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Abstract—This paper presents a novel spatiotemporal opti-
mization approach for vertical path planning (i.e., waypoint
optimization) to maximize the net output power of an ocean
current turbine (OCT) under uncertain ocean velocities. To de-
termine the net power, OCT power generation from hydrokinetic
energy and the power consumption for controlling the depth are
modeled. The stochastic behavior of ocean velocities is a function
of spatial and temporal parameters, which is modeled through
a Gaussian process (GP) approach. Two different algorithms,
including model predictive control (MPC) as a model-based
method and reinforcement learning (RL) as a learning-based
method, are applied to solve the formulated spatiotemporal
optimization problem with constraints. Comparative studies show
that the MPC- and RL-based methods are computationally
feasible to address vertical path planning, which are evaluated
with a baseline A∗ approach. Analysis of the robustness is further
carried out under the inaccurate ocean velocity predictions.
Results verify the efficiency of the presented methods in finding
the optimal path to maximize the total power of an OCT system,
where the total harnessed energy after 200 hours shows over
18% increase compared to the case without optimization.

Index Terms—Ocean current turbine, vertical path planning,
spatiotemporal optimization, model predictive control, reinforce-
ment learning

I. INTRODUCTION

MARINE hydrokinetic (MHK) energy is considered as
one of the most promising renewable energy resources

[1]. For example, high potential of electricity production exists
in ocean currents of the Gulf Stream within 200 miles of
the US coastline from Florida to North Carolina (i.e., 163
TWh/year), mostly located in the coastal areas with high
population densities [2]. The main hurdles in developing
MHK-based energy are high investment and maintenance costs
(e.g., due to hostile operating environment) and the difficulty
of integrating their produced electricity into the grid. There are
many approaches to address the high cost, such as lowering
the cost of turbine design through control co-design [3], [4] or
optimizing the operational strategy [5]. This study focuses on
maximizing the net output power of an ocean current turbine
(OCT) through optimal vertical path planning.
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Path planning is studied for many other applications, such
as unmanned vehicle trajectory optimization [6]–[9]; however,
the challenge for OCT path planning in this paper is unique
- the turbine is tethered to the seafloor through a mooring
system and treated as an “autonomous underwater vehicle
(AUV)” but with the primary role of energy generation. Given
this primary role, it is critical that the OCT maintains an
accurate spatiotemporal estimate of the ocean current profile
and navigate itself at or near the water depth with the most
intensive ocean flow. It is noteworthy to mention that the
trajectory can be planned either offline or online depending
on the application, while the spatiotemporal uncertainties in
the ocean environment create a need for real-time iterative
path optimization.

Among many approaches to address real-time vertical path
planning, extremum seeking, model predictive control (MPC),
and reinforcement learning (RL) are gaining increasing atten-
tion in recent years due to their success in both academia and
industry. These approaches can be justified with a classical
path planning algorithm, e.g., A∗ algorithm, that is extensively
studied for the autonomous vehicles’ path planning, particu-
larly the AUV [10], [11]. The extremum seeking approach is
applied to deal with the path planning for similar applications
to ours, such as airborne wind energy systems [12]–[14] and
AUVs [15]–[18]. To address the path planning for autonomous
vehicles in a dynamic environment, MPC-based approaches
are applied to determine the optimal path and operation mode
of vehicles [19]–[21]. A spatial-based path planning method
for autonomous vehicles is introduced in [22], verifying au-
tonomous driving in an obstacle-free environment and in the
presence of obstacles. For a specific application of the airborne
wind energy system, MPC-based techniques are employed to
set the optimal altitude [23], [24], in which the future wind
speeds are predicted and the output power is optimized by
changing the location of the system to access the optimal
velocities.

On the other hand, the path planning of autonomous vehicles
is applied through RL approaches considering safety, security,
and communication issues [25]. An RL-based path planning of
mobile robots with obstacles is proposed to avoid collision and
determine the optimal path through identifying environmental
spatiotemporal data [26], [27]. To realize the minimum power
consumption for plug-in hybrid electric vehicles, path planning
and energy management are addressed through an RL-based
approach [28]. However, due to the error induced by the
prediction modeling, spatiotemporal uncertainties, etc. [29],
the feasibility and robustness of these methods applied to OCT
vertical path planning are not investigated. To incorporate the
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uncertainties into the control planning frameworks, a Gaussian

process (GP) approach can be employed, such as applying

the GP for modeling probabilistic dynamics in RL [30], [31],

as well as using the numerical GP approach to model the

uncertainty associated with noisy data for partial differential

equations [32].

A vast literature is devoted to addressing an independent

task of path planning for AUV applications. For example,

an estimator is designed to predict the spatially dependent

ocean velocity, and trajectory planning is further developed

to determine the location of an AUV applied as an energy

harvester [33]. Trajectory planning of AUVs is addressed to

avoid collisions in the presence of dynamic obstacles [34] and

to reduce expected cost [35]. Transoceanic gliders treated as

AUVs are studied, aiming to a decreased battery consumption

on long-duration missions [36]. Bayesian optimization is used

to specify the configuration and location of an OCT array

to maximize harvested energy [37]; however, the research is

focused on the economic side and a more detailed and realistic

model is desired.

There exists limited literature on path planning for OCTs

operating in a turbulent environment with the absence of

human intervention (e.g., remote areas and deep-sea). A pre-

dictive methodology is nominated in the literature to design the

planner in the presence of an approach to model environment

uncertainties (e.g., the GP) and give a fair prediction from the

environment, such as the predictive approach used in similar

applications of airborne wind turbines [23] and underwater

vehicles [38]. However, the error between the predicted ocean

environment and real current conditions should not be ne-

glected, which is the main motivation to move towards the

approach relying more on the real measured data from the

oceanic environment instead of predicted data. The learning-

based approaches (e.g., the RL) can be a suitable option to

deal with path planning in the stochastic environment but

are seldom studied in the literature. Given the limitations of

the predictive approach in the previous works [23], [38], the

RL-based approach is presented to limit the error from the

prediction by directly learning from real data recorded from

the oceanic environment. Hence, a scientific gap is identified

in that the MPC approach and its dependency on the predicted

ocean environment are unknown, which motivates us to apply

the RL-based method. The performance of the learning-based

method should be then validated through qualitative studies

and performing robustness analyses.

This paper focuses on the vertical path planning of a

buoyancy-controlled OCT. An analytical and closed-form ex-

pression is developed to define the net output power model of

the OCT system, which is missing in the literature, enabling

the substantial expansion of the optimization problem. The

OCT system is treated as an intelligent agent, navigating itself

at or near the depth with the highest current velocity in the

uncertain ocean environment without human intervention. In

this regard, our work targets maximization of the output power

of the OCT through real-time vertical path planning, which

distinguishes us from the studies of maximum power point

tracking control in the literature [39], [40]. Furthermore, since

the OCT varies its vertical location at each time step, our path

Fig. 1: Schematic diagram of the studied problem. The OCT is

controlled spatiotemporally, where the optimal path is planned

through changing the depth, e.g., move from d1 = −40 m to

d2 = −50 m over one sampling time, resulting in a 300 kW
power increase.

optimization problem is different from the tidal turbine control

and optimization [41]. Two approaches (MPC and RL) are

proposed to solve the spatiotemporal vertical path planning,

which are assessed through the comparative results. Moreover,

the robustness of these two approaches to the prediction error

is analyzed.

