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Abstract—This study focuses on predicting harmful algal
bloom (HAB) events in Lake Okeechobee, a shallow lake in
Florida. A spatio-temporal deep learning model is employed
to predict the levels of cyanobacteria Microcystis aeruginosa
(M. aeruginosa) present in the lake for a single-day and a 14-
day prediction horizon. Datasets collected from remote sensing
(i.e., satellite images from Jan. 2018 to Dec. 2020) and from
a physics-based simulation model (i.e., daily simulation from
Jan. 2018 to Dec. 2020) are available. Due to the low quality
of remote sensing data caused by various environmental and
technical issues, the two available datasets are fused together
to create a multi-source hybrid dataset for deep learning model
training. A convolutional long-short term memory (ConvLSTM)
deep neural model is trained on the datasets, and the results of
the predictions are compared to the true Cyanobacterial Index
(CI) for that time period. Findings include 1) the deep learning
model, ConvLSTM, shows promising performance for short- and
mid-term HAB forecasting; and 2) the hybrid dataset that fuses
remote sensing with physics-based modeling (a.k.a. modeling
based on fundamental physical and biogeochemical principles)
speeds up the model learning and improves its performance
significantly. The proposed methodologies are reliable, and cost-
effective, and could be used to forecast algal bloom occurrences
in shallow lakes with limited sparse observations.

Index Terms—Harmful Algal Blooms (HABs), Multi-Source
Data Fusion, Spatio-Temporal Prediction, Deep Learning Mod-
eling, Convolutional Long-Short Term Memory (ConvLSTM)

I. INTRODUCTION
A. Research Motivation

OR the past decades, many major lakes have experienced

an increased occurrence of algal blooms, including Lake
Victoria in Africa [1], Lake Taihu in China [2], and Lake Okee-
chobee in the United States [3]. Specifically, Florida’s Lake
Okeechobee is the second-largest lake within the contiguous
United States. A huge number of microorganisms reside in
the waters of Lake Okeechobee. Some microorganisms are
often the cause of algal blooms, which include cyanobacte-
ria, also known as blue-green algae. Algal blooms are high
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concentrations of phytoplankton and harmful algal blooms
(HABs) are problematic algal blooms that produce toxic or
harmful effects on the ocean environment and human health.
The dominant HABs in the Lake Okeechobee are the toxic
cyanobacteria blooms, such as the Microcystis aeruginosa (M.
aeruginosa), which not only produces a dense surface mat
that blocks waterways and emits a foul smell that cause hy-
poxia events but also produces microcystin, which is a potent
hepatotoxin related to skin diseases, respiratory distress, and
liver damage in animals and humans [4], [5]. This common
freshwater species is quickly becoming a global health threat,
with reported increases in both the frequency and intensity of
blooms around the world [6], [7].

Improved understandings of the ecology and persistence
of M. aeruginosa blooms and the distributions and bio-
accumulation of their toxins represent a key challenge for
scientists and water managers [8], [9]. To combat freshwater
eutrophication and protect human and ecosystem health, this
paper develops a HABs prediction model based on state-
of-the-art deep learning algorithms, historical remote sensing
data, and physics-based numerical simulation. This enhances
the existing HAB monitoring program by predicting the bloom
distributions and timing and helps management efforts to con-
trol the spread of HABs. Moreover, the proposed methodology
in this research is applicable to other shallow water or lake
algal bloom forecasting.

B. Machine Learning for HAB Modeling and Prediction

Deep learning methods and non-deep learning methods have
been developed for HAB detection and prediction.

Classical Machine Learning Models: HAB monitoring is
divided into detecting the occurrence and tracking motion
caused by wind. Currently, available HAB detection systems
are mainly based on empirical relationships obtained from
previous observations. These methods have a high false alarm
rate because they do not consider any temporal aspect or
spatiotemporal dependencies. It is critical to understand the
spatio-temporal dynamic behavior of HABs, especially for
data-driven modeling approaches. Previous work shows that
the spatio-temporal hybrid model can improve the predictive
ability of traditional neural network (NN) and multivariate
regression (MR) models [10]. The combination of kernel
principal component analysis (KPCA) and support vector ma-
chine (SVM) has been proposed for generalized and improved
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HAB detection [11]. Back-propagation (BP) neural network,
generalized regression neural network (GRNN), and SVM are
then compared to demonstrate that the improved BP algorithm
and SVM are better than the GRNN for HABs detection [12].
Random forest model using MODIS and MERIS satellite data
while applying a threshold filter to balance the training inputs
and labels has also been proposed, showing significantly better
performance [13].

