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STABILITY IN DISTRIBUTION AND STABILIZATION OF
SWITCHING JUMP DIFFUSIONS*

Ky Q. TRAN'®, DANG H. NGUYEN?® AND GEORGE YIN?**

Abstract. This paper aims to study stability in distribution of Markovian switching jump diffu-
sions. The main motivation stems from stability and stabilizing hybrid systems in which there is no
trivial solution. An explicit criterion for stability in distribution is derived. The stabilizing effects of
Markov chains, Brownian motions, and Poisson jumps are revealed. Based on these criteria, stabiliza-
tion problems of stochastic differential equations with Markovian switching and Poisson jumps are
developed.
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1. INTRODUCTION

This work focuses on stability in distribution of a class of jump diffusions with Markovian switching. The
underlying process is a two-component process (X (-),«(+)), where X () describes the jump diffusion behavior
and «(-) is a continuous-time Markov chain having a finite state space. Recently, such a class of stochastic
processes has received much attention in various settings for different domain of applications; see [13, 20] and
references therein for comprehensive treatments and coverage of switching diffusions and [7, 9, 14-16, 18] for
more recent progress in the fields.

Why is the consideration of stability in distribution important; why is it necessary? It is well known that in
deterministic systems of differential equations, an important starting point is examination of equilibria. When
one considers stochastic systems, in lieu of the equilibria, one often has to begin with stationary distributions.
Thus to some extent, stationary distributions are frequently the primary concerns, especially when the systems
have no equilibria. In addition, the stability in distribution is closely related to the concept of weak stability,
which is a term used by Wonham [17]. Such weak stability concept implies the so-called recurrence under suitable
conditions. That is, for a stochastic system given as the solutions of a differential equation, starting from a point
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outside an open set with compact closure, one wish to see if the trajectories will return to the open set in finite
time infinitely often.

Most of the work in stability of switching diffusions and switching jump diffusions to date are concerned
with stability in probability, moment stability, or almost sure stability, in which = 0 is a trivial solution (an
equilibrium point) to the corresponding equations and any other solution will converge to trivial solution in
probability, in the pth moment for some p > 0, or in the almost sure sense. In contrast, we are interested in
the cases that there is no equilibrium point of the differential equation, but there is still stability in the sense
that all solutions converge in distribution to some probability measure. In [3], the authors considered stability
in distribution of a semi-linear stochastic differential equation with Markovian switching of the form

AX () = A(a(t) X ()dt + o (X (£), a(t))dw(t),

where w(-) is a standard Brownian motion. In an important development [24], Yuan and Mao provided sufficient
conditions guaranteeing stability in distribution for nonlinear Markovian switching diffusions of the form

dX () = b(X (1), a(t))dt + o (X (1), a(t))dw(t), (1.1)

where «(-) is a finite-state Markov chain. Subsequently, in the work of [8], Nguyen provided much weaker
conditions of by using localization arguments to further improve the criteria for stability in distribution. In [19],
the authors have considered stability in distribution of a switching jump diffusion

(1), a(t))dt + o (X (t), a(t))dw(t) + dJ(¢),

dX( ) = b(X )
J() = / / g(X(s7), a(s7),7)N(ds, dy), (1.2)

where b(+), o(+), and g(-) are suitable functions, and N(¢,-) is a Poisson measure. For existence and uniqueness
of solutions as well as the related maximum principles and Harnack inequalities, we refer to [6]. Related works
on stability in distribution of the aforementioned systems can be found in [2, 4, 5]. Some criteria for invariant
measures and stability in distribution of equation (1.1) and its generalizations with path-dependent and path-
independent switching can be found in [1, 11, 14]. We refer to [15, 16, 22, 25, 26] for related works on stability in
probability and exponential stability of equation (1.2). Recent efforts on stabilization in distribution of hybrid
systems by certain feedback controls can be found in [12, 23]|. Regarding equation (1.2), the criteria in [19] are
given in terms of the existence of a set of Lyapunov functions V(z,4) for ¢ € M, where M is the state space
of «a(-). Consequently, it is nontrivial to apply these criteria. We are not aware any work on explicit criteria
for stability in distribution of equation (1.2). In this work, our first aim is to construct a general criterion for
stability in distribution of equation (1.2). The novelty of our work lies in that in order to apply our criterion, one
need only construct at most two Lyapunov functions U(z) and V(x) and in most common cases, it is sufficient
to construct U(z) only. Moreover, we reveal the contribution of the Markov chain «(-) in the sense that equation
(1.2) is stable in distribution if 7, vims < 0 and >, vi¢ < 0, where v = (v1,...,vy,) is the stationary
distribution of a(-) and = (n1,...,7m)" and ¢ = ((1,...,(m) " are certain vectors. Another distinct feature
of our work is the construction of an explicit and easily verifiable criterion for stability for switching jump
diffusions.

Treating stability of hybrid systems, motivated by [3, 12, 21, 23, 26], the following question arises. Can we
apply feedback controls (or perturbations using Brownian motions and/or Poisson jumps) to stabilize a given
system? Moreover, if a given system is not regular (not having global solutions), can we design certain feedback
rules to regularize and stabilize it? To the best of our knowledge, these topics have not been well understood for
stability in distribution. Using the criteria for stability in distribution developed in this work, we address these
questions. We show that given any scalar switching differential equations, one can design feedback strategies
so that the resulting switching jump diffusions are stable in distribution. Nevertheless, the multi-dimensional
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counterpart is rather challenging. By designing a novel treatment, we are able to treat a wide class of such
stochastic dynamic systems so that we can regularize and stabilize the systems in distribution.
The contributions of our work in this paper can be summarized as follows.

(1) We focus on nonlinear stochastic differential equations with jumps and Markov switching, and provide
sufficient conditions that are substantially weaker than the existing results and extend and further improve
the results in [8].

(2) We give insight on how each of the components, namely, Brownian motion, switching, and jump process
can contribute in a positive way to stability in distribution.

(3) We further obtain strategies to stabilize randomly switching ordinary differential equations.

(4) When the jump disappears in the dynamic systems, our results cover that of switching diffusions; when
the Brownian motion also disappears, our results cover that of switching differential equations.

The rest of the work is organized as follows. Section 2 presents the problem formulation. Section 3 proceeds
with criteria for stability in distribution. Section 4 develops strategies for stabilization in the sense of stability
in distribution for the stochastic dynamic systems that we are interested in. Section 5 provides some examples
for illustration. Finally, Section 6 concludes the paper with a few more remarks.

2. FORMULATION

We begin this section with the following notation.
Notation. Let R, = [0,00) and N be the set of positive integers. Let C? (Rd,R+) be the set of all functions
V : R? — R, which are twice continuously differentiable on R¢ with C? (RS,R” being the set of functions
V:R? - R, that are twice continuously differentiable on Rg = R¢ \ {0}. For two real numbers ¢y, ca, ¢1 V o
denotes max{cy,cz}. For a matrix A € R4*% AT denotes its transpose. For a matrix A € R?¥?  its trace
norm is given by |A| = \/tr(AAT), while I; denotes the d x d identity matrix. For x = (21,...,24)" € RY, its

Euclidean norm is denoted by |z| = (2?21 ) "2 For a nonempty set I' C R%\ {0} and a probability measure

7 defined on I', denote by I', the family of all bounded positive functions h(y) on I' with [, In [A(y)]7(dy) < oc.
We work with a complete filtered probability space (2, F,P,{F:}) with the filtration {F;} satisfying the
usual condition (i.e., it is right-continuous and Fy contains all the null sets). Assume that the Markov chain
a(-) and the d-dimensional standard Brownian motion w(-) are defined on (£, F,P, {F:}). Moreover, «(-) and
w(-) are {F;}-adapted and independent.
Suppose «a(-) takes values in M = {1,...,m} with the generator Q = (¢;;) € R™*™, where m € N. Hence,
a(-) is described by a transition probability specification of the form

2.1
1+ gt +o(At)  if i=j. (2.1)

P{a(t + At) = jla(t) = i} = {

Note that ¢;; > 0if i # j and 3\ ¢;; = 0 for any i € M.

