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STABILITY IN DISTRIBUTION AND STABILIZATION OF

SWITCHING JUMP DIFFUSIONS∗

Ky Q. Tran1 , Dang H. Nguyen2 and George Yin3,**

Abstract. This paper aims to study stability in distribution of Markovian switching jump diffu-
sions. The main motivation stems from stability and stabilizing hybrid systems in which there is no
trivial solution. An explicit criterion for stability in distribution is derived. The stabilizing effects of
Markov chains, Brownian motions, and Poisson jumps are revealed. Based on these criteria, stabiliza-
tion problems of stochastic differential equations with Markovian switching and Poisson jumps are
developed.
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1. Introduction

This work focuses on stability in distribution of a class of jump diffusions with Markovian switching. The
underlying process is a two-component process (X(·), α(·)), where X(·) describes the jump diffusion behavior
and α(·) is a continuous-time Markov chain having a finite state space. Recently, such a class of stochastic
processes has received much attention in various settings for different domain of applications; see [13, 20] and
references therein for comprehensive treatments and coverage of switching diffusions and [7, 9, 14–16, 18] for
more recent progress in the fields.

Why is the consideration of stability in distribution important; why is it necessary? It is well known that in
deterministic systems of differential equations, an important starting point is examination of equilibria. When
one considers stochastic systems, in lieu of the equilibria, one often has to begin with stationary distributions.
Thus to some extent, stationary distributions are frequently the primary concerns, especially when the systems
have no equilibria. In addition, the stability in distribution is closely related to the concept of weak stability,
which is a term used by Wonham [17]. Such weak stability concept implies the so-called recurrence under suitable
conditions. That is, for a stochastic system given as the solutions of a differential equation, starting from a point
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outside an open set with compact closure, one wish to see if the trajectories will return to the open set in finite
time infinitely often.

Most of the work in stability of switching diffusions and switching jump diffusions to date are concerned
with stability in probability, moment stability, or almost sure stability, in which x = 0 is a trivial solution (an
equilibrium point) to the corresponding equations and any other solution will converge to trivial solution in
probability, in the pth moment for some p > 0, or in the almost sure sense. In contrast, we are interested in
the cases that there is no equilibrium point of the differential equation, but there is still stability in the sense
that all solutions converge in distribution to some probability measure. In [3], the authors considered stability
in distribution of a semi-linear stochastic differential equation with Markovian switching of the form

dX(t) = A(α(t))X(t)dt+ σ(X(t), α(t))dw(t),

where w(·) is a standard Brownian motion. In an important development [24], Yuan and Mao provided sufficient
conditions guaranteeing stability in distribution for nonlinear Markovian switching diffusions of the form

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t), (1.1)

where α(·) is a finite-state Markov chain. Subsequently, in the work of [8], Nguyen provided much weaker
conditions of by using localization arguments to further improve the criteria for stability in distribution. In [19],
the authors have considered stability in distribution of a switching jump diffusion

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t) + dJ(t),

J(t) =

∫ t

0

∫
Γ

g(X(s−), α(s−), γ)N(ds, dγ),
(1.2)

where b(·), σ(·), and g(·) are suitable functions, and N(t, ·) is a Poisson measure. For existence and uniqueness
of solutions as well as the related maximum principles and Harnack inequalities, we refer to [6]. Related works
on stability in distribution of the aforementioned systems can be found in [2, 4, 5]. Some criteria for invariant
measures and stability in distribution of equation (1.1) and its generalizations with path-dependent and path-
independent switching can be found in [1, 11, 14]. We refer to [15, 16, 22, 25, 26] for related works on stability in
probability and exponential stability of equation (1.2). Recent efforts on stabilization in distribution of hybrid
systems by certain feedback controls can be found in [12, 23]. Regarding equation (1.2), the criteria in [19] are
given in terms of the existence of a set of Lyapunov functions V (x, i) for i ∈ M, where M is the state space
of α(·). Consequently, it is nontrivial to apply these criteria. We are not aware any work on explicit criteria
for stability in distribution of equation (1.2). In this work, our first aim is to construct a general criterion for
stability in distribution of equation (1.2). The novelty of our work lies in that in order to apply our criterion, one
need only construct at most two Lyapunov functions U(x) and V (x) and in most common cases, it is sufficient
to construct U(x) only. Moreover, we reveal the contribution of the Markov chain α(·) in the sense that equation
(1.2) is stable in distribution if

∑
i∈M νiηi < 0 and

∑
i∈M νiζi < 0, where ν = (ν1, . . . , νm) is the stationary

distribution of α(·) and η = (η1, . . . , ηm)> and ζ = (ζ1, . . . , ζm)> are certain vectors. Another distinct feature
of our work is the construction of an explicit and easily verifiable criterion for stability for switching jump
diffusions.

Treating stability of hybrid systems, motivated by [3, 12, 21, 23, 26], the following question arises. Can we
apply feedback controls (or perturbations using Brownian motions and/or Poisson jumps) to stabilize a given
system? Moreover, if a given system is not regular (not having global solutions), can we design certain feedback
rules to regularize and stabilize it? To the best of our knowledge, these topics have not been well understood for
stability in distribution. Using the criteria for stability in distribution developed in this work, we address these
questions. We show that given any scalar switching differential equations, one can design feedback strategies
so that the resulting switching jump diffusions are stable in distribution. Nevertheless, the multi-dimensional
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counterpart is rather challenging. By designing a novel treatment, we are able to treat a wide class of such
stochastic dynamic systems so that we can regularize and stabilize the systems in distribution.

The contributions of our work in this paper can be summarized as follows.

(1) We focus on nonlinear stochastic differential equations with jumps and Markov switching, and provide
sufficient conditions that are substantially weaker than the existing results and extend and further improve
the results in [8].

(2) We give insight on how each of the components, namely, Brownian motion, switching, and jump process
can contribute in a positive way to stability in distribution.

(3) We further obtain strategies to stabilize randomly switching ordinary differential equations.
(4) When the jump disappears in the dynamic systems, our results cover that of switching diffusions; when

the Brownian motion also disappears, our results cover that of switching differential equations.

The rest of the work is organized as follows. Section 2 presents the problem formulation. Section 3 proceeds
with criteria for stability in distribution. Section 4 develops strategies for stabilization in the sense of stability
in distribution for the stochastic dynamic systems that we are interested in. Section 5 provides some examples
for illustration. Finally, Section 6 concludes the paper with a few more remarks.

2. Formulation

We begin this section with the following notation.

Notation. Let R+ = [0,∞) and N be the set of positive integers. Let C2
(
Rd,R+

)
be the set of all functions

V : Rd → R+, which are twice continuously differentiable on Rd with C2
(
Rd0,R+

)
being the set of functions

V : Rd → R+ that are twice continuously differentiable on Rd0 := Rd \ {0}. For two real numbers c1, c2, c1 ∨ c2
denotes max{c1, c2}. For a matrix A ∈ Rd1×d2 , A> denotes its transpose. For a matrix A ∈ Rd×d, its trace
norm is given by |A| =

√
tr(AA>), while Id denotes the d× d identity matrix. For x = (x1, . . . , xd)

> ∈ Rd, its

Euclidean norm is denoted by |x| =
(∑d

i=1 x
2
i

)1/2
. For a nonempty set Γ ⊂ Rd \ {0} and a probability measure

π defined on Γ, denote by Γb the family of all bounded positive functions h(y) on Γ with
∫

Γ
ln
[
h(y)

]
π(dγ) <∞.

We work with a complete filtered probability space (Ω,F ,P, {Ft}) with the filtration {Ft} satisfying the
usual condition (i.e., it is right-continuous and F0 contains all the null sets). Assume that the Markov chain
α(·) and the d-dimensional standard Brownian motion w(·) are defined on (Ω,F ,P, {Ft}). Moreover, α(·) and
w(·) are {Ft}-adapted and independent.

Suppose α(·) takes values in M = {1, . . . ,m} with the generator Q = (qij) ∈ Rm×m, where m ∈ N. Hence,
α(·) is described by a transition probability specification of the form

P{α(t+ ∆t) = j|α(t) = i} =

{
qij∆t+ o(∆t) if i 6= j,

1 + qii∆t+ o(∆t) if i = j.
(2.1)

Note that qij ≥ 0 if i 6= j and
∑
j∈M qij = 0 for any i ∈M.

Let Γ be a subset of Rd \ {0} that is the range space of the impulsive jumps. For any subset B in Γ, N(t, B)
counts the number of impulses on [0, t] with values in B, b(·, ·) : Rd ×M 7→ Rd, σ(·, ·) : Rd ×M 7→ Rd × Rd,
and g(·, ·, ·) : Rd ×M× Γ 7→ Rd are suitable Borel functions under some precise conditions to be specified later.

