC Catalyst

CuCe on MC was synthesized by the wet-impregnation or 
impregnation method. First, mesoporous carbon (MC) was 
prepared by the procedure described above. Then, the pro-
portional amount of CuCl2 and Ce(NO3)3 salt solutions were 
prepared and impregnated over the MC support. After that, 
the catalyst was dried in a hot air oven at 110 °C for 6 h and 
finally, it was calcined in air at 550 °C for 4 h. The catalyst 
prepared in this method is denoted as CuCe on MC (IMP).

2.3 � Catalyst Characterization

The N2 adsorption–desorption isotherms of all the different 
catalysts were measured by the surface area analyzer (Model: 
3Flex, Make: Micromeritics, USA) at the constant tempera-
ture of − 196 °C (liquid N2) The N2 adsorption–desorption 
isotherm was used with the Brunauer–Emmett–Teller (BET) 
and Barrett–Joyner–Halenda (BJH) method to calculate the 
surface area and pore size distribution. Temperature-pro-
grammed reduction (TPR) analysis was carried out using 
a chemisorption analyzer (Mode: 3Flex, Make: Micromer-
itics, USA). In the chemisorption tube, 0.05 g of sample 
material was weighed and placed into the tube. The top of 
the chemisorption tube was covered by a layer of quartz 
wool following the quartz filter cap where the sample was 
placed in the port of the instrument. The sample was then 
placed under a 10% H2/Ar (1:9wt %) flow of 50 ml/min 
with a ramp rate of 10 °C/min from room temperature to 
700 °C. This will help determine the reducibility of the 
metal oxides. The X-Ray diffraction (XRD) was carried 
out using a powder X-Ray diffractometer (Model: Bruker 
AXS) with a detection limit in the range of 10°-80° with 
a step interval of 0.02° using a Cu Kα1 radiation (wave-
length, 1.5406 Å). The XRD peaks were used to classify the 
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metals, the morphology, and the oxidation states of metal 
in the catalysts. The microscopic images of the catalysts 
were obtained using the ZEISS Auriga focused ion beam 
scanning electron microscope (FIBSEM). The images were 
used to determine the morphology, topology, and particle 
size of the catalysts. The transmission electron microscopy 
(TEM) was carried out using Thermo Fischer Talos (Model: 
F200X). The field emission system was operated at 200 kV. 
The oxidation states and bonding energy of all catalysts were 
determined by X-ray photoelectron spectroscopy (Model: 
Escalab Xi + -, Make: Thermo Scientific, West Sussex, UK). 
The FTIR spectra were recorded using Shimadzu IR Pres-
tige-21 Fourier transform infrared (FTIR) 8300 spectrometer 
equipped with mercurycadmium-telluride (MCT) detector. 
Thermogravimetry and Differential scanning Calorimetry 
(TGA–DSC) (Model: TA instruments, New Castle, DE, 
USA) were used to observe the decomposition temperature 
of the polymer templates and the heat flow of the reactions.

2.4 � Catalyst Activity Test

All catalysts were reduced first ex-situ in the presence of 
10% H2 in Ar at 550 °C for 5 h in the tubular muffle fur-
nace [13]. The catalyst activity was tested in a packed bed 
stainless-steel tubular reactor (Tube ID:6.22 mm) [13]. The 
reduced catalyst was mixed with sand (white quartz, 50–70 
mesh, supplier: Sigma-Aldrich) at a volume ratio of 2. Then 
the catalyst-sand mixture was loaded into the reactor and 
quartz wool was used on both ends of the reactor. Before the 
start of the methanol steam reforming reaction, the catalyst 
was activated further in situ by 10% H2 in Ar at 350 °C for 
2 h to ensure the reduced state of the catalyst. The reaction 
products and condensate were analyzed using Agilent 7890B 
GC equipped with TCD and FID detectors. The Eqs. (4)–(6) 
were used to calculate the methanol conversion and selectiv-
ity to H2 and CO by examining the moles in the condensate 
and the moles of H2, CO, and CO2 in the product gas stream 
of MSR reaction [13].