Deep Learning Models: Deep learning models have been
recently employed for HAB detection and prediction. For
example, multilayer perceptron (MLP), recurrent neural net-
work (RNN), and long short-term memory (LSTM) have been
proposed for modeling the HABs [7]. Results demonstrated
that the LSTM model has the highest prediction rate, which
reveals the potential for predicting algal blooms using LSTM
and deep learning. Following this work, a variety of deep
learning architectures that utilized the state-of-the-art spatio-
temporal analysis methods based on convolutional neural
networks (CNN), LSTM components together with random
forest, and SVM classification methods have been investigated
[14]. Results were favorable with about 91% accuracy for
detection and 86% accuracy for prediction. From the analysis
of the above articles, the prediction of HAB must take into
account its spatio-temporal dependencies. In similar research,
a convolutional LSTM (ConvLSTM) is used to build a train-
able model for spatio-temporal sequence forecasting prob-
lems and applied to end-to-end precipitation nowcasting [15]
and Chlorophyll-a concentration prediction [16], [17]. Results
show that the ConvLSTM network can capture spatio-temporal
correlations well, and this inspires the use of ConvLSTM for
HAB prediction in this paper.

C. Challenges and Contributions

The following scientific challenges are identified to develop
a HAB prediction model for the Lake Okeechobee:

« Complex and fast lake phytoplankton dynamics: Lake
Okeechobee is a shallow lake in southern Florida that
is highly eutrophic. Phytoplankton lives in a seemingly
chaotic environment where winds, waves, tides, and con-
vection act to mix up the water that surrounds them.
Phytoplankton in the lake often forms patchy structures
on a wide range of scales, in spite of the turbulent mixing.

« Spatial and temporal dependencies: HABs growing in
lakes are spatially and temporally correlated yet highly
variable. Its spatio-temporal footprint varies, ranging from
weeks to months, from a few square kilometers to thou-
sands of square kilometers, with patterns that vary daily,
seasonally, and yearly [18]. It is critical to consider those
factors when developing a spatio-temporal deep learning
model that can precisely and timely pinpoint the areas
that are or will be affected.

« Sparse and noisy remote sensing data: Due to the
required working conditions of satellite sensors and the
influence of the atmospheric environment, remote sensing
images often suffer from missing information and low
quality, such as dead pixels and thick clouds [19]. As
a result, satellite images only represent snapshots of

the lake blooms, and there is no useful information for
relatively long periods of time. Therefore, it is inadequate
for effectively training a deep learning model alone.

To address these challenges, this paper develops a novel
deep learning-based HAB forecasting model using multi-
source datasets. The major contribution is two-fold:

o Creating a hybrid dataset from multi-source: Two
datasets are available to train a deep learning model
to predict the Cyanobacterial Index (CI) levels in the
lake. The remote sensing dataset is collected from im-
ages taken by the satellites, which represents critical yet
discontinuous information about the lake blooms. The
second dataset is generated by a coupled hydrodynamic-
biological model that simulates chlorophyll levels in the
lake based on the environmental conditions of the lake.
This dataset is clean and continuous. However, because
it is based on a numerical model, it is a simplification of
the real blooms. The remote sensing images and physics-
based model data are fused together to form a hybrid
dataset, enabling physics-informed data-driven modeling.
The resulted dataset has the clean and continuous prop-
erties of the simulation along with the close to true-value
information from the remote sensing.

« Developing a spatio-temporal prediction model using
deep learning: HABs have an inherent aspect entrenched
in space and time, therefore a combination of spatial
and temporal analysis is required for the most effective
prediction [14]. Utilizing the hybrid dataset as a contin-
uous sequence of images, we develop a HAB prediction
model based on convolutional long-short term memory
(ConvLSTM) [15], that heritages the advantage of long-
short term memory for capturing the temporal correlations
in the sequence of daily lake condition and the advantage
of convolutional neural network for extracting spatial
feature in the images.

The rest of the paper is organized as follows. Section II first
discusses the preliminaries of datasets, and then presents the
hybrid dataset generated from remote sensing and physics-
based simulation. Section III presents the proposed HABs
prediction model based on ConvLSTM. Section IV presents
the comparative results and Section V draws conclusions and
future works. Finally, the mathematical background of the
deep learning model is presented in the Appendix.

II. MULTI-SOURCE HABS DATA FUSION
A. Background of the Datasets

Remote Sensing: Satellite remote sensing technology enables
real-time, large-scale, routine monitoring and prediction of
HABs, significantly reducing unnecessarily wasted expense
and time [20]. Although detection of HABs in thin water
surface layers is challenging, remote sensing still provides
an effective tool for identifying high biomass HABs such as
red tides [21] and M. aeruginosa [22]. M. aeruginosa is the
HAB of most concern in Lake Okeechobee. The organism can
outcompete other phytoplankton for light by regulating its own
buoyancy, allowing it to float at the surface in turbid waters.
This fortuitously allows detection via satellite remote and thus
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Fig. 1: True color image from Sentinel-2A on July 4, 2021,
where algal bloom can be clearly identified around the center
of the Lake Okeechobee.

inclusion of this data for a predictive model. For example, Fig.
1 is a typical remote sensing image from satellites, where the
greenish streaks and patches at the surface across different
parts of the lake are the cyanobacteria. During bloom peaks,
thick green mats of highly concentrated cyanobacteria will
aggregate at the surface.

Physics-based Simulation: The concept of the physical model
is to combine a hydrodynamic model with a biological model
to simulate all of the major processes including hydrodynamics
and nutrient cycling to predict phytoplankton blooms. The Re-
gional Ocean Model System (ROMS) is a finite difference and
terrain-following ocean model that has been widely applied
to coastal and regional ocean modeling [23]. The modeling
system is flexible, allowing modular implementation of many
important oceanic components such as tides, circulation, bi-
ology, and sediment transport. However, its applications to
inland waters such as lakes and reservoirs remain limited.