Let T' be a subset of R?\ {0} that is the range space of the impulsive jumps. For any subset B in I', N(t, B)
counts the number of impulses on [0,¢] with values in B, b(-,-) : R? x M+ R% o(-,-) : R x M +— R? x R?,
and g(-,-,-) : R x M x I' = R? are suitable Borel functions under some precise conditions to be specified later.

Consider the dynamic system given by

AX (1) = b(X (1), a(1))dt + o (X (8), a(t))dw() + dJ (1)
J() = / / g(X(s7), a(s7),7)N(ds, dy), (22)

with initial condition X (0) = g, «(0) = ig, where N(t, B) is a Poisson measure such that the jump process N ()
is independent of the Brownian motion w(-) and the switching process «(-). The compensated Poisson measure
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is defined by

N(t,B) = N(t,B) — XMtn(B) for BCT,
where A € (0, 00) is known as the jump rate and 7(-) is the jump distribution with 7(I") = 1. We have used the

set up as in [22].
We define an operator G as follows. If V : R? x M + R satisfying V(-,i) € C? (Rd, R+) for each i € M, then

(GV)(x,i) = %tl‘(o’T({E,i)sz({E, i)o(x, Z)) + Vi(z,9)b(z, i) + QV (z, ) (4)
A [ WVt glaiin). ) = Vil

where

N OV (x,1) oV (x,1) N 0PV (i)
Vm(m,z)—( Ox1 7 Oxyg )’ Vm(m,z)—( 0x1,0x; )dxd’

and QV (z,-)(i) = > ;e 05V (2, j). For notational simplicity, we also write (QV)(z,1) = >_;c 0 ¢V (2, ])-
Thus,

(QV)(z,i) = Z qi;V(x,7) = Z ai; (V(z,j) = V(z,i)) for (z,i) € R? x M.
JEM JEM, j#i

Next, we introduce the functions b: R x RIx M - R, 7 : R x R¢x M = R? and g : R x RY x M xI' — R?
by

b(SC,y,i) = b(fE,Z) - b(yvl)7 E(Iayai) = O—(I7Z.) - J(yai)a
g(w,y,4,7) = 9(2,1,7) — 9(9,3,7), (2,9,7,7) €RT x RY x M xT.

We also define an operator G as follows. If U : R x M ~ R satisfying U(-,i) € C? (Rd7R+) for each i € M,
then

(GU)(x,y,1) = %tr(ET(x, Yy ) Use(x — y, 1) (2, y, z)) + Uy(x —y,4)b(z,y,1)

+HQU)(z —y,i) + A/F[U(fv —y+9(2,9,4,7),1) = Uz — y,4)]m(dv).

To proceed, we pose the following conditions.

(A1) For each n € N, there exists a constant K,, > 0 such that
[b(z,4) = by, )| + [o(2,8) = a(y, i) + / l9(a,i,7) = 9y, i, 7)Im(dy) < Knlz —y|
r

whenever |z| V |y| < n and i € M. Moreover, sup;ca [r [9(0,,7)|m(dy) < oo.
(A2) The Markov chain «(-) is irreducible. That is, the system of equations

r@ =0, Z%’:l

iEM

has a unique solution v = (v1, ..., v, ) satisfying v; > 0 for each i € M.
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(A3) There exist a function V(-) € C*(R%, R ), constants 7; s and 75 > 0 for (i,0) € M x (0,1) such that

lim V(z)= oo,

|z| =00
(GVO) (i) < n; sV (x) + 75 for (x,i) €REx M, &€ (0,1),
lim, Mi,5/6 = n; and ;:AVmi <0,

)’

where v = (11, ...,v,) is given in condition (A2) and V°(-) = (V(-)
,0) € M x (0,1) such that

(A4) There exist a function U(-) € C?*(R%,R;) and constants (; 5 for (i

U(0) =0, |i‘n>flU(x)>0 for any r >0,

(GU°)(,9,1) < GisU°(x —y) for (z,,1) ERTXRI XM, z#y, (2.3)
lim G;5/6 = ¢; and ;:4 viGi <0,

where US () = (U(-))".

Remark 2.1. Condition (A1) essentially is a local Lipschitz condition. It guarantees that for each (zo,io) €
R% x M, equation (2.2) has a unique solution (X*%(.), af(-)). Using condition (A3), we show that this solution
is global. That is, it is regular (see Def. 2.4). In order to verify each of conditions (A3) and (A4), one need
only find one Lyapunov function. In condition (A2), v = (v4,...,vy) is the stationary distribution of «(+). The
contribution of the switching process a(-) is revealed explicitly via its contribution to the sums .\, vin; and

i ViGi-

Remark 2.2. Suppose g(-, -, -) = 0. Then equation (2.2) is simply a switching diffusion. Let V(-) € C?*(Rd,R,),
a constant ¢ > 0, and (11,...,7mm)" € R™ be such that V(z) > 1 for z € R?,

lim V(z)=o00, (GV)(x,i) <niV(z)+¢ for (x,i) € RE x M, Z vin; < 0.

|z|— 00 e
We claim that condition (A3) holds. Indeed, for ¢ € (0,1),

(GV)(a,i) = 5V (@) (GV) (i) + Dy ()| (@)o (e, i)

< 57)1“/5(%) +d¢, (z,i) € Rg x M.
Hence, it is clear that condition (A3) is satisfied. Similarly, condition (A4) holds if there exist U(-) € C%*(R¢,R;)
and (G-, ¢m)" € R™ be such that U(0) =0, ‘igf U(z) > 0 for any r > 0 and
Z viG <0, (GU)(z,y,1) < GU(z —y,i) for (z,y,i) € R x RY x M,z #y.
ieEM

Remark 2.3. Assume (Al) and (A2). Suppose condition (A4) holds with U(x) = |x| and there exist K > 0
and r € (0,2) such that

lo(z,3)] < K(|z|" +1) for (z,i) € R x M. (2.4)
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Then condition (A3) is also satisfied. Indeed, letting y = 0 in (2.3) yields
(GU®)(w,0,4) < ¢ sU%(z) for (w,i) € RE x M, (2.5)
where U’ (x) = |z|® for x € R? and § € (0,1). Direct computation yields that
Ul (z) = 8|2|° %2, Uly(x) =0[|x]°2Is+ (6 — 2)[z[°*22z "], 2 €R]. (2.6)

In view of (2.4) and (2.6), for § < 2 — r, there exists a constant r; > 0 such that

Lr(E (2,0, UL, ()72, 0.) > Lir(oT (2, UL, (o, ) ~ 2 o
U (2)b(x,0,1) > US(x)b(z, i) — 5‘5
and
3 09 +9(2.0.1.9) = U @)l e(a)
> [+ g6ei )| = falir(a) = A | 1a(0..7)Px(a) (2.8)
= [ 107+ glasiom) = U @)l(dn) = 5

for any (z,i) € RS x M. Tt follows from (2.5), (2.7), and (2.8) that
(GU®)(x,4) < GisU°(x) +1s for (x,i) € RE x M.

