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ABSTRACT Spatio-temporal forecasting is of great importance in a wide range of dynamic systems
applications, such as earth science, transport planning, etc. These applications rely on accurate predictions
of spatio-temporal structured data reflecting real-world phenomena. A stunning characteristic is that the
dynamical system is not only driven by some physics laws but also impacted by the localized factor in
spatial and temporal regions. One of the major challenges is to infer the underlying causes, which generate
the perceived data stream and propagate the involved causal dynamics through the distributed observing
units. Another challenge is that the success of machine learning-based predictive models requires massive
annotated data for model training. However, the acquisition of high-quality annotated data is objectively
manual and tedious as it needs a considerable amount of human intervention, making it infeasible in fields
that require high levels of expertise. To tackle these challenges, we advocate a spatio-temporal physics-
coupled neural networks (ST-PCNN) model to learn the underlying physics of the dynamical system
and further couple the learned physics to assist the learning of the recurring dynamics. To deal with
data-acquisition constraints, an active learning mechanism with Kriging for actively acquiring the most
informative data is proposed for ST-PCNN training in a partially observable environment. Our experiments
on both synthetic and real-world datasets exhibit that the proposed ST-PCNN with active learning converges
to near-optimal accuracy with substantially fewer instances.

INDEX TERMS Spatio-temporal modeling, physics-informed neural networks, active learning, Gaussian
process model, dynamical systems.

I. INTRODUCTION
Spatio-temporal modeling is essential in many scientific
fields ranging from studies in biology [1], information flow
in social networks [2], traffic predictions [3], and earth sci-
ence [4], to recent COVID-19 spread modeling [5]. These
applications rely on accurate predictions of spatio-temporal
structured data reflecting real-world phenomena. With an
unprecedented increase in data accessibility and computa-
tional capability, machine learning (ML) has been rapidly
explored in spatio-temporal modeling [6], [7], [8], [9], [10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiajia Jiang .

One of the major challenges of spatio-temporal ML is the
high cost of data acquisition. Effective training of advanced
ML models requires large amounts of labeled data. However,
the acquisition of a large number of high-quality annotated
data consumes a lot of human labor, making it unfeasible in
fields that require high levels of expertise [11]. This prob-
lem is outstanding, especially in atmospheric and oceano-
graphic science, which involves the accurate prediction of
some variables of interest [12], [13]. For example, collect-
ing ocean data usually requires trained scientists to travel
to sampling locations and deploy in-situ instruments within
oceanic structures. The cost further limits the total number of
sensors placed/installed to query the data; while the incurring
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personnel and equipment costs for data does not necessarily
mean improved model predictions.

When and where to query the data within constraints to
build efficient and accurate predictive models is an elemen-
tary question for spatio-temporal forecasting. To answer this
question, active learning (AL) as a special form of weakly
supervised learning that attempts to maximize model perfor-
mance while annotating the fewest samples possible, seems
to be a natural alternative in the spatio-temporal domain [11].
AL approaches, from application scenarios [14], can be cate-
gorized into membership query synthesis [15], stream-based
selective sampling [16], and pool-based AL [17]. Among
these approaches, stream-based selective sampling makes an
independent evaluation of each sample in the data stream and
is more suitable for spatio-temporal scenarios since the whole
dataset is not always available and timeliness is required.

Spatio-temporal learning for dynamical systems faces
another major challenge to inferring the underlying causes
or prime drivers, which generate the perceived data stream
and propagate the dynamics that can be observed through the
distributed sensors. Stunning characteristics of such scenarios
are that the widely distributed sensors share homogeneity and
heterogeneity, where the former is driven by the physical laws
governing the systems and the latter is impacted by the spatial
and temporal factors in localized regions. One of the critical
properties that most of the spatio-temporal processes have
in common is that some general underlying principles will
apply irrespective of time or location when observing natu-
ral processes. For example, many climate models based on
mathematical equations that describe the physical processes
have been built to predict climate variables while the predic-
tion abilities may still apply to other regions and times with
dramatic variations [4]. Physics-informedML has emerged to
build hybrid models for robust predictions recently [18], [19],
[20], [21], [22], however, these methods seldom consider the
homogeneity and heterogeneity simultaneously when obser-
vation data is scarce.

In this paper, we introduce a spatio-temporal physics-
coupled neural networks (ST-PCNN) model to capture the
spatio-temporal correlations, heterogeneity, and homogeneity
in a spatially distributed manner. To bring this technology
closer to reality, we further empower ST-PCNN with active
learning to address data limitations in practice. The main
contributions of this paper are the following:

• We propose ST-PCNN, a novel framework for spatio-
temporal modeling of dynamical systems.

– ST-PCNN learns a forecasting neural network
executed at different locations, integrating lateral
information interacting with the neighborhoods.
ST-PCNN allows efficient parallel computation and
captures heterogeneity from all spatial locations.

– ST-PCNN is embedded with a physics learning
module to learn the homogeneity in the form of par-
tial differential equations (PDE). The physics mod-
ule first fits a Gaussian process to the observations

and then obtains the PDE coefficients by calculating
the Gaussian process-derived partial derivatives of
the state variable, without the need for initial and
boundary conditions.