The coefficient RR is the H2/CO2 reforming ratio which 
is equal to 3 for the MSR process.

(4)XMethanol =
CH3OH moles converted

CH3OH moles fed
× 100%

(5)

SCO =
CO moles in product

(CO2 + CO + CH4) moles in product
× 100%

(6)

SH2
=

H2 moles in product

RR × (CO2 + CO + CH4) moles in product
× 100%

3 � Results and Discussion

3.1 � Catalyst Characterization

3.1.1 � N2 Physisorption Analysis

The N2 physisorption analysis was carried out to determine 
the textural properties of the catalysts. Table 1 presents the 
surface area, pore volume, and average pore diameter of the 
calcined catalysts. The mesoporous carbon has a surface area 
of 295.1 m2/g and a pore volume of 0.165 cm3/g. After the 
addition of copper, the surface area and the pore volume 
increased to 380.5 m2/g and 0.362 cm3/g, respectively. This 
may be due to the formation of Cu nanoparticles over the 
support surface, which helps to increase the number of pores 
over the mesoporous carbon support. So, the pore volume 
increased. The surface area increased due to the increase in 
pore volume. In contrast, incorporation of CeO2 and ZnO 
filled the support pores and made them inaccessible for 
N2 adsorption. The average pore diameter of all catalysts 
increased except for CuCe on MC (OP). This is because 
smaller pores are blocked first and help to increase the avg. 
pore diameter. The variation in average pore diameter has 
also been observed by Panpranot et al. [32].

All catalysts exhibit hysteresis loops in Fig. 1a, indicating 
the existence of the mesoporous structures. The CuZn on 
MC (OP) catalyst showed the lowest surface area and pore 
volume. It’s not quite clear why the surface area increases 
after the addition of Cu to MC. However, a decrease in sur-
face areas after the addition of Cu and Ce corresponds to the 
decline of the hysteresis loop width. Cu on MC (OP) catalyst 
exhibited a Type IV isotherm with an H2-type hysteresis 
loop, which according to the IUPAC classification confirms 
the mesoporous structure with cage-like channels [33]. In 
the case of Cu on MC (OP) catalyst, the linear increase of 
N2 uptake at low relative pressure (P/P0 = 0–0.45), depicts 
the monolayer-multilayer adsorption on the pore wall fol-
lowed by a stepwise N2 uptake at a relative pressure (P/
P0 = 0.45–0.5). This indicates a capillary condensation in 
the mesopores. Figure 1b shows the pore size distribution 

Table 1   Surface area, pore diameter and pore volumes of different 
Cu–MC-based catalysts

Catalyst Surface area 
(m2/g)

Pore volume 
(cm3/g)

Avg. pore 
diameter 
(nm)

MC 295.1 0.165 2.24
Cu on MC (OP) 380.5 0.362 3.81
CuCe on MC (OP) 316.6 0.174 2.20
CuZn on MC (OP) 102.9 0.127 4.94
CuCe on MC (IMP) 199.3 0.139 2.8
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of support and catalysts. The distribution profile of Cu on 
MC (OP) catalyst shifted to the right compared to other cata-
lysts and the intensity of the profile increased, which showed 
higher pore volume. The distribution profile of other cata-
lysts showed a lower intensity peak that corresponds to lower 
pore volume compared to Cu on MC (OP) [31].