In the physical model, each of these variables interacts with
several variables at once. Each variable has a dynamic equation
with several terms describing how interactions take place. For
example, the phytoplankton equation is as follows:

P growth Z graze P coag

dP —_——— S

i P(u—m)— gZ —t(DON+P)P—-w,
where on the right-hand side of this equation describes, in
order of the terms, the net growth rate of phytoplankton
(P), where u is dependent on light, temperature and nutrient
concentration, grazing by zooplankton (Z), coagulation of
phytoplankton (PON) and sinking. One can calculate each of
these terms to find which of them dominates.

In order to simulate phytoplankton blooms, a biogeochem-
ical model is usually co-simulated. For example, one of the
widely used model is the 8-component Fennel model [24],
which includes 7 variables for simulating nitrogen cycle and

——
Psink

6]

phytoplankton blooms, and one variable for dissolved oxygen
(DO). Dissolved inorganic nitrogen is represented by nitrate
(NO3), which also includes nitrite (NO,), and ammonia (NHy).
There is only one group of phytoplankton and one group
of zooplankton, but chlorophyll is also directly simulated.
Chlorophyll (Chl) concentration is treated as an independent
variable, but it is closely related to phytoplankton biomass.
The biogeochemical model is coupled with the ROMS hydro-
dynamic module to simulate the physical-biological coupled
dynamics. Dynamics of phytoplankton blooms is complex and
highly nonlinear. While the model is designed to capture all
of the major processes, its predictive capability is limited due
to the limited knowledge of the biology and biogeochemistry
and imperfect numerical solutions.

B. Remote Sensing Dataset

Following the idea of Hill et al. [14], the remote sensing
data are initially used as the input data for our model. The
used satellite products were imagery from the Ocean Land
Color Imagery (OLCI) sensor on board the twin satellite
pair Sentinel-3A/B operated by the European Space Agency.
Sentinel-3 provides near real-time basic information for oceans
and weather forecasts. The mission is based on two identi-
cal satellites operating in a constellation for optimal global
coverage and data transfer. The 1,270-kilometer-wide OLCI
provides global coverage every two days. For nominal orbit, at
sub-satellite point, OLCI full resolution is about 300 m above
ground [25]. Acquired images were then processed through
NASA’s SeaDAS image processing package, producing two
ocean color products for every image — Turbidity and the
Cyanobacteria Index (CI). For our research object, we mainly
focus on the CI product. The CI is an optical product based on
a line height form using three bands in the red/NIR region [26],
specifically the reflectance at 665 nm, 681 nm and 709 nm.
The CI captures an optical feature that is related to particles in
suspension near the surface of the water with a combination
of spectral absorbing and scattering properties [27]. Here, the
CI is calculated as:

CI=—[(pes1 — pess) — (P709 — Pe65)

2
% (681 — 665)/(709 — 665)]

where pyyx is the partial reflectance at that wavelength. A
positive CI indicates presence of cyanobacteria, which we
used as a flag in data plots. Note that the negative sign for
CI asserts a positive value when there is a trough detected
at 681 nm. The CI product uses wavelengths in the red and
near-infrared spectrum, shown in Fig. 2, and is insensitive to
aerosol loads in the atmosphere. To derive this product, images
were produced from partially atmospheric correction where
only the molecular scattering is removed, leaving aerosols.
These partially corrected images, which resulted in spectral
reflectance products, were then subsequently used in the CI
algorithm developed in [26]. The cloud and turbidity masks
for the CI product were applied using the NOAA operational
scheme [28]. These image products were saved into a NetCDF
file. Owing to the type of algorithm applied for the surface
cyanobacteria detection, the partial atmospheric correction



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, SEP. 2022 4

0.007 [
0.006 -
0.005 .

0.004 P

Ry [srl)

0.003 1 /
0.002 1 /

0001,

400 500 600 700 800

wavelength (nm)

0.006 T T T T T
. 0.005
T
=z
ﬂ':E \\
0.004F \ 1
\
\.
\\.
[}.009 1 1 1 1 1
650 660 670 680 690 700 710 720

wavelength (nm)

Fig. 2: A reflectance spectrum measured in Lake Okeechobee, with the spectral bands used in the CI highlighted.

could be applied for the CI product, avoiding some limitations
associated with the full atmospheric correction. However, only
cyanobacteria immediately at the surface could be detected
with any degree of accuracy with this method. Nonetheless,
the patterns in the images were useful for observing the spatial
scale of events and were very useful in detecting surface
cyanobacteria populations. While these are more qualitative,
the expression of CI indicating surface cyanobacteria in and
of itself has quantitative information.