Consider the dynamic system given by

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t) + dJ(t),

J(t) =

∫ t

0

∫
Γ

g(X(s−), α(s−), γ)N(ds, dγ),
(2.2)

with initial condition X(0) = x0, α(0) = i0, where N(t, B) is a Poisson measure such that the jump process N(·)
is independent of the Brownian motion w(·) and the switching process α(·). The compensated Poisson measure
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is defined by

Ñ(t, B) = N(t, B)− λtπ(B) for B ⊂ Γ,

where λ ∈ (0,∞) is known as the jump rate and π(·) is the jump distribution with π(Γ) = 1. We have used the
set up as in [22].

We define an operator G as follows. If V : Rd ×M 7→ R satisfying V (·, i) ∈ C2
(
Rd,R+

)
for each i ∈M, then

(GV )(x, i) =
1

2
tr
(
σ>(x, i)Vxx(x, i)σ(x, i)

)
+ Vx(x, i)b(x, i) +QV (x, ·)(i)

+λ

∫
Γ

[V (x+ g(x, i, γ), i)− V (x, i)]π(dγ),

where

Vx(x, i) =
(∂V (x, i)

∂x1
, . . . ,

∂V (x, i)

∂xd

)
, Vxx(x, i) =

(∂2V (x, i)

∂xk∂xl

)
d×d

,

and QV (x, ·)(i) =
∑
j∈M qijV (x, j). For notational simplicity, we also write (QV )(x, i) =

∑
j∈M qijV (x, j).

Thus,

(QV )(x, i) =
∑
j∈M

qijV (x, j) =
∑

j∈M,j 6=i

qij
(
V (x, j)− V (x, i)

)
for (x, i) ∈ Rd ×M.

Next, we introduce the functions b : Rd×Rd×M→ R, σ : Rd×Rd×M→ Rd, and g : Rd×Rd×M×Γ→ Rd
by

b(x, y, i) = b(x, i)− b(y, i), σ(x, y, i) = σ(x, i)− σ(y, i),

g(x, y, i, γ) = g(x, i, γ)− g(y, i, γ), (x, y, i, γ) ∈ Rd × Rd ×M× Γ.

We also define an operator G as follows. If U : Rd ×M 7→ R satisfying U(·, i) ∈ C2
(
Rd,R+

)
for each i ∈ M,

then

(GU)(x, y, i) =
1

2
tr
(
σ>(x, y, i)Uxx(x− y, i)σ(x, y, i)

)
+ Ux(x− y, i)b(x, y, i)

+(QU)(x− y, i) + λ

∫
Γ

[U(x− y + g(x, y, i, γ), i)− U(x− y, i)]π(dγ).

To proceed, we pose the following conditions.

(A1) For each n ∈ N, there exists a constant K̃n > 0 such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)|+
∫

Γ

|g(x, i, γ)− g(y, i, γ)|π(dγ) ≤ K̃n|x− y|

whenever |x| ∨ |y| ≤ n and i ∈M. Moreover, supi∈M
∫

Γ
|g(0, i, γ)|π(dγ) <∞.

(A2) The Markov chain α(·) is irreducible. That is, the system of equations

νQ = 0,
∑
i∈M

νi = 1

has a unique solution ν = (ν1, . . . , νm) satisfying νi > 0 for each i ∈M.
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(A3) There exist a function V (·) ∈ C2(Rd0,R+), constants ηi,δ and rδ > 0 for (i, δ) ∈M× (0, 1) such that

lim
|x|→∞

V (x) =∞,

(GV δ)(x, i) ≤ ηi,δV δ(x) + rδ for (x, i) ∈ Rd0 ×M, δ ∈ (0, 1),

lim
δ→0

ηi,δ/δ = ηi and
∑
i∈M

νiηi < 0,

where ν = (ν1, . . . , νm) is given in condition (A2) and V δ(·) =
(
V (·)

)δ
.

(A4) There exist a function U(·) ∈ C2(Rd0,R+) and constants ζi,δ for (i, δ) ∈M× (0, 1) such that

U(0) = 0, inf
|x|≥r

U(x) > 0 for any r > 0,

(GU δ)(x, y, i) ≤ ζi,δU δ(x− y) for (x, y, i) ∈ Rd × Rd ×M, x 6= y,

lim
δ→0

ζi,δ/δ = ζi and
∑
i∈M

νiζi < 0,
(2.3)

where U δ(·) =
(
U(·)

)δ
.

Remark 2.1. Condition (A1) essentially is a local Lipschitz condition. It guarantees that for each (x0, i0) ∈
Rd×M, equation (2.2) has a unique solution

(
Xx0,i0(·), αi0(·)

)
. Using condition (A3), we show that this solution

is global. That is, it is regular (see Def. 2.4). In order to verify each of conditions (A3) and (A4), one need
only find one Lyapunov function. In condition (A2), ν = (ν1, . . . , νm) is the stationary distribution of α(·). The
contribution of the switching process α(·) is revealed explicitly via its contribution to the sums

∑
i∈M νiηi and∑

i∈M νiζi.

Remark 2.2. Suppose g(·, ·, ·) ≡ 0. Then equation (2.2) is simply a switching diffusion. Let V (·) ∈ C2(Rd0,R+),
a constant c̃ > 0, and (η1, . . . , ηm)> ∈ Rm be such that V (x) ≥ 1 for x ∈ Rd,

lim
|x|→∞

V (x) =∞, (GV )(x, i) ≤ ηiV (x) + c̃ for (x, i) ∈ Rd0 ×M,
∑
i∈M

νiηi < 0.

We claim that condition (A3) holds. Indeed, for δ ∈ (0, 1),

(GV δ)(x, i) = δV δ−1(x)(GV )(x, i) +
δ(δ − 1)

2
V δ−2(x)

∣∣Vx(x)σ(x, i)
∣∣2

≤ δηiV δ(x) + δc̃, (x, i) ∈ Rd0 ×M.

Hence, it is clear that condition (A3) is satisfied. Similarly, condition (A4) holds if there exist U(·) ∈ C2(Rd0,R+)
and (ζ1, . . . , ζm)> ∈ Rm be such that U(0) = 0, inf

|x|≥r
U(x) > 0 for any r > 0 and

∑
i∈M

νiζi < 0, (GU)(x, y, i) ≤ ζiU(x− y, i) for (x, y, i) ∈ Rd × Rd ×M, x 6= y.

Remark 2.3. Assume (A1) and (A2). Suppose condition (A4) holds with U(x) = |x| and there exist K > 0
and r ∈ (0, 2) such that

|σ(x, i)| ≤ K(|x|r + 1) for (x, i) ∈ Rd ×M. (2.4)
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Then condition (A3) is also satisfied. Indeed, letting y = 0 in (2.3) yields

(GU δ)(x, 0, i) ≤ ζi,δU δ(x) for (x, i) ∈ Rd0 ×M, (2.5)

where U δ(x) = |x|δ for x ∈ Rd and δ ∈ (0, 1). Direct computation yields that

U δx(x) = δ|x|δ−2x, U δxx(x) = δ
[
|x|δ−2Id + (δ − 2)|x|δ−4xx>

]
, x ∈ Rd0. (2.6)

In view of (2.4) and (2.6), for δ < 2− r, there exists a constant rδ > 0 such that

1

2
tr
(
σ>(x, 0, i)U δxx(x)σ(x, 0, i)

)
≥ 1

2
tr
(
σ>(x, i)U δxx(x)σ(x, i)

)
− rδ

3
,

U δx(x)b(x, 0, i) ≥ U δx(x)b(x, i)− rδ
3
,

(2.7)

and

λ

∫
Γ

[U δ(x+ g(x, 0, i, γ))− U δ(x)]π(dγ)

≥ λ
∫

Γ

[
∣∣x+ g(x, i, γ)

∣∣δ − |x|δ]π(dγ)− λ
∫

Γ

|g(0, i, γ)|δπ(dγ)

= λ

∫
Γ

[U δ(x+ g(x, i, γ))− U δ(x)]π(dγ)− rδ
3

(2.8)

for any (x, i) ∈ Rd0 ×M. It follows from (2.5), (2.7), and (2.8) that

(GU δ)(x, i) ≤ ζi,δU δ(x) + rδ for (x, i) ∈ Rd0 ×M.

Thus, condition (A3) is satisfied with V (x) = U(x) = |x| and ηi,δ = ζi,δ for (i, δ) ∈M× (0, 1).

The regularity and stability in distribution of the process (X(·), α(·)) are defined as follows. A system being
regular essentially means that it has no finite explosion time, whereas stability in distribution is a weaker sense
notion of stability for a stochastic dynamic system.

Definition 2.4.
(a) The process

(
X(·), α(·)

)
with initial data (X(0), α(0)) = (x0, i0) is said to be regular if for any 0 < T <∞,

P
(

sup
0≤t≤T

|Xx0,i0(t)| =∞
)

= 0.

(b) The process
(
X(·), α(·)

)
is said to be stable in distribution if it is regular and there exists a probability

measure π(dx × {j}) on Rd ×M such that its transition probability p(t, x0, i0, dx × {j}) converges weakly to
π(dx×{j}) as t→∞ for any (x0, i0) ∈ Rd×M. equation (2.2) is said to be stable in distribution if

(
X(·), α(·)

)
is stable in distribution.