3.1.2 � Temperature Programmed Reduction (TPR)

H2-TPR analysis was carried out to investigate the reduc-
tion behavior of the metal oxides in all catalysts. Cu-based 
catalysts are highly active in methanol steam reforming 
reaction due to lower reduction temperatures [34, 35]. TPR 
experimental parameters including the heating rate of the 
sample, flow rate, and composition (H2 concentration) of 
the reducing gas affected the reduction temperature [36]. 
If these three parameters are fixed, then the particle size 
(20 nm as per SEM image) and metal-support interaction 
would play important roles in the reduction behavior of the 
samples [37]. Pure CuO particles were reduced at a higher 
temperature compared to supported CuO particles [37]. 
This means that metal-support interaction could facilitate 
CuO reduction. The bulk and supported CuO particles were 
reduced by nucleation or autocatalytic reduction processes 
[38]. In the case of the Cu on MC (OP) catalyst, one broad 
peak in the temperature range of 150–350 °C (Fig. 2) is 
due to the reduction of copper oxide (CuO → Cu0) parti-
cles, which have poor interaction with mesoporous carbon 
support [37]. The overlapping reduction peaks are observed 
for CuCe on MC (OP) catalyst. Different peaks indicate the 
presence of more than one copper species in the catalyst and 
reduction occurrs in steps. More specifically, three overlap-
ping peaks for this catalyst are observed: a low-temperature 
peak of low intensity corresponds to the reduction of copper 
ions strongly interacting with CeO2 and two peaks of higher 

intensity ascribed to the reduction of larger CuO particles 
less interacting with ceria [39, 40]. The TPR profile of the 
CuZn on MC (OP) catalyst is almost the same as Cu on MC 
(OP) catalyst. Only one reduction peak observed at 330 °C 
corresponds to CuO reduction. For CuCe on MC (IMP) cata-
lyst, two reduction peaks are observed at 341 and 376 °C. 
The first peak at 341 °C is attributed to the reduction of 
CuO. The slightly higher reduction temperature (376 °C) 
for the impregnated catalyst corresponds to the reduction 
of CuO that interacts with CeO2. The higher temperature 
peak at 500–650 °C possibility corresponds to the formation 
of methane, due to the reaction between the carbonaceous 
support and H2 [31]. In addition, the strong interaction of 
copper oxide with support provides the reduction of CuO at 
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a higher temperature, which is overlapped by the methana-
tion peak [31].

Table 2 shows the hydrogen consumption of all catalysts 
during the TPR analyses. The highest H2 consumption is 
observed for CuCe on MC (OP) catalyst which reflects the 
presence of a maximum number of reducible species. For 
other catalysts, the same amount of H2 is consumed. The 
lowest H2 consumption is observed for the CuCe on MC 
(IMP) catalyst. This may be due to clogging of the pores of 
Cu on MC by CeO2.

3.1.3 � X‑Ray Diffraction (XRD)

The XRD patterns of all catalysts are shown in Fig. 3. For 
catalysts prepared by a one-pot procedure, a broad peak is 
observed in the range of 2θ = 15°–30°, indicating the struc-
ture of an amorphous support [31]. In all one-pot prepara-
tion of catalysts, three peaks at 2θ = 43.12° (111), 50.34° 
(200) and 74.02° (220) (JCPDS-04-0836) with cubic struc-
ture confirm the presence of Cu metal in MC support after 
carbonization. In the case of CuCe on MC (OP) catalyst, Ce 
metal is found at 2θ = 28.52° (101), 47.52° (105), 69.65° 
(108) and 76.65° (206) (JCPDS-89-2728) angle with a 
hexagonal structure after carbonization. In the case of the 
CuZn on MC (OP) catalyst, the Zn metal peak is observed 
at 2θ = 34.31° (112), 31.75° (110), 36.41° (201) and 45.45° 
(203) (JCPDS-01-1238) with a hexagonal structure after car-
bonization. In the case of CuCe on MC (IMP) catalyst, the 
CuO crystal phases are present at 2θ = 31.53° (110), 35.40° 
(111), 38.79° (200), 45.23° (112) and 61.26° (113) (JCPDS-
89-2531) with monoclinic structure after calcination. CeO2 
is found at 2θ = 28.52° (111), 32.92° (200), 47.52° (220), 
56.40° (311), 69.65° (400) and 76.65° (331) (JCPDS-81-
0792) angle with a cubic structure for CuCe on MC (IMP) 
catalyst after calcination in presence of air. The peak inten-
sity is reduced after the addition of Ce for the one-pot CuCe 
catalyst on MC support as Ce is distributed throughout the 
sample. In contrast, higher peak intensity is observed for 
CuCe on MC (IMP) catalysts. This suggests that the impreg-
nation method facilitated the crystal growth during material 
preparation. In the impregnation method, the metals are dis-
tributed over the upper layer of the support of the catalyst, 

this causes the intensity of the peak to increase compared to 
that prepared by the one-pot method [41].