For turbidity, a full atmospheric correction is required. We
used a variation of the NASA standard scheme called the
Management Unit of the North Sea Mathematical Models
(herein MUMM) algorithm. This scheme was developed to
account for near infrared (NIR) backscattering using a different
water model and assumes a constant shape in the NIR and
was derived from waters where particles are dominated by
inorganic types [29], [30]. The MUMM was used for image
processing and generating spectral remote sensing (Rrs) prod-
ucts. A turbidity product was generated from a semi-empirical
single band turbidity retrieval algorithm [31], [32] for turbid
waters with Rrs as input. The algorithm relates turbidity (T)
and water reflectance p,, (1) at wavelength A using:

1
T:ATp—W(/l)[FNU]

(1 - pu (D/CY)
where Ar and C are two wavelength-dependent calibration
coefficients. In our study, we used the 4 = 865nm wavelength.
The CI product was generated for the same image but with the
partial atmospheric correction using rho (reflectance) as input.

This dataset can be considered large, containing 191%216
pixel remote sensing images from October 2016 to the present.
Although the dataset is large, there are a few issues that
render some samples inoperable. On the one hand, although
Sentinel-3 consists of two satellites, Sentinel-3A and Sentinel-
3B, the two satellites in orbit make the revisit time of Lake
Okeechobee only less than two days, there is no way to
guarantee that we will get remote sensing images of the lake
every day. There are also environmental sources that degrade

3)

image quality such as clouds, sun glint, and turbidity. It is
often cloudy over Lake Okeechobee, and there is additional
haze from the atmosphere, e.g., the sugar cane farms surround-
ing the lake routinely light fires as part of the cultivation
process. The types of satellites used to detect cyanobacteria
cannot see through the clouds, as they are passive sensors
that detect the visible light field (much like our eyes). The
near-total reflection of the sun off the water directly into
the viewing sensors of the satellite is known as sun glint,
and it is particularly acute between April and September.
The extreme level of turbidity in Lake Okeechobee further
limits the capabilities of the satellites, in particular, detecting
cyanobacteria beneath the surface of the water. All these
factors cause random discontinuities in the dataset. Fig. 3
shows some remote sensing data from June 19 to June 28,
2021. It can be seen that these samples contain missing and
bad data, which compromises the integrity of the entire dataset.
Because HABs are related to space and time, their pre-
diction requires high temporal continuity. Lack of critical
information and discontinuous datasets will greatly affect the
performance of deep learning models and lead to inaccurate
predictions. A remedy to this problem involves the recon-
struction of the remote sensing data. J. Li er al. proposed a
method to determine total algal biomass in shallow lakes by
combining remote sensing image data and hydrological data
under non-algal bloom conditions [33]. Q. Zhang et al. [19]
used a framework called STS-CNN to do the reconstruction.
However, the amount of missing data in our dataset is too
influential and would cause significant discrepancies between
the reconstructed remote sensing data and the actual data.
The deviation from the real data would negatively impact the
prediction results or even render the model not trainable.

C. Physics-based Modeling Dataset

The model is driven by rivers’ inputs and outputs of
water, phytoplankton, nutrients, and organic matter, and sur-
face forces including winds, heat fluxes, and water fluxes.
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Fig. 3: Remote sensing data images for the Lake Okeechobee
from the Sentinel-3A and Sentinel-3B satellites.

Considering the input and output of the rivers surrounding the
lake, our physical model domain needs to cover the entire lake
and part of the watershed. Therefore, our physical model uses
coastlines to delineate lakes, and the model domain includes
western wetlands. We choose to start with the ROMS model
where the Lake Okeechobee ROMS domain covers the entire
lake with a 386*386 horizontal grid (resolution 150 m), and
10 vertical layers. River flow and water quality data are derived
from the observations by South Florida Water Management
District (SFWMD), which include daily averaged water flow
and biweekly or monthly water quality data. Atmospheric
forcing is derived from the NCEP North American Regional
Reanalysis (NARR) products, which has a spatial resolution
about 30 km. Temporally, the NARR model output has a 3
hour interval, which resolves most of the diurnal variations.
Sediment fluxes are likely an important source of nutrients
and a sink for dissolved oxygen. Sediment processes, however,
are not directly simulated. Rather, particulate organic matter
is allowed to sink out of the bottom, and, at the same time,
sediment input of nutrients and sediment oxygen demand
(SOD) are specified based on simple empirical formulations.
Fisher et al. [34] estimates the DIN sediment flux to be 4500
metric tons annually with some spatial variation noted. This
roughly equates to 0.5 mmol/m2/day. Therefore we use a
simple empirical model to specify the sediment DIN flux as
spatially variable depending on water depth as follows:

1x1073

1
max (1, H) @)

Fpin = mmolm ™2 sec”
where H is the water depth. Note that this is constant through-
out the year.

Several modifications have been made to ROMS codes to
accommodate specific needs for modeling inland water such
as Lake Okeechobee because ROMS was designed for coastal
and regional oceans. These include: 1) allowing outflows of
water from the modeling domain for canals or rivers; 2) in-
cluding surface water fluxes (precipitation minus evaporation)
in the water volume budget; and 3) using model tracer (e.g.
temperature or NO3) concentration at the river mouth for
tracer export (for outgoing flow only). In addition, ROMS
evaporation algorithm under-estimates evaporation in the lake.
An empirical evaporation formula is adopted instead.