To study the stability in distribution of equation (2.2), motivated by [24] and [19], we introduce properties
(P1), (P2), and (P3) as follows.

Definition 2.5.
(a) Equation (2.2) is said to have property (P1) if for any (x0, i0) ∈ Rd ×M and any ε > 0, there exists a

constant R > 0 such that

P
(∣∣Xx0,i0(t)

∣∣ ≥ R) < ε for t ≥ 0.
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(b) Equation (2.2) is said to have property (P2) if for any ε > 0 and any compact subset D of Rd, there
exists T = T (ε,D) > 0 such that

P
(∣∣Xx0,i0(t)−Xy0,i0(t)

∣∣ < ε
)
≥ 1− ε for t ≥ T,

whenever (x0, y0, i0) ∈ D ×D ×M.
(c) Equation (2.2) is said to have property (P3) if for any T > 0, any ε > 0 and any compact subset D of

Rd, there exists a constant R > 0 such that

P
(∣∣Xx0,i0(t)

∣∣ ≤ R for all t ∈ [0, T ]
)
≥ 1− ε for (x0, i0) ∈ D ×M.

Remark 2.6. Properties (P1) and (P2) are essentially those used in [24] and [19]. Nevertheless, in [24] and [19],
the authors assume that the drift and diffusion coefficients satisfy the linear growth condition, which guarantees
that property (P3) holds (see [24], Eq. (3.10), p. 282). Therefore, property (P3) is not stated explicitly in the
aforementioned references. In this paper, we drop the linear growth condition, hence, we need property (P3).

3. Criteria for stability in distribution

As a preparation of the subsequent study, we first state a lemma, which is more or less a restatement of the
Fredholm alternative; see Lemma A.12 of [20] for a proof.

Lemma 3.1. Under condition (A2), for any ξ ∈ Rm, Qc = ξ has a solution c ∈ Rm if and only if νξ = 0, where
ν is the stationary distribution associated with Q.

Lemma 3.2. Assume (A1)–(A3). Then (X(·), α(·)) with initial data (X(0), α(0)) = (x0, i0) is regular for any
(x0, i0) ∈ Rd ×M. Moreover, equation (2.2) has properties (P1) and (P3).

Proof. The proof is divided into three steps.
Step 1: Consider the function

W (x, i) = (1− δci)V δ(x), (x, i) ∈ Rd ×M,

where c1, c2, . . . , cm are constants to be determined, δ ∈ (0, 1) is sufficiently small so that 1 − δci > 0 for each
i ∈M. We claim that we can choose c1, c2, . . . , cm, δ > 0, r > 0, and β > 0 such that (GW )(x, i) ≤ −βW (x, i)+r
for (x, i) ∈ Rd0 ×M.

Indeed, we have

(GW )(x, i) = (1− δci)(GV δ)(x, i)−
∑

j 6=i,j∈M

qijV
δ(x)(cj − ci)δ

= δ(1− δci)
(

1

δ
(GV δ)(x, i)− V δ(x)

∑
j 6=i,j∈M

qij
cj − ci
1− δci

)
.

(3.1)

Recall that
∑
j∈M

qij = 0 for each i ∈M. We obtain

∑
j 6=i,j∈M

qij
cj − ci
1− δci

=
∑
j∈M

qijcj +
∑

j 6=i,j∈M

qij
ci(cj − ci)δ

1− δci
=
∑
j∈M

qijcj +O(δ).
(3.2)



8 K.Q. TRAN ET AL.

It follows from (3.1), (3.2), and condition (A3) that

(GW )(x, i) ≤ δ(1− δci)V δ(x)
(
ηi −

∑
j∈M

qijcj +O(δ)
)

+ (1− δci)rδ, (x, i) ∈ Rd0 ×M. (3.3)

By Lemma 3.1, the equation

Qc =
(
η1, η2, . . . , ηd

)> − ( ∑
j∈M

νjηj
)
11

has a solution c = (c1, c2, . . . , cm)> ∈ Rm, where 11 = (1, 1, . . . , 1)> ∈ Rm. The numbers c1, c2, . . . , cm we just
found are used in the definition of W (·, ·). Thus, we have

ηi −
∑
j∈M

qijcj =
∑
j∈M

νjηj for i ∈M.

Using this representation in (3.3), we obtain

(GW )(x, i) ≤ δW (x, i)
( ∑
j∈M

νjηj +O(δ)
)

+ (1− δci)rδ, (x, i) ∈ Rd0 ×M.

Since
∑
j∈M

νjηj < 0, we can choose δ > 0, β > 0, and r > 0 so that

(1/2)V δ(x) ≤W (x, i) ≤ 2V δ(x), (GW )(x, i) ≤ −βW (x, i) + r for (x, i) ∈ Rd0 ×M. (3.4)

In view of (3.4), we can find a large R > 0 such that

(GW )(x, i) ≤W (x, i) for |x| ≥ R, i ∈M, inf
|x|>R,i∈M

W (x, i)→∞ as R→∞.

By using a standard argument, we can show that the process
(
X(·), α(·)

)
with initial data (X(0), α(0)) = (x0, i0)

is regular for any (x0, i0) ∈ Rd ×M; see Theorem 3.4.1 of [10].
Step 2: Let (x0, i0) ∈ Rd ×M and ε > 0. To establish property (P1), we use the same steps as in the proof

of Lemma 4.1 of [24]. A sketch is given as follows. By using (3.4) and the Dynkin formula, we can show that
supt≥0 E|V δ

(
Xx0,i0(t)

)
| <∞. Let C = supt≥0 E|V δ

(
Xx0,i0(t)

)
| and R1 > C/ε. Since lim|x|→∞ V (x) =∞, there

exists a constant R > 0 such that

V δ(x) ≥ R1 whenever x ≥ R.

This together with the Chebyshev inequality implies

P
(
|Xx0,i0(t)| ≥ R

)
≤ P

(
V δ
(
Xx0,i0(t)

)
≥ R1

)
≤

E|V δ
(
Xx0,i0(t)

)
|

R1
≤ C

R1
< ε, t ≥ 0.

Thus, equation (2.2) has property (P1).
Step 3: Noting Remark 2.6, because no linear growth is assumed, we need to establish property (P3). To

this end, let T > 0, ε > 0, a compact subset D of Rd, and (x0, i0) ∈ D ×M. Without loss of generality, we
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can suppose the function V (·) in condition (A3) satisfies V (·) ∈ C2(Rd,R+). Otherwise, we can work with a

function V̂ ∈ C2(Rd,R+) with V̂ (x) = V (x) for |x| ≥ 1. Define

τn = inf{t ≥ 0 :
∣∣Xx0,i0(t)

∣∣ ≥ n} for n ∈ N.

Since
(
Xx0,i0(·), αi0(·)

)
is regular, τn → ∞ almost surely as n → ∞. In view of (3.4), there exists a constant

K > 0 such that (GW )(x, i) ≤ K/(2T ) for any (x, i) ∈ Rd ×M and W (x, i) ≤ K/2 for any (x, i) ∈ D ×M.
Then the Dynkin formula yields

E
[
W
(
Xx0,i0(τn ∧ T ), αi0(τn ∧ T )

)]
= W (x0, i0) + E

∫ τn∧T

0

GW (Xx0,i0(s), αi0(s))ds

≤ K/2 + TK/(2T ) = K.
(3.5)

Let ρn = min
|x|=n

V δ(x). By condition (A3), ρn →∞ as n→∞. The first estimate in (3.4) and (3.5) imply

(1/2)ρnP(τn ≤ T ) ≤ E
[
W
(
Xx0,i0(τn ∧ T ), αi0(τn ∧ T )

)]
≤ K.

That is, P(τn ≤ T ) ≤ 2K/ρn. Let n = R ∈ N be such that 2K/ρR ≤ ε. It follows that P(τR ≤ T ) ≤ ε.
Equivalently,

P
(∣∣Xx0,i0(t)

∣∣ ≤ R for all t ∈ [0, T ]
)
≥ 1− ε.

Note also that this estimate holds for all (x0, i0) ∈ D ×M. Thus, equation (2.2) has property (P3). This
completes the proof.

The following lemma indicates that if x0, y0 ∈ Rd, i0 ∈ M and x0 6= y0, then almost all sample paths of
Xx0,i0(t) and Xy0,i0(t) will never intersect.

Lemma 3.3. Assume (A1)–(A3). For any x0, y0 ∈ Rd, i0 ∈M and x0 6= y0, we have

P
(∣∣Xx0,i0(t)−Xy0,i0(t)

∣∣ 6= 0 for any t ≥ 0
)

= 1.

Proof. The proof is standard. It is a modification of Lemma 2.10 in [22]. We omit it for brevity.

Lemma 3.4. Assume (A1)–(A4). Then equation (2.2) has property (P2).