Table 3 shows the average crystal size of all metal oxides. 
The average crystal size is calculated using the modified 
Scherrer equation [42]. The Cu metal crystal size for the Cu 
on MC (OP) catalyst is 16.92 nm. The Cu metal crystal size 
(14.65 nm) decreases slightly after the addition of Ce metal 
(19.92 nm) in the CuCe on MC (OP) catalyst. The smaller 
Cu metal crystal size indicates that the addition of Ce metal 
increases the interaction between Cu and Ce [43]. In the 
case of impregnated CuCe on MC (IMP) catalyst, the crystal 
sizes of CuO and CeO2 are 27.56 and 16.96 nm respectively. 
The higher CuO crystal size of impregnated catalyst sug-
gests a weak interaction between CuO and CeO2. Wang et al. 
[44] showed that the larger size of CeO2 has lower structural 
defects compared to small crystal size. The Cu metal crystal 

Table 2   H2 consumption by Cu–MC-based catalysts

Catalyst H2 consump-
tion (mmol/g)

Cu on MC (OP) 0.266
CuCe on MC (OP) 0.298
CuZn on MC (OP) 0.255
CuCe on MC (IMP) 0.095

Fig. 3   XRD profiles of: (a) Cu–MC, (b) CuCe–MC, (c) CuZn–MC, 
(d) CuCe–MC (IMP) catalysts

Table 3   Crystal size calculation for different Cu–MC-based catalysts

Using modified Scherrer equation [42]

Catalyst Crystal Size (nm)

Cu CuO Ce CeO2 Zn

Cu on MC (OP) 16.92 – –
CuCe on MC (OP) 14.65 19.92 –
CuZn on MC (OP) 21.42 – 20.16
CuCe on MC (IMP) − 27.56 − 16.96 –
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size of the CuZn on MC (OP) catalyst is high compared to 
that of CuCe on MC (OP) catalyst.

3.1.4 � Transmission Electron Microscopy (TEM)

TEM experiments were carried out to study the mesoporous 
carbon structure and distribution of metal particles over 
the support in the calcined catalysts as shown in Fig. 4. In 
all micrographs, mesopores are observed, which confirms 
the mesoporous structure of the carbon support, in agree-
ment with N2 physisorption analysis [31]. Similar kind of 
mesoporous structure of MC is obtained by Suliman et al. 
[45]. After the addition of metal particles, the mesoporous 
structure of MC does not change. The mesoporous struc-
ture is clearly visible in CuCe on MC (OP) catalyst. The 
TEM images showed a better distribution of metals in the 
support for one-pot hydrothermal synthesis compared to 
that obtained by the impregnation method. However, the 
structure changed in the case of wet-impregnated cata-
lysts (Fig. 4e). Some rod-type particles are observed over 
the mesoporous carbon support. This different structure is 
formed possibly due to thermal exfoliation during calcina-
tion at higher temperature in presence of air for impregnated 
catalyst. As a result, the mesoporous carbon structure is dis-
torted. Similar results were obtained by Ahmad et al. [46]. 
Nguyen and Tran showed that the mesoporous carbon cata-
lyst is not stable in air at high temperature due to its organic 
structure (C–C chains) [47]. The TEM image of our impreg-
nated catalyst is provided in the supplementary document 
(See Fig. S1). In the case of the CuZn on MC (OP) catalyst 
(Fig. 4d), the agglomeration of particles is observed over the 
carbon support, which might negatively affect the activity in 
MSR. CuCe on MC (OP) catalyst shown in Fig. 4c exhibits 
a good distribution of metal particles over the support. The 
pores of the support have been blocked by the metals, which 
tends to decrease the pore volume [31, 48]. It may also result 
in interfacial voids in the carbon matrix by the addition of 
metal particles. This result is in reasonable agreement with 
N2 adsorption–desorption analysis.