The values of biological parameters, such as phytoplankton
growth rate, zooplankton grazing rate, are adapted from [35].
Concentrations of both particles and organic matter is very
high (e.g. DON>50 umol/L), which includes a significant
amount of CDOM. Therefore the light attenuation is high.
Model results are calibrated against available historical water
quality data collected from Lake Okeechobee by the SFWMD,
which include monthly measurements of NO3, NH4, Chl,
DO, and organic matter at a number of monitoring stations
around the lake. We chose 8 representative stations for model
calibration purpose. Model results at the same locations as the
monitoring stations are directly compared with observations.

Once a basic calibration has been undertaken for the year
2018, a 3-year simulation is ran from Jan. 2018 to Dec.
2020. The result of this 3-year simulation makes up the
physics-based model dataset, which includes daily averaged
output of key physical and biogeochemical variables including
currents (u, v) and chlorophyll. The physics-based model Chl
values are empirically converted to CI through the relationship
CI = (Chl —24.2)/(3.083 x 10%). Note that this empirical
liner relationship was developed using summer data because
Microcystis blooms in the lake usually take place during the
summer season. As an example, Fig. 4 shows a comparison
of model Chl and remote sensing CI for a few days when
relatively complete remote sensing data images were available.
It can be seen that there are differences between the physics-
based model results and the remote sensing data. Although
the physics-based model dataset is less reflective of the real
HAB conditions than the remote sensing dataset, it provides
a continuous and clean dataset as additional information that
can be used to create a hybrid dataset for training the deep
learning model. Below, these converted physics-based daily
CI will be fused with remote sensing CI to derive the hybrid
training dataset.

D. Fusion of Multi-Source Data as a Hybrid Dataset

Here we attempt to fuse the remote sensing and physics-
based model data as a hybrid dataset. We have a total of
1093 physics-based model data from Jan. 2018 to Dec. 2020,
therefore we selected remote sensing data of the same time
period for data fusion. Three types of data samples are
combined: remote sensing Satellite A denoted as X4, remote
sensing Satellite B denoted as Xp, and physics-based model
denoted as Xp. After our manual statistics, there are 310 days
of remote sensing data that are completely missing and 178
days of bad remote sensing data. So we total have 605 days of
remote sensing data available. Among them, there are 100 days
when both satellites have data. The remote sensing samples
are manually scrutinized for the removal of corrupt data. On
days that include remote sensing data from both satellites,
the samples X4 and Xp are combined such that the resulting
sample Xc are:

Xa(a,b), if Xa(a,b) € R, Xp(a,b) ¢R
Xc(a,b) =1 Xg(a,b), if Xp(a,b) € R,Xa(a,b) ¢R
(Xa+Xp)/2, otherwise

(&)
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Fig. 4: Comparison of physics-based model simulated images and remote sensing data images of the same date. (a)-(c):
Physics-based model data with u and v. (d)-(f): Physics-based model data without u and v. (g)-(i): Remote sensing data.

where a and b are the horizontal and vertical coordinates of
the remote sensing images.

The final remote sensing sample Xgg is either X4 or Xp if
only one exists, X¢ if both exist, or missing if neither exist.
For each day, a hybrid data sample Xp is then assembled
by the imputation of Xp (the physics-based model generated
data) onto Xgs. On days with missing remote sensing data,
Xn = Xp, otherwise imputation is applied such that:

if Xgs(a,b) €eR
otherwise

XHMJﬂz{a*XmQLM+ﬁ*XN&bL
X P (a’ b ) s

(6)
where a and 3 are weights to balance the importance of differ-
ent data sources. In this paper, we empirically set @ = 0.8 and
B = 0.2 to count more on remote sensing when quality images
can be obtained. This results in a hybrid dataset that utilizes
the physics-based model information while considering quality
information from remote sensing. Fig. 5 shows an example of
the data fusion process and result.

As mentioned above, when remote sensing data are missing,
the physics-based model data are used for the hybrid dataset.
The spread and growth of algal blooms have certain rules, but
due to the differences between physics-based model data and
remote sensing data, this causes some parts of our data appear

irregular. In order to improve this aspect, in the hybrid dataset,
if the physics-based model data is used on a certain day d, that
is, Xy (d) = Xp, and the data of the day before and the day
after this certain day d are all hybrid data Xg (d+1) = a*Xgs+
B+Xp and, we then take the average of the data before and after
of this certain day d as Xy (d) = (Xg(d—1)+Xg(d+1))/2.

The size of the physics-based model image is 386*386,
while the remote sensing images have a lower resolution
of 191*%216. In order to fuse the data, the resolution of the
physics-based model data needs to be reduced to match the
remote sensing data. The image size of our hybrid dataset
is 191#216. Moreover, both the physics and hybrid datasets
contain a large amount of information that requires downsam-
pling before it can be used as input to the machine learning
models. Furthermore, all data undergo min-max normalization.
The physics and hybrid data samples are individually resized to
112*112*1 and 83*88*1 respectively. Although the sharpness
of the pictures is reduced, it is beneficial for speeding up
the deep learning model training and online deployment when
computational resources are limited.
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Fig. 5: Data fusion using data on September 19, 2020. (a): Remote sensing data. (b): Physics-based data. (c): Hybrid data.
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Training the
ConvLSTM model
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Fig. 6: Flowchart of our proposed approach, including data fu-
sion, pre-processing, deep learning model training and testing,
and results reporting.