Thus, condition (A3) is satisfied with V(z) = U(z) = |z| and n; 6 = (;,5 for (i,) € M x (0,1).

The regularity and stability in distribution of the process (X(-), a(-)) are defined as follows. A system being
regular essentially means that it has no finite explosion time, whereas stability in distribution is a weaker sense
notion of stability for a stochastic dynamic system.

Definition 2.4.
(a) The process (X (-), a(+)) with initial data (X (0), «(0)) = (0, %0) is said to be regular if for any 0 < T' < oo,

IP’( sup |XToo(t)| = oo) =0.
0<t<T

(b) The process (X(-),a(-)) is said to be stable in distribution if it is regular and there exists a probability
measure 7(dx x {j}) on RY x M such that its transition probability p(t,zo,io,dr x {j}) converges weakly to
m(dz x {j}) as t — oo for any (zo,4p) € R? x M. equation (2.2) is said to be stable in distribution if (X (), ("))
is stable in distribution.

To study the stability in distribution of equation (2.2), motivated by [24] and [19], we introduce properties
(P1), (P2), and (P3) as follows.

Definition 2.5.
(a) Equation (2.2) is said to have property (P1) if for any (z¢,i9) € R? x M and any ¢ > 0, there exists a
constant R > 0 such that

P(|xX™0 (1) 2 R) <= for t>0.
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(b) Equation (2.2) is said to have property (P2) if for any € > 0 and any compact subset D of R%, there
exists T = T'(e, D) > 0 such that

1P’(|X””°*i°(t) — Xwoio(¢)| < 5) >1—¢ for t>T,

whenever (zg, yo,%) € D x D x M.
(c) Equation (2.2) is said to have property (P3) if for any 7' > 0, any € > 0 and any compact subset D of
R?, there exists a constant R > 0 such that

P(‘Xzo’io(tﬂ <R forall te [O,T]) >1—¢ for (zg,ig) € D x M.

Remark 2.6. Properties (P1) and (P2) are essentially those used in [24] and [19]. Nevertheless, in [24] and [19],
the authors assume that the drift and diffusion coefficients satisfy the linear growth condition, which guarantees
that property (P3) holds (see [24], Eq. (3.10), p. 282). Therefore, property (P3) is not stated explicitly in the
aforementioned references. In this paper, we drop the linear growth condition, hence, we need property (P3).

3. CRITERIA FOR STABILITY IN DISTRIBUTION

As a preparation of the subsequent study, we first state a lemma, which is more or less a restatement of the
Fredholm alternative; see Lemma A.12 of [20] for a proof.

Lemma 3.1. Under condition (A2), for any £ € R™, Qc = £ has a solution ¢ € R™ if and only if v€ = 0, where
v is the stationary distribution associated with Q).

Lemma 3.2. Assume (A1)—(A3). Then (X (-),a(-)) with initial data (X(0),@(0)) = (x0,40) is regular for any
(x0,i0) € R x M. Moreover, equation (2.2) has properties (P1) and (P3).

Proof. The proof is divided into three steps.
Step 1: Consider the function

Wiz, i) = (1 —8¢)V(x), (x,i) € RYx M,

where ¢1,ca, ..., ¢y are constants to be determined, ¢ € (0, 1) is sufficiently small so that 1 — d¢; > 0 for each
i € M. We claim that we can choose ¢1, ¢a, ..., ¢m, d > 0,7 > 0, and 5 > 0 such that (GW)(x,i) < —W (z,4)+r
for (x,i) € RE x M.

Indeed, we have

(GW)(w,i) = (1= 3e)(GVO) (i) = S ayVO(@)(es — i)
1 TAnIEM S (3.1)
=46(1 - d¢;) (5(QV‘S)($,Z') — V() Z qij*f, 5;).
Jj#L,jEM '

Recall that 3 ¢;; = 0 for each i € M. We obtain
JEM

cj — ¢ ci(cj —¢i)d
> qz’jﬁzzt]ijq—k Z qz‘jzlj_iéci

JAiLIEM T jeM j#ijeEM (3.2)
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It follows from (3.1), (3.2), and condition (A3) that

(GW)(z,4) < (1 — d¢;)V?(x) (m 3 qijes + 0(5)) + (1= de)rs, (z,i) € RE x M. (3.3)
JjEM

By Lemma 3.1, the equation

Qc = (77177727~-~777d)T —( Z vin;) 1

JEM

has a solution ¢ = (c1,¢2,...,¢m) " € R™, where 1 = (1,1,...,1)T € R™. The numbers ¢, ¢, ..., ¢, We just
found are used in the definition of W (-, -). Thus, we have

i — Z qijC; = Z v;n; for i€ M.
JEM JEM

Using this representation in (3.3), we obtain

(GW)(w,1) < W (2,0)( X vymy +0)) + (1= dei)rs, (w,0) € RE x M.
JjeEM
Since ) vjn; <0, we can choose § >0, > 0, and r > 0 so that
JEM
(1/2)Vo(z) < W(x,i) < 2V(x), (GW)(z,i) < —BW (z,i)+r for (z,i) € RS x M. (3.4)

In view of (3.4), we can find a large R > 0 such that

(GW)(x,i) < W(z,i) for |z|>R,ie M, inf W(z,i) 00 as R— oo.
|z|>R,ieM

By using a standard argument, we can show that the process (X (-), «(+)) with initial data (X (0), «(0)) = (o, i0)
is regular for any (zo,i9) € R? x M; see Theorem 3.4.1 of [10].

Step 2: Let (x0,40) € RY x M and & > 0. To establish property (P1), we use the same steps as in the proof
of Lemma 4.1 of [24]. A sketch is given as follows. By using (3.4) and the Dynkin formula, we can show that
sup,so B[V (X*00(t))| < oo. Let C' = sup;» E|[V° (X0 (t))| and Ry > C/e. Since limy| oo V() = 00, there
exists a constant R > 0 such that

V%(xz) > R, whenever z > R.

This together with the Chebyshev inequality implies

P(‘Xxo’io(t” > R) < P(Vé(Xmo,io(t)) > Rl) < E|V5(X:Co,i0(t))‘ <
Ry Ry

Thus, equation (2.2) has property (P1).
Step 3: Noting Remark 2.6, because no linear growth is assumed, we need to establish property (P3). To
this end, let T > 0, € > 0, a compact subset D of R, and (zg,i9) € D x M. Without loss of generality, we
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can suppose the function V() in condition (A3) satisfies V(-) € C2(R% R, ). Otherwise, we can work with a
function V € C?(R%, Ry ) with V(z) = V() for |z| > 1. Define

T = inf{t > 0: | X*(¢)] > n} for n€N.

Since (X0 (), a(-)) is regular, 7, — 0o almost surely as n — co. In view of (3.4), there exists a constant
K > 0 such that (GW)(x,i) < K/(2T) for any (z,i) € R x M and W (x,i) < K/2 for any (z,i) € D x M.
Then the Dynkin formula yields

T AT

E[W (X700 (1, A T), a0 (1, AT))] = W (z0,i0) + E / GW (X700 (5), 00 (s))ds

; (3.5)
< K/2+TK/@2T) =K.

Let p, = min V°(z). By condition (A3), p, — 00 as n — oo. The first estimate in (3.4) and (3.5) imply

|z|=n
(1/2)pnP(, < T) < E[W (X*%(7,, AT), (7, AT))] < K.