Proof. Consider the function

W (x, i) = (1− δci)U δ(x), (x, i) ∈ Rd ×M,

where c1, c2, . . . , cm are constants to be determined, δ ∈ (0, 1) is sufficiently small so that 1 − δci > 0 for each
i ∈ M. We claim that we can choose c1, c2, . . . , cm, δ > 0, and β > 0 such that (GW )(x, y, i) ≤ −βW (x− y, i)
for (x, y, i) ∈ (Rd)2 ×M and x 6= y.

Indeed, we have

(GW )(x, y, i) = (1− δci)(GU δ)(x, y, i)−
∑

j 6=i,j∈M

qijU
δ(x− y)(cj − ci)δ

= δ(1− δci)
(

1

δ
(GU δ)(x, y, i)− U δ(x− y)

∑
j 6=i,j∈M

qij
cj − ci
1− δci

)
.

(3.6)
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In view of (3.2), we have

∑
j 6=i,j∈M

qij
cj − ci
1− δci

=
∑
j∈M

qijcj +O(δ). (3.7)

It follows from (3.6), (3.7), and condition (A4) that

(GW )(x, y, i) ≤ δ(1− δci)U δ(x− y)
(
ζi −

∑
j∈M

qijcj +O(δ)
)
, (x, y, i) ∈ (Rd)2 ×M, x 6= y. (3.8)

By Lemma 3.1, the equation

Qc =
(
ζ1, ζ2, . . . , ζm

)> − ( ∑
j∈M

νjζj
)
11

has a solution c = (c1, c2, . . . , cm)> ∈ Rm, where 11 = (1, 1, . . . , 1)> ∈ Rm. The numbers c1, c2, . . . , cm we just
found are used in the definition of W (·, ·). Thus, we have

ζi −
∑
j∈M

qijcj =
∑
j∈M

νjζj for i ∈M.

Using this representation in (3.8), we obtain

(GW )(x, y, i) ≤ δW (x− y, i)
( ∑
j∈M

νjζj +O(δ)
)
, (x, y, i) ∈ (Rd)2 ×M, x 6= y.

Since
∑
j∈M

νjζj < 0, we can choose δ > 0 and β > 0 so that

(1/2)U δ(x) ≤W (x, i) ≤ 2U δ(x), (GW )(x, y, i) ≤ −βW (x− y, i), (x, y, i) ∈ (Rd)2 ×M, x 6= y. (3.9)

Let ε > 0 and D be a compact subset of Rd. Let (x0, y0, i0) ∈ D × D ×M. For notational simplicity, we
denote X(t) = Xx0,i0(t), Y (t) = Xy0,i0(t), and α(t) = αi0(t). By (2.3), there exists a constant r > 0 such that

{x ∈ Rd : |x| ≥ ε} ⊂ {x ∈ Rd : U δ(x) ≥ r}. (3.10)

Let {τ̂n}n be the sequence of stopping times defined by

τ̂n = inf{t ≥ 0 : |X(t)− Y (t)| ≥ n} for n ∈ N.

Since the solutions of equation (2.2) are regular, τ̂n → ∞ almost surely as n → ∞. By Lemma 3.3 and the
Dynkin formula, we obtain that for each t > 0,

E
[
eβ(t∧τ̂n)W

(
X(t ∧ τ̂n)− Y (t ∧ τ̂n), α(t ∧ τ̂n)

)]
= W (x0 − y0, i0)

+E
∫ t∧τ̂n

0

eβs
[
βW

(
X(s)− Y (s), α(s)

)
+ (GW )(X(s), Y (s), α(s))

]
ds.

This together with (3.9) implies

(1/2)E
[
eβ(t∧τ̂n)U δ

(
X(t ∧ τ̂n)− Y (t ∧ τ̂n)

)]
≤ 2U δ(x0 − y0).
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Letting n→∞ gives

E
[
U δ
(
X(t)− Y (t)

)]
≤ 4e−βtU δ(x0 − y0) for t ≥ 0. (3.11)

Let T > 0 be such that

4e−βTU δ(x0 − y0) ≤ rε for (x0, y0) ∈ D ×D. (3.12)

Then for any t ≥ T , we have from (3.10), (3.11), and (3.12) that

P
(
|X(t)− Y (t)| ≥ ε

)
≤ P

(
U δ
(
X(t)− Y (t)

)
≥ r
)

≤
E
[
U δ
(
X(t)− Y (t)

)]
r

≤ ε;

that is, P
(
|X(t)− Y (t)| < ε

)
≥ 1− ε for t ≥ T . Thus, equation (2.2) has property (P2).

We are in a position to state our main results in this section.

Theorem 3.5. Assume (A1)–(A4). Then the following assertions hold.

(a) Equation (2.2) is stable in distribution.
(b) Suppose further that there exist positive constants κ1, κ2, and p such that

κ1|x|p ≤ U(x) ≤ κ2|x|p for x ∈ Rd. (3.13)

Then there exists a constant ρ > 0 such that E|Xx0,i0(t)−Xy0,i0(t)|ρ converges to zero exponentially fast
as t→∞ for any (x0, y0, i0) ∈ Rd × Rd ×M.

Proof.
(a) By virtue of Lemma 3.2 and Lemma 3.4, equation (2.2) has properties (P1), (P2), and (P3). For the rest

of the proof, we use essentially the same steps as in the proof of Theorem 3.1 in [24], hence, we omit it for
brevity.

(b) Recall from (3.11) that

E
[
U δ
(
X(t)− Y (t)

)]
≤ 4e−βtU δ(x0 − y0) for t ≥ 0, (3.14)

where β and δ are two positive constants. Combining (3.13) and (3.14) yields

E|X(t)− Y (t)|pδ ≤ (4κ2/κ1)e−βt|x0 − y0|pδ for t ≥ 0. (3.15)

Let ρ = pδ. Then (3.15) tells us that E|X(t) − Y (t)|ρ converges to zero exponentially fast as t → ∞. This
completes the proof.

Remark 3.6. Under certain conditions, Theorem 3.5 states that there exists a constant ρ > 0 so that
E|Xx0,i0(t)−Xy0,i0(t)|ρ converges to zero exponentially fast for any (x0, y0, i0) ∈ Rd ×Rd ×M. In this case, it
is said that equation (2.2) is asymptotically flat in the ρth mean (see [3]).

Now we apply the general criterion established above to derive an explicit and verifiable criterion for stability
in distribution. This criterion is obtained when we take U(x) = V (x) = |x| in conditions (A3) and (A4). More
criteria can be constructed if we choose U(x) = V (x) = (x>Bx)1/2 for some positive definite matrix B ∈ Rd×d.



12 K.Q. TRAN ET AL.

Theorem 3.7. Assume (A1)–(A2). Moreover, for each i ∈M, there are constants Kb(i), Kσ(i), Kd(i), and a
function Kg(i, ·) ∈ Γb such that

(x− y)>
(
b(x, i)− b(y, i)

)
≤ Kb(i)|x− y|2,

|σ(x, i)− σ(y, i)|2 ≤ Kσ(i)|x− y|2,
|(x− y)>

(
σ(x, i)− σ(y, i)

)
|2 ≥ Kd(i)|x− y|4,

|x+ g(x, i, γ)− y − g(y, i, γ)| ≤ Kg(i, γ)|x− y|,

(3.16)

for all x, y ∈ Rd, γ ∈ Γ and i ∈M. Define

ζi = Kb(i) +
1

2
Kσ(i)−Kd(i) + λ

∫
Γ

ln
[
Kg(i, γ)

]
π(dγ) for i ∈M. (3.17)

Suppose
∑
i∈M

νiζi < 0. Then the following assertions hold.

(a) equation (2.2) is stable in distribution.
(b) There exists a constant ρ > 0 such that E|Xx0,i0(t) −Xy0,i0(t)|ρ converges to zero exponentially fast as

t→∞ for any (x0, y0, i0) ∈ Rd × Rd ×M.

Proof. (a) Consider the functions U(x) = |x| and U δ(x) = |x|δ for x ∈ Rd and δ ∈ (0, 1). Direct computation
yields that

U δx(x) = δ|x|δ−2x, U δxx(x) = δ
[
|x|δ−2Id + (δ − 2)|x|δ−4xx>

]
, x ∈ Rd0.

Thus,

(GU δ)(x, y, i) = δ
∣∣x− y∣∣δ−2

(x− y)>b(x, y, i) +
δ

2
tr
[∣∣x− y∣∣δ−2

σ(x, y, i)σ>(x, y, i)
]

+
1

2
δ(δ − 2)tr

[∣∣x− y∣∣δ−4
(x− y)(x− y)>σ(x, y, i)σ>(x, y, i)

]
+λ

∫
Γ

[∣∣x− y + g(x, y, i, γ)
∣∣δ − ∣∣x− y∣∣δ]π(dγ)

≤ U δ(x− y)

(
δKb(i) +

δ

2
Kσ(i) +

δ

2
(δ − 2)Kd(i) + λ

∫
Γ

(∣∣Kg(i, γ)
∣∣δ − 1

)
π(dγ)

)
.