III. DEEP LEARNING-BASED HAB PREDICTION MODEL

A. Mathematical Background of ConvLSTM

We develop our HAB prediction model based on con-
volutional long-short term memory (ConvLSTM), a spatio-
temporal deep learning model that heritages the advantage of
long-short term memory for capturing the temporal correla-
tions in the daily lake condition sequence and the advantage
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Fig. 7: Implementation diagram of the HAB prediction model
based on ConvLSTM. For each training sample, the input to
the model consists of 14-days of consecutive daily images
which are processed to output a 1-day image prediction. To
ensure a sequence learning and prediction, a rolling window
mechanism is used.

of convolutional neural network for extracting spatial feature
in the images. The foundation and principles of ConvLSTM
are presented in the Appendix.

B. Model Implementation Details

An overview of the deep learning-based HAB prediction
model development is shown in Fig. 6. ConvLSTM imple-
mentation for HAB prediction in this paper is based on [36],
[37], where the model is built using 5 ConvLSTM2D layers
with batch normalization and is then followed by a Conv3D
layer for spatio-temporal outputs. Fig. 7 shows the diagram
of the model training and rolling window prediction. Since
the ConvLSTM2D layer only accepts the inputs that have a
specific shape (batch size, sequence, width, height, channels),
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Fig. 8: Training loss and validation loss, where the losses are

decreased to small values proving that the model learns from

the data.

our hybrid dataset needs to be pre-processed before using
for deep learning model training. The dataset contains 1093
samples (i.e., 1093 days of lake images), but in order to
reshape the data more easily, only 1080 were used. For each
training sample, the input to the model consists of 14-days of
consecutive daily images which are processed to output a 1-
day image prediction. Specifically, the hybrid dataset images
have been reshaped to (72, 15, 83, 88, 1) corresponding
to the numbers of batch size, sequence, width, height, and
channels. This produces 72 batches of data, each batch has
a sequence of 15 data images, and each image has a size of
83*88*1. The overall dataset is divided into a training set and
a validation/testing set, where 80% are for training and 20%
are for validation/testing.

We do the same processing for the physics-based model
dataset, and the only difference is the width and height of the
images. Note that the size of the images in the hybrid dataset
is 83*88, while the size of the images in the physics-based
model dataset is 112*112. The loss function used for model
training is the mean squared error (MSE) (i.e., this will be
further discussed in the following section), and the optimizer
used is the Adam optimizer. It can be seen from Fig. 8 that the
loss values (both training and validation) decrease to 0, which
the model convergences demonstrate successful learning and
prediction.

IV. RESULT AND DISCUSSION
A. Evaluation Metrics

The following image similarity measures are used [38]:

« Root Mean Square Error (RMSE) is a common com-
parison metric for measuring pixel-wise differences. A
value of O indicates that the ground truth image and the
predicted image are the same. The formula is as follows:

l M-1,N-1
— . . _ . . 2
RMSE = \| —— ,-oz,-:o (P(i,)) - G(i, N> (D)

where G is the ground truth image and P is the predicted
image. M represents the numbers of rows of pixels of
the images and i represents the index of that row. N
represents the number of columns of pixels of the image
and j represents the index of that column.

« Peak Signal-to-Noise Ratio (PSNR) is often used to

quantify the reconstructed quality of images and videos
affected by compression. It measures the ratio between
the maximum possible power of a signal and the destruc-
tive noise power that affects the fidelity of its representa-
tion, usually expressed on a logarithmic decibel scale. The
higher the PSNR, the better the quality of the compressed
or reconstructed image. To calculate PSNR, first calculate
the mean squared error (MSE):

Y (GG, ) = PG, j)]?

MSE =
M « N

®)

R2

where R is the maximum pixel value of the image.

o Structural Similar Index Measure (SSIM) quantifies

image quality degradation caused by processing or data
transfer losses [39]. SSIM measures the perceptual differ-
ence between two similar images. The value of SSIM is
between -1 and 1, where a value of 1 means that the two
given images are very similar or identical and a value of
-1 means that the two given images are very different.
The SSIM index is calculated on various windows of an
image. The measure between two windows x and y of
common size N x N is:

(2uxpy +c1) (20w + ¢2)
(13 +uy?+c1) (o2 + 0% +c2)

SSIM(x, y) = (10)
where 1 is the average of X, u, is the average of y. o?
is the variance of x, 0'3 is the variance of y, oy, is the
covariance of x and y. ¢; = (k{L)?, ¢ = (kL) are two
variables to stabilize the division with weak denominator.
L is the dynamic range of the pixel-values. k1 = 0.01 and
k» = 0.03 by default.

o Feature Similarity Indexing (FSIM) is mainly used to

compare the structural and feature similarity measures
between the recovered object and the original object
[40]. Phase Congruency (PC) is used as the primary
feature in FSIM, and Image Gradient Magnitude (GM)
as a secondary feature. The FSIM value is between
0 and 1, where 1 is perfect feature similarity. If the
similarity between images fl and f2 is to be calculated,
the following formula is needed:

2PC, (x) . PCz(x) + T

Spc(x) = PC2(x) + PC2(x) + T (b
_2G1(x) - Ga(x) + Ty

Se(x) = G2(x) + G2(x) + T (12)

SL(x) = [Spc()]” - [Sg(x)]P (13)

PC,,(x) = max (PCy(x), PCy(x)) (14)
_ 2xe@ SL(X) - PCiy(x)

FSIM = S0 PO ) (15)

where PCy and PC, represent the PC maps extracted from
/1 and f>, respectively, and G| and G, represent the GM
maps extracted. 7} is a constant that increases the stability
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TABLE I: Prediction performance on the datasets using different metrics.