The contribution of this study is two-fold:

• This paper proposes a precise linear model to repre-

sent the net harvested power of a buoyancy-controlled

OCT system, which includes directly generated power

from ocean currents, consumed power for stabilizing the

system at specified water depths, and consumed power

to navigate to new optimal operating depths. The linear

power model is derived based on the authors’ previous

work [42] on the nonlinear modeling of the OCT to lessen

the computational complexity.

• This paper further formulates a novel spatiotemporal

optimization problem for the OCT vertical path planning

operating in an uncertain oceanic environment to maxi-

mize the total harvested power of the system. Under this

problem formulation, an RL-based method is designed

to explore the optimal control actions, and results are

compared with an MPC-based strategy and a baseline A∗

approach.

The rest of this paper is organized as follows: Section II for-

mulates the spatiotemporal problem. Section III describes the

modeling of the ocean velocity as a function of time, location,

and the power output model of an OCT system. Section IV

presents our proposed solution methodology based on MPC

and RL. Section V presents simulation results and discussions.

Finally, section VI draws conclusions and perspectives for

future research.

II. PROBLEM FORMULATION

The schematic diagram of the studied OCT vertical path

planning problem is shown in Fig. 1. In this paper, the ultimate

objective is to maximize the OCT generated power through a

spatiotemporal optimization approach. Based on the predicted

ocean velocity, the optimal path should be determined at each

sampling time.
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Fig. 2: Proposed spatiotemporal optimization for OCT vertical
path planning. The system is controlled hierarchically, where
the upper-level is designed to enable spatiotemporal optimiza-
tion, and the lower-level is a dynamic tracking control. This
paper focuses on the spatiotemporal optimization.

To address the complexity of this problem, a novel hier-
archical spatiotemporal optimization and control framework
is proposed, as shown in Fig. 2. The ocean velocity is first
modeled with the GP method, and the forecasted velocity
is used to calculate the output power of the OCT system.
The OCT output power P is received by the spatiotemporal
optimization at each time step in the upper-level, while the
optimal water depth z∗ as a set-point is determined accordingly
for the lower-level controllers. The lower-level control tracks
the prescribed set-points from the upper-level and adjust the
turbine dynamics.

We focus on the upper-level spatiotemporal optimization in
this paper, assuming that the lower-level control exists and
follows the optimal path found through the spatiotemporal
optimization. The major goal of the proposed approach is
to plan the vertical path that maximizes the harnessed power
from the OCT (i.e., minimize the difference between the rated
power as the maximum output power of the system and the
real output power), subject to the operational constraints of
the OCT system and environmental model. The spatiotem-
poral optimization problem and constraints are formulated as
follows:

OP : u∗(p) = arg min
u(p)

p+T−1∑
i=p

[Pr − E(Pnet(u(i|p), v∗(u(i|p), i|p))]

(1a)
subject to

v∗(u(i|p), i|p) ∼ f(z, t) (1b)

umin ≤ u(i|p) ≤ umax (1c)

u̇(i|p) ≤ u̇max (1d)

where u(p) , [u(p|p), ..., u(p+T −1|p)] denotes the decision
variables vector, the optimal finite-horizon decision variables
sequence u∗(p) , [u∗(p|p), ..., u∗(p+ T − 1|p)] is computed
as the solution of the optimization problem. The predicted
velocity is denoted by v∗(u(i|p), i|p), the rated power is

denoted by Pr, the net output power is denoted by Pnet, the
expected power is denoted by E(Pnet(.)), the minimum and
maximum allowable decision variables are denoted by umin

and umax, and the maximum limit on the slew rate is denoted
by u̇max. Here, constraint (1b) shows a model to predict the
ocean velocity over the prediction horizon; also, constraints
(1c) and (1d) limit decision variables and the corresponding
slew rate. Note that the decision variable is defined as the
operating depth of the OCT system z in our spatiotemporal
optimization problem.

To be brief, at the lower-level, mechanical and electrical
controllers are considered. The control inputs of the mechan-
ical controller (i.e., flight controller) are the two ballast tank
fill fractions (Bf is the fill fraction of the forward tank and Ba
is the fill fraction of the aft tank) and the electromechanical
torque Tem. The control inputs of the electrical controller (i.e.,
generator controller) are the electromechanical torque Tem,
generator current I , and rotor angular speed ω. We develop
controllers for the lower-level with a full turbine dynamics for
a similar OCT system [39], [43]–[45]. To better understand
the dynamic and linear model of the OCT system, we briefly
review the OCT model here, and the readers are referred to
the authors’ previous works [42], [45] for details.

The investigated OCT system is represented by 14 states
x = [u v w pb pr q r x y z φb φr θ ψ], consisting of the
linear velocity of the OCT body [u v w], the angular velocity
of the OCT body [pb q r], the position of the OCT body
[x y z], the Euler angles of the OCT body [φb θ ψ], and
the angular velocity and rotation angle of the rotor [pr φr].
This system is described with seven degree-of-freedom (DOF)
equations of motion as discussed in [46], including six-DOF
motion of the OCT body and one-DOF rotation of the rotor
about the x-axis of the body frame. The flight controller of
our previous work is designed subject to the linear model
of the OCT system with the main objective of following
the optimal path with a minimized error. To formulate the
linear model of the OCT system, the system response is
linearized about the equilibrium point specified for a specific
flow speed and desired operating depth with the corresponding
controller inputs. During this process, the rotor rotation angle
state φr is eliminated by averaging the effects of φr over
one rotor rotation. As mentioned earlier, our main focus is on
the upper-level spatiotemporal optimization assuming that the
flight controller is able to follow the optimal depth. A feasible
vertical path for the OCT system is ensured by introducing
the primary constraints of allowable operating depth and limit
on the slew rate to the optimization problem.

III. ENVIRONMENT AND OCT MODELING

The uncertainties in the ocean current velocity field are
addressed, and the future ocean velocity is predicted that
is further used in the spatiotemporal optimization. The net
generated power of an OCT system, which is a function of
the ocean velocity, is then modeled in detail.

A. Statistical Ocean Current Shear Profile Characterization
The ocean velocity field varies with time in a 3D space.

However, moored OCTs can primarily vary their vertical lo-
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cation (i.e., depth), and current shear is most prominent in the
vertical direction. Therefore, the ocean velocity’s dependence
on both time and water depth is of primary importance;
in other words, the ocean velocity should be determined
at specific times t and operating depths z. The observed
(recorded) ocean velocity data are represented as:

Vn×m =

v(z1, t1) ... v(z1, tm)
...

. . .
v(zn, t1) ... v(zn, tm)

 (2)

where n and m are the numbers of the discrete depths and the
time samples, and v(zi, tj) is the recorded ocean velocity at
zi and tj . Matrix V includes n×m recorded ocean velocities.