That is,

(GU δ)(x, y, i) ≤ ζi,δU δ(x− y) for (x, y, i) ∈ (Rd)2 ×M, x 6= y,

where

ζi,δ = δKb(i) +
δ

2
Kσ(i) +

δ

2
(δ − 2)Kd(i) + λ

∫
Γ

(∣∣Kg(i, γ)
∣∣δ − 1

)
π(dγ) for (i, δ) ∈M× (0, 1).

We have limδ→0 ζi,δ/δ = ζi given by (3.17) and
∑
i∈M νiζi < 0. Hence, condition (A4) holds. By virtue of

Remark 2.3, condition (A3) is also satisfied. Thus, by Theorem 3.5, equation (2.2) is stable in distribution.
(b) It is shown in part (a) that condition (A4) holds with U(x) = |x| for x ∈ Rd. Hence, by virtue of

Theorem 3.5, there exists a constant ρ > 0 such that E|Xx0,i0(t)−Xy0,i0(t)|ρ converges to zero exponentially
fast as t→∞ for any (x0, y0, i0) ∈ Rd × Rd ×M.
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4. Stabilization of switching jump diffusions

Based on the criteria developed in the preceding sections, we proceed to investigate stabilizing effects owing
to Markov chains, Brownian motions, and Poisson jumps, respectively. Because of our work in this paper focuses
on stability in distribution, the stabilization, in fact, is in the sense of the so-called weak stabilization. Such a
term was probably first coined in the earlier work of Wonham [17].

Example 4.1. We consider equation (2.2), where conditions (A1)–(A2) and (3.16) are satisfied. Recall that

ζi = Kb(i) +
1

2
Kσ(i)−Kd(i) + λ

∫
Γ

ln
[
Kg(i, γ)

]
π(dγ) for i ∈M.

Note that the switching jump diffusion X(·) may viewed as m jump diffusions that interact and switch back
and forth due to the switching mechanism. These jump diffusions are denoted by X(1)(·), X(2)(·), . . . , X(m)(·)
given by

dX(i)(t) = b
(
X(i)(t), i

)
dt+ σ

(
X(i)(t), i)dw(t) + dJ (i)(t),

J (i)(t) =

∫ t

0

∫
Γ

g
(
X(i)(s−), i), γ

)
N(ds, dγ), i ∈M.

By virtue of Theorem 3.7, the stability of overall system (2.2) does not require all ζi < 0, but only their average∑
i∈M

νiζi < 0.

For each jump diffusion X(i)(·) above, we can apply Theorem 3.7 to verify the stability in distribution. In
particular, suppose there exists i0 ∈M such that ζi0 < 0. Then X(i0)(·) is stable in distribution. In such a case,
we can design a suitable Markov switching α(·) so that the i0th subsystem is dominant and

∑
i∈M

νiζi < 0. Thus,

the switching process α(·) can work as a stabilizing force.

Example 4.2. Consider the switching differential equation

dX(t) = b(X(t), α(t))dt. (4.1)

Equation (2.2) can be seen as a perturbed version of equation (4.1). Suppose that there are constants Kb(i) for
i ∈M such that

(x− y)>
(
b(x, i)− b(y, i)

)
≤ Kb(i)|x− y|2, (x, y, i) ∈ Rd × Rd ×M.

Can we add a suitable noise to equation (4.1) so that the resulting system given by equation (2.2) is stable
in distribution? The answer is positive since we can always choose σ(·, ·) and g(·, ·) so that (3.16) holds. For
simplicity, we can take

σ(x, i) = λ(i)diag(x) + C(i), g(x, i, γ) =
(
µ(i)− 1

)
x,

where λ(i) ∈ R, µ(i) > 0 and C(i) ∈ Rd×d for each i ∈M. Then σ(·, ·) and g(·, ·) satisfies (3.16) with

Kσ(i) = λ2(i), Kd(i) = λ2(i), Kg(i, γ) = µ(i) for i ∈M, γ ∈ Γ.

If we choose λ(i) and µ(i) such that

∑
i∈M

νi
[
Kb(i)−

1

2
λ2(i) + λ lnµ(i)

]
< 0,
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by virtue of Theorem 3.7, equation (2.2) is stable in distribution. Thus, by adding a suitable noise to an unstable
system, we can make it stable in distribution.

Consider a switching ordinary differential equation given by equation (4.1). In [21], the authors have shown
that if the solutions of equation (4.1) are not regular, one can add a feedback control term, which is of the
form σ(X(t), α(t))dw(t) to suppress the finite explosion time. Then to ensure stability (in the sense of almost
sure exponential stability), one can add another feedback control σ̂(X(t), α(t))dŵ(t). Here, a question arises
naturally: can we use the same strategy to regularize and stabilize a given system in the sense of stability in
distribution? We proceed to provide an affirmative answer for any given scalar switching differential equations.

Theorem 4.3. Consider a scalar switching jump diffusion

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t) +

∫
Γ

g(X(t−), α(t−), γ)N(dt, dγ),

X(0) = x0 ∈ R, α(0) = i0 ∈M,
(4.2)

where conditions (A1) and (A2) are satisfied. Moreover,

(a) there exist constants κi > 0 and µi ≥ 0 for i ∈M such that σ(x, i) = κib(x, i) + µix for (x, i) ∈ R×M;
(b) there exists constants ξi > 0 for i ∈M such that∣∣x+ g(x, i, γ)− y − g(y, i, γ)

∣∣ ≤ ξi|x− y| for (x, y, i, γ) ∈ R× R×M× Γ,∑
i∈M

νi

(
1− 2κiµi

2κ2
i

+ λ ln ξi

)
< 0. (4.3)

Then equation (4.2) is stable in distribution.

Proof. For (x, y, i) ∈ R× R×M, we define

h(x, y, i) =
b(x, y, i)

x− y
if x 6= y, h(x, y, i) = 0 if x = y.

Let U(x) = |x| and U δ(x) = |x|δ for x ∈ R and δ ∈ (0, 1). Then for (x, y, i) ∈ R× R×M and x 6= y,

(GU δ)(x, y, i) = δ
∣∣x− y∣∣δ−2

(x− y)b(x, y, i) +
δ(δ − 1)

2

∣∣x− y∣∣δ−2∣∣κib(x, y, i) + µi(x− y)
∣∣2

+λ

∫
Γ

[∣∣x− y + g(x, y, i, γ)
∣∣δ − ∣∣x− y∣∣δ]π(dγ)

≤ δ
∣∣x− y∣∣δ(h(x, y, i)− (1− δ)

2
κ2
i |h(x, y, i)|2 − (1− δ)κiµih(x, y, i)

−1− δ
2

µ2
i +

λ

δ

(
ξδi − 1

))
.

(4.4)

Observe that for any a ∈ R,

a− (1− δ)
2

κ2
i a

2 − (1− δ)κiµia = − (1− δ)
2

(
κia−

1− (1− δ)κiµi
(1− δ)κi

)2

+

(
1− (1− δ)κiµi

)2
2(1− δ)κ2

i

≤
(
1− (1− δ)κiµi

)2
2(1− δ)κ2

i

.

(4.5)
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This together with (4.4) implies that

(GU δ)(x, y, i) ≤ δU δ(x− y)

[(
1− (1− δ)κiµi

)2
2(1− δ)κ2

i

− 1− δ
2

µ2
i +

λ

δ

(
ξδi − 1

)]
.

That is, (GU δ)(x, y, i) ≤ ζi,δU δ(x− y) where

ζi,δ = δ

[(
1− (1− δ)κiµi

)2
2(1− δ)κ2

i

− 1− δ
2

µ2
i +

λ

δ

(
ξδi − 1

)]
for (i, δ) ∈M× (0, 1). (4.6)

We have

lim
δ→0

ζi,δ
δ

=
1− 2κiµi

2κ2
i

+ λ ln ξi, i ∈M. (4.7)

By (4.3), condition (A4) holds.

We proceed to verify condition (A3). Denote h0(x, i) =
b(x, i)

x
for x 6= 0, i ∈M. For x 6= 0 we have

(GU δ)(x, i) = δ
∣∣x∣∣δ−2

xb(x, i) +
δ(δ − 1)

2
|x|δ−2|κib(x, i) + µix|2

+λ

∫
Γ

[∣∣x+ g(x, i, γ)
∣∣δ − |x|δ]π(dγ)

≤ δ|x|δ
[
h0(x, i)− 1− δ

2
κ2
i |h0(x, i)|2 − (1− δ)κiµih0(x, i)− 1− δ

2
µ2
i

]
+λ

∫
Γ

[∣∣x+ g(x, 0, i, γ)
∣∣δ − |x|δ + |g(0, i, γ)|δ

]
π(dγ)

≤ δU δ(x)

[
h0(x, i)− 1− δ

2
κ2
i |h0(x, i)|2 − (1− δ)κiµih0(x, i)

−1− δ
2

µ2
i +

λ

δ

(
ξδi − 1

)]
+ λ

∫
Γ

|g(0, i, γ)|δπ(dγ)

≤ δU δ(x)ζi,δ + rδ,

(4.8)

where ζi,δ is given by (4.6) and rδ = λ
∫

Γ
|g(0, i, γ)|δπ(dγ). Note that we have employed the estimate (4.5) to

derive the last line of (4.8). By condition (A1), rδ < ∞. By (4.7) and (4.3), condition (A3) is satisfied. Thus,
by virtue of Theorem 3.5, equation (4.2) is stable in distribution.