• We further introduce a stream-based active learning
mechanism into the proposed ST-PCNN framework.
We design a Kriging sampling method to obtain the
critical training data at locations where underlying pre-
dictions are in most need of improvement.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents the problem def-
inition followed by the proposed method in Section IV.
Section V conducts extensive experiments and comparative
studies on both synthetic and real-world datasets, where the
former dataset manifests a clear spatio-temporal correlation
and the latter presents strong sparsity. Section VI draws con-
clusions and discusses future works.

II. RELATED WORK
A. ACTIVE LEARNING KRIGING MODEL
When and where to query the data to build an accurate
predictive model while staying within a maximum budget for
data collection is a rising question for spatio-temporal pre-
diction [23]. Statistical predictive approaches that commonly
used in geographic information systems are not applicable,
since they require robust data to model first- and second-
order spatial effects [24]. In the case of vast amounts of
unlabeled data being available and labeled data being scarce
since the labeling process is time-consuming and costly,
active learning (AL) could be an alternative [17], [23], [25],
[26], [27]. The first category of AL methods are based on
informativeness that exploits the uncertainty of the classifier
predictions to select informative samples [28], and the uncer-
tainty are commonly estimated by least confidence first [29],
[30], margin sampling [31], [32], [33], or entropy [34], [35].
The second category AL methods are based on density that
aims to enhance the representativeness of the selected sam-
ples [26], [27], [36], [37], [38], [39]. Recently, the proposition
of the active learning Kriging model is a significant step
forward [40], [41]. The general way is to add observations
at the locations corresponding to local maxima [42], and a
new prediction is then made for the whole space followed by
a new local maximum computed to select the next location for
additional observations. The local maxima selection criterion
is usually based on statistical interpretation. However, due to
the constraint set on location number when querying data,
in this paper, we improve the active learning Kriging method
to utilize only the optimal candidates instead of expanding
the dataset as others do.

B. ACTIVE LEARNING WITH LEARNING PHYSICS
Notably, AL is also explored to solve PDEs, e.g., an AL
algorithm is proposed for training a neural network to predict
PDE solutions over the entire parameter space using training
data from a minimal region [43]. AL is also used to quantify
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FIGURE 1. Overall framework of the proposed ST-PCNN model with active learning. A system consists of N observable locations, but can only collect
values from n locations at any particular time. In the beginning, a set of n random locations are selected (the green-colored dots on the top-left panel) to
collect the training dataset D. The lower panel loop denotes Kriging-based active learning, which actively queries locations at the next step, and uses
queried samples to update the training set D. Using the updated training dataset, the ‘‘Learn Physics’’ module learns the underlying physics, and
combines it with a forecasting network to predict future values of all N observable locations (the orange-colored dots on the top right). Because the
red-colored dots contain queried values, they are used for loss calculation.

uncertainty in resulting predictive posterior distributions and
naturally leads to adaptive solution refinement, where the
observables are scarce and noisy multi-fidelity data [44].
Further, dropout is demonstrated that it can quantify the
uncertainty of deep neural networks in solving forward and
inverse differential equations and serves as useful guidance
for active learning [45]. In this paper, considering the property
that the derivative of the Gaussian process (GP) is also a GP,
we propose a newmethod for PDEs learning that uses GP as a
basis function. The learned PDE is coupled into our proposed
ST-PCNN model to enhance the spatio-temporal modeling.

III. PROBLEM DEFINITION
An observing system (e.g., ocean observation sensor net-
work [46]) consists of N observable locations (|�| = N ),
each produces a set of real valued observations in a temporal
order. Due to resource constraints, at any particular data
collection period, the system can only collect values from n
locations (0 < n � N ), denoted as �n

temp. The collected
training set at each period isDtemp = {(x, t,S)|x ∈ �n

temp, t ∈
Tw,S ∈ R}, whereS represents the observation value, x is the
location, and Tw is the maximum length of up-to-date data
stored in each location due to memory capacity.

Given a dynamical systemwithN observable locations and
their values up to current time t , and a budget n restricting the
number of query locations, our research has a twofold-goal
to (1) find optimal n locations to query their values; and (2)
create a model to forecast future values of the whole system,
beyond the current time point (w.r.t t + 1, t + 2, · · · ), with
minimum forecasting errors.

To achieve the goal, our proposed framework has two main
components: (1) an active learning Kriging module to query
high uncertainty points in the system; and (2) a physics-
coupled spatial-temporal learning to combine observed val-
ues and learned physics of the system to predict future values.
At current time point t , our system has observed Dtemp of
previous period (i.e., t − Tw to t) from selected sites, the

active learning Kriging module will determines where to
query n sites in the next period for best possible predictions.
Because such queried values do not guarantee minimum fore-
casting errors, physics-informed learning leverages observed
values to learn physics, and then assist in predicting future
values. The query and forecasting are essentially related,
so our proposed framework delivers a closed-loop solution
to ensure that active learning query and dynamics forecasting
are worked synergistically to achieve the designed optimiza-
tion goal.

IV. PROPOSED METHOD
A. OVERVIEW OF THE FRAMEWORK
To model the dynamical systems considering both where and
when to measure and query the data for making the best
possible predictions while staying within a maximum budget
of sensors and data, a spatio-temporal physics-coupled neural
networks (ST-PCNN)model with active learning is proposed.