Let Z denote the domain of allowable ocean depth choices,
and T represent the temporal space. The goal here is to model
ocean current velocity at depth z ∈ Z and time t ∈ T , by
constructing a function f : Z × T → R whose output is a
predicted velocity. The ocean velocity and especially the ocean
turbulence are usually modeled with probability distributions,
including log-normal distribution [47] and Burr distribution
[48]. In this paper, different methods for modeling the velocity
are developed and compared, as shown in Table I. Linear
regression, regression trees, support vector machines, and the
GP are compared and quantified using root mean square error
(RMSE), mean square error (MSE), and mean absolute error
(MAE), by assuming 70% of the recorded velocities as a
training set, 15% for validation, and 15% for testing. The GP
modeling shows the best performance and is briefly introduced
in the following.

Gaussian Process Model: The GP is a probabilistic approach
used to define a prior probability distributions over latent
functions directly, which is extensively applied in wind speed
forecasting [23], [49], [50] and ocean current flow velocity
prediction [51], [52]. To predict the ocean current velocity,
the GP model can be addressed through either a pure learning
approach by finding the parameters for the Gaussian pre-
dictive distribution [51] or combining the laws of physics
(e.g., nonlinear dynamics described by the partial differential
equations) with the learning approach and propagating the
uncertainty through time with the time-stepping method [32].
We proceed with the first approach when constructing the
GP model through learning from the observed velocity, while
the latter is beyond the scope of our study and calls for
a dynamic nonlinear model to describe the ocean current
velocity. Another potential approach for modeling the ocean
current flow velocity is to develop a physics-based deep neural
network to learn the spatiotemporal features of the data [53],
but this is not the focus of the current study.

To approach the real-world application and given that an
ADCP will likely be installed just upstream from a turbine,
an online learning approach that assumes water measurements
velocities are available throughout the water column is used
to predict the ocean current velocity. The aforementioned
online approach deals with a finite size of input data to avoid
the scalability issue as suggested in [51]. It is worth noting
that the scalability of the GP model is well studied in the
literature, proposing several precautions to avoid this issue,

TABLE I: Comparing different methods for modeling ocean
velocities. Results are quantified by RMSE, MSE, and MAE.

Algorithms RMSE MSE MAE
Linear regression 0.0369 0.0014 0.0297
Regression trees 0.0614 0.0038 0.0302

Support vector machines 0.0232 0.0005 0.0205
Gaussian process model 0.0031 9.6× 10−6 0.0022

e.g., a sparse representation to recursively update the GP [54]
or using a stochastic variational inference approach [55]. The
computational complexity is intensified for our application due
to its nature for a long-term and persistent operation when the
size of input data increases. Hence, the prediction is generated
according to a fixed-size rolling window of the observed ocean
current velocity, which is accordingly rolled to complete the
prediction over the prediction horizon, thereby removing the
old data by the arrival of a new observation in the online ap-
plication to maintain a fixed-size window. Since the accuracy
degrades for predicting distant data when proceeding with a
fixed GP model, the GP model is periodically regenerated.

Define x as the input set of the recorded ocean velocity
associated with the target ocean velocity of v. The GP model
with mean m(x) (i.e., encodes the central tendency) and
covariance k(x,x

′
) (i.e., denotes the shape and structure

between any two input sets of x and x
′
) is defined as:

f(x) ∼ GP(m(x), k(x,x
′
)) (3)

The ocean velocity is predicted as v = f(x) + ε, while ε
denotes a Gaussian distribution N (0,σ2). The joint distribution
over the input set x and a prediction of the target ocean
velocity v∗ is defined as [56]:[

v
v∗

]
= (

[
f
f∗

]
+

[
ε
ε∗

]
) ∼ N (0,

[
Kv k∗
kT
∗ k∗∗ + σ2

]
) (4)

where f∗ , f(x∗) shows the latent function based on a new
input vector x∗ with corresponding noise ε∗. v denotes an
output set of the ocean velocity. Define Kv = k(x,x); k∗ and
k∗∗ are calculated as:

k∗ = [k(x∗,x1), k(x∗,x2), ..., k(x∗,xm)] (5)

k∗∗ = k(x∗,x∗) (6)

To represent the GP modeling, the mean m(x∗) and covari-
ance σ2(x∗) are defined as follows:

m∗ , m(x∗) = kT
∗K

−1
v v (7)

σ2
∗ , σ2(x∗) = k∗∗ − kT

∗K
−1
v k∗ + σ2 (8)

Finally, the GP model for predicting new ocean velocities
is determined using mean and covariance in (7) and (8):

f∗ ∼ GP(m∗, σ
2
∗) (9)

B. Mathematical Model of OCT Output Power

The output power of an OCT with variable blade pitch
is investigated numerically in [57], and we use these rotor
performance characteristics in this study. These model param-
eters are for a 700 kW OCT with a single 20 m diameter
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variable pitch rotor. This OCT model is extended to include
two variable ballast tanks, and a 607 m long mooring cable
that attaches to the seafloor at a depth of 325 m [42]. These
model parameters roughly follow the prototype systems from
IHI Corp. [58], [59] and the University of Naples [60], but with
a single rotor and variable ballast tanks sized to operate at a
depth of 50 m when half filled with ballast water at the Gulf
Stream’s mean flow speed off Southeast Florida of 1.6 m/s.
The nonlinear OCT modeling techniques presented in [42],
[57] are utilized when simulating this system for the creation
of the linear models used in the presented formulations. The
output power of the system consists of three primary parts:

1) Generated power from hydrokinetic energy extraction,
denoted as POCT;

2) Power consumed by ballast pumps to Hold Depth,
denoted as PHD

ballast; and
3) Power consumed by ballast pumps to Change Depth,

denoted as PCD
ballast.

The total harvested power from the OCT system is calcu-
lated by (10):

Pnet = POCT − PHD
ballast − PCD

ballast (10)

where Pnet is the total harvested power from the OCT system,
POCT, PHD

ballast, and PCD
ballast denote three parts of the harvested

power.
First term, POCT: The generated power of OCT system is

related to ocean velocity according to [61]:

POCT =
1

2
ρACpv

3 (11)

where ρ is the water density, A is the swept area of the
OCT rotor, Cp is the average power coefficient, and v is the
magnitude of the ocean velocity.

Second term, PHD
ballast: To calculate PHD

ballast, the average
consumed power for maintaining a near constant depth in a
time-varying current is determined. This model assumes that
ballast tank water fill levels, which are defined as a fraction
of ballast capacity FF, are adjusted every ∆t1 to counteract
changes in the flow velocity ∆v and maintain the desired
operating depth z. It should be noted that changes in flow
velocity impact the mooring cable force (i.e., downward force
in the OCT), resulting in an OCT elevation change unless
counteracted by an equal and opposite change in the buoyancy
force. Hence, the ballast levels must be changed to hold a
constant depth when the flow velocities change.

For these adjustments, the model assumes that a pump
drives water through an opening such that the pressure in
the tank is at vacuum pressure (i.e., Pabs ∼= 0 kPa). Using
this approach, very little power is used when the tanks are
being filled with water since this can be driven by the natural
pressure difference between ambient pressure and vacuum
pressure. The power required to pump sea water out of the
tank can be calculated from the product of the force F (i.e., the
product of pressure and area, ∆PA) and velocity V (i.e., the
quotient of volumetric flow rate over the area, QB/A) through
the orifice divided by pump efficiency. Accordingly, the power
to fill the tank P fill

B and the power to empty the tank P empty
B

are defined as follows:

P fill
B = 0 (12)

P empty
B =

FV

ηpump
=

∆PQB

ηpump
(13)

where ηpump denotes the pump efficiency. Given that ∆P =
Patm + PHS, the power to empty the tank defined in (13) can
be rewritten as:

P empty
B =

(Patm + PHS)QB

ηpump
(14)

where Patm is atmospheric pressure, PHS = ρ.g.z is hydrostatic
pressure, and g is gravity.