Remark 4.4. By virtue of Theorem 4.3, we can choose constants κi, µi, and ξi for i ∈ M to regularize and
stabilize equation (4.1). That is, under suitable design, arbitrary ordinary differential equations of the form
(4.1) can be regularized. Moreover, it is possible to regularize and stabilize equation (4.1) by using the feedback
control σ(X(t), α(t))dw(t) only. That is, we can take g(·, ·, ·) ≡ 0.

Next, we address the question of stabilization of multi-dimensional systems. Using the idea as in [21], we add
two feedback terms, one of them regularizes the system and the other ensures the stability. Nevertheless, when
such stochastic feedback strategies are used, we cannot find a function U(·) to verify condition (A4). Hence, a
new approach is needed to establish property (P2).

Consider equation (4.1) on Rd. We pose conditions to ensure the stabilization. Assume that the function
b(·, i) is locally Lipschitz continuous for each i ∈M with the left-side Lipschitz coefficient bL(·) defined by

bL(r) := sup
|x|∨|y|≤r,x 6=y,i∈M

(x− y)>(b(x, i)− b(y, i))
|x− y|2

, r > 0.
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Suppose there exists a differential function b̃ : R+ 7→ [1,∞) satisfying

(B0) limr→∞ b̃(r) =∞;
(B1) there exists a constant c0 > 0 such that

0 ≤ r d
dr
b̃(r) ≤ c0b̃(r), r > 0;

(B2) bL(r) ≤ 1

6
(̃b(r))2 for r > 0.

Remark 4.5.
(a) If b(·, ·) has a polynomial growth together with its left-side Lipschitz coefficient bL(·), we can choose

b̃(r) = c(rn + 1) for some c > 0 and n > 0. Particularly, if bj(·, i) is differentiable and its gradient has a

polynomial growth for each (i, j), then we can choose b̃(r) = c(rn + 1) for some c > 0 and n > 0.
(b) We slightly modify the proofs below, to show that we can in fact, improve (B1) by using (B1’) below.

(B1’) there exists a constant δ0 ∈ (0, 1/4) such that

0 ≤ r1−δ0 d

dr
b̃(r) ≤ c0b̃(r), r > 0.

With this improvement, we can find b̃(·) if b(·, ·) and its left-side Lipschitz coefficient are bounded by

c(e(|x|+1)δ0/2) for some constant c > 0. However, to ease the exposition, we impose (B1) instead of (B1’).
Whether or not we can stochastic stabilize equation (4.1) if b(·, ·) or bL(·) has an exponential growth rate is an
open question.

Now we assume that we can find a function b̃(·) satisfying assumptions (B0)–(B2). We will show that it is
possible to construct two stochastic controls through two independent scalar Brownian motions to regularize
and stabilize equation (4.1).

Consider the following system where the set of real numbers {µi}i∈M is to be specified later:

dX(t) = b(X(t), α(t))dt+B(X(t))X(t)dw(t) + µα(t)X(t)dŵ(t),

X(0) = x0 ∈ Rd, α(0) = i0 ∈M, B(x) = b̃(|x|). (4.9)

where w(·) and ŵ(·) are two independent (one dimensional) Brownian motions. In the rest of this section,
we suppose that assumptions (B0)–(B2) and condition (A2) hold. Moreover, we work with a fixed value of
δ ∈ (0, 1/4].

Lemma 4.6. Equation (4.9) has properties (P1) and (P3).

Proof. Let V (x) = |x|2 + 1 and V δ(x) = |V (x)|δ for x ∈ Rd. Then

(GV )(x, i) = 2x>b(x, i) +
(
|B(x)|2 + µ2

i

)
|x|2, (x, i) ∈ Rd ×M,

and

(GV δ)(x, i) = δV δ−1(x)(GV )(x, i) +
δ(δ − 1)

2
V δ−2(x)

(
|Vx(x)B(x)x|2 + |Vx(x)µix|2)

= δ(|x|2 + 1)δ
[2x>b(x, i) +

(
|B(x)|2 + µ2

i

)
|x|2

|x|2 + 1
− 2(1− δ)

|x|4
(
|B(x)|2 + µ2

i

)
(|x|2 + 1)2

]
.

(4.10)
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In view of (B2),

2x>b(x, i)

|x|2 + 1
≤ 1

3

|B(x)|2|x|2

|x|2 + 1
+ |b(0, i)|.

Note that

C0 := sup
(x,i)∈Rd×M

(
4

3

|B(x)|2|x|2

|x|2 + 1
− 3

2

|x|4|B(x)|2

(|x|2 + 1)2
+ |b(0, i)|

)
<∞ (4.11)

and

µ2
i |x|2

|x|2 + 1
− 2(1− δ) µ2

i |x|4

(|x|2 + 1)2
≤ µ2

i |x|2

|x|2 + 1

(
1− 3

2

|x|2

|x|2 + 1

)
≤ µ2

i1{|x|≤2}.

Note also that δ(|x|2 + 1)δµ2
i1{|x|≤2} ≤ µ2

i1{|x|≤2} since δ ∈ (0, 1/4]. As a result,

(GV δ)(x, i) ≤ µ2
i1{|x|≤2} + δV δ(x)

(
C0 − (

1

2
− 2δ)

|x|4|B(x)|2

(x2 + 1)2

)
, (x, i) ∈ Rd ×M, (4.12)

which together with assumption (B0) implies the existence of positive constants C1 and C2 independent of
{µi}i∈M such that

(GV δ)(x, i) ≤ C1 + µ2
i − C2V

δ(x), (x, i) ∈ Rd ×M. (4.13)

Hence, condition (A3) holds. By Lemma 3.2, equation (4.9) has properties (P1) and (P3).

The rest of the section is devoted to proving that equation (4.9) has property (P2) when µM := max{µi : i ∈
M} is sufficiently large. Because the drift coefficient b(·, ·) and its left-side Lipschitz coefficient bL(·) can have
a highly nonlinear growth rate, it seems practically impossible to construct a function U(·) satisfying condition
(A4) for a general nonlinear function b(·, ·). As a result, Lemma 3.4 is not applicable here. We overcome this
technical difficulty by proving a number of lemmas below.

Lemma 4.7. Let µM = max{µi : i ∈ M}. Then there exist positive constants C1, C2, C3, and λ independent
of µM and initial data (x0, i0) ∈ Rd ×M such that

E(|X(t)|2 + 1)δ ≤ C1

(
1 + (µM )2

)
+ e−λt(|x0|2 + 1)δ, t ≥ 0, (4.14)

and

E
∫ t

0

|X(s)|4|B(X(s)))|2

(|X(s)|2 + 1)2−δ ds ≤ C2

(
1 + (µM )2

)
t+ C3(|x0|2 + 1)δ for any t ≥ 0. (4.15)

Proof. In view of (4.13), there exist positive constants C1 and C2 independent of {µi}i∈M and initial data
(x0, i0) ∈ Rd ×M such that(

G(|x|2 + 1)δ)(x, i) ≤ C1 + (µM )2 − C2(|x|2 + 1)δ, (x, i) ∈ Rd ×M.
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By Itô’s formula, we obtain

EeC2t
(
|X(t)|2 + 1

)δ ≤ (|x0|2 + 1)δ +
(
C1 + (µM )2

) ∫ t

0

eC2sds,

which leads to

eC2tE
(
|X(t)|2 + 1

)δ ≤ (|x0|2 + 1)δ +
C1 + (µM )2

C2

eC2t.

Then there exist positive constants C1 and λ so that (4.14) holds.
We proceed to prove (4.15). In view of (4.12), we have

E
(
|X(t)|2 + 1

)δ ≤ (|x0|2 + 1)δ + (µM )2t+ δC0E
∫ t

0

(|X(s)|2 + 1)δds

−δ(1

2
− 2δ)E

∫ t

0

|X(s)|4|B(X(s)|2

(|X(s)|2 + 1)2−δ ds,

which implies

δ(
1

2
− 2δ)E

∫ t

0

|X(s)|4|B(X(s)|2

(|X(s)|2 + 1)2−δ ds ≤ (|x0|2 + 1)δ + (µM )2t+ δC0

∫ t

0

E(|X(s)|2 + 1)δds. (4.16)

Then, substituting (4.14) into (4.16), we obtain (4.15) for some positive constants C2 and C3 independent of
{µi}i∈M and initial data (x0, i0). This completes the proof.

