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Abstract— This paper presents an integrated path planning
and tracking control of marine hydrokinetic energy harvest-
ing devices. To address the highly nonlinear and uncertain
oceanic environment, the path planner is designed based on
a reinforcement learning (RL) approach by fully exploring the
historical ocean current profiles. The planner will search for a
path to optimize a chosen cost criterion, such as maximizing
the total harvested energy for a given time. Model predictive
control (MPC) is then utilized to design the tracking control
for the optimal path command from the planner subject to
problem constraints. The planner and the tracking control are
accommodated in an integrated framework to optimize these
two parts in a real-time manner. The proposed approach is
validated on a marine current turbine (MCT) that executes
vertical waypoint path searching to maximize the net power
due to spatiotemporal uncertainties in the ocean environment,
as well as the path following via an MPC tracking controller
to navigate the MCT to the optimal path. Results demonstrate
that the path planning increases harvested power compared to
the baseline (i.e., maintaining MCT at an equilibrium depth),
and the tracking controller can successfully follow the reference
path under different shear profiles.

I. INTRODUCTION

Research in marine hydrokinetic energy harvesting de-
vices, including wave energy converter (WEC) and marine
current turbine (MCT), is motivated today in the academic
community and industry [1]. Similar to an autonomous
underwater vehicle (AUV), the MCT should autonomously
navigate along the optimal path in the presence of a highly
nonlinear and uncertain oceanic environment, accounting for
the fact that the predicted ocean velocity is affected by
perturbations. An effective real-time path control may entail
several prerequisites, leading to a challenging problem. The
trajectory control should track the optimal path to minimize
the tracking error, which should ideally converge to zero.
Meanwhile, the optimal path is acquired by optimizing an
ultimate goal, i.e., maximizing harvested energy from an
MCT in a given time period. Moreover, the optimal path
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may change continuously due to the inherent spatiotemporal
uncertainties in the oceanic environment [2]. Finally, the
highly nonlinear dynamic model of the MCT that includes
multi-physics couplings increases the problem complexity.
Therefore, the challenges of real-time optimal path control
is significant for this system.

The real-time path control is interpreted with a prohibitive
large-scale control program, involving a complex dynamic
model of the system, discrete inputs, discrete outputs that
enforce waypoint tracking constraints while iteratively opti-
mizing a chosen cost criterion via path planning. The path
tracking problem has been addressed for a wide range of
applications, including robotics [3], [4], unmanned aerial
vehicles [5], [6], helicopters [7], autonomous underwater
vehicles [8], and ocean current turbine [9]. For effective real-
time path control design, the first task is to ensure that an
optimal path is computed by the planner for the tracking
controller as a reference path.

An integrated framework for planning and tracking con-
trol usually includes an upper-level planner to generate an
optimal path and a lower-level tracker that is responsible for
tracking the generated optimal path. For examples, the path
planning and tracking control have been successfully pro-
posed for airborne wind energy systems [10], [11], [12], [13],
[14], [15], discrete manufacturing plants [16], autonomous
vehicle [17], [18], unmanned aerial vehicle [19], [20], and
autonomous underwater vehicle [21], [22]. In similar re-
search, the trajectory planning and control have been solved
for a buoyancy controlled device for an underwater vehicle
to achieve its vertical maneuvering [23]. However, to be
computationally tractable, the system model and tracking
controller have been significantly simplified.

In this paper, to deal with the real-time path control for
marine energy harvesting devices, we propose an integrated
approach that iteratively plans the optimal path to maximize
the harvested power and tracks the commanded path to
minimize the tracking error. The motivation is clear – in
order to maximize the energy harvesting of the device,
the system vertical path should be real-time planned and
tracked in the dynamic oceanic environment. Moreover, an
integrated framework is intended as a simpler, computa-
tionally cheaper alternative to simultaneous path planning
and tracking. Specifically, we develop a path planner that
allocates an optimal path to maximize the harvested energy
from an MCT using a deep reinforcement learning (DRL)
approach. Model predictive control (MPC) is then developed
to track the optimal reference path commanded from the



planner subject to the MCT dynamic model and problem

constraints. The ultimate goal of the tracking control is to

safely navigate the turbine along the optimal path, consid-

ering the sluggish dynamics while avoiding any aggressive

motion and instability.