Testing Data Testing Dates Training Data | RMSE PSNR SSIM  FSIM SRE
. Single-Day .
Physics Physics 0.0008  62.2858 0.9992  0.8820 67.1597
o (July 03)
Simulation
14-Day .
Data Physics 0.0028  50.9297 0.9926 0.8150  65.2296
(April 9 to April 22)
Remot Single-Day Hybrid 0.0079 484578 09692 0.4515 59.6935
emote
Sensi (July 03) Physics 0.0154  36.2355 09167 0.3880  54.6491
ensin
Dat g 4 Days of 14-Day Hybrid 0.0097  42.6706 0.9599 0.3985 59.8354
ata
(June 22 - June 25) Physics 0.0142 369117 0.9308 0.3750 579144

of Spc and 7> is a constant that depends on the dynamic
range of the GM value. Spc(x) and S (x) are combined
to obtain the similarity Sy (x) of f1(x) and f,(x).

« Signal to Reconstruction Error ratio (SRE) measures
the error related to signal power [41]. Using SRE is more
suitable for making errors comparable between images of
different brightness. SRE is calculated as:

1
SRE = 10log,, %~/
where i is the average value of x.

RMSE, PSNR, and SRE are measures of how different two

images are, which can help us judge whether the predicted

image is similar to the “ground truth” image, but they do

not take into account the quality of the image itself. This

is solved by considering image structure (SSIM) and display

features (FSIM) [38]. To sum up, the closer the RMSE is to 0,

the higher the PSNR and SRE, and the closer the SSIM and

FSIM are to 1, indicating that the ground truth image and the
predicted image are more similar.

(16)

B. Comparative Results

Physics Data for HAB Prediction Model Validation: TA-
BLE I shows the prediction performance on the benchmark
datasets using the five similarity measures. There are two trials
of experiments using two different testing data. In the first trial,
we use the physics-based simulation data for the testing of the
deep learning-based HAB prediction model. This can help to
judge whether the ConvLSTM model is able to capture the
spatio-temporal information of HABs in the Lake and make
predictions. We carry out a single-day prediction using July 3,
2020, since the remote sensing data on this day is complete
with high quality. The ultimate goal is to make a two-week
(14-day) prediction, so a rolling window is created and the
prediction result is used as input to predict the next day. More
specific, when using the trained deep learning model for two-
week predictions (i.e., days d to d+13), the first day d will be
predicted using the data in days d-1 to d-14, then this predicted
data in day d will be used together with data in days d-1 to
d-13 to predict the second day d+1. This will continue until
all 14 days have been predicted.

For ease of display and comparison, Fig. 9 shows the
first 4 days of the 14-day prediction results for the model
using the physics-based model dataset only. Since rolling

predictions inevitably have information superposition, these
results in the predicted image being blurry compared to the
original image. Downsampling is used, which further causes
the image resolution to decrease and become blurry. This
“blur” can accumulate and further degrade the performance
of the prediction. We observe that the model can successfully
capture the spatio-temporal “evloving” patterns in the whole
lake. In terms of quantitative metrics in TABLE I, the RMSE
is very close to 0, and the SSIM and FSIM are also fairly
close to 1, which further demonstrates the effectiveness of our
proposed prediction method.

Remote Sensing Data for Hybrid Data Validation: Physics-
based model simulation data may be different from the real
distribution of the HABs since it is a simplification of the real
mechanism. Although it suffers from sparse observation issues
due to large quantities of missing data, using remote sensing
data is still the best choice to reflect the real situation. To
validate the effectiveness of our proposed hybrid data for deep
learning model training, we use sparse but complete remote
sensing data as the testing dataset in the second trial. In other
words, we use the hybrid dataset to train our deep learning
model and use the remote sensing data for testing. We also
compare it with using the physics-based model simulation as
training and remote sensing as testing.