Lemma 4.8. Suppose M(t) is a continuous martingale with M(0) = 0 and its quadratic variation [M ]t satisfying
E[M ]t ≤ LM (t + 1), where LM is a positive constant. Then for any ε1 > 0 and ε2 > 0, there exists an n0 =
n0(LM , ε1, ε2) > 0 such that

P
{
|M(t)|
t
≤ ε2 for all t ≥ n2

0

}
≥ 1− ε1.

Proof. Define events

Ωn :=

{
ω : sup

0≤t≤n2

|M(t)| ≥ n2ε2/2

}
, n = 1, 2, . . .

By the Markov inequality and the Burkholder-Davis-Gundy inequality,

P(Ωn) ≤
E
(

sup0≤t≤n2 |M(t)|2
)

(n2ε2/2)2
≤ 4E([M(t)]n2)

n4ε2
2/4

≤ 16LM (n2 + 1)

n4
.

Now, for any ε1 > 0, there exists n0 > 3 such that
∑∞
n=n0

16LM (n2+1)
n4 < ε1. Then

P
{

Ω \ ∪∞n=n0
Ωn
}
≥ 1−

∞∑
n=n0

16LM (n2 + 1)

n4
≥ 1− ε1.
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Note that for ω ∈ Ω \ ∪∞n=n0
Ωn, we have sup0≤t≤n2 |M(t)| ≤ n2ε2/2 for all n ≥ n0. As a result, if ω ∈ Ω \

∪∞n=n0
Ωn, we have for any t > n2

0 that

|M(t)|
t
≤ (Nt + 1)2

N2
t

ε2

2
≤ ε2,

where Nt is the greatest integer smaller than t. Thus, we have

P
{
|M(t)|
t
≤ ε2 for all t ≥ n2

0

}
≥ 1− ε1.

This completes the proof.

Lemma 4.9. Let C0 be given by (4.11) and

C4 = sup
x∈Rd

{
δ

2
(x2 + 1)δ/2

[
C0 −

1− 2δ

4

|x|4|B(x)|2

(x2 + 1)2

]}
, C5 =

32

δ(1− 2δ)
. (4.17)

For any constants H ≥ 1, r > 0, ε1 > 0, ε2 > 0 there exists n1 := n1(r, µM , ε1, ε2) > 0 such that

P
{

1

t

∫ t

0

1{|X(s)|>H}|B(X(s)|2ds ≤ C5(C4 + (µM )2) + ε2

Hδ
for all t ≥ n1

}
≥ 1− ε1 (4.18)

for any initial data (x0, i0) ∈ Rd ×M satisfying |x0| ≤ r.

Proof. Similar to (4.12),

(
G(|x|2 + 1)δ/2

)
(x, i) ≤µ2

i1{|x|≤2} +
δ

2
(x2 + 1)δ/2

[
C0 −

1− 2δ

2

|x|4|B(x)|2

(x2 + 1)2

]
≤(µM )2 + C4 −

δ(1− 2δ)

8

|x|4|B(x)|2

(x2 + 1)2−δ/2

(4.19)

(C4 is given by (4.17)), which is finite because lim|x|→∞B(x) =∞. By Itô’s formula, we obtain from (4.19) that

0 ≤ (|X(t)|2 + 1)δ/2 ≤(|x0|2 + 1)δ/2 +
(
(µM )2 + C4

)
t− δ(1− 2δ)

8

∫ t

0

|X(s)|4|B(X(s)|2

(|X(s)|2 + 1)2−δ/2 ds+M0(t) (4.20)

where

M0(t) := δ

∫ t

0

B(X(t)))|X(s)|2dw(s) + µα(s)|X(s)|2dŵ(s)(
|X(s)|2 + 1

)1−δ/2 .

It follows from (4.20) that

1

t

∫ t

0

|X(s)|4|B(X(s)|2

(|X(s)|2 + 1)2−δ/2 ds ≤ 8

δ(1− 2δ)

[
(|x0|2 + 1)δ/2 +M0(t)

t
+ (µM )2 + C4

]
. (4.21)
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By (4.15) and the fact that B(x) ≥ 1 for any x ∈ Rd,

E
∫ t

0

|X(s)|4

(|X(s)|2 + 1)2−δ ds ≤ E
∫ t

0

|X(s)|4|B(X(s)))|2

(|X(s)|2 + 1)2−δ ds

≤ C2

(
1 + (µM )2

)
t+ C3(|x0|2 + 1)δ,

where C2 and C3 are constants independent of µM and initial data (x0, i0) ∈ Rd ×M. Consequently, there is
a constant LM0 = LM0(r, µM ) > 0 such that E[M0]t ≤ LM0(1 + t) for t ≥ 0. An application of Lemma 4.8 to
M0(t) implies that, for any ε1, ε2, there exists n1 := n1(r, µM , ε1, ε2) satisfying

P
{

8

δ(1− 2δ)

[
(|x0|2 + 1)δ/2 +M0(t)

t

]
≤ ε2

4
for all t ≥ n1

}
≥ 1− ε1 if |x0| ≤ r,

which together with (4.21) implies

P
{

1

t

∫ t

0

|X(s)|4|B(X(s)|2

(|X(s)|2 + 1)2−δ/2 ≤
C5

4
(C4 + (µM )2) +

ε2

4
for all t ≥ n1

}
≥ 1− ε1, (4.22)

where C5 = 32
δ(1−2δ) . Because

1{|x|>H}|B(x)|2 ≤ 1

Hδ

4|x|4|B(x)|2

(|x|2 + 1)2−δ/2 for any x ∈ Rd, H ≥ 1, (4.23)

we can easily derive (4.18) from (4.22).

Lemma 4.10. Let U(x) = |x|2 for x ∈ Rd. Then for any (x, y, i) ∈ Rd × Rd ×M and x 6= y,

(G lnU)(x, y, i) ≤C6

2

(
1{|x|>H}|B(x)|2 + 1{|y|>H}|B(y)|2

)
+ C6 |̃b(H)|2 − µ2

i ,

where C6 = 6 + 4c20 and c0 is given in assumption (B1).

Proof. We have

(GU)(x, y, i) = 2(x− y)>(b(x, i)− b(y, i)) + |B(x)x−B(y)y|2 + µ2
i |x− y|2 (4.24)

and

(G lnU)(x, y, i) =
2(x− y)>(b(x, i)− b(y, i)) + |B(x)x−B(y)y|2

|x− y|2
− µ2

i

− 2

∣∣(x− y)>
(
B(x)x−B(y)y

)∣∣2
|x− y|4

.

(4.25)
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Recall that b̃ : Rd → (1,∞) is a differentiable function and B(x) = b̃(|x|) for x ∈ Rd. Suppose without loss of
generality that |x| ≤ |y|. By the mean value theorem, we have

|B(x)x−B(y)y|2 =|B(x)x−B(x)y +B(x)y −B(y)y|2

≤2|B(x)|2|x− y|2 + 2|B(x)−B(y)|2|y|2

≤2|x− y|2|B(x)|2 + 2|y|2 sup
r≤|y|

∣∣∣ d
dr
b̃(r)

∣∣∣2(|x| − |y|)2

≤2|x− y|2|B(x)|2 + 2|y|2 sup
r≤|y|

∣∣∣ d
dr
b̃(r)

∣∣∣2|x− y|2.
(4.26)

By assumption (B1), |y| supr≤|y|

∣∣∣ d
dr
b̃(r)

∣∣∣ ≤ c0|B(x)|. This together with (4.26) implies

|B(x)x−B(y)y|2 ≤ 2(1 + c20)|x− y|2
(
|B(x)|2 + |B(y)|2

)
, (4.27)

which holds for any x, y ∈ Rd. Moreover, by assumption (B2),

2(x− y)>
(
b(x, i)− b(y, i)

)
≤ |x− y|2(|B(x)|2 + |B(y)|2). (4.28)

Putting (4.27) and (4.28) into (4.25) yields

(G lnU)(x, y, i) ≤ (3 + 2c20)(|B(x)|2 + |B(y)|2)− µ2
i

≤ (3 + 2c20)
(
1{|x|>H}|B(x)|2 + 1{|y|>H}|B(y)|2 + 1{|x|≤H}|B(x)|2 + 1{|y|≤H}|B(y)|2

)
− µ2

i

≤ C6

2

(
1{|x|>H}|B(x)|2 + 1{|y|>H}|B(y)|2

)
+ C6 |̃b(H)|2 − µ2

i ,

(4.29)

where C6 = 6 + 4c20. Note that 1{|x|≤H}|B(x)|2 ≤ |̃b(H)|2 and 1{|y|≤H}|B(y)|2 ≤ |̃b(H)|2. This completes the
proof.

Remark 4.11. Define

Λ :=
C6C5(C4 + (µM )2)

Hδ
+ C6 |̃b(H)|2 −

∑
i∈M

µ2
i νi, (4.30)

where C0 is given by (4.11),

C4 = sup
x∈Rd

{
δ

2
(x2 + 1)δ/2

[
C0 −

1− 2δ

4

|x|4|B(x)|2

(x2 + 1)2

]}
, C5 =

32

δ(1− 2δ)
, C6 = 6 + 4c20.