3.1.5 � Scanning Electron Microscopy (SEM)

Figure 5 shows the surface morphologies of MC and other 
catalysts. The SEM images show that the MC and MC-sup-
ported catalysts are agglomerated of small irregular particles 
[49]. In the case of the CuCe on MC (OP) catalyst, there are 
some tapered-shaped particles over the support (Fig. 5c). 
Rod-type particles are found for CuCe on MC (IMP) cata-
lyst (Fig. 5e). This suggests that the preparation technique 
of the catalysts plays an important role to yield a differ-
ent morphology of the catalyst. The bigger size of parti-
cles is observed in the case of CuZn on MC (OP) catalysts 
(Fig. 5d). These results are in reasonable agreement with the 

TEM analysis. The average particle size of all the catalysts 
is 20.43 nm. The avg. particle size was measured by ImageJ 
software. The elemental mapping of all catalysts is done by 
SEM analysis (see Figs. S2 to S5).

3.1.6 � FTIR Studies of Catalysts

The spectrum of FTIR helps to determine the functional 
groups within the catalyst. Figure 6 shows the FTIR spec-
tra of the as-synthesized catalysts (MC–As, Cu–MC–As, 
CuCe–MC–As, and CuZn–MC–As). As the “As-synthesized 
catalyst” is obtained after drying, it contains F127 and other 
structure-directing agents. The presence of a broad peak at 
3437 cm−1 corresponds to the –OH groups [50, 51]. The 
–CH2 stretching vibration is observed at 2877 cm−1 due to 
the intermolecular interaction between resorcinol–formal-
dehyde [52].

The 1608 cm−1 peak can be assigned to the C=C (alkene) 
bond [53]. The skeletal C=C vibrations of the aromatic ring 
is observed at 1474 cm−1 [54]. The –CH2 wagging vibration 
is observed at 1360 cm−1 and proves the presence of F127 in 
the sample [55]. The C–O–C asymmetrical axial deforma-
tion of the ether peak is observed at 1242 cm−1 [54]. The 
peak at 1098 cm−1 is assigned to C–O stretching [56]. The 
assigned peak at 944 cm−1 corresponds to the CH2 rocking 
or C–O–C stretching band of Pluronic F127 [57, 58]. These 
bands are not observed in the FTIR spectra of catalysts after 
calcination as they are removed in this process (see Fig. S6).

3.1.7 � TGA–DSC Analysis of All Uncalcined Catalysts

TGA–DSC analyses of the samples are depicted in Fig. 7. 
In each thermogram, there are three weight losses observed 
for each one of the as-synthesized catalysts. The first weight 
loss below 150 °C corresponds to elimination of the mois-
ture adsorbed on the surface of the catalyst [59]. The second 
weight loss between 150 and 400 °C is due to the decompo-
sition of Pluronic F127 molecules from the as-synthesized 
catalyst for all one-pot catalysts [60, 61]. The weight loss 
between 400 to 1000 °C is due to carbonization of the poly-
meric material (Resorcinol and Formaldehyde) [62].

3.1.8 � X‑Ray Photoelectron Spectroscopy Analysis

The chemical oxidation states of all elements in the catalysts 
are determined using XPS analysis (Fig. 8). Figure 8a shows 
the binding energy of C1s for all calcined catalysts. The 
carbon in all the MC support, Cu–MC (OP) and CuCe–MC 
(IMP) catalysts show a narrow XPS spectrum which is cen-
tered at the binding energy of 283.95 eV. After the addition 
of Ce and Zn, the binding energies of both CuCe–MC and 
CuZn–MC (OP) decreased to 282.64 eV, indicating weaker 
interactions of Ce and Zn with the carbon support. The 
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slight variance in the C1s spectra of Ce- and Zn- modified 
catalysts with different methods suggests that both the metal 
species and the incorporation methods affect the interac-
tion of metals with the support matrix [63, 64]. The com-
parison of the binding energy of Cu2p between Cu–MC and 