Assuming a constant value for QB, two ballast tanks with
volume of νB can be completely emptied of water in ∆te =
QB
νB

. Hence, the energy required to empty either ballast tank
Eempty

tank and fill either ballast tank Efill
tank at an operating depth

of zopt are calculated by:

Efill
tank = 0 (15)

Eempty
tank =

P empty
B

∆te
(16)

To maintain OCT depth, ballast tank fill levels are changed
every ∆t1 by a fraction of their total fill levels ∆FF to
counteract the changes in flow velocity ∆v. These changes
in ballast fill levels occur more frequently than the changes in
desired depth calculated by the spatiotemporal optimization al-
gorithm, with the associated fill level changes calculated using
linear estimates of the relationships between fill level changes
and equilibrium depth changes dFF

dz as well as between flow
speed changes and equilibrium depth changes dv

dz . Assuming
linearity, the following relationship exists between flow speed
changes and ballast level changes necessary to maintain a
constant depth:

∆FF

∆v
=
dFF

dz

dz

dv
⇒ ∆FF =

dFF

dz

dz

dv
∆v = ζ∆v (17)

where ζ = dFF
dz

dz
dv denotes a constant coefficient to relate the

flow speed changes and ballast level changes. It should be
noted that in this paper, a quasi-static relationship is assumed
between the states and a steady and homogeneous flow field
when running the nonlinear simulation [42].

The average power consumed over each ∆t1 to maintain
the operating depth can be calculated using (17):

PHD
ballast =

{
0, if ∆v < 0
(Eempty

B )(ζ∆v)

∆t1
, if ∆v > 0

(18)

Third term, P CD
ballast: To calculate PCD

ballast, the ballast model
and its average consumed power for changing depth can
be determined using many of the assumptions and models
introduced for the second term of this formulation. To change
OCT depth, ballast tank fill levels are changed every time step
∆t2 by a fraction of their total fill levels ∆FF. This change
in fill level is based on the desired change in depth ∆z using
the linear relationship between ∆z and ∆FF:

∆FF =
dFF

dz
∆z = κ∆z (19)
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Algorithm 1 Upper-level Spatiotemporal Optimization

1: Initialize n data sample v(z, t) and optimization method
parameters

2: for Each t do
3: Construct the GP model (f∗) based on a fixed-size

window of the observed data;

4: for Prediction Horizon T do
5: Predict v∗ over T using the GP model f∗ ∼

GP(m∗, σ
2
∗);

6: end for
7: Apply optimization algorithm (e.g., MPC or RL);
8: Output optimal depth z∗;
9: end for

where κ = dFF
dz denotes a constant coefficient to relate the fill

level changes and depth changes.
The average consumed power to satisfy ∆z depth change is

calculated with respect to the energy required to fill the ballast
tank (15), the energy required to empty the ballast tank (16),
and the relation between fill fraction change and depth change
(19) as follows:

PCD
ballast =

{
0, if ∆z > 0
(Eempty

B )(κ∆z)

∆t2
, if ∆z < 0

(20)

Therefore, the total harvested power, which is defined in
(10) is calculated based on the expressions found for each
term of output power (11), (18), and (20).

IV. PROPOSED METHODOLOGY

In this paper, we focus on the upper-level spatiotemporal
optimization shown in Fig. 2. The pseudocode for this process
is presented in Algorithm 1. Two approaches, model predictive
control (MPC) as a model-based approach and reinforcement
learning (RL) as a learning-based approach, are considered in
this paper. Also, the obtained path planning results are justified
with a baseline A∗ approach.

A. Baseline Approach: A∗-based Vertical Path Planning

The A∗ algorithm is utilized as a search engine to find the
optimum vertical path that maximizes harnessed power, where
the vertical positions are shown as a discretized vector Z =
[z1, ..., zn]. Given a start depth s ∈ Z and the predicted ocean
current velocities v∗ over the Z , the cost of transition (vertical
movement) from the start depth to any depths is defined by
Pr −E(Pnet(z(i), v∗(z(i), i))), with i denoting the time. The
A∗ approach seeks feasible vertical positions (illustrated as
a so-called open list in the A∗ algorithm), considering that
the optimal vertical position at each time step justifies the
minimum cost.

B. MPC-based Vertical Path Planning

MPC is considered in this paper because of its capability to
handle constrained problems. MPC is a powerful method for
optimizing some objective functions by using a model of the

system to be controlled to predict future states and actions.
In this paper, the objective is to maximize the output power
of the OCT system. To fully embrace the uncertainties in the
ocean velocity, the objective function is defined with two terms
interpreting the exploration and exploitation.

The exploitation term in the objective function is determined
to find the optimal water depth where net power is maximized.
In fact, different water depths z are explored to find the optimal
one over the prediction horizon. At the same time, the uncer-
tainties in ocean velocity prediction should also be considered
in the objective function, so the exploration term is included
in the objective function to penalize the predicted velocity
with higher variance. The objective function is formulated as
a nonconvex optimization problem, which interprets the real
power maximization objective of the OCT system with respect
to the spatiotemporal ocean current velocity model, still facing
nonlinearity and computational complexity. The constrained
optimization problem which has to be solved by the MPC
design is:

z∗(p) = arg min
z(p)

p+T−1∑
i=p

[Jexploit(z(i|p)) + βJexplore(z(i|p))]

(21a)

subject to

v∗(z(i|p), i|p) ∼ f∗ ∼ GP(m∗, σ
2
∗) (21b)

zmin ≤ z(i|p) ≤ zmax (21c)

z(i|p)− z(i− 1|p)
∆t2

≤ r (21d)

where p denotes the p-th sampling time, T represents the
prediction horizon. Define z(p) , [z(p|p), ..., z(p+T − 1|p)],
z∗(p) , [z∗(p|p), ..., z∗(p+ T − 1|p)]. v∗(z(i|p), i|p) denotes
the predicted velocity. Constraint (21b) shows the GP model of
ocean velocity to generate the ocean velocity prediction over
the prediction horizon with mean m∗ and covariance σ2

∗ (as
explained in Section III-A), r denotes the rate limitation on
the speed, β is the gain of the exploration term, and zmin and
zmax are the minimum and maximum allowable depth. Note
that the current optimal depth is chosen as the first element of
the optimal decision variable sequence z∗(p).

The exploitation term Jexploit is defined as:

Jexploit(z(i|p)) = Pr − E(Pnet(z(i|p), v∗(z(i|p), i|p))) (22)

where E(Pnet(z(i|p), v∗(z(i|p), i|p))) is the expected power
calculated by (10) based on the predicted ocean velocities
estimated through GP modeling as shown in (21b), and Pr is
the rated power imposed by the OCT model and its generator
rated power. The main objective for this term is to reach the
rated power at each time step, which is defined as minimizing
the difference between Pr and the expected power.