Active learning is a paradigm in which the network train-
ing procedure identifies and requests additional, high-benefit
training data from an oracle. In our case, the oracle is an
observing grid � constrained by the maximal data collection
cost. The goal is to train the model to accurately predict
the system dynamics everywhere within desired area/grid �,
using training data from a minimal number of locations in
�temp. Our algorithm falls into the category of stream-based
selective sampling active learning, shown in Figure 1 and
implemented in Algorithm 1.

B. KRIGING SAMPLING FOR ACTIVE LEARNING
Kriging, also known as Gaussian process regression, is a
widely used method in applied mathematics and machine
learning for constructing surrogate models, interpolation,
supervised learning, and active learning [25]. Kriging con-
structs a statistical model of a partially observed function of
time and/or space, assuming that this function is a realization
of a Gaussian process (GP) that is uniquely described by
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Algorithm 1 Active Learning for ST-PCNN
Input : (1) �, a dynamical system as a grid; (2) n,

budget restricting maximum # of query
locations at each time t;

Output: ST-PCNN, the trained spatio-temporal model
Initialize

�n
temp← Randomly select n locations from � to
form a temporal observation subset;
D = Dtemp← Collect Tw consecutive observations
from each selected locations to form the training
data;
[Termination Conditions]← Threshold of prediction
loss ` to terminate active learning;

while Termination Conditions NOT satisfied do
Learn Physics: [λ]← learn the physics, i.e.
coefficients λ of PDE, from the existing training
data D by minimizing Eq. (26);
ST-PCNN Training: train the ST-PCNN with the
learned physics λ from training data D, see
Algorithm 2 with details;

Prediction:
[
Ŝ
]
← make prediction at all locations

in the network, ∀x ∈ �;
Kriging: �n

kriging← use Kriging to identify n query
locations with the largest estimated errors for next
active learning step;
Data Query: obtain consecutive observations of
window size Tw from the newly selected locations
Dkriging = {(x, t,S)|x ∈ �n

kriging, t ∈ Tw,S ∈ R};
Update Dataset: add Dkriging to the existing training
data D;

end

its mean and covariance. The Kriging method used in this
paper is the general ordinary Kriging, which is based on
the assumption of a stationary Gaussian process. Compared
to Universal Kriging, ordinary Kriging assumes stationarity
that requires fewer hyperparameters and reduces the model
complexity.

Denote the observation locations as � = {x(i)}Ni=1, where
x(i) are d-dimensional vectors in D ∈ Rd and the observed
state values at these locations as y = {y(i)}Ni=1, where y

(i)
∈

R. The Kriging assumes that the observation vector y is a
realization of the following N-dimensional random vector
that satisfies multivariate Gaussian distribution:

Y =
(
Y(x(1)),Y(x(2)), · · · ,Y(x(N ))

)T
(1)

where Y(x(i)) is the concise notation of Y(x(i);ω), which is
a random variable defined on a probability space (3, E,P)
with ω ∈ 3, where 3 is the sample space, E is the σ -algebra
over3, and P is the probability measure on3 [40]. Of note,
x(i) can be considered as the parameters of the GP Y : D ×
3 → R, such that Y(x(i)) : 3 → R is a Gaussian random

variable for any x(i) in the set D. Here, Y(x) is denoted as:

Y(x) ∼ GP(µ(x), k(x, x′)) (2)

where µ : D → R is the mean, k(x, x′) : D × D → R is
the covariance function that provides a measure of closeness
between a training point x and a test point x′:

µ(x) = E{Y(x)} (3)

k(x, x′) = E{(Y(x)− µ(x))(Y(x′)− µ(x′))} (4)

The variance of Y(x) is k(x, x) and its standard deviation
is σ (x) =

√
k(x, x). The covariance matrix C of a random

vector Y is defined as:

C =

k(x
(1), x(1)) · · · k(x(1), x(N ))
...

. . .
...

k(x(N ), x(1)) · · · k(x(N ), x(N ))

 (5)

then, the estimation at any new location x∗ is given as:

ŷ(x∗) = µ(x∗)+ cTC−1(y− µ) (6)

where µ =
[
µ(x(1)), · · · , µ(x(N ))

]T
and c is a vector of

covariance between the observed data and the predictions:

c = c(x∗)

=

[
k(x(1), x∗), k(x(2), x∗), · · · , k(x(N ), x∗)

]T
(7)

The mean squared error (MSE) of this prediction is defined
as ŝ2(x∗) = E{(ŷ(x∗)−Y(x∗))2} and is calculated as ŝ2(x∗) =
σ 2(x∗) − cTC−1c. The prediction and MSE can be derived
from the maximum likelihood estimate (MLE) method. The
n points with the largest MSE values are selected as the
next query points. This policy reassembles to the uncertainty
sampling in active learning, so the most uncertain points are
selected for future query.

In this context, the Kriging sampling is a process of iden-
tifying new locations for critical observations that minimize
the prediction error and reduce MSE or uncertainty. Notably,
Algorithm 1 is a greedy algorithm to identify observation
locations when some observations are affordable. It does
not guarantee to identify the actual optimal new observa-
tion locations, but the estimated optimal. Our active learning
framework, unlike others that keep adding new locations for
data collection, is constrained bymaximal data collection cost
that only a fixed limited number of locations are available at
each period. A natural way to improve the predictive perfor-
mance is to consider leveraging observations at the locations
corresponding to local maximum in ŝ2(x∗). Then, we can train
ourmodel on those selected locations tomake amore accurate
prediction and compute a new ŝ2(x∗) to select the locations for
the next period’s data collection, training, and prediction.