The paper begins with Section II describes the modeling

and overall structure of the integrated path planning and

tracking control for the MCT. Section III presents detailed

path planning and path tracking. Section IV shows the

numerical results. Finally, Section V concludes the paper.

II. PROBLEM DESCRIPTION

In this section, the overall problem is formulated for

an application of the MCT, discussing the model of the

turbine, oceanic uncertain environment, and the proposed

path planning and control architecture for the MCT system.

A. MCT Modeling

The investigated 700 kW MCT in this paper (see Fig. 1) is

a representative design for the Gulf Stream, which consists of

two variable buoyancy sections of a single variable buoyancy

tank, variable pitch rotor, main body, and a 607 m mooring

cable attached to the ocean floor at a depth of 325 m [24],

[25], [26], [27]. The designed MCT system and its parameter

roughly follow the prototype systems from IHI Corp. [28]

and the University of Naples [29]; still, the MCT includes a

single rotor, where the tanks designed to operate at a depth

of 50 m in case of half-filled with ballast water at the ocean

current speed of 1.6 m/s. A seven degrees-of-freedom (DOF)

model is used to characterize the nonlinear dynamics of the

MCT.

Kinematics and Coordinate Frame: In order to obtain

the kinematics, the coordinate frames are defined for the

MCT system: the inertial coordinate frame (TI), the body-

fixed coordinate frame (TB), the momentum mesh coor-

dinate frame (TM), the shaft coordinate frame (TS), and

the rotor blade coordinate frame (TR). The transformation

matrix from TI to TB is defined due to rotations about the

yaw angle ψ , the pitch angle θ , and the roll angle φ :

T TB
TI

=

⎡⎣ cψ cθ sψ cθ −sθ
cψ sθ sφ − sψ cφ cψ cφ + sψ sθ sφ cθ sφ
cψ sθ cφ − sψ sφ −cψ sφ + sψ sθ cφ cθ cφ

⎤⎦ (1)

where s(.) = sin(.) and c(.) = cos(.).
Equations of Motion: The motion of the buoyancy con-

trolled MCT is modeled through the 7-DOF, consisting of 6-

DOF motion of the main body and 1-DOF of rotor’s rotation

about the X-axis [30], namely:
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Fig. 1: Schematic of the investigated MCT in this paper [24].

My =Iv
y q̇+ rpb(Iv

xb
− Iv

zb
)+ rpr(Iv

xr
− Iv

zr
)+ Iv

xzb
(p2

b− r2)

+mv
bzv

cgb
(u̇− vr+wq)−mvxv
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z ṙ+qpb(Iv

yb
− Iv

xb
)+qpr(Iv

yr
− Iv

xr
)+ Iv

xzb
(rq− ṗb)
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where m is the mass; u,v,w are the linear velocities of the

MCT main body in TB; pb,q,r are the angular velocities of

the MCT main body in TB; pr denotes angular velocity of the

MCT rotor in TB; x,y,z are location of the origin of the MCT

main body; φ ,θ ,ψ are the Euler angles of the MCT main

body; f(.) is the force about (.); M(.) is the moment about

(.); I(.) denotes the mass moment; (.)v denotes the virtual;

τem is the electromechanical shaft torque; (.)cg denotes the

center of gravity; Finally, (.)r and (.)b denote the rotor and

the main body, respectively.

The total external load f , which is shown about x−, y−,

and z− axes in the equations of motion, is the sum of

gravitational and buoyancy force fgb, rotor force fr, main

body forces fb, and cable force fc, i.e., f = fgb+ fr+ fb+ fc.

Cable forces are calculated using a finite element lumped

mass cable model and rotor forces are calculated using a

blade element momentum based rotor model, with a dynamic

wake inflow algorithm (see [30] for details).

Linear Model: The linearization process averages the

MCT dynamics over the rotor rotation to remove the de-

pendence on rotor azimuth angle and cable node states as

suggested in [31] and is expanded to account for variable

buoyancy control as proposed in [32] (with the justification

between the linear and nonlinear models). The nonlinear dy-

namic model of the MCT is linearized around the equilibrium



points, namely:

∆ẋ = A∆x+B∆u

y =C∆x
(9)

where A = ∂ f
∂x |

x=xeq
u=ueq , B = ∂ f

∂u |
x=xeq
u=ueq , C = ∂g

∂u |
x=xeq
u=ueq , ∆(.)