That is, P(r,, < T) < 2K/p,. Let n = R € N be such that 2K /pr < e. It follows that P(7p < T) < ¢
Equivalently,

P(\Xmo(t)y <R forall te [O,T]) >1—e.
Note also that this estimate holds for all (zg,i9) € D x M. Thus, equation (2.2) has property (P3). This

completes the proof. O

The following lemma indicates that if zg,y0 € R?, ig € M and x¢ # 3o, then almost all sample paths of
X®osh0(t) and X¥o-%(¢) will never intersect.

Lemma 3.3. Assume (A1)—(A3). For any zo,yo € RY, ip € M and x¢ # yo, we have
P(| X7 (t) — XY (t)| #0 for any t>0) =1.

Proof. The proof is standard. It is a modification of Lemma 2.10 in [22]. We omit it for brevity. O

Lemma 3.4. Assume (A1)—(A4). Then equation (2.2) has property (P2).

Proof. Consider the function
W(z,i) = (1 —8¢))U%(x), (x,i) € R x M,

where ¢1,ca, ..., ¢y are constants to be determined, ¢ € (0, 1) is sufficiently small so that 1 — d¢; > 0 for each
i € M. We claim that we can choose ¢y, ¢a,...,¢m, 0 >0, and B > 0 such that (GW)(x,y,i) < —BW (z — y,1)
for (z,y,i) € (RY)? x M and = # y.

Indeed, we have

GW)(x,y, i) = (1= 0be,)(GU°)(w,y,4) — > iU (x = y)(¢; — ¢i)d
L J#LFEM (3.6)
=6(1 —d¢;) <§(QU5)(x,y, i) — U5 (x — Z q” 1 e, )

j;ﬁz jeM
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In view of (3.2), we have

Cj —C
Gijr—— = gijcj + O(9). 3.7
j;e%e/v( 14 jezj\/( i+ 00) (87)

It follows from (3.6), (3.7), and condition (A4) that

(ZW)(‘L:U?Z) < 5<1 - 6Cz)U6(x - y) (Cz - Z 4i;Cj + 0(6))a (a:,y,i) € (Rd>2 X M,.T 7é Y. (38)
JEM

By Lemma 3.1, the equation

Qe=(CCo i Cm) | — (Y w1

JjeEM

has a solution ¢ = (¢q,¢2, .. .,cm)T € R™, where 1 = (1,1,..., 1)—r € R™. The numbers c1,co,...,cnp We just
found are used in the definition of W (-,-). Thus, we have

G — Z QijCj = Z v;¢; for ie M.

JEM JEM

Using this representation in (3.8), we obtain

©@)(w,,0) <OW(w =y i) 5 viG; +00)), (9,0) € (B x Moz .

Since ) v;(; <0, we can choose 6 > 0 and 3 > 0 so that
JEM

(1/2)U°(x) < W(z,i) < 2U°(x), (GW)(z,y,) < —BW (z —y,1), (z,9,1) € (R)* x M,z #y. (3.9)

Let ¢ > 0 and D be a compact subset of R?. Let (z9,y0,%) € D x D x M. For notational simplicity, we
denote X (t) = XTo:t0(t), Y (t) = X¥%(t), and a(t) = a0 (t). By (2.3), there exists a constant r > 0 such that

{zeRY: |z| > e} c{z eR?: U(z) > 7). (3.10)
Let {7,,}» be the sequence of stopping times defined by
Tp=inf{t >0:|X(#) —-Y(t)| >n} for neN.

Since the solutions of equation (2.2) are regular, 7,, — oo almost surely as n — co. By Lemma 3.3 and the
Dynkin formula, we obtain that for each ¢ > 0,

E[eﬁ(tA?n,>EK£X(t ATo) =Y (AT, alt ATn))] = W (w0 — yo,40)
+E/0 P [BW (X (5) — Y(5), as)) + (GW)(X(s), Y (s), a(s))] ds.

This together with (3.9) implies

(1/2)E [eﬂ@”n)zﬂs (XEAT) =Y (tA ?n))} < 2U° (w0 — o).
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Letting n — oo gives
E[U°(X(t) - Y(t))] < 4e P'U°(wo — yo) for ¢ > 0. (3.11)
Let T' > 0 be such that
4 PTU (29 — yo) < re for (z0,90) € D x D. (3.12)

Then for any ¢ > T, we have from (3.10), (3.11), and (3.12) that

P(IX(H) - Y ()] > ¢) < P%Ué (X(t) - (1) =7)
)

E[U(X(t) - Y(t
_ B (x0 - v)
r
<e;
that is, P(|X (t) — Y (¢)| <€) > 1—¢ for t > T. Thus, equation (2.2) has property (P2). O

We are in a position to state our main results in this section.
Theorem 3.5. Assume (A1)—(A4). Then the following assertions hold.

(a) Equation (2.2) is stable in distribution.
(b) Suppose further that there exist positive constants ki, k2, and p such that

rilzP < U(z) < kolzlP for =€ RY. (3.13)

Then there exists a constant p > 0 such that E|X®0:% () — X Yo% (¢)|P converges to zero exponentially fast
as t — oo for any (vo,y0,70) € R? x RY x M.

Proof.

(a) By virtue of Lemma 3.2 and Lemma 3.4, equation (2.2) has properties (P1), (P2), and (P3). For the rest
of the proof, we use essentially the same steps as in the proof of Theorem 3.1 in [24], hence, we omit it for
brevity.

(b) Recall from (3.11) that

E[U°(X(t) - Y(t))] < 4e™PU°(zg — yo) for t >0, (3.14)

where 8 and § are two positive constants. Combining (3.13) and (3.14) yields
E|X(t) — Y (t)[?° < (4ko/k1)e Pz — yol?? for t> 0. (3.15)
Let p = pd. Then (3.15) tells us that E|X(¢) — Y (¢)|? converges to zero exponentially fast as ¢ — oo. This

completes the proof. O

Remark 3.6. Under certain conditions, Theorem 3.5 states that there exists a constant p > 0 so that
E|X 0% (¢) — X Yo% (¢)|P converges to zero exponentially fast for any (z9,vo,%0) € R? x R? x M. In this case, it
is said that equation (2.2) is asymptotically flat in the pth mean (see [3]).

Now we apply the general criterion established above to derive an explicit and verifiable criterion for stability
in distribution. This criterion is obtained when we take U(z) = V(z) = |z| in conditions (A3) and (A4). More
criteria can be constructed if we choose U(z) = V(z) = (2" Bx)'/? for some positive definite matrix B € R4*?,



12 K.Q. TRAN ET AL.

Theorem 3.7. Assume (A1)—(A2). Moreover, for each i € M, there are constants Kp(i), Ky (i), K4(i), and a
function K, (i,-) € I'y such that

(x—y) " (blx,i) — by, 1)) < Ko (i)fe — yl?,

|O'(.’E,i) - O(y,Z)‘ < KU(Z)|£E - y| ) (316)
(@ —y) " (o(2,i) —o(y, ) > > Kali)lx —y[*,
|z +g(x,i,7) —y — gy, i,7)| < Kg(i,7)|z =yl
for all z,y € RY, v €T and i € M. Define
¢ = Kp(i) + %Kg(z) — Kq(i) + )\/Fln [Kg(i,7)|m(dy) for i€ M. (3.17)

Suppose > v;¢; < 0. Then the following assertions hold.
ieEM

(a) equation (2.2) is stable in distribution.
(b) There exists a constant p > 0 such that E|X®0%0(t) — XY0:%0(t)|P converges to zero exponentially fast as
t — oo for any (xo,y0,10) € R x R4 x M.