CuZn–MC is shown in Fig. 8b. The feature peaks of Cu–MC 
(OP) catalyst are observed at 961.80, 953.43, 941.68 and 
933.21 eV [65, 66], respectively. After incorporation of Zn, 
the peaks shifted to 960.60, 952.04, 940.18 and 932.41 eV, 
respectively, exhibiting a decreased binding energy. The 

Fig. 4   TEM micrographs of all catalysts: a MC; b Cu on MC (OP); c CuCe on MC (OP); d CuZn on MC (OP); e CuCe on MC (IMP)
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combination of Ce3d and Cu2p are displayed in Fig. 8c. 
CuCe–MC (OP) and CuCe–MC (IMP) both have the same 
binding energy observed for Cu–MC (OP), indicating the 
effects of Ce on the Cu-support interactions was limited. 
The peaks at 915.85, 898.87 and 882.39 eV of both catalysts 
were attributed to CeO2 [67]. However, the intensity of the 
CuCe–MC prepared via one-pot is much weaker than that 
prepared via WI method. It is most likely due to the greater 

density of Ce when impregnated on MC surface. Thus, the 
preparation method and the metal that is incorporated in the 
support play a major role in designing the catalyst because of 
the difference in interactions of the support with the metal or 
catalyst [68–70]. In Fig. 8d, Zn2p binding energies observed 
at 1020.34 and 1043.16 eV in CuZn–MC (OP) confirm the 
presence of ZnO, which is in agreement with the XRD anal-
ysis [66, 71].

Fig. 5   SEM images of all catalysts: a MC; b Cu on MC (OP); c CuCe on MC (OP); d CuZn on MC (OP); e CuCe on MC (IMP)
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3.2 � Catalyst Activity Test

3.2.1 � Effect of Temperature on Methanol Conversion

To study the effect of temperature on all catalysts’ activity, 
the MSR reactions were carried out in the temperature range 
of 200 to 350 °C with fixed steam to methanol molar ratio of 
3 and gas hourly space velocity (GHSV) of 2900 h−1 [13]. 
Our studies are similar to that of other researchers who stud-
ied methanol steam reforming in this temperature range with 
fixed reaction parameters [72, 73]. All the catalysts showed 
promising results for methanol conversion. For all one-pot 
synthesized catalysts, the highest methanol conversion was 
obtained at 300 °C, whereas in the case of impregnated 
catalysts, the highest conversion was observed at 250 °C. 
Therefore, it can be concluded that all catalysts worked well 
in the low-temperature regime, 250 to 300 °C. The highest 
methanol conversion was achieved at around 68% for the 
CuCe–MC (IMP) catalyst at 250 °C. This is comparable to 
the Cu catalysts supported on mesoporous silica (MCM-41) 
under the similar condition of 250 °C and 2838 h−1 GHSV 
[13], indicating that mesoporous carbon is also an outstand-
ing support for catalytic steam reforming reactions. The 
lower methanol conversion is observed in this temperature 
range due to the agglomeration of active sites of the catalysts 
[31]. A 65% conversion is obtained for CuCe–MC (OP) cata-
lyst at 300 °C. So, further studies were carried out with these 
two catalysts at different temperatures (Fig. 9).