The exploration term Jexplore is defined as the standard
deviation of the predicted ocean velocity, conditioned upon
previously recorded ocean velocities, representing the uncer-
tainties in the ocean velocity:

Jexplore(z(i|p)) =
∑
z

σ2(v∗(z, i|p)|V,V
′
) (23)
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Algorithm 2 Proposed MPC-based Design

1: Initialize n data sample v(z, t), i = 0, ∆t1, ∆t2, and T
2: for Each t do
3: Construct the GP model (f∗) based on a fixed-size

window of the observed data;

4: for Prediction Horizon T do
5: Predict v∗ over T using the GP model f∗ ∼

GP(m∗, σ
2
∗);

6: end for
7: Solve (21a) and obtain optimal depth trajectory z∗(p);
8: Output optimal depth z∗;
9: end for

where σ2(v∗) shows the variance of predicted ocean velocities
for all operating water depths z, V is the recorded velocity at
the operating depth and time defined in (2), and V

′
denotes all

new velocity measurements over the future horizon between
p taken up to step i.

Inspired by [23], the exploration term is included in the
optimization problem to ensure a continued exploration in
the feasible spatial domain. The exploration term evaluates
the uncertainty in the ocean current velocity, and the main
intuition behind the exploration term is to penalize the in-
creased uncertainty in the ocean current velocity. Note that
the major challenge for (23) is to find an appropriate weight
β chosen through experimental testing. Fine-tuning through
trial and error is used to determine the exploration weight to
balance the under exploration (i.e., small β) along with the
over exploration (i.e., large β).

The algorithm of OCT path optimization using MPC is
presented in Algorithm 2. Firstly, all recorded ocean velocities
and the prediction horizon T should be initialized. Then,
v∗ is predicted for each sampling time using (21b). The
objective function is calculated over the prediction horizon
while optimal depth is determined. Note that a sliding window
is applied here, and only the first element from the optimal
depth trajectory will be used in each sampling time. To
solve the MPC-based optimization problem, we use dynamic
programming (DP) by forward recursion, and to maintain the
computational tractability, the optimization problem is defined
over the depth-time grid (Fig. 3). It should be noted that by
using the DP, convergence to the global optimum is guaranteed
subject to the ocean environment grid resolution.

C. RL-based Vertical Path Planning

The RL is adopted here for its capability of learning a policy
from historical data (i.e., data-driven), which could be robust
to the environment model errors. The RL method takes the
perspective of an agent (i.e., an OCT system in this study) that
optimizes its behavior by interacting with the environment and
learning from the feedback received. In the RL approach, the
set of actions is done by the agent, and it receives the reward
from the environment. Therefore, the learning procedure is
completed for the agent from observing its resulted reward.

It is critical to define the set of states, si ∈ S , actions,
ai ∈ A and rewards, ri ∈ R. The long-term performance is

optimized by learning a policy πθ(ai|si) for picking actions
in state transition to maximize the total accumulated reward
RπT =

∑T
τ=0 γ

τri+τ , where γ is the discount factor in (0, 1].
As a reminder, the action of depth change at each time step
should be determined to maximize the OCT net power.

1) State space: The net power of the OCT system is
calculated in (10) as a function of the water depth z. We
realize that the optimization gets more complicated when
the prediction horizon T is considered. Transitions between
different water depths z over the prediction horizon result in
different net power. Therefore, the set of states is defined as:

S = {si|((z, t), P )} (24)

in which, the number of states is equal to nT if the number
of operating depths is n, and the prediction horizon is T .
Hence, increasing the prediction horizon can increase the
complexity of the problem exponentially, so it is important
to choose a reasonable prediction horizon to avoid the curse
of dimensionality.

2) Action space: The set of action defines the possible
operation at each state. As the OCT is described with a single
state (i.e., ((z, t), P )), the depth change modifies the state of
the system. Therefore, the action is defined as the water depth
change, resulting in the power change. The action space is
defined as follows:

A = {ai|+ ∆z,−∆z, 0} (25)

where +∆z shows the depth increase, −∆z is the depth
decrease, and 0 determines no change in the water depth.

3) Reward function: The reward function determines the
reward received after each action. Further, the reward function
should be defined to find the desirable actions. In our problem,
increasing the net OCT power is considered as the desirable
goal. Hence, any action (water depth change) should be done
to increase the net power at each time step. The reward
function is defined as:

R =

{
∆P, ∆P > δ or ∆P < −δ
0, otherwise

(26)

where ∆P is the power change, and δ is a small positive
number rather than 0. Hence, if ∆P is positive, the power is
increasing, and the action is rewarded with positive numbers.

Q-learning: Q-learning algorithm [62] is used to solve our
RL problem. Q-value Q(s, a) denotes the expected return of
taking action a in state s, and the Q-value table is updated as
follows:
Qt+1(st, at)← Q(st, at)+

α[Rt+1 + γmax
a
Q(st+1, a)−Q(st, at)]

(27)

where st is the state visited at t, Rt+1 denotes the observed
reward at t+ 1, and α ∈ (0, 1] is the learning rate.

For action selection from the Q-value table, ε-greedy policy
is used. Two different options are available for selecting the
next action at each time step, including choosing the actions
with the highest estimated reward or choosing a random action:

a =

{
arg max

a
Q, with probability 1-ε

random value, with probability ε
(28)
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Algorithm 3 Proposed RL-based Design Offline Training

1: Initialize n training data sample v(z, t), ∆t1, ∆t2, and
Q(s, a) for all s ∈ S and a ∈ A

2: for N sampling time do
3: Input recorded velocity v(z, t);
4: for episode = 1, 2, . . . , Nepisode do
5: Initialize s ((z, t), P );
6: for step= 1, 2, . . . , Nstep do
7: Select action a according to ε-greedy (28);
8: Take action a and obtain Rt+1 by (26);
9: Update the Q-value according to (27);

10: end for
11: end for
12: end for
13: Output offline trained optimal Q-value table Q∗;

Algorithm 4 Proposed RL-based Design Online Testing with
Offline Learning

1: Initialize ∆t1, ∆t2, and current time t
2: Load optimal Q-value table Q∗ obtained through an offline

training;
3: for Each t do
4: Select action a according to Q∗;
5: Output optimal depth z∗;
6: end for

where ε is usually set as a small value, such as 0.05.
In our spatiotemporal optimization problem, the ocean en-

vironment is modeled as a grid capturing the spatial, temporal,
and ocean current velocity features. The main objective in
vertical path planning is to find the optimal vertical path (i.e.,
the depth) with the maximized net power over the prediction
horizon T ; hence, we should visit all feasible vertical paths
to find the globally optimal path. This grid and the feasible
vertical paths are visualized in Fig. 3. As shown in this figure,
the ocean environment has nT feasible vertical paths assuming
n discrete depths. The information of these vertical paths is
transferred to the Q-value table through a Q-vector of size nT .

The Q-learning offline training is presented in Algorithm 3.
An action a (depth change) is selected based on the ε-greedy
policy at each time step. After taking action, a new state (a new
water depth) will be observed, and the reward will be calcu-
lated by (26). Finally, the Q-function (27) is updated based on
the new state and the reward. Note that after the offline training
on the training dataset, the obtained optimal Q-value table can
be applied to find the optimal vertical path as presented in
Algorithm 4. On the other hand, the attained optimal Q-value
table Q∗ with the offline training can be deployed online while
it keeps updating according to the observed ocean velocity
through an incremental learning strategy (see Algorithm 5).
The concept of incremental learning is also applied for the
autonomous navigation of mobile robots [63].