∆
=

(.)− (.)eq, with eq denoting the equilibrium values. In order
to maintain the simplicity, ∆ is not shown for the remainder
of the paper. x ∈ R13, u ∈ R3, and y ∈ R are defined as
x = [u v w pb pr q r x y z φ θ ψ], u = [Bf Ba τem], and
y = [z]. The control inputs are determined by two buoyancy
tank fill fractions Bf and Ba denoting the fill fractions of the
forward tank and the fill fraction of the aft tank, respectively,
introducing into equations of motion by gravitational and
buoyancy force fgb.

Furthermore, since the real-time path controller is de-
signed in discrete-time with future objectives of implemen-
tation in a real plant (e.g., an MCT-based power plant),
the linearized model is discretized using a sampling time,
Ts, determined by the Nyquist-Shannon’s sampling theorem
[33]. The corresponding discrete linear time-invariant (DLTI)
plant model at discrete-time instant k is:

x(k+1) = Adx(k)+Bdu(k)

y(k) =Cdx(k)
(10)

with equilibrium points of xeq = [0 0 0 0 1.49 0 0 554.50
0.38 50 0.01 0.00 3.14] and ueq = [0.4677 0.4677 −188280].
It should be noticed regarding the determination of the
equilibrium points that the non-linear simulation is run until
all accelerations are zero and the MCT is no longer moving.

B. Ocean Environment Modeling

To model the spatiotemporal uncertainties in the ocean
environment, it is important to use real data. The spatial
and temporal fluctuations in the current flow are resulted
from turbulence, waves, and lower frequency flow structures.
In this paper, we use the field measured data by a 75
kHz acoustic Doppler current profiler (ADCP) presented in
[34], which were recorded at a latitude of 26.09◦N and
longitude of −79.80◦E, as shown in Fig. 2. The measurement
resolution was 5 m within 400 m water depth, where various
current flow data (i.e., current speed, northward current ve-
locity, eastward current velocity, etc.) were recorded. These
measured current data were filtered to remove bad data as
described in [34], which were mostly measured above a depth
of 50 m.

MCT will operate spatiotemporally in this dynamic en-
vironment to harness the ocean current energy. To address
its real-time path planning and tracking, it is necessary to
model and predict the uncertain ocean environment using the
recorded ADCP data. In this paper, we leverage Gaussian
process (GP) modeling to characterize a statistical model
of the environment. The GP models an input vector of
spatiotemporal uncertain environment η by e = f (η) + ε ,
where e denotes the observations from the environment, and
ε ∼N (0,σ2) specifies the Gaussian noise:

f (η)∼N (M (η),K (η ,η
′
)) (11)
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Fig. 2: Time histories of the current flow (i.e., the water
velocity magnitude) recorded by a 75 kHz ADCP at a latitude
of 26.09◦N and longitude of −79.80◦E represented for a
sample one-week period.

M (η) = E[ f (η)] (12)

K (η ,η
′
) = E[( f (η)−M (η))( f (η

′
)−M (η

′
))] (13)

where M (η) is the mean function, and K (η ,η
′
) is the

covariance function between η and new enviornmental data
denoted as η

′
. Note that GP modeling ensures an accurate

model in the presence of a sufficiently rich database [35],
denoted by D = [(η ,e)|η ∈ H,e ∈ E], from historical ocean
current profile observations.

C. Proposed Integrated Path Planning and Tracking Control
To address the coupled MCT path planning/tracking con-

trol problem, we develop an integrated control framework.
The goal of the proposed architecture is to plan a cost
criterion-optimal path and to track this optimal path, gen-
erally formulated in discrete-time in the following. To en-
sure an admissible path while avoiding the computational
complexity, the path planning is constrained with the major
operational constraints of the MCT instead of considering
the detailed plant dynamics, which is considered in the path
tracking.
Path Planning:

Jp(x(.),u(.),y(.)) = max
y(.)