3.2.2 � Effect of Temperature on Product Selectivity

Figure 10 shows the effect of temperature on the selectiv-
ity of product gases. For Cu–MC (OP), CuZn–MC (OP) 
and CuCe–MC (IMP) catalysts, over 95% H2 selectivity 

was observed in the temperature range of 200 to 350 °C. 
The H2 selectivity decreased at a higher temperature for 
CuCe–MC (OP) catalyst. In the case of Cu–MC (OP) cata-
lyst, CO2 selectivity decreased, and CO selectivity increased 
with the increase in temperature. CH4 selectivity does not 
change appreciably with the increase in temperature. All 
carbonaceous gas selectivity is almost constant throughout 
the temperature range for CuZn–MC (OP). CO2 selectiv-
ity decreases and CO selectivity increases at a higher tem-
perature between 300 and 350 °C for both CuCe–MC (OP) 
and CuCe–MC (IMP) catalysts. This result suggests that 
methanol decomposition and reverse water gas shift reac-
tions occurred at higher temperatures [73]. Both Ce and Zn 
promoters favor reduction of CO at lower temperatures. The 
amount of CO produced at 250 °C for all promoted catalyst 
are less than 10%; this is superior to the Ni modifications 
that we discovered in our previous work, about 92% of CO 
when Ni was added to Cu catalyst [71]. CH4 selectivity 
increased at a higher temperature for CuCe–MC (OP) cata-
lyst. However, for the impregnated catalyst, CH4 selectivity 
decreased at higher temperatures.

Table 4 shows the comparative studies of different cop-
per-based catalysts with CuCe–MC (IMP) catalyst at 250 °C. 
It is difficult to compare them as there are distinct differences 
among the studies, especially in regard to the experimental 
conditions. Most of the methanol steam reforming (MSR) 
reactions using copper-based catalyst systems were per-
formed at a different GHSV with H2O to CH3OH molar ratio 
that varied from 1 to 3.1. The higher methanol conversion 
of 75% was observed for the CuZnCe catalyst with a low 
GHSV of 1200 h−1 at 250 °C [34]. The CuCe–MC (IMP) 
catalyst showed better activity than other copper-based cata-
lysts at 250 °C (Figs. 11, 12).

3.2.3 � Time‑on‑Stream Study of CuCe–MC (OP) Catalyst

To know the time-on-stream behavior of CuCe–MC (OP) 
catalyst, the MSR reaction was carried out for 50 h: reac-
tion time at 300 °C, H2O/CH3OH = 3 and GHSV = 2900 h−1. 
Methanol conversion decreases with time and it is almost 
stable after 22 h. Almost 30% conversion was observed after 
22 h. The gas selectivity for all gases remained constant 
throughout time-on-stream studies.

3.2.4 � Time‑on‑Stream Studies with CuCe–MC (IMP) 
Catalyst

To investigate the time-on-stream behavior for CuCe–MC 
(IMP) catalyst, the reaction was carried out for 42 h at 
250 °C, H2O/CH3OH = 3 and GHSV = 2900 h−1. Methanol 
conversion decreased with time, and it was almost stable 
after 22 h. Almost 40% methanol conversion was observed 
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after 22 h. The selectivity of all gases remained almost con-
stant throughout the time-on-stream studies.

3.2.5 � Spent Catalyst Characterization

Figure 13 shows the morphology of the CuCe–MC (OP) 
and CuCe–MC (IMP) after the completion of MSR studies. 
Based on the micrographs shown in Fig. 5c and e, it is appar-
ent that the tiny particles observed in the fresh catalysts got 
agglomerated and the catalyst surface is covered with coke.

3.2.6 � TGA–DSC Analysis of Spent Catalysts

Figure 14 shows TGA–DSC analyses of the spent catalysts. 
The analysis of coke-deposition over the catalyst surface 
was performed at atmospheric conditions. The TGA analysis 
results are in agreement with time-on-stream studies. The 
weight loss of ~ 8 and 18 wt% found in TGA analysis cor-
responds to the burning of moisture and graphitic carbon 
[77, 78]. The result suggests that CuCe–MC (OP) catalyst 
has high resistance to coke formation. The addition of CeO2 
in the catalysts decreased the carbon deposition during the 
MSR reaction. The weight loss is found less for one-pot 
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synthesis method, which reflects that the Cu (II) ions are 
well ordered in the lattice of CeO2 [79].