C. PHYSICS LEARNING
Physicists attempt to model natural phenomena in a princi-
pled way through analytic descriptions. Conservation laws,
physical principles, or phenomenological behaviors are gen-
erally formalized using differential equations, which can
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best derive the homogeneity of observations. The knowledge
accumulated for modeling physical processes in well-
developed fields could be a useful guideline for dynam-
ics learning. ST-PCNN includes a physics-aware module
(i.e., PN) to learn underlying hidden physics. The objective
of the PN is to estimate parameters of a partial differential
equation (PDE), given observations of state variable.

The PN requires fitting a GP model to the observations of
the state variable. The derivatives of the state variable can be
obtained using the property that ’the derivative of a GP is also
a GP’ [49], and finally adjusting the PDE coefficients so that
the GP derived partial derivatives satisfy the PDE [50]. This
module does not require initial and boundary conditions.

The Gaussian covariance function, that notationally given
by k(v, v′), also known as kernel, is:

k(v, v′) = σ 2
s exp

−1
2

m∑
j=1

(vj − v′j)
2

l2j

 (8)

where v is the collection of variables {x, t}, m is the dimen-
sion of the variables space, i.e., the number of independent
variables in v and vj ∈ v, lj is the length scale for the
j-th independent variable vj, and σs is the scale parameter
of the covariance function. Together, they are referred as
hyperparameters and are represented by φ = [l1, · · · , lm, σs].
The Gaussian covariance function, also known as squared
exponential covariance function, is infinitely differentiable
and hence very smooth.

Let the dataset be D = {(vi, yi)|i = 1, · · · ,N ; vi ∈
Rm
; yi ∈ R}, where N is the number of observations, vi is an

input vector (independent variable) in m-dimensional space,
and yi is the corresponding observed value of the dependent
variable. Also assume that all of the yi have independent and
identically distributed noise, which is assumed to be normally
distributed with mean zero and standard deviation σy:

yi = ỹi +N (0, σ 2
y ) (9)

where ỹi is the theoretical value of the state variable vi =
[xi, t] at location xi and time t . Suppose y follows a Gaussian
distribution with mean V̄ and covariance matrix C, repre-
sented as:

y ∼ N (V̄, C) (10)

where V̄ is a N × 1 vector of the priori mean of GP at data
pointsD. Inmost cases the a priori meanmay not be available,
but the GP model is powerful enough to capture trends in the
data even if the mean of GP is taken as zero or a constant
value.

The estimation y∗ at new points v∗ ∈ V∗ is given by:

y∗ ∼ N (V̄∗, C∗∗) (11)

where C∗∗ = k(v∗, v∗). The joint distribution of y and y∗ is
given by: [

y
y∗

]
= N

([
V̄
V̄∗
]
,

[
C + σ 2

y I C∗

C∗T C∗∗

])
(12)

where I is the identity matrix, C∗ = k(v, v∗) and the elements
of C∗ are covariance between the ith observed point and the
jth new point (i.e., kij).

The predictive distribution p(y∗|V∗,φ, σy,V , y) based on
the conditional property of the Gaussian distribution is:

p(y∗|V∗,φ, σy,V , y) = N (y∗|µ,6) (13)

where

µ = E[y∗|V∗,φ, σy,V , y]
= V̄∗ + C∗T (C + σ 2

y I)
−1(y− V̄) (14)

6 = cov[y∗|V∗,φ, σy,V , y]

= C∗∗ − C∗T (C + σ 2
y I)
−1C∗ + σ 2

y I (15)

Estimating the PDE coefficients requires derivatives of
the state variable (fitted by a GP model) with respect to
independent variables. According to [49], the GP relation Eq.
(14) could be straightforwardly differentiated with respect to
input variable. The first-derivatives of the covariance function
is presented as:

∂k(v, v∗)
∂v∗j

=
∂

∂v∗j

[
σ 2
s exp

(
−
1
2

m∑
i=1

(vi − v∗i )
2

l2i

)]

= k(v, v∗)
(vj − v∗j )

l2j
(16)

The second-derivatives of the covariance function is pre-
sented as:

∂2k(v, v∗)

∂v∗j
2 =

∂

∂v∗j

[
k(v, v∗)

(vj − v∗j )

l2j

]

=
k(v, v∗)

l2j

[
(vj − v∗j )

2

l2j
− 1

]
(17)

∂2k(v, v∗)
∂vjv∗j

=
∂

∂v∗j

[
k(v, v∗)

(vj − v∗j )

l2j

]

=
k(v, v∗)

l2j

[
1−

(vj − v∗j )
2

l2j

]
(18)

For a constant mean GP, the first order derivative ẏgp is
given by p(ẏgp|y,φ) = N (µ̇, 6̇gp), where 6̇gp is the covari-
ance matrix of ẏgp. Specifically:

µ̇ =
∂

∂v∗j
E[y∗|V∗,φ, σy,V , y]

= Ċ∗T (C + σ 2
y I)
−1(y− V̄) (19)

6̇gp = Ċ∗∗ − Ċ∗T (C + σ 2
y I)
−1Ċ∗ (20)

where Ċ∗ is populated by the mixed covariance function
between the state variable and its first order partial deriva-
tives, cov(y, ∂