[lf(x(Np|k),u(Np|k),y(Np|k))

+
k+Np−1

∑
i=k

l(x(i|k),u(i|k)),y(i|k)]
(14a)

e(i+1|k)∼N (M (η),K (η ,η
′
), ∀i ∈ [0 : Np−1] (14b)

hip(x(i),u(i),y(i))≤ 0 (14c)

hep(x(i),u(i),y(i)) = 0 (14d)

Path Tracking:

Jt(x(.),u(.),y(.)) =min
u(.)

[|y(Nt|k)− y∗(Nt|k)|2

+
k+Nt−1

∑
i=k
|y(i|k)− y∗(i|k)|2]

(15a)
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Fig. 3: Proposed integrated path planning and tracking con-
trol framework for marine current turbine.

x(i+1|k) = Ax(i|k)+Bu(i|k), ∀i ∈ [0 : Nt−1] (15b)

hit(x(i),u(i),y(i))≤ 0 (15c)

het(x(i),u(i),y(i)) = 0 (15d)

where l ∈R and lf ∈R are the cost criterion and the terminal
cost, respectively. Constraint (14b) represents the uncertain
environment profile, where e ∈ Ro is the environment data
vector, hi. and he. are inequality and equality constraint
functions, respectively. y and y∗ denotes the true waypoint
path and optimal waypoint path (reference waypoint path
for path tracking) for the MCT, Np and Nt denote the pre-
diction horizon for path planning and prediction horizon for
path tracking, respectively. Constraint (15b) represents the
linearized model of the plant. The notation x(i|k) represents
the prediction of what the value of x will be at time i given
the value of x at time k.

Fig. 3 visualizes the proposed integrated framework, which
contains two phases. In the offline phase, the planner is
trained due to the historical ocean environment profile to
seek the best path. In the online phase, at each iteration,
the path planner takes the previous iteration’s state, x(k),
and environmental data, e(k), to generate an optimal path
y∗(k). At each discrete-time instant, k, the path tracking
controller follows the commanded optimal path. To be more
specific, the path planner solves the optimization problem
(14a) to maximize a user-defined cost criterion, where the
optimal path satisfies the constraints corresponded to the
uncertain ocean model (14b). A learning-based approach will
be utilized to find the optimal path through learning from

the historical environment profile (details in Section III-A).
The path tracker follows the optimal path assigned by the
path planner and computes feasible control inputs, u(k), to
minimize the tracking error (15a) by taking into account the
linearized model of the plant (15b) subject to the system
constraints. An MPC-based approach will be applied to ad-
dress the optimization problem as a quadratic programming
problem using the linearized MCT model (details in Section
III-B).

Remark. The imposition of a learning-based approach,
DRL, for the upper-level path planning is significant to
address the highly uncertain environment through learning
from the historical ocean environment profile. On the other
hand, in the presence of the dynamic model of the plant, the
selection of an analytical approach, MPC, for the lower-
level path tracking ensures to successfully follow the as-
signed optimal path robustly, without violating the system’s
limitations. The result of this framework is an integrated
control approach that satisfies path planning in an uncertain
environment and path tracking using a detailed plant model.

III. DETAILED PATH PLANNING AND PATH TRACKING

A. Path Planning through Reinforcement Learning

The objective of path planning is to optimize a chosen
cost criterion, considering the plant in a dynamic and highly
uncertain environment. Specifically, for the MCT, the major
objective is to maximize the harvested power from the
plant. To solve the real-time path planning, denoted as an
iterative decision making (control) problem in a stochastic
environment, a DRL approach is considered as a powerful
tool to find the optimal path through learning from the
historical data, which shows acceptable robustness to the
environmental uncertainties in similar applications [36]. A
brief review of the RL preliminaries is presented below.

Reinforcement Learning (RL): In RL, a Markov decision
process (MDP), as a canonical formalism for the stochas-
tic control problem, is modeled by a tuple MDP :=<
S ,A ,P,R,γ >, where S are the state and action spaces,
respectively; P is the probability of state transition, with
P(s′|s,a) denoting the probability of transiting to the state
s′ ∈S given the current state s ∈S after taking the action
a ∈A , R : S ×A → R is the reward function.