To enable the incremental learning, the optimal Q-value
table is initially determined through the offline training, which
is then slightly updated through the online training. Since the
shear profile of the ocean current does not show an aggressive

Algorithm 5 Proposed RL-based Design Online Testing with
Incremental Learning

1: Initialize ∆t1, ∆t2, and current time t (t ≥ 1)
2: Load optimal Q-value table Q∗ obtained through an offline

training;
3: for Each t do
4: if t = 1 then
5: Select action a according to Q∗;
6: else
7: Construct the GP model (f∗) based on a fixed-size

window of the observed data;

8: for Prediction Horizon T do
9: Predict v∗ over T using the GP model f∗ ∼

GP(m∗, σ
2
∗);

10: end for
11: Update optimal Q-value table Q∗ according to the

predicted velocity over T ;
12: Select action a according to the updated Q∗;
13: end if
14: Output optimal depth z∗;
15: end for
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Fig. 3: Schematic of the ocean environment. (a) Ocean envi-
ronment grid; (b) Feasible vertical paths.

change outside of conditions seen during hurricanes [42],
which is beyond our study, the obtained Q-value table after
training on a large dataset is moderately affected by a set of
the observed ocean velocity, thereby avoiding any instability
and aggressive control policy. The Q-value table obtained by
the offline training is sufficiently precise to find the optimal
action; however, updating the Q-value table with incremental
learning may result in an even better result, i.e., finding the
optimal path with the highest reward or net power. The safe
and acceptable performance of the online training is justified
with the experimental results obtained in Section V, resulting
in a slightly higher power than the case developed with the
offline trained Q-value table. The major parameters of the Q-
learning, including γ and α, are tuned during offline training
through trial and error.

Note that the whole Q-learning algorithm is completely
coded in Matlab, which includes three major sections (i)
Environment: implementing the ocean environment defined
by a grid of n × T ; (ii) Training: constructing the Q-value
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Fig. 4: Average Q-values over 100 trial episodes are shown

for offline training over the first sample of ocean velocity,

second sample of ocean velocity, and third sample of ocean

velocity. Solid lines show average Q-values, and the shaded

region determines a 95% confidence interval.

table and performing the training by updating the Q-value

(Algorithm 3); and (iii) Testing: evaluating the constructed

Q-value table through either direct testing (Algorithm 4) or

performing simultaneous testing and updating through incre-

mental learning (Algorithm 5).

It is noteworthy to mention that the Q-value table approach

suffers from the “curse of dimensionality” when scaling to

the problems with high-dimensional action and state spaces.

To tame this deficiency, a deep Q-learning approach as a

combination of the Q-learning and deep neural network can

be applied to approximate the Q-value function, which is

appropriate for a larger environment (especially a grid with

a longer prediction horizon), as well as, enlarging the action

decision variables (i.e., increasing the number of decision

variables). Although the Q-value table is sufficient for the size

of the ocean environment grid presented in the current study,

we also apply a particular type of deep Q-learning called deep

Q-network (DQN) to solve the problem at hand. A detailed

discussion on the application of the DQN to the larger ocean

environment is presented in other authors’ work [64], [65].

Deep Q-network (DQN): In the DQN, the deep neural

network is applied to find the optimal Q-value Q∗, which is

previously determined through the Q-value table. Two neural

networks with the same structure but different weights ϑ
named Q-network Q(.;ϑ) and target network Qt(.;ϑ

−) are

employed to build the DQN. The main idea behind training

the DQN is to find the optimal weights for these two networks

through minimizing a loss function, where the weights are

updated through gradient descent. The loss function is defined

as:

L(θ) = [Qt(st, at;ϑ
−)−Q(st, at;ϑ)]

2 (29)

where Qt(st, at;ϑ
−) is defined as:

Qt(st, at;ϑ
−) � Rt+1 + γmax

a
Q(st+1, a;ϑ

−) (30)

V. RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed methods for

OCT vertical path planning, the following four approaches are

compared:

• Case without Spatiotemporal Optimization: The OCT is

located at a fixed depth, which means no change in

operating depth, i.e., the output power of the system is

determined only by the ocean velocity at the operating

depth.

• Path Planning with A∗ Algorithm: One commonly used

algorithm for grid-based path planning is the A∗ algo-

rithm, which can efficiently seek the ocean environment

grid and find the optimal path [10]. The A∗ algorithm

applies a greedy strategy, where the heuristic function

is defined by the difference between Pr and the expected

power. The heuristic function is applied to label each path

between two depths as shown in Fig. 3 and generate a

weighted grid (or graph), which is further employed to

find the optimal path.

• MPC-based Spatiotemporal Optimization: The optimal

operating depth z∗ is determined using objective function

J(z(p)) in (21a), which aims to minimize the difference

between the maximum power and the harvested power

at each time step. Further, predicting the ocean velocity

results in uncertainties, which is addressed through the

exploration term Jexplore.

• RL-based Spatiotemporal Optimization: Learning from

different experiments should be considered to update the

Q-value table. Specifically, the Q-function is calculated

for each state and action pair, and the Q-value table is

then updated. At each state (z, t), the optimal action (i.e.,

depth change Δz) should be determined to maximize the

total power. The algorithm is trained offline by multiple

trials, and the cumulative Q-values over trial episodes are

shown in Fig. 4, which verifies the convergence of Q over

100 episodes for different sampling time. After training

the RL algorithm, it is applied for online testing with

both offline learning and incremental learning. Moreover,

the DRL algorithm based on the DQN is applied to

approximate the optimal Q-value (Q∗) through training

and finding the optimal network, which is able to detect

the optimal action (i.e., Δz).

A. Simulation Setup

We use real ocean velocity data and the example buoyancy-

controlled OCT that is discussed in Section III. Recorded

ocean velocities V are modeled by the GP model in (9). At

each time step, the ocean velocity v∗ is predicted over the

prediction horizon. The predicted velocity is then considered

as the observed velocity, and the next velocity is predicted

by a sliding prediction window. Based on predicted ocean

velocities, the optimal ocean depth z∗ is determined. Key

parameters used in the simulation are presented in Table II,

and for the DQN, a network with two hidden layers is selected

with a batch size of 64. All the experiments were conducted

on a PC equipped with a 2.6 GHz CPU and 16 GB of RAM.

OCT system specification: The theoretical model of the

investigated OCT system is presented in Section III-B. Assum-

ing an OCT operating depth of zopt = 50m, the relationship

between pump power and volumetric flow rate is determined
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TABLE II: Key parameters used in the optimization.