∂v∗j
y∗) = ∂

∂v∗j
k(v, v∗), also known as cross-

covariance between the state variable and its derivative. Ċ∗∗
is a mixed covariance function between partial derivatives:

cov(
∂

∂vj
y,

∂

∂v∗j
y∗) =

∂2

∂vj∂v∗j
k(v, v∗) (21)
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Accordingly, the second-derivative of GP is given by:

ÿgp =
∂2

∂v∗j
2E[y

∗
|V∗,φ, σy,V , y]

= C̈∗T (C + σ 2
y I)
−1(y− V̄) (22)

where C̈∗T is populated by the mixed covariance func-
tion between the state variable and its second order partial
derivative:

cov(y,
∂2

∂v∗j
2 y
∗) =

∂2

∂v∗j
2 k(v, v

∗) (23)

Let the hidden PDE be given by an implicit function as:

f (v1, · · · , vm, y,
∂y
∂v1

, · · · ,
∂y
∂vm

,
∂2y

∂v1∂v1
,

· · · ,
∂2y

∂v1∂vm
, · · · , λ) (24)

where y is the state variable, v1, · · · , vm are independent vari-
ables, and λ is a set of PDE coefficients. By given the obser-
vations of the state variable and its GP derivatives involved in
the PDE, the residual error in the PDE at an observed point is
given by:

ε = f
(
v1, · · · , vm, y, λ

GP{
∂y
∂v1

, · · · ,
∂y
∂vm

,
∂2y

∂v1∂v1
, · · · ,

∂2y
∂v1∂vm

, · · · }

)
(25)

where the notation GP(·) incorporates all the partial deriva-
tives of the state variable, means that the arguments are
evaluated using the GP relation. The coefficients set λ can be
obtained by assuming a distribution for the residual errors and
then applying either the method of maximum likelihood or
the Bayesian estimation method using Markov chain Monte
Carlo sampling. These methods not only provide a point
estimate of k but also an estimation interval. However, to keep
the parameter estimation simple, we obtain k by minimizing
the sum of square of residual error (SSRE) as:

SSRE

= εT ε

=

∑
∀v,y∈D

f
(
v1, · · · , vm, y, λ,

GP{
∂y
∂v1

, · · · ,
∂y
∂vm

,
∂2y

∂v1∂v1
, · · · ,

∂2y
∂v1∂vm

, · · · }

)2

(26)

The minimization is performed using Nelder-Mead algo-
rithm. The GP regression model provides standard error for
the estimated state variables and its derivatives. This uncer-
tainty information is propagated to the SSRE by weighting
each term, where weights are inversely proportional to the
variance of the terms.

FIGURE 2. Lateral connection schema of forecasting network (FN) and
physics network (PN). The upper panel unfolds the structure of the FN
network. The green node denotes a center node located at (i, j ), the grey
(unobserved) and light green (observed) nodes are its neighbors. Three
types of information are used to characterize each node: (1) S(t,i,j ): an
embedding vector representing dynamics of node at time t , (2) Ep(i,j ): an
embedding vector representing node location; and (3) Ł(t,i,j ): an
embedding vector (dashed dot-square set) capturing interaction (lateral
info) between each node and its neighbors.

Algorithm 2 ST-PCNN Training

Input : Dtemp = {(x, t,S)|x ∈ �n
temp, t ∈ Tw,S ∈ R};

Initialize
Neural Network parameters: θF , θC ;
Static info: Ep← Positional-Encoding(d, �);
Lateral info: Ł← 0;

for number of epochs do
for t in Tw do

for i, j in �n
temp do[

Ŝ(t+1,i,j)
he , Ł̂

(t+1,i,j)]
←

FN (Ep(i,j),S(t,i,j),Ł(t,i,j), θF );
Ŝ(t+1,i,j)
ho ← PDE(Ep(i,j), Ŝ(t−1,i,j),S(t,i,j), λ);

Ŝ(t+1,i,j)
=

Coupling(Ŝ(t+1,i,j)
he , Ŝ(t+1,i,j)

ho , θC);
end

Update Ł(t+1,:)
← Ł̂

(t+1,:)
;

end

loss `← 1
n

∥∥∥S(t,:)
− Ŝ(t,:)

∥∥∥
1
+

1
n

∥∥∥S(t,:)
− Ŝ(t,:)

∥∥∥
2
;

Update θF , θC ← loss `.backward()
end

D. FORECASTING NETWORK AND PHYSICS COUPLING
ST-PCNN is a bi-network architecture, shown in Figure 2,
including a physics network (PN) and a forecasting network
(FN). The FN produces heterogeneous prediction leveraging
its own specific local attributes only, while the PN generates
homogeneous solution of the dynamics regularized by the
underlain governing physics. The heterogeneous is partially
affected by the first- and second-order spatial effects.

Three types of information are fed into the forecasting
network, including 1) system dynamic data, that changes
over time, 2) static information, that stays constant and
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characterizes the location of each FN, and 3) lateral infor-
mation from neighbors. The output of each FN includes
predicted dynamics and additional lateral information denot-
ing interaction between neighbors. Such interaction, which
distinguishes our architecture from others, aims to model
the location-sensitive transitions between adjacent FNs and
thus enable local context-dependent spatial information
propagation.

In many natural phenomenons, data are collected distribu-
tively and exhibit heterogeneous properties: each of these
distributed locations presents a different view of the natu-
ral process at the same time, where each view has its own
individual representation space and dynamics. Theoretically,
each location may contain information that other locations do
not have access to. Therefore, all local views must interact in
some way in order to describe the global activity comprehen-
sively and accurately.