It is easy to see that Λ < 0 if we choose H and then µM to be sufficiently large. Indeed, we can first select

sufficiently large H that C6C5

Hδ
< mini∈M{νi}

2 and then select one µi∗ satisfying

µ2
i∗νi∗

2
≥ C6 |̃b(H)|2 +

C6C5C4

Hδ
.

Then we can verify that Λ < 0.
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Lemma 4.12. Suppose

Λ =
C6C5(C4 + (µM )2)

Hδ
+ C6 |̃b(H)|2 −

∑
i∈M

µ2
i νi < 0.

For any ε1 > 0 and a compact set D, there exists T = T (ε1, D,Λ) > 0 such that

P

{
ln
∣∣Xx0,i0(t)−Xy0,i0(t)

∣∣2
t

<
Λ

5

}
≥ 1− ε1 for t ≥ T,

whenever (x0, y0, i0) ∈ D ×D ×M. As a result, equation (4.9) has property (P2).

Proof. Let (x0, y0, i0) ∈ D ×D ×M. For notational simplicity, we denote X(t) = Xx0,i0(t), Y (t) = Xy0,i0(t),
and α(t) = αi0(t). By Itô’s formula and (4.29), we have

ln |X(t)− Y (t)|2

t
≤ ln |x0 − y0|2

t
+
C6

2

1

t

∫ t

0

(
1{|X(s)|>H}|B(X(s))|2 + 1{|Y (s)|>H}|B(Y (s)|2

)
ds

− 1

t

∫ t

0

µ2
α(s)ds+ C6 |̃b(H)|2 +

M1(t) +M2(t)

t
,

(4.31)

where

M1(t) = 2

∫ t

0

(X(t)− Y (t))>(B(X(s))X(s)−B(Y (s)Y (s))

|X(s)− Y (s)|2
dw(t), M2(t) = 2

∫ t

0

µα(t)dŵ(t).

In view of (4.27), we have the following estimate for the quadratic variation of M1.

[M1]t =2

∫ t

0

(
(X(t)− Y (t))>

(
B(X(s))X(s)−B(Y (s))Y (s)

)
|X(s)− Y (s)|2

)2

dt

≤4(1 + c20)

∫ t

0

(|B(X(s)|2 + |B(Y (s)|2)ds,

(4.32)

which together with (4.15) and (4.23) implies that E[M1]t ≤ L1(t + 1) for some L1 = L1(D) > 0. Clearly,
E[M2]t ≤ 4(µM )2t. In view of Lemma 4.8, there exists n2 = n2(ε1, D,Λ) > 0 such that

P
{
M1(t) +M2(t)

t
≤ |Λ|

5
for all t ≥ n2

}
≥ 1− ε1/4. (4.33)

In view of (4.18), there exists n3 = n3(ε1, D,Λ) > 0 such that

P
{

1

t

∫ t

0

1{|X(s)|>H}|B(X(s)|2ds ≤ C5(C4 + (µM )2)

Hδ
+
|Λ|
5C6

for all t ≥ n3

}
≥ 1− ε1/4 (4.34)

and

P
{

1

t

∫ t

0

1{|Y (s)|>H}|B(Y (s)|2ds ≤ C5(C4 + (µM )2)

Hδ
+
|Λ|
5C6

for all t ≥ n3

}
≥ 1− ε1/4. (4.35)
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Because of the ergodicity of α(t), there exists n4 = n4(ε1, D,Λ) > 0 such that

P

{
ln |x0 − y0|2

t
− 1

t

∫ t

0

µ2
α(s)ds ≤ −

∑
i∈M

µ2
i νi +

|Λ|
5

for all t ≥ n4

}
≥ 1− ε1/4. (4.36)

Putting (4.33), (4.34), (4.35), and (4.36) into (4.31) yields

P
{

ln |X(t)− Y (t)|2

t
≤ Λ

5
< 0 for all t ≥ max{n2, n3, n4}

}
≥ 1− ε1.

The conclusion follows.

The following theorem summarizes our results above.

Theorem 4.13. Assume (B0)–(B2) and (A2). Let Λ be given by (4.30). If Λ < 0, then equation (4.9) is stable
in distribution.

5. Examples

Example 5.1. We consider the scalar regime-switching diffusion with Poisson jumps perturbations. Suppose
that M = {1, 2} and for each i ∈M, there are constants λi, λ̂i, µi, µ̂i such that

dX(t) =
(
λα(t)X(t) + λ̂α(t)

)
dt+

(
µα(t)X(t) + µ̂α(t)

)
dw(t)

+

∫
Γ

g(X(t−), α(t−), γ)N(dt, dγ).
(5.1)

We consider equation (5.1) with λ1 = 1, λ2 = −1/2, µ̂1 = 1, µ̂2 = 2, λ̂1 = λ̂2 = µ1 = µ2 = 0, and

Q =

(
−4 4
2.5 −2.5

)
, λ = 1, g(x, 1, γ) =

sinx

2
+ 1, g(x, 2, γ) = −(3/4)x+ 3, x ∈ R.

It can be seen that |x+ g(x, i, γ)− y− g(y, i, γ)| ≤ Kg(i)|x− y|, where Kg(1) = 3/2 and Kg(2) = 1/4. Thus, the
assumptions of Theorem 3.7 are satisfied. The values of ζ1 and ζ2 defined in (3.17) are ζ1 = λ1 + λ ln |Kg(1)| =
1 + ln |3/2| and ζ2 = λ2 + λ ln |Kg(2)| = −(1/2) + ln |1/4|. Here ν = (ν1, ν2) = (5/13, 8/13). Hence,

∑2
i=1 νiζi ≈

−0.62 < 0. Thus, equation (5.1) is stable in distribution. Moreover, by virtue of Theorem 3.7, there exists a
constant ρ > 0 such that E|Xx0,i0(t) − Xy0,i0(t)|ρ converges to zero exponentially fast for any (x0, y0, i0) ∈
R× R×M.

Example 5.2. Consider a switching dynamic system given by

dX(t) = b(X(t), α(t))dt. (5.2)

Let X(0) = 1, M = {1, 2}, b(x, 1) = x2 + 5 and b(x, 2) = x2 − 1. Then the two subequations are given by

dX(t) =
(
X2(t) + 5

)
dt, dX(t) =

(
X2(t)− 1

)
dt.

It can be seen that neither equation has global solutions. Figure 1(a) provides several trajectories of equa-
tion (5.2) with differential initial states X(0) and initial state α(0) = 1 under the same realizations of
α(·).
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Figure 1. (a) Trajectories of X(t) given by equation (5.2) with differential initial states X(0)
and initial state α(0) = 1 under the same realizations of α(·); (b) Trajectories of X(t) given
by equation (5.3) with differential initial states X(0) and initial state α(0) = 1 under the same
realizations of α(·), w(·), and N(·, ·).

To regularize the system, we add a feedback control of the form σ(X(t), α(t))dw(t) where σ(x, i) = b(x, i).
In addition, to stabilize the system, we add another feedback control of the form

∫
Γ
ρα(t−)X(t−)N(dt, dγ). The

resulting equation is

dX(t) = b
(
X(t), α(t)

)
dt+ b

(
X(t), α(t)

)
dw(t) +

∫
Γ

ρα(t−)X(t−)N(dt, dγ). (5.3)

For Q =

(
−3 3
2 −2

)
, we let λ = 2, ρ1 = 0.5, and ρ2 = −3/4. By using Theorem 4.3, we have

κ1 = κ2 = 1, µ1 = µ2 = 0, ξ1 = 1.5, ξ2 = 0.25, ν1 = 0.4, ν2 = 0.6.

Consequently,

∑
i∈M

νi

(
1− 2κiµi

2κ2
i

+ λ ln ξi

)
≈ −0.84.

Thus, equation (5.3) is stable in distribution. To visualize the regularization and stabilization effects of the
feedback controls as well as the exponentially contractive property of equation (5.3), we plot several trajectories
of equation (5.3) in Figure 1(b).

Note that in Figure 1(b), there are three trajectories starting from the initial values (x0, i0) = (2, 1), (0, 1),
and (−2, 1) under the same realizations of α(·), w(·) and N(·, ·). It can be seen that each trajectory converges
to the others very fast as t increases and they are almost identical for t ≥ 3.
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6. Concluding remarks

This paper has been devoted to the study of Markovian switching jump diffusions. We have further explored
the asymptotic behaviors of switching diffusions with Poisson jumps in which there might be no equilibrium
point. The criteria for stability in distribution are established. The stabilization effects of Markov chains,
Brownian motions, and Poisson jumps are investigated. Our results offer new insight and effective treatments to
regularization and stabilization of switching jump diffusion systems. Although the paper is devoted to Markovian
switching jump diffusions, when the jump part disappear, our results cover that of hybrid systems with a
Markovian switching.

Acknowledgements. We are indebted to the reviewers for providing us with detailed and constructive comments and
suggestions.
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