Proof. (a) Consider the functions U(z) = |z| and U%(x) = |z|° for z € R? and § € (0,1). Direct computation
yields that

Ul(x) = 0lz|° 22, Ul (z) =6[|z[° 2Ly + (6 — 2)[z[°*zzT], =€ R

Thus,
@U)e.1) = bl — | (@ — ) B 0) + ot e~y Ty, 05 (2,0,)]
506~ 2t [le — o @ — )@ — ) T,y 07 (20.)]
o [ o=y +a@ai )| o=l Ja@)
< U =) (38000 + 5o + 56 = D) + 3 [ ([ Kylin)| = 1)mlan)).
That is,
@U@, 1,1) < GioU%(x — ) for (z,9,) € (R)? x M,z £,
where

Cio = 0K (i) + gKa(i) + g(& — 2)K4(i) + /\/F <|Kg(i,’y)‘5 — l)ﬂ(dy) for (i,6) € M x (0,1).

We have lims 0 (;,5/6 = ¢; given by (3.17) and » ;.\ i¢ < 0. Hence, condition (A4) holds. By virtue of
Remark 2.3, condition (A3) is also satisfied. Thus, by Theorem 3.5, equation (2.2) is stable in distribution.

(b) It is shown in part (a) that condition (A4) holds with U(x) = |z| for z € R?. Hence, by virtue of
Theorem 3.5, there exists a constant p > 0 such that E|X®0:%(¢) — X¥0:io(¢)|P converges to zero exponentially
fast as t — oo for any (g, yo,i0) € R? x R4 x M. O
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4. STABILIZATION OF SWITCHING JUMP DIFFUSIONS

Based on the criteria developed in the preceding sections, we proceed to investigate stabilizing effects owing
to Markov chains, Brownian motions, and Poisson jumps, respectively. Because of our work in this paper focuses
on stability in distribution, the stabilization, in fact, is in the sense of the so-called weak stabilization. Such a
term was probably first coined in the earlier work of Wonham [17].

Example 4.1. We consider equation (2.2), where conditions (A1)—(A2) and (3.16) are satisfied. Recall that

G = Kp(@) + %Ka(z) — Kq(i) + )\/ In [Ky(i,7)]|n(dy) for i€ M.
r

Note that the switching jump diffusion X (-) may viewed as m jump diffusions that interact and switch back
and forth due to the switching mechanism. These jump diffusions are denoted by XM (-), X (), ..., X(™)(.)
given by

dX()()—bX() (t), )dt+a(X()()J)dw(t)—kdﬂ“(f),
JO(t) // (XD (s7),),7)N(ds,dy), i€ M.

By virtue of Theorem 3.7, the stability of overall system (2.2) does not require all ; < 0, but only their average
Z 1/7;4-7; < 0.
ieEM
For each jump diffusion X (-) above, we can apply Theorem 3.7 to verify the stability in distribution. In
particular, suppose there exists 79 € M such that (;, < 0. Then X (io)(~) is stable in distribution. In such a case,
we can design a suitable Markov switching a(-) so that the igth subsystem is dominant and > v;¢; < 0. Thus,

ieM
the switching process a(-) can work as a stabilizing force.
Example 4.2. Consider the switching differential equation
dX(t) = b(X (¢), a(t))dt. (4.1)

Equation (2.2) can be seen as a perturbed version of equation (4.1). Suppose that there are constants K (i) for
1 € M such that

(x — y)T(b(x,i) — b(y,i)) < Ky(i)|z — yl?, (x,9,1) € R? x RY x M.
Can we add a suitable noise to equation (4.1) so that the resulting system given by equation (2.2) is stable

in distribution? The answer is positive since we can always choose o(-,-) and g¢(-,-) so that (3.16) holds. For
simplicity, we can take

o(,4) = Ai)diag(z) + C(0), g(z,i,7) = (i) — 1),
where \(i) € R, pu(i) > 0 and C(i) € R4 for each i € M. Then o(-,-) and g(-, ) satisfies (3.16) with
K, (i) = N2(3), Ka(i) = N\*(i), K4(i,7) = p(i) for i€ M,y€T.

If we choose A(i) and u(i) such that

3" wlKui) — 230 + Mp(i)] <0,

ieM
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by virtue of Theorem 3.7, equation (2.2) is stable in distribution. Thus, by adding a suitable noise to an unstable
system, we can make it stable in distribution.

Consider a switching ordinary differential equation given by equation (4.1). In [21], the authors have shown
that if the solutions of equation (4.1) are not regular, one can add a feedback control term, which is of the
form o (X (¢), a(t))dw(t) to suppress the finite explosion time. Then to ensure stability (in the sense of almost
sure exponential stability), one can add another feedback control (X (t), a(t))d@w(t). Here, a question arises
naturally: can we use the same strategy to regularize and stabilize a given system in the sense of stability in
distribution? We proceed to provide an affirmative answer for any given scalar switching differential equations.

Theorem 4.3. Consider a scalar switching jump diffusion

AX(0) = DX (0, a0t + o (X0, al0)du(t) + [ 9(X(7),alt),7)N (), s
r .
X(O) =x9 € R, Oé(O) =ig E M,
where conditions (A1) and (A2) are satisfied. Moreover,
(a) there exist constants k; > 0 and p; > 0 for i € M such that o(x,1) = Kk;b(x, ) + gz for (x,i) € R x M;
(b) there exists constants & > 0 for i € M such that

|z +g(z,i,7) —y — g(wﬂ)}ﬁ&\x*yl for (z,y,i,7) ERxRx M xT,

Z VZ( 2/4111“’1 + Aln&) (43)
1EM l

Then equation (4.2) is stable in distribution.

Proof. For (z,y,7) € R x R x M, we define

B .
h(x,y,i)(;c’_y;j) if 4y, h(z,y,i)=0 if z=y.

Let U(x) = |z| and U°(x) = |z|° for x € R and § € (0,1). Then for (z,y,i) € R x R x M and = # y,

%\ kibl, v, 1) + pa(z — y)|°

(gUé)(xvyvi) = (5|5L‘ - y|6_2(x - y)g(xayvi) + (S((ST_U’:'E - y|5_

+)\/F H‘T — y+§(w7yai7'7)|6 - ’{L‘ — y|6]77(d7)

_ (4.4)
< afe =" (o) S5 D (0= il )
1-6 A
S -).
Observe that for any a € R,
2
L0 s e (=0 1= Omipy? (L= (1= ki)

a B) Ria (1 5):‘43”/%0; = B) (K,ZG, (1 — 6)/4}1 ) + 2(1 — 5)/{22 (4 5)
S-a &mmﬁ '
T 2(1-0)k7
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This together with (4.4) implies that

el - *5/‘%1’2 -
@U%mwA><aU%x—w[“ ﬁi_Smf) L (e - )]

?

That is, (GU®)(z,y,i) < (i.sU°(z — y) where

2
(== 0)kips) 1-6 5 A/ .
G =8| gy~ 7 M 5(52. —1)| for (i,0) € Mx (0,1). (4.6)
We have
lim S0 = D72l e e M (4.7)

5—0 0 2/-6?

By (4.3), condition (A4) holds.