How to explicitly encode location information into neural
networks is critical in our location-wise forecasting. Inspired
by the Transformer that encodes word positions in sentences,
we extend the absolute positional encoding to represent grid
positions. In particular, let i, j be the desired position in a
regular grid, Ep(i,j) ∈ Rd be its corresponding encoding, and
d be the encoding dimension, then the encoding scheme is
defined as:

Ep(i,j) :=

{
sin(ωk , i), sin(ωk , j) if i, j = 2k
cos(ωk , i), cos(ωk , j) if i, j = 2k + 1

(27)

where ωk = 1
10,0002k/d

, k ∈ N
≤

⌈
d
2

⌉. The positional embed-

ding as a vector contains pairs of sines and cosines for each
decreasing frequency along the vector dimension.

As illustrated in Figure 2, at each time t , FN is distribu-
tively executed at different locations�n

temp. FN encodes each
view (i.e., static Ep, dynamics S, and Ł of each node) using a
fusion layer:

f (t,i,j) = [Ep(i,j),S(t,i,j),Ł(t,i,j)]WT
fusion + bfusion (28)

where Ł(t,i,j) is a vector used to characterize interaction
between node at i, j and its neighbors. It is initialized as zeros
at the first step and continuously updated by Eq. (30) when
t > 0.
These features, f (t,i,j) ∈ Rdfi,j , are then fed into an LSTM

to model the node-specific interactions over time. The update
mechanism of the LSTM cell is defined as:[

I(t)
;F (t)
; C̃(t);O(t)

]
= σ

(
Wf (t,i,j) + T h(t−1)

)
C(t) = C̃(t) ◦ I(t)

h(t) = O(t)
◦ C(t) (29)

where σ (·) applies sigmoid on the input gate I(t), forget gate
F (t), and output gate O(t), and tanh(·) on memory cell C̃(t).
The parameters are characterized byW ∈ Rdfi,j×dhi,j and T ∈
Rdhi,j×dhi,j , where dhi,j is the output dimension. A cell updates

TABLE 1. Statistics of the datasets.

its hidden states h(t) based on the previous step h(t−1) and the
current input f (t,i,j).

An output layer is stacked at the end of FN to transform
the LSTM output into the expected dynamic prediction and
additional lateral information as:[

Ŝ(t+1,i,j)
he ; Ł̂

(t+1,i,j)]
= Relu(Wout · f (t,i,j) + bout ) (30)

where Ŝ(t+1,i,j)
he denotes the heterogeneous prediction of the

node dynamics at time step t + 1. The learnable parameters
are characterized by Wout ∈ Rdfi,j×dyi,j and bout ∈ Rdyi,j ,
where dyi,j denotes the total dimensions of the dynamic and
the lateral outputs.

Our proposed ST-PCNNmodels the heterogeneous proper-
ties of spatio-temporal data and meanwhile reveals the homo-
geneous physics from the data. Here, a stacking coupling
mechanism is proposed to integrate the obtained physics into
the spatio-temporal learning. As shown in Figure 2, at each
time step t and location i, j, the FN produces the initial
prediction Ŝ(t+1,i,j)

he based on the current observation S(t,i,j),
the hidden states h(t−1,i,j) from previous-step (within LSTM),
and the lateral info from its neighbors. The heterogeneous
initial prediction leverages its own specific local attributes
only. Regarding the integration of PDE function learnt from
the PN, the previous-step initial prediction Ŝ(t−1,i,j) and the
current observations S(t,i,j) are fed into the learnt PDE to
derive the numerical solution Ŝ(t+1,i,j)

ho , which is the homo-
geneous of the dynamics regularized by governing physics.
Finally, a coupling layer with parameters θC = [WC, bC] is
used to produce the final prediction Ŝ(t+1,i,j) by synthesizing

Ŝ(t+1,i,j)
he and Ŝ(t+1,i,j)

ho as:

Ŝ(t+1,i,j)
= Relu([Ŝ(t+1,i,j)

he , Ŝ(t+1,i,j)
ho ]WT

C + bC) (31)

In this paper, the ST-PCNN training is presented in
Algorithm 2 with supervised loss including sum of l1-norm
and l2-norm loss.

V. EXPERIMENTS
We present two spatial-temporal prediction tasks:
(1) reflected wave prediction; and (2) the Gulf of
Mexico (GoM) Loop Current (LC) prediction. Since the two
tasks have different strengths of spatial-temporal correlation,
as well as different scalability and noise levels, they can verify
the generalizations of ST-PCNN with active learning and
other baselines over different scenarios.

Specifically, in reflected wave prediction, an flow in a
position strongly corresponds to the flow in its neighbour
position, which indicates a strong correlation. However, the
correlation is weaker and more difficult to measure in GoM
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FIGURE 3. Exemplary circular wave with reflecting borders. Plots from left
to right denote temporal evolving of the circular wave propagate from the
center to boundaries with reflecting effects caused by boundary
conditions.

loop current prediction, where the velocity in one position
may not indicates changes in other positions.