A policy π : S →A determines the action to take at state
s. To estimate how good a particular policy will be with a
given state, a value function Vπ(s) is used to measure the
accumulated reward, which is defined by:

Vπ(s) = ∑
a∈A

π(a|s) ∑
s′∈S

P(s′|s,a)(rk + γVπ(s′)) (16)

where π(a|s) denotes a policy in the RL to take an action
a∈A at state s∈S and rk = R(sk,ak). Similarly, a Q-value
function of a policy π is defined as follows while γ ∈ [0,1)
is the discount factor:

Qπ(s,a) = rk + γ ∑
s′∈S

P(s′|s,a)Vπ(s′) (17)



The optimal Q-value function Q∗ is defined as Q∗(s,a) =
max

π
Qπ(s,a). Given Q∗, the optimal policy π∗ is then calcu-

lated by π∗ = argmax
π

Qπ(s,a).

Q-learning approach, as one of a popular RL algorithms,
is chosen to find Q∗(s,a); however, a standard tabular Q-
learning lacks to scale to problems with high-dimensional
state and action spaces. To tame this issue, deep Q-learning
is introduced to approximate the Q-value function for all
possible actions with a deep neural network. To find the
optimal Q-value Q∗, we use the DRL approach (specifically
deep Q-network (DQN)). The DQN includes two deep neural
networks named the Q-network Q(.;θ) and target network
Q(.;θ−), where θ and θ− denote the parameters (weights)
of these two networks. The main goal of the DQN is to
optimize Q(s,a) estimated by Q(.;θ) and its distance with
the temporal difference target t j estimated by the Q̂(.;θ−),
expressed as a gradient descent:

L(θ) = [t j−Q(s j,a j;θ)]2 (18)

t j := r j + γmax
a′

Q(s j+1,a′;θ
−)) (19)

To select an action, we follow an adaptive ε−greedy policy
[37] as a method to choose random actions with uniform
distribution from possible actions, namely:

ak =

{
argmax

ak
Q(sk,ak), 1− ε

random a ∈ A, ε

(20)

ε = εmin +(εmax− εmin)e−d×ne (21)

where d is the decay factor and ne is the episode number.
DRL-based Path Planning: For the MCT application, at

each iteration, the DRL-based approach decides on whether
to keep the MCT at its current position (i.e., water depth)
or to change the position that has a large flow speed to
maximize the harvested power in the planning prediction
horizon Np (see (14a)). The state S , action A , and reward R
notations should be defined according to the MCT-specific
application. The MCT can observe its current states, x(k),
and the ocean current velocity e(k), vc(k); hence, the state
of this system at time k is s(k) = [x(k),vc(k)]. To define the
action space, we consider the possible action that MCT can
take to maximize the generated power, where the position
change constitutes the action of MCT at k (i.e., a(k) ∆

= y(k)).
The major concern for the path planning problem for the

MCT system arises from its complex power equation and
how to define the DRL’s reward in relation to that power
expression. Since the ultimate objective of path planning is
to maximize the generated power, a positive reward, α , is
gained if the position change fulfills the power increase, and
a zero reward is given to the wrong position change:

R(sk,ak) =

{
α, P(z(k+1))> P(z(k))
0, else

(22)

The total harvested power P(z(k)) from the MCT com-
prises of three terms of generated power PG, consumed

power to hold depth PHD, and consumed power to change
depth PCD, namely:

P(z(k)) = PG−PHD−PCD (23)

PG =
1
2

ρAcpv3
c(z(k)) (24)

PHD =

{
0, vc(z(k+1))− vc(z(k))< 0
ζ1
Tp
[vc(z(k+1))− vc(z(k))], vc(z(k+1))− vc(z(k))> 0

(25)

PCD =

{
0, z(k+1)− z(k)> 0
ζ2
Tp
[z(k+1)− z(k)], z(k+1)− z(k)< 0

(26)

where ρ denotes the water density, A is the swept area by the
MCT rotor, vc denotes the ocean velocity (denoted as e in
our framework presented in Fig. 3), cp is the average power
coefficient, ζ1 and ζ2 denote the coefficients for the power
equations, and Tp denotes the path planning sampling time.

According to the power equation (23), the optimal depth
(denoted the optimal power) is a compromise between the
maximum water current and both the power consumption to
hold depth and power consumption to change the depth. On
the other hand, note that the magnitude of a non-zero reward
α significantly impacts the training procedure. We formulate
the path planning problem to increase the total reward gained
by the position change, namely:

π
∗ = argmax

π

[rk + γ ∑
s′