We proceed to verify condition (A3). Denote ho(z,7) = @ for « #0,i € M. For x # 0 we have
_ 0(0—1
(GU)(ai) = el b i)+ T a2 b ) + e
N
[l (o] = ol ]n(a)
r
<5MVV&%H—1;65MM%®F—G—5Mmmd%0—1;5ﬁ
_ . 4 .
4 [ [l 40,087 = Jal* + lg(0..7) () (4.8)
r

< §U‘5(ac) [ho(x,i) —

1-9

—— %(ff - 1)] + A/F 19(0,7,7)|°(d)

< SU°(x)Cis + 75,

ki ho(,9)|* = (1 = 8)kipiho(x, 1)

where (; 5 is given by (4.6) and rs = A [1]g(0,4,7)[°7(dv). Note that we have employed the estimate (4.5) to
derive the last line of (4.8). By condition (Al), r5 < co. By (4.7) and (4.3), condition (A3) is satisfied. Thus,
by virtue of Theorem 3.5, equation (4.2) is stable in distribution. O]

Remark 4.4. By virtue of Theorem 4.3, we can choose constants k;, u;, and &; for ¢ € M to regularize and
stabilize equation (4.1). That is, under suitable design, arbitrary ordinary differential equations of the form
(4.1) can be regularized. Moreover, it is possible to regularize and stabilize equation (4.1) by using the feedback
control o (X (t), a(t))dw(t) only. That is, we can take g(-,-,-) = 0.

Next, we address the question of stabilization of multi-dimensional systems. Using the idea as in [21], we add
two feedback terms, one of them regularizes the system and the other ensures the stability. Nevertheless, when
such stochastic feedback strategies are used, we cannot find a function U(-) to verify condition (A4). Hence, a
new approach is needed to establish property (P2).

Consider equation (4.1) on R?. We pose conditions to ensure the stabilization. Assume that the function
b(+, 1) is locally Lipschitz continuous for each i € M with the left-side Lipschitz coefficient by, (-) defined by

b (r) = sup (& =) " (b=, §) — by, 1))

5 , r>0.
2|V |y| <r@y,icM |z —y



16 K.Q. TRAN ET AL.

Suppose there exists a differential function b : R, [1,00) satisfying

(BO) lim, o0 b(r) = o0;
(B1) there exists a constant c¢g > 0 such that

d~ ~
0< rﬂb(r) < cob(r), r>0;

(B2) by(r) < =(b(r))? for r > 0.

[

Remark 4.5.
(a) If b(-,-) has a polynomial growth together with its left-side Lipschitz coefficient bz (-), we can choose

b(r) = ¢(r™ + 1) for some ¢ > 0 and n > 0. Particularly, if b,(-,7) is differentiable and its gradient has a

polynomial growth for each (i, ), then we can choose b(r) = ¢(r™ + 1) for some ¢ > 0 and n > 0.
(b) We slightly modify the proofs below, to show that we can in fact, improve (B1) by using (B1’) below.

(Bl’) there eXiStS a constant 60 S (O, 1/4) such that
1-6 d ~ ~
O<’[’ 0*b(7)<C0b(7), 1 >O

With this improvement, we can find Z() if b(-,-) and its left-side Lipschitz coefficient are bounded by
c(e(‘w|+1)50/2) for some constant ¢ > 0. However, to ease the exposition, we impose (B1) instead of (B1’).
Whether or not we can stochastic stabilize equation (4.1) if b(+,-) or bz (-) has an exponential growth rate is an
open question.

Now we assume that we can find a function b(-) satisfying assumptions (B0)—(B2). We will show that it is
possible to construct two stochastic controls through two independent scalar Brownian motions to regularize
and stabilize equation (4.1).

Consider the following system where the set of real numbers {u;}ieaq is to be specified later:

dX(t) = b(X(t), a(t))dt + B(X (1)) X (t)dw(t) + pa(n X (t)dw (),
b

X(0) =20 € RY, a(0) =ip € M, B(x)=b(|z]). (4.9)

where w(-) and w(-) are two independent (one dimensional) Brownian motions. In the rest of this section,
we suppose that assumptions (B0)—(B2) and condition (A2) hold. Moreover, we work with a fixed value of
5 € (0,1/4].

Lemma 4.6. Equation (4.9) has properties (P1) and (P3).
Proof. Let V(x) = |z|?> + 1 and V°(z) = |V ()]° for z € R Then
(GV)(z,1) =22 b(z, i) + (|B2)]* + 1) |z|?, (z,i) € RY x M,

and

(GV)(x,i) = 6V () (GV)(a,0) + (s(éT_l)Vé_Z(x)(\Vx(:v)B(x)w\g + | Ve (z) piz]?)
Qbe(x,i) + (|B(x)|2 4 ,%2)|$|2 - \x|4(|B(x)|2 + M?)} (4.10)
|zl +1 (Jz? + 1)

:auﬁ+nﬂ 2(1 - 6)
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In view of (B2),

2z b(x,i) _ 1|B(x)]*x?

b(0,1)|.
@Pr1 =3 per 00
Note that
4|B(x)P|z)> 3 |z|*|B(2)? ,
Co:= s - ~ = b(0,4)] ) < 411
o= o (3R~ 2 e PO0]) <oe 1
and
2 2 2 4 2 2 2
Gakd 5 || p; || 3 |z 2
—2(1-9¢ < 1—= < u:l .
o+ 1 O 1 = T\ 2R 1) S
Note also that 6(|z|? + 1)° 21|z <2y < p21l{jz)<o} since § € (0,1/4]. As a result,
(GVO)(a,i) < p21 5V°() (Co — (& —2)ZLIB@IEY iy ¢ it g 4.12)
)@, 1) < piljai<zy + z)( Co — 5~ @12 ) x,i) € R x M, (4.

which together with assumption (B0) implies the existence of positive constants C'; and Cy independent of
{1; }iem such that

(GV)(,0) < Cy+pf — CoV(z), (2,i) € RT x M. (4.13)
Hence, condition (A3) holds. By Lemma 3.2, equation (4.9) has properties (P1) and (P3). O

The rest of the section is devoted to proving that equation (4.9) has property (P2) when p := max{y, :i €
M} is sufficiently large. Because the drift coefficient b(,-) and its left-side Lipschitz coefficient by, (-) can have
a highly nonlinear growth rate, it seems practically impossible to construct a function U(-) satisfying condition
(A4) for a general nonlinear function b(-,-). As a result, Lemma 3.4 is not applicable here. We overcome this
technical difficulty by proving a number of lemmas below.

Lemma 4.7. Let /LM = max{u; : i € M}. Then there exist positive constants C1, Ca, Cs, and X\ independent
of pM and initial data (z¢,i0) € R x M such that

E(IX®)]*+1)° < C1(1+ (1™)?) + e M(|lzo)* +1)°, >0, (4.14)

and

FX()MB(X(s))

2
T XGE+ 1)2_2;| ds < Co (14 (uM)?)t + Cs(|zo|* +1)° for any t > 0. (4.15)

E

Proof. In view of (4.13), there exist positive constants C; and Cy independent of {i;}iea and initial data
(x0,109) € R x M such that

(G2 + 1)°)(2,i) < C1 + (uar)* = Ca(|2)* +1)°, (x,i) € RY x M.
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By It6’s formula, we obtain
_ s - t_
Ee“2! (| X ()2 +1)° < (Jzo> +1)° + (C1 + (uM)?) / e“2%ds,
0

which leads to

_ Vol My2 __
eCQtE(\X(t)F + 1)5 < (|x0|2+1)5+ Cvl_%#ecﬁ.
2

Then there exist positive constants Cy and A so that (4.14) holds.
We proceed to prove (4.15). In view of (4.12), we have

E(X(®2+1)" < (jwol* +1)° + (uM)*t + 6CoE /t(lX(S)I2 +1)°ds
0
1 LX) BX(s)P?