A. DATASETS
The statistics of the two evaluated datasets are summarized in
Table 1 and introduced as below.
Reflected Wave Simulation Data As illustrated in

Figure 3, single waves are propagating outwards, where
waves are reflected at borders such that wave fronts become
interactive. The following 2D wave equation was used for
reflected wave data generation:

∂2u
∂t2
= c2

(
∂2u
∂x2
+
∂2u
∂y2

)
(32)

The PDE solutions to generate data were solved numerically
using an explicit central difference approach:

∂2u
∂b2
=
u(b+ h)− 2u(b)+ u(b− h)

h2
= ubb (33)

where b stands for a variable of function u, and h is the
approximation step size. In the case of calculating simulated
wave data, we apply Eq. (33) to Eq. (32) to obtain:

c2(uxx + uyy)

=
u(x, y, t +1t)− 2u(x, y, t)+ u(x, y, t −1t)

12
t

(34)

which can be solved for u(x, y, t +1t) to obtain an equation
for determining state of the field at the next time step t +1t
at each point.

Both the boundary conditions (when x < 0 or x >

fieldwidth, analogously for y) and initial condition (in time
step 0) are treated as zero. The following variable choices
were met: 1t = 0.1, 1x = 1y = 1 and c = 3.0. The field
was initialized using a Gaussian distribution:

u(x, y, 0) = aexp

(
−

(
(x − sx)2

2σ 2
x
+

(y− sy)2

2σ 2
y

))
(35)

with amplitude factor a = 0.34, wave width in x and y
directions σ 2

x = σ
2
y = 0.5, and sx , sy being the starting point

or center of the circular wave.
Gulf of Mexico Loop Current Data As illustrated in

Figure 4, the sensor array are placed in the GoM region,
covered from 89◦W to 85◦W , and 25◦N to 27◦N with
30-50 km horizontal resolution, where the LC extended north-
ward and, more importantly, where eddy shedding events
occurred most often [46]. This sensor array consisted of

FIGURE 4. Locations of moorings and Pressure-Recording Inverted Echo
Sounders (PIES) deployed in the U.S. and Mexican sectors in the eastern
GoM.

25 pressure-recording inverted echo sounders (PIES), 9 full-
depth tall moorings with temperature, conductivity and veloc-
ity measurements, and 7 near bottom current meter moorings
deployed under the LC region [46]. The data set contains
velocity data gathered from June 2009 to June 2011. Since
the sampling frequency from multiple sensors varied from
minutes to hours, the dataset was initially processed with a
fourth order Butterworth filter and sub-sampled at 12-hours
intervals, leading to a total of 1,810 records (905 days). In this
experiment, we further subsample the data at 7-days interval.

B. METRICS & BENCHMARK MODELS
We evaluate the models based on the Mean Square Error
(MSE). After each active training step, the performance is
evaluated by single step prediction on unseen data. Our pro-
posedmodel is compared by ablation studywith the following
methodological categories:

1) Random sampling: At each data collection step, the
positions were randomly selected from � at the rate
of 10%, 20% and 40%. This is also called passive
learning, representing the widely used method in which
candidate data points for training a predictionmodel are
chosen at random.

2) Without physics learning: The physics network
(PN) is disabled in ST-PCNN, denoted as ST-HHPCNN
(remove PN and coupling layer). The prediction is
simply produced by the forecasting network (FN).

3) All data available: Suppose an optimal case that data
from all positions � are available, i.e., 100%.

C. IMPLEMENTATION DETAILS
We conduct experiments on a 64-bit Ubuntu 18.04 computer
with Intel 3.70GHz and 64GB memory, 2 NVIDIA Quadro
RTX 5000 GPUs (16GB DDR6). The ST-PCNN is built
on Pytorch. The hyper-parameter setting of ST-PCNN is as
follow: The dimension of embedded static vector Ep is set
to 4. The FN consists of a fully-connected layer, followed
by an LSTM layer with 256 hidden units, and another fully-
connected layer. The PN, based on the GPmodel is developed
by GPytorch (a Gaussian process library implemented using
PyTorch). In each active step, the training epoch is set to 10,
the max iteration steps in GP and in physics learning (mini-
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FIGURE 5. Example of Kriging by ŝ2 in active learning on reflected wave.

FIGURE 6. Explore Kriging and Random sampling effect on the
performance of ST-ZZPCNN on unseen data.

mizing SSRE) are both set to 200. All the data are normalized
within (0, 1). After each active training step for the GoM LC
data (a single multivariate time series), the performance is
evaluated on the remaining data. For the simulated reflected
waves, the model is trained on a single temporal-evolving
circular wave propagated from the center while evaluated
on 16 circular waves propagated from randomly selected
positions.

D. RESULTS AND DISCUSSIONS
1) KRIGING SAMPLING FOR ACTIVE LEARNING RESULTS
In this section, we compare the effect of Kriging sampling-
based active learning with random sampling. Our goal is to

FIGURE 7. Explore Kriging and Random sampling effect on performance
of ST-PCNN on unseen data (the effect on Gulf of Mexico Loop Current
refers to Figures 6 and 8).

demonstrate whether the proposed active learning approach
can effectively identify informative nodes/points and query
their values to improve prediction accuracy.

At each data collection period (active learning step), we use
Algorithm 1 to perform Kriging by using new observations
at �n

temp where ŝ2 has maximum, which is estimated by the
previous step. Figure 5 presents exemplary selected locations
(�n

temp) by Kriging during active learning. As we can see, the
selected locations are expended as the wave flows towards the
boundary. The Kriging helps to identify those representative
locations to forecast the dynamics as a whole.