Parameter Description Value Unit
Pr Rated power 700 kW
ρ Water density 1030 kg/m3

A Swept area of the OCT rotor 100π m2

Cp Average power coefficient 41.5 %
ηpump Pump efficiency 0.75 -
Patm Atmospheric pressure 101 kPa
g Gravity 9.81 m/s2

QB Volumetric flow rate 0.023 m3/s
νB Volume of each ballast tank 31.251 m3

ζ Coefficient in (17) 0.65 s/m
∆t1 Sampling time to hold depth in (18) 0.25 hours
κ Coefficient in (19) −0.0026 1/m

∆t2 Sampling time to change depth in (20) 1 hour
β Gain of exploration term in (21a) 100 -
T Prediction horizon 2 hours
n Number of discrete depths 27 -
zmin Minimum allowable depth 40 m
zmax Maximum allowable depth 200 m
γ Discount factor 0.8 -
δ Constant value in (26) 1 kW

using (14):

P empty
Bmax

=
606QBmax

0.75
= 808QBmax (31)

It should be noted that the volumetric flow rate and ballast
pump power are calculated associated with WWII submarines
[66]. Accordingly, the power and energy to empty two ballast
tanks are calculated as P empty

B = 18.8 and Eempty
B = 14.02,

respectively, with respect to (31) and values presented in Table
II. The linear quasi-static relationship is interpreted for a flow
speed of 1.6 m/s. In our application, the depth is limited
within 40 m to 200 m since the maximum ocean currents
nearly always occur in the top 200 m depths [67].

Ocean current shear profile: In this paper, we use the
data recorded by a 75 kHz acoustic Doppler current profiler
(ADCP) at a latitude of 26.09◦N and longitude of −79.80◦E.
ADCPs measuring water velocity data over 300+ m can make
approximately one measurement per second, have a vertical
spatial resolution of around 6 m, and typically save time-
averaged water velocity measurements every 3 to 15 minutes
to reduce measurement noise. The data include measures of
northward current velocity, eastward current velocity, and data
quality related parameters. To save battery, data used in this
study were recorded every 15 minutes with 25 measurements
averaged to create each recording, yielding an estimated mea-
surement error standard deviation of 0.02 m/s throughout the
water column (based on the ADCP’s manufacturer specifica-
tion found in [68]). Recorded data were filtered to remove
bad data through the method suggested in [67], with “bad”
data primarily measured above a depth of 50 m. “Bad” data
were identified using ADCP correlation and percent good, as
well as the echo intensity spikes characteristic of the initial
return of side lobe acoustics reflecting from the sea surface.
The ocean shear profile calculated from these data over a
sample one-week period is shown in Fig. 5. To expand the
spatiotemporal path planning algorithms from this paper to
real turbine applications, an ADCP will likely be installed just
upstream from an ocean current turbine, or array of turbines,
so that near real-time current velocity data are accessible.

Recorded ADCP Ocean Current Velocity, 2015
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Fig. 5: Sample ocean current shear profile recorded by an
ADCP in the Gulf Stream over one week.

B. OCT Operating Depth Assessment for Linear Model and
Nonlinear Model

To derive the OCT output power model, certain approxi-
mations are made to represent the nonlinear model presented
in [42] with linear quasi-static relationships. The major ap-
proximations are included in (17) and (19) to determine the
relationship between the fill fraction change and flow speed
change as well as depth change. Hence, the fill fraction is
affected by two parameters of depth and velocity, and the
whole fill fraction equation can be rewritten as follows:

∆FF = ζ∆v + κ∆z (32)

where ∆ , (.)− (.)eq given that Feq = 0.5, zeq = 50 m, and
veq = 1.6 m/s.

To justify the accuracy of the presented linear model in
(32), the OCT operating depth obtained through the nonlinear
model [42] is compared with those calculated by (32). The
operating depths associated with the specified flow speeds and
fill fractions (equal values for both tanks) are shown in Fig.
6. Note that the operating depths are illustrated under the sea
surface, where the OCT’s ballast tank hits the surface if the
OCT system is located at a depth of 15.34 m. As this figure
shows, the operating depth calculated by the linear model (32)
matches those obtained through the nonlinear model, where
a negligible difference is anticipated due to approximations
made to attain the linear model from a nonlinear model.
C. Comparative Results

The obtained results over a sample simulation time of 200
hours are presented in Fig. 7 to Fig. 9. The optimal path
obtained over 200 hours with A∗ algorithm, MPC algorithm,
online testing of RL algorithm with offline learning, online
testing of RL algorithm with incremental learning, and DRL
algorithm are illustrated in Fig. 7. The control action is defined
as the depth change in this study, and the optimal depth and
the corresponding velocity are shown under the A∗ method,
MPC-based method, RL-based methods, DRL method, and
the case without spatiotemporal optimization. As presented in
Fig. 8(a), the optimal paths show similarities, especially for
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Fig. 6: Comparison of equilibrium depths associated with the

specified flow speeds and fill fractions (equal values for both

tanks), found using both the non-linear and linear models. It is

noted that fill fractions of 0.5 for each tank and a flow speed

of 1.6 m/s are utilized when creating the linear model.

the RL algorithm and MPC algorithm. However, there exist

noticeable differences in selecting the next control action, such

as at t = 130. Although different z are selected as the next

optimal depth for each algorithm, the velocities at these depths

are nearly the same (Fig. 8(b)), verifying that these algorithms

can make optimal decisions.

The harvested power of the OCT system is presented in

Fig. 9, which shows that the output power of OCT increases

when the spatiotemporal optimization is applied. Different

methods for path planning follow a similar trend in power

increase; however, RL-based spatiotemporal optimization with

incremental learning surpasses the remaining methods at some

time samples. In addition, the average power of the OCT

system in terms of POCT, PHD
ballast, PCD

ballast, and Pnet for three

different operating depths are presented in Table III.

D. Robustness Analysis

For an evaluation of the spatiotemporal optimization robust-

ness, the proposed methods are implemented by the perturbed

ocean velocity, in which the ocean velocity is not correctly

modeled due to the scale error in the velocity sensors, the

data loss from measurement, and so on [2]. Fig. 10 shows

the perturbation of cumulative energy from baseline obtained

by the A∗ algorithm, the MPC algorithm, the RL algorithm

with offline learning, the RL with incremental learning, and

the DRL algorithm in response to 5% noise disturbances of the

same intensities for 100 test cases. We can observe that the RL

algorithms are sufficiently robust, where a similar distribution

of the results (i.e., cumulative energy) is obtained for the

perturbed ocean velocity model. Moreover, the RL algorithm

with incremental learning outperforms the MPC algorithm, and

the perturbed results (i.e., that in a small interval [39.348 ∼
39.978] MWh) is very close to the obtained cumulative energy

for baseline case without noise (40.366 MWh).

To further show the robustness of our proposed methods,

the cumulative energy of the A∗ algorithm, the MPC algo-

rithm, the RL algorithm with offline learning, the RL with

incremental learning, and the DRL algorithm in response to

Fig. 7: Comparing optimal path obtained over 200 hours

under A∗ algorithm, MPC-based optimization, RL-based op-

timization with offline learning, RL-based optimization with

incremental learning, and DRL algorithm.

noise disturbances, ranging from 5% to 20%, for 100 test

cases are presented in Table IV. Note that the results are

reported as an average of the cumulative energy obtained by

100 tests. As can be seen from the table, the superiority of

the RL-based method with incremental learning over other

methods is verified under these four cases, justifying that the

A∗ algorithm, MPC algorithm, and DRL algorithm are more

sensitive to the increased ocean velocity modeling error.

E. Discussions

The RL algorithm as a learning-based method usually

has offline training and online deployment phases, which is

introduced as the RL algorithm with offline learning in our

study. In another proposed approach (named the RL algorithm

with incremental learning), once the offline training is finished,

it will be deployed online while it keeps updating the policy

(e.g., the Q-value table). The RL algorithm with incremental

learning is slightly better than the one with offline learning

since it can adapt better to minor changes in the environment.