0GR xR+ 28
which implies
5(%—25)1@ 0 'i)ﬁ‘?ﬂ)ﬂfi)i)(j)'é dsg(|x0|2+1)5+(uM)2t+600/0 E(1X(s)[2 + 1)ds. (4.16)

Then, substituting (4.14) into (4.16), we obtain (4.15) for some positive constants Co and C3 independent of
{1:}iem and initial data (zg, o). This completes the proof. O

Lemma 4.8. Suppose M(t) is a continuous martingale with M(0) = 0 and its quadratic variation [M] satisfying
E[M]; < Lp(t+ 1), where Lys is a positive constant. Then for any €1 > 0 and g9 > 0, there exists an ng =
no(Las,€1,62) > 0 such that

Mt
IE”{ t()| Sagforallthg}Zl—al.

Proof. Define events

Q, = {w: sup |M(t)|2n252/2}, n=12...

0<t<n?
By the Markov inequality and the Burkholder-Davis-Gundy inequality,

E(supg<;<nz [M(t)[?) - AE([M()],2) - 16Lys(n? + 1)
(n%e4/2)? - nte3/4 T nt )

P($2,) <

00 16Las(n241)
n=ng n4

Now, for any &1 > 0, there exists ng > 3 such that > < g1. Then

oo

P{Q\ U, Q) >1— )

n=ngo

16Ly(n? +1)

1 21—61.

n
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Note that for w € Q\ U2, Q,, we have supg<,<,2 [M(t)| < n?e2/2 for all n > ng. As a result, if w € Q\

n=ng
uee . Q,, we have for any ¢ > n that

n=no

M(t Ny +1)2
MOl N1
t NZ 2

where NV, is the greatest integer smaller than ¢. Thus, we have
M(t
P{|t()| < gy for allthg} >1—e.

This completes the proof. O

Lemma 4.9. Let Cy be given by (4.11) and

5ol 1= 20 o B@)P 2
= — 1 — = =0 4.1
Ca f;i?d{zw FOT G - e | ST 5o (4.17)

For any constants H > 1, 7 > 0,e1 > 0,69 > 0 there exists ny := nq(r, ™M, e1,e2) > 0 such that

1 t M2
}P’{t/ Loy m | BOX (s)Pds <SG +§jj‘5 )bes o> nl} >1—g (4.18)
0

or any initial data (xq,i9) € R x M satisfying |zo| < 7.
Y ying

Proof. Similar to (4.12),

: 5 120 |a|*|B(x)[”
2 §/2 <2 2.2 5/2 —
(G(al” +1)°7%) (@, 8) il qpmi<ay + 5(2° +1) [CO 2 (2 1l)

6(1—26) |=*|B(=)
M2
<)+ Ca - 8  (z2+1)20/2

(4.19)

(Cy is given by (4.17)), which is finite because lim|,|_,o B(x) = 0o. By It6’s formula, we obtain from (4.19) that

0< (|X(t)|2 + 1)6/2 §(|$0|2 + 1)6/2 + ((MM)Q + C4)t . 5(1 g 25) /0 (|§(<Z)>||2|f_(i)§2(f?§/2d8 -‘rMQ(t) (420)

where

B WO)IX6)Pdu(s) + prage | X (5)Pd(s)
Mo(t) == 5/0 (X)) + 1)1—6/2 :

It follows from (4.20) that

1/Ot | X (s)]4|B(X (s)]? 8 [(|$0|2+1)6/2+M0(t) M2+l (4.21)

<
£ )y UX()P + 1229 = 5 =29 t
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By (4.15) and the fact that B(x) > 1 for any = € R?,

CXO o [(XGEBEE)E,
= ), mwr s iE/ (X()F + 177

2
< Co(1+ (uM)?)t + Cs(|zo)® +1)°,

where Cy and C3 are constants independent of u™ and initial data (zg,ig) € R? x M. Consequently, there is
a constant Ly, = Ly, (1, u™) > 0 such that E[My]; < Lag, (1 + 1) for t > 0. An application of Lemma 4.8 to
My(t) implies that, for any €1, €9, there exists ny := ny(r, u?, 1, e2) satisfying

8 (Jzo|? 4 1)%/2 4 My(t)
P{cs( { : :

€2 .
< = A 11¢> >1— f <
=20 " < or a t_nl}_ ey if |xo| <y

which together with (4.21) implies

1 X (s)[*B(X(s) 2 G €2
P<— — for all t > >1-— 4.22
{t/[) (|X( )|2+1)2 5/2 = 4 (C4+( ) )+ 4 or a Z = €1, ( )
where Cy5 = ﬁ. Because
1 4fz[*|B(x )|2 d
we can easily derive (4.18) from (4.22). O

Lemma 4.10. Let U(z) = |z|? for x € R, Then for any (z,y,i) € R x R x M and = # v,

(Lpop>my 1 B@)* + L(y>my [ B)I?) + Colb(H)[* — 1,

@0 (i) <5

where Cg = 6 + 4¢3 and cg is given in assumption (B1).

Proof. We have

(GU)(w,y,1) = 2(x — y) " (b(x, i) — b(y, 1)) + | B(z)x — By)y|* + 1f |z — y|? (4.24)
and

2(z —y) " (b(x,7) — by, 4)) + |B(x)x — By)yl* _ 2
|z —yl? '

[z —y)T (B(x)z — B(y)y)|”
|z —y|* '

(gln U)(zayﬂ’) =

(4.25)
—2
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Recall that b: R — (1,00) is a differentiable function and B(z) = b(|z|) for 2 € R?. Suppose without loss of
generality that |z| < |y|. By the mean value theorem, we have

|B(z)z — B(y)y|* =|B(z)z — B(z)y + B(x)y — B(y)y|*
<2|B(x)*|e — y[* + 2|B(z) — B(y)*|y|*

<2l ~ o IBE) + 2l s |50 (o]~ o)’ (4.26)
<2l — yPIB)P + 2yl sup | 50| o — P
r<|yl
By assumption (B1), |y SUP,.<|y| ‘d ‘ < ¢o|B(x)|. This together with (4.26) implies
|B(z)z — B(y)yl> < 2(1+ p)le — y*(1B(2)]* + |By)[*), (4.27)
which holds for any x,y € R%. Moreover, by assumption (B2),
2(x —y) " (b, i) = b(y, 1)) < |z —yI*(|B(@)]* + |B)[*). (4.28)

Putting (4.27) and (4.28) into (4.25) yields
(GInU)(z,y,i) < 3+ 2¢)(|B(z)|* + |By)|*) — i
< (3+2¢5) (1{|x\>H}|B(9ﬁ)|2 + 1>y BW)P + Lo <my |B(@)* + 1{\y\gH}\B(y)|2) — (4.29)
C. ~
< ?6(1{|x|>H}|B($)|2 + 1> BW)PP) + Cs|b(H)|* — 17,

where Cg = 6 + 4¢§. Note that 1;, <y |B(2)]* < |b(H)|? and iy <my|B(y)* < |b(H)|2. This completes the
proof. [

Remark 4.11. Define

CsC5(Cy + (u)?)