In order to understand whether physics learning can indeed
help improve the prediction (in combination with the active
learning), we carry out an ablation study to understand the
interplay between physics network (PN) and active learning,
by disabling and enabling PN respectively, and observe the
algorithm performance.

In the first experiment, we disable the PN (i.e., ST-HHPCNN)
to observe how sampling affects FN performance. As shown
in Figure 6, Kriging outperforms the random sampling in
terms of both convergence and MSE. In reflected wave,
ST-HHPCNN with only 10% and 20% sampling does not guar-
antee convergence in performance, while it converges when
the sampling rate rises to 40%. Noticeably, ST-HHPCNN with
Kriging presents a faster convergence and better prediction
performance on unseen data with lower MSE. It is worth
mentioning that when with a sampling rate of 40%, the
performance is close to the optimal case where all data are
observable.

In the second experiment, we enable the PN to observe how
Kriging gives credits to ST-PCNN. As shown in Figure 7,
with the benefits of PN, both Kriging and random sampling
present good convergence. The benefit of Kriging is signifi-
cant in pre-mid active learning. However, the performance of
random sampling getting closer to Kriging as active learning
goes on, which mainly due to the fact that PN gradually
uncovers the underlying hidden physics from observation and
thus, is able to assist the spatio-temporal networks to capture
the dynamics of reflected waves.
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FIGURE 8. Explore physics effect on performance of ST-PCNN (with Kriging) on unseen data.

When comparing Figure 6 (top panel) and Figure 7, we can
easily conclude the benefit of using PN for prediction. For
example, for the same sampling rate (such as 10%), the MSE
after one active learning step is 0.3 in Figure 6 (without PN),
where in Figure 7, the MSE is about 0.2. This means that
PN helps the model gain more accurate predictions. After
10 active learning steps, the MSE without PN is about 0.09,
whereas the one using PN is about 0.06.

2) PHYSICS LEARNING RESULTS
In this section, we further explore the benefits of PN in active
learning. To begin with, we consider the optimal case where
all data are observed. In this case, the Kriging for active
learning is no longer needed (because all nodes are observed).
For fair comparisons, we keep the same active learning step
and denote by sampling & learning step in Table 2. Because
all points are observed in each step, the contribution of PN
can be directly observed by including vs. excluding PN in the
learning.

In Table 2, we report the results from the above experi-
ments. ST-PCNNN with wave equation (Eq. (32)) informed
is regarded as a reference here, proving that if the governing
physics is known, our model could perfectly capture the
spatio-temporal dynamics. The MSE score of ST-PCNN is
better than that of ST-HHPCNN at any period, indicating that
ST-PCNN (with physics learning) can capture both homo-
geneity (underlying physics) and heterogeneity (localized
information) in modeling the evolution and dynamics of the
observing system.

Then, we explore how PN gives credits to the ST-PCNN
model with partially observed data. In the random sampling,
by comparing the grey curves in Figure 6 and blue curves in
Figure 7, PN boosts the prediction accuracy with fast con-
vergence by uncovering the hidden physics from randomly
collected data. Furthermore, from Figure 7, we found that
random sampling approximates to Kriging as time goes on.
The reason lies in that, during the active learning, as new data
being appended to the existing training set at each step, the
training set is growing in the time dimension (since location

TABLE 2. Evaluation of physics effect on performance.

number is fixed). The PDE learned by PN is approaching the
real one by leveraging the ever-growing dataset. The advan-
tage of Kriging is reduced as ST-PCNN gradually captures
the wave dynamics by leveraging the PDE learning. This can
also be found in Figure 8, which directly shows the ST-PCNN
performance with vs.without PN, by using different sampling
ratios. In Figure 8, we do not observe significant differences
of performance in the late stage. This observation asserts that
Kriging helps ST-PCNN capture the dynamics of the system,
which is obvious when data are limited, resulting in lower
MSE and faster convergence in the early stage.

VI. CONCLUSION
In this paper, we proposed a physics-coupled active learn-
ing framework for the accurate prediction of spatio-temporal
dynamical systems. The essential goal is to query only a small
subset of the observable locations to learn the physics under-
lying the system and predict future values of the system with
minimum errors. We argued that real-world observing sys-
tems are often challenged by heterogeneity and homogeneity.
The proposed framework, ST-PCNN, consists of two neural
networks, a forecasting network (FN) and a physics network
(PN). The FN is learned spatially across all locations, allow-
ing interaction with neighbors, to learn local heterogeneity.
The PN, on the other hand, is a Gaussian process-based
model to uncover homogeneity of the system (i.e., estimating
the physics parameters). Active learning with Kriging is
employed to identify locations for representative observations
that minimize the prediction error and reduce MSE with
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scarce data and query constraints. We validated ST-PCNN on
both synthetic and real-world datasets. The results show that
ST-PCNN can provide accurate spatio-temporal predictions
for dynamical systems, by querying only a small portion
(40% or less) of observable points.

The proposedmethod exists some potential drawbacks. For
example, when implementing active learning using Kriging,
the query of locations to get new observations is mainly
decided by the estimated maximum errors. Due to the limited
number of locations that can query, it is possible that some
important locations are not selected, and the information from
those locations will not be learned by the model. Informa-
tion entropy-based approach [47] and attention-based mech-
anism [48] are able to address this issue and will be tested in
future works.
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