The DRL algorithm estimates the Q-value function through

the neural network trained offline using the recorded ocean

velocity; hence, a pretty good DRL can generate an estimate

from the optimal path instead of a precise optimal path. How-

ever, the DRL algorithm can address the vertical path planning
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Fig. 8: Comparing optimal depth and velocity over 200 hours

obtained by case without spatiotemporal optimization, A∗

algorithm, MPC algorithm, RL-based algorithm with offline

learning, RL-based algorithm with incremental learning, and

DRL algorithm. (a) Optimal depth; (b) Optimal velocity.

with a long prediction horizon, which can not be solved by

a Q-value table (RL algorithm) due to high computational

complexity. Different learning-based approaches are feasible

for vertical path planning to maximize the output power of

the OCT system, while the RL algorithm with incremental

learning shows a better performance in the problem at hand.

Another important feature of the RL method is its robustness to

errors and uncertainties. In the MPC algorithm, the exploration

term Jexplore in the objective function J(z) is defined to address

this issue. However, the main challenge is to determine the

corresponding weight β of this term Jexplore, which is chosen

experimentally. RL algorithm is directly trained by taking

different actions in each state, which means it will choose

the best action at each state based on its experience. Through

learning from historical data and online incremental learning,

the robustness of the algorithm will increase.

The cumulative produced energy of the OCT system using

the A∗ algorithm, the MPC algorithm, the RL algorithm with

offline learning, the RL with incremental learning, and the

DRL algorithm are compared, as shown in Fig. 11. The

cumulative energy shows a high increase compared to the case

without optimization, highlighting the importance of applying

path planning algorithms. We also observe that the cumulative

Fig. 9: Comparing optimal power under case without spa-

tiotemporal optimization, A∗ algorithm, MPC algorithm, RL-

based algorithm with offline learning, RL-based algorithm

with incremental learning, and DRL algorithm.

TABLE III: Comparing the detailed average power terms of

the OCT for three different operating depths.

z (Time=0) POCT PHD
ballast PCD

ballast Pnet

m kW kW kW kW

Without Optimization
45 167.5736 11.2947 - 156.2789
50 171.1748 11.3457 - 159.8291
55 170.6034 10.4052 - 160.1982

A∗ Algorithm
45 196.6085 9.8111 0.3554 186.4420
50 196.7481 9.3609 0.3160 187.0712
55 196.64 9.6871 0.3368 186.6161

MPC Algorithm
45 196.8896 9.3700 0.3488 187.1708
50 196.8848 9.4411 0.3018 187.1419
55 197.1997 9.8767 0.2679 187.0551

RL Algorithm with Offline Learning
45 199.2042 10.0061 0.1968 189.0013
50 199.1987 10.1446 0.1761 188.8781
55 199.5513 10.2631 0.1684 189.1198

RL Algorithm with Incremental Learning
45 201.5854 9.1403 0.2996 192.1455
50 201.9442 8.6938 0.3051 192.9453
55 201.9723 9.1531 0.2942 192.525

DRL Algorithm
45 184.6497 10.9068 0.1640 173.5789
50 184.8559 10.7460 0.1651 173.9448
55 184.8559 10.7952 0.1662 173.8945

energy productions of the OCT system are very close for

different compared optimization approaches. RL algorithm

with incremental learning outperforms the remaining meth-

ods, and the final energy production for the A∗ algorithm,

the MPC algorithm, the RL algorithm with offline learning,

the RL with incremental learning, the DRL algorithm, and

case without applying spatiotemporal optimization are 39.262

MWh, 39.653 MWh, 39.877 MWh, 40.366 MWh, 36.965

MWh, and 34.121 MWh, respectively.

To present a comprehensive and fair perspective of our

proposed spatiotemporal optimization, its limitations are sum-

marized. As discussed in Section II, we focus on the upper-

level vertical path planning, assuming that the lower-level

control (flight control) is able to track the commanded opti-

mal path. This assumption arises from our experiments and
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TABLE IV: Comparing the robustness in percent decrease of cumulative energy using accurate ocean velocity model vs.

perturbed ocean velocity models.

Noise A∗ Algorithm MPC Algorithm RL (Offline) Algorithm RL (Incremental) Algorithm DRL Algorithm
% MWh % MWh % MWh % MWh % MWh %

Baseline Ocean Velocity Model
- 39.262 - 39.653 - 39.877 - 40.366 - 36.965 -

Ocean Velocity Model Perturbed with Noise
5 38.230 2.63 38.364 3.25 39.641 0.59 39.658 1.75 36.507 1.24
10 37.273 5.07 37.594 5.19 38.737 2.86 38.720 4.08 34.351 7.07
15 36.390 7.31 36.998 6.70 38.066 4.54 38.158 5.47 32.938 10.89
20 35.736 8.98 36.430 8.13 37.052 7.08 37.195 7.85 32.655 11.66

Fig. 10: Robustness comparison of the A∗ algorithm, MPC

algorithm, RL-based algorithm with offline learning, RL-

based algorithm with incremental learning, and DRL algorithm

through cumulative energy under noise.

Fig. 11: Comparing cumulative energy under case without

spatiotemporal optimization, A∗ algorithm, MPC algorithm,

RL-based algorithm with offline learning, RL-based algorithm

with incremental learning, and DRL algorithm.

knowledge on the dynamics of the OCT system and the

previously designed flight controllers [44], [45], [69], ignoring

the detailed model of the OCT system. Two major operational

constraints of the OCT system directly affecting the vertical

path planning, including the range of operating depth and

the constraint on the slew rate (i.e., highly related with the

mooring system design), as well as the real recorded data from

the Gulf Stream, are included in our spatiotemporal model to

ensure a feasible vertical path according to the OCT model

and real ocean environment. We are further developing an

integrated path planning and tracking control framework for

the investigated OCT system [64]. Preliminary results verify

the ability of the OCT system to follow the commanded

vertical path by the proposed spatiotemporal optimization,

where the detailed model of the OCT system and constraints

on its actuators (Bf , Ba, and τem) are included in the flight

controller design.

VI. CONCLUSIONS

In this study, a novel spatiotemporal optimization approach

was presented for OCT vertical path planning to maximize

the net power. The GP model was first developed to model

the ocean velocity based on real data. Then, the OCT power

models were formulated, including the directly generated

power from hydrokinetic energy, the consumed power for sta-

bilizing, and the consumed power for changing the operating

depth. Two types of methodologies, including MPC- and RL-

based algorithms, were developed to solve the proposed spa-

tiotemporal problem. Compared with the baseline approaches,

the obtained results verified that both methods are efficient

in finding the optimal path to maximize the output power.

Moreover, the deep RL-based method with online incremental

learning showed better performance in terms of cumulative

energy and robustness.
Future work is needed to fully investigate the interaction

between the lower-level controllers (i.e., flight controller or

generator controller) with the upper-level controller (i.e., spa-

tiotemporal optimization). It is also critical to extend the

proposed spatiotemporal optimization to an OCT array to

maximize the total power of the array considering the wake

effects among the OCTs and integrate the harnessed power

into power grids using energy storage.
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