A= 75

+ Colb(H)? = > pdw, (4.30)
ieEM

where Cj is given by (4.11),

5 s 1 — 26 [a)!|B(x)? 39
— — 1 /2 — = — = 4 2.
Ca f;‘@{fx T {CO I @re | G sa ey 0T

It is easy to see that A < 0 if we choose H and then p™ to be sufficiently large. Indeed, we can first select
sufficiently large H that €655 < mlnief{”i} and then select one p;+ satisfying

CsC5C4

2
Hix Vi 7 2
> Cslb(H)|” +
2 el C6| ( )| HS

Then we can verify that A < 0.
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Lemma 4.12. Suppose

CCs(Cy + ()2 ~
A="5 (4H§( ))+C’6|b(H)|2—Zu§VZ—<O.
ieM

For any 1 > 0 and a compact set D, there exists T = T(e1,D,A) > 0 such that

; ; 2
In | X Toso(¢) — X Yo,%0 (¢ A
P{n| ()t ()‘ <5}21—61 for t>T,

whenever (xg, yo,i0) € D x D X M. As a result, equation (4.9) has property (P2).
Proof. Let (x0,%0,i0) € D x D x M. For notational simplicity, we denote X (t) = X0 (¢), Y (t) = XYo:to(¢),
and a(t) = a'(t). By Ito’s formula and (4.29), we have

In|X(t) —Y(#)? Injzg—yol> Cs1 [*
SO ZOE ksl G [ (Lo m BOCOE + 1y oo B0 ds
(4.31)

1 [t ~ M, (t) + Ms(t
0

where
¢ - T s s) — s)Y (s ¢
M, (t) _ 2/0 (X(t) Y(t)) Tii;(_)ifis() )2 B(Y( )Y( )) dw(t), Mg(t) — 2/0 Ma(t)d@(t)~

In view of (4.27), we have the following estimate for the quadratic variation of Mj.

- B<Y<s>>Y<s>>)2 u

(4.32)

Al X))

L / ((X(t) — V()T (B(X()X(s)
0 |
<4(1+cf) / (IB(X ()] + |B(Y (5)*)ds,

which together with (4.15) and (4.23) implies that E[M;]; < Li(t + 1) for some Ly = Li(D) > 0. Clearly,
E[Ms]; < 4(p™)?t. In view of Lemma 4.8, there exists ny = na(ey, D, A) > 0 such that

M (t) + Mo(t A
P{Mg'S for all t2n2}21—61/4. (4.33)
In view of (4.18), there exists n3 = ng(e1, D, A) > 0 such that
1/t Cs(C M2 A
P f/ 1{x(s))>m} | B(X (s)|2ds < G el et B B R S (4.34)
t Jo H 5Cs
and
C5(C M2 A
M—i—u for all t2n3}21—51/4. (4.35)

1 t
P< - 1 B(Y (s)|2ds <
{t/o {1y (s)>my| B(Y (s)["ds < 5 5.
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Because of the ergodicity of «(t), there exists ng = n4(e1, D, A) > 0 such that
In|zg —yo|>2 1 (7 [A|
P{t — 3 ; ui(s)ds < - Z ,ufuq; + = forall t>ngp>1—¢e1/4. (4.36)
ieEM
Putting (4.33), (4.34), (4.35), and (4.36) into (4.31) yields

p{ X0~ v (o)
t

A
< T <0 forall t> max{ng,ng,n4}} >1—e1.

The conclusion follows. O

The following theorem summarizes our results above.

Theorem 4.13. Assume (B0)—(B2) and (A2). Let A be given by (4.30). If A < 0, then equation (4.9) is stable
in distribution.

5. EXAMPLES

Example 5.1. We consider the scalar regime-switching diffusion with Poisson jumps perturbations. Suppose
that M = {1,2} and for each i € M, there are constants \;, \;, p;, fi; such that

dX(t) = (Aa(t)X(t) + Xa(t))dt + (,ua(t)X(t) + ﬁa(t))dw(t)

5.1
+ / g(X(t7), a(t™), )N (dt, d). >

We consider equation (5.1) with \y =1, Ao = —1/2, i1 =1, fi2 = 2, N o= Ao = u1 = p2 =0, and

sinx

Q=<2§ _;‘5), A=1, gle 1) =25 41, g(e,29) = —(3/4a+3, reR

It can be seen that |z + g(z,4,7) —y — g(y,%,7)| < K4(i)|z —y|, where K4(1) = 3/2 and K,(2) = 1/4. Thus, the
assumptions of Theorem 3.7 are satisfied. The values of ¢; and ¢, defined in (3.17) are ¢ = A\ + AIn|K,(1)| =
14+1In(3/2| and (2 = Ao + AIn|K,(2)| = —(1/2) +In|1/4]. Here v = (v1,12) = (5/13,8/13). Hence, Z?Zl v ~
—0.62 < 0. Thus, equation (5.1) is stable in distribution. Moreover, by virtue of Theorem 3.7, there exists a

constant p > 0 such that E|[X 0% () — X¥0:%0(¢)|P converges to zero exponentially fast for any (zo,yo,%0) €
R xR x M.

Example 5.2. Consider a switching dynamic system given by
dX (t) = b(X (t), a(t))dt. (5.2)
Let X(0) =1, M = {1,2}, b(x,1) = 22 4+ 5 and b(x,2) = 22 — 1. Then the two subequations are given by
dX(t) = (X2(t) +5)dt, dX(¢) = (X3(t) —1)dt.

It can be seen that neither equation has global solutions. Figure 1(a) provides several trajectories of equa-
tion (5.2) with differential initial states X (0) and initial state «(0) = 1 under the same realizations of

a(r).
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FIGURE 1. (a) Trajectories of X (¢) given by equation (5.2) with differential initial states X (0)
and initial state «(0) = 1 under the same realizations of «(-); (b) Trajectories of X (t) given
by equation (5.3) with differential initial states X (0) and initial state «(0) = 1 under the same
realizations of «a(+), w(-), and N(-,-).

To regularize the system, we add a feedback control of the form o (X (t), a(t))dw(t) where o(x,i) = b(z,1).
In addition, to stabilize the system, we add another feedback control of the form i, po—) X (t7)N(dt,dy). The
resulting equation is

AX (1) = b(X (1), a(t))dt + b(X (), a(t)) duw(t) + /F Py X (£ )N(dt, dy). (5.3)
For Q = (_23 _32), we let A =2, p; = 0.5, and ps = —3/4. By using Theorem 4.3, we have
kKi=ke=1, pu=pu=0, & =15, & =025, v, =04, v, =0.6.
Consequently,

1 — 2K
Z I/i<§u+)\hl§i> ~ —0.84.
2K:

iEM v

Thus, equation (5.3) is stable in distribution. To visualize the regularization and stabilization effects of the
feedback controls as well as the exponentially contractive property of equation (5.3), we plot several trajectories
of equation (5.3) in Figure 1(b).

Note that in Figure 1(b), there are three trajectories starting from the initial values (zg,i9) = (2,1), (0, 1),
and (—2,1) under the same realizations of a(-), w(-) and N(-,-). It can be seen that each trajectory converges
to the others very fast as ¢ increases and they are almost identical for ¢ > 3.
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6. CONCLUDING REMARKS

This paper has been devoted to the study of Markovian switching jump diffusions. We have further explored
the asymptotic behaviors of switching diffusions with Poisson jumps in which there might be no equilibrium
point. The criteria for stability in distribution are established. The stabilization effects of Markov chains,
Brownian motions, and Poisson jumps are investigated. Our results offer new insight and effective treatments to
regularization and stabilization of switching jump diffusion systems. Although the paper is devoted to Markovian
switching jump diffusions, when the jump part disappear, our results cover that of hybrid systems with a
Markovian switching.

Acknowledgements. We are indebted to the reviewers for providing us with detailed and constructive comments and
suggestions.
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