As mentioned above, some relatively complete remote sens-
ing data are selected. Fig. 10 shows the remote sensing data on
July 3, 2020, and the prediction results using the physics-based
model dataset as training or the hybrid dataset as training. Fig.
11 shows the remote sensing data from June 22 to 25, 2020,
and 4 of the 14-day model prediction results for both datasets.
June 22 to July 5 are chosen as the dates to be predicted since
relatively complete and continuous remote sensing data can
be found in this date range. From the figures, the prediction
results of the model using the hybrid dataset are closer to the
remote sensing data, whether it is a single-day prediction or a
14-day prediction. In the comparison metrics, since there are
only 4 days of complete and continuous remote sensing data,
the first 4 days from the 14-day prediction results of the two
dataset prediction models are compared. In terms of metrics
in TABLE 1, all metrics using the hybrid dataset outperform
those using the physics-based model dataset. This result also
shows that although the model using the physics-based model
dataset learns better, the prediction results deviate from the
real situation due to the discrepancy between the dataset and
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predictions are shown. (a-d): Physics-based model simulation results. (e-h): Proposed model prediction results.
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Fig. 10: Single-day prediction. Using data from June 19 to July 2, 2020 as input to predict the result for July 3, 2020. (a):
Remote sensing data as the ground truth. (b): Prediction result using the hybrid dataset for training. (c): Prediction result using

the physics-based model dataset for training.

the real situation, while the model predictions using the hybrid
dataset are closer to the ground truth (i.e., the remote sensing
data).

V. CONCLUSION AND FUTURE WORK

Our study shows that the HAB prediction model built by
ConvLSTM was effective and that ConvLSTM can capture
the spatio-temporal dependencies for prediction. Moreover,
multi-source data fusion as a new solution to the problems
of a large number of missing, discontinuous, and low-quality
remote sensing datasets in prediction was proposed. The
hydrodynamic model was combined with the biological model
to create a physical model to simulate the growth and spread
of algal blooms, generating a physics-based model dataset that
is continuous and clean. Due to the discrepancy between the
simulation results of the physics-based model and the real

situation, the physics-based model dataset was combined with
the remote sensing dataset to generate a hybrid dataset for
physics-informed data-driven modeling. It turns out that the
prediction results of the model trained using the hybrid dataset
are close to the remote sensing data, proving that data fusion
is a promising approach.

There are also plans to improve the quality of the prediction,
such as fixing the blurred prediction images caused by the
model rolling prediction, improving the image blur caused by
downsampling, and increasing the quantity of usable remote
sensing data by patching and reconstructing the corrupt im-
ages. In terms of data fusion, a simple interpolation was used
for this experiment, and the edges of some data are not as
smooth as the original images. This issue will be addressed in
future work.

Wind and temperature play a key role in driving the phy-
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Fig. 11: 14-day prediction. Using data from June 8 to June 21, 2020 as input to predict the 14-day results from June 22 to
July 5, 2020. The first 4 days (June 22 to June 25) of the 14-day predictions are shown. (a-d): Remote sensing data as Ground
Truth. (e-h): Prediction results using the hybrid dataset for training. (i-1): Prediction results using the physics-based model

dataset for training.

toplankton blooms, mainly M. aeruginosa. It appears that M.
aeruginosa migration, while important, is not strong enough
to overcome strong wind mixing. Field observations suggest
that most of the strongest bloom events occur under low wind
conditions. This is particularly true for the central lake where
water is deeper and strong winds should disrupt any potential
blooms. Temperature is also important in affecting the growth
directly. One combined effect of these two factors is that strong
blooms mostly occur in the summer and early fall when water
is warm and winds are typically weak. In other word, the
growing patterns of algal are seasonal dependent, and this
factor will also be considered when developing the prediction
model in the future.
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APPENDIX

Mathematical Background of ConvLSTM: ConvLSTM is a
deep learning model built from the long-short term memory

network and convolutional neural network. The idea is the
same as LSTM, which utilizes the previous layer’s output as
the input for the following layer (i.e., recurrent operation).
The most significant change is that each layer’s weight com-
putations are a convolutional operation. The inner structure
of ConvLSTM is shown in Fig. 12. With the addition of the
convolution operation, ConvLSTM can not only establish a
timing relationship similar to LSTM but also has a spatial fea-
ture extraction capability similar to CNN. The key equations
of ConvLSTM are shown below [15]:

ir =0 (Wyi % Xp + Wpi x Hi—y + Wej 0 Gy + by)
fi=0 (fo * Xp + WppxHy 1+ WepoCyy +bf)

Ci=fyoCi_y+iotanh (Wye * Xp + Wye s Hi_1 + b)) (17)

Oy =0 (on * Xl + Wh() * Ht—l + Wco o Ct + b())

Ht =0t © tanh (Ct)

where o is the logistic sigmoid function, ¢ represents the time
step, i, f, and o are respectively the input gate, forget gate,
output gate, X is the input, H is the hidden state, C is the

cell output, and b is the bias. W is the weight matrix, where
different subscripts have different meanings, for example, Wp,;
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Fig. 13: Encoding-forecasting ConvLSTM structure for cap-
turing the spatio-temporal dependencies.

is the hidden-input gate matrix. The = is the convolution
operator and o is the Hadamard product.

The encoding-forecasting ConvLSTM structure illustrated
in Fig. 13 is used to solve the spatio-temporal prediction.
It is made up of two networks: an encoding network and a
forecasting network. The forecasting network’s initial state
and cell output are replicated from the encoding network’s
final state. Both networks are created by stacking several
ConvLSTM layers. All states are connected in the forecasting
network and fed to the 1*1 convolutional layer to construct the
final prediction since the target and input of spatio-temporal
prediction generally have the same dimensions.
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