Mesoporous carbon consists of meso and macro pores 
[80] and may result in more efficient catalysts in terms of 
selectivity towards products. Due to the presence of meso 
and macro pores, MC has different pore sizes. In contrast, 
mesoporous silica and titania have almost same pore size 
[13–15]. Various mesostructured carbons with different pore 
systems have been synthesized using a variety of different 
mesoporous silica templates [81–83]. The amorphous carbon 
in MC has temperature restraints, increasing the temperature 
above 400 °C can affect the hydrogen yield [31]. According 
to the TPR results, recorded at a temperature above 400 °C, 
MC possibly helps in the formation of methane due to the 
reaction between the carbonaceous support and H2 [31].
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4 � Conclusion

The Cu catalysts supported on mesoporous carbon, con-
taining Ce and Zn, separately, were prepared using one-
pot synthesis and impregnation method. All catalysts 
exhibit mesoporous structures with high surface areas. 
The TPR results showed that the reducibility of the oxide 

nanoparticles of CuZn on MC (OP) catalyst was almost the 
same as Cu on MC (OP) catalyst, while CuCe–MC (IMP) 
catalyst showed two reduction peaks due to the reduction 
of CuO in two different environments. The catalyst activity 
was tested by varying the reaction temperature in the range 
of 200–350 °C. The CeO2-modified catalysts prepared by 
one-pot synthesis and wetness impregnation methods both 
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Fig. 10   Effect of reaction temperature on the selectivity of product gases from the MSR reactions using Cu–MC (OP); CuCe–MC (OP); CuZn–
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Table 4   Comparison of MSR 
activity of CuCe–MC (IMP) 
with other copper loaded ceria 
oxide materials at 250 °C

Catalyst GHSV (h−1) H2O to CH3OH 
molar ratio

CH3OH Conver-
sion (%)

References

Cu/Ce0.75Zr0.5O2 21,000 2 48 [73]
Au-Cu/ Ce0.75Zr0.5O2 21,000 2 45 [74]
Cu/CeO2/ZrO2 – 1 35 [75]
CuO/ZnO/Al2O3 24,000 3.1 67 [76]
CuZnCe 1200 1.2 75 [34]
CuCe–MC (IMP) 2900 3 68 This work



	 Topics in Catalysis

1 3

exhibited good performance in the steam reforming reac-
tions. The optimum reaction temperature, in consideration 
of methanol conversion and H2 selectivity, for Cu–Ce on 
MC (OP) is 300 °C, while the highest conversion and selec-
tivity for Cu–Ce on MC (WI) was observed at 250 °C. The 
highest methanol conversion for Cu–Ce on MC (OP) and 
Cu–Ce on MC (WI) were 65 and 68%, respectively. All 
catalysts showed high hydrogen selectivity (> 90%) in this 
temperature range. For the Zn-modified Cu–MC catalyst, a 

lower CO selectivity of less than 10% is observed even at 
temperatures over 300 °C. The analysis of the spent catalysts 
suggests that CuCe on MC (OP) catalyst has high resist-
ance to coke formation and the addition of CeO2 helps to 
decrease the carbon deposition during the reaction. Based 
on the performances of the catalysts in the long-term reac-
tions, Ce-modified Cu–MC (WI) is more stable, indicating 
the deactivation of CuCe–MC (OP) is caused by both coke 
formation and sintering.

0 10 20 30 40 50
20

30

40

50

60

70

80

90

100

C
H

3O
H

C
on

ve
rs

io
n

(%
)

Time (h)

CuCe on MC
300 0C

0 10 20 30 40 50

0

20

40

60

80

100

120

S
el

ec
ti

vi
ty

(%
)

Time (h)

H2 CO CH4 CO2

CuCe on MC
300 0C

Fig. 11   Time-on-stream MSR studies using CuCe–MC (OP) catalyst for 50  h (conditions: temperature 300  °C; H2O/CH3OH = 3; 
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Fig. 12   Time-on-stream MSR studies using CuCe–MC (IMP) catalyst for 42  h (conditions: temperature 250  °C; H2O/CH3OH = 3; 
GHSV = 2900 h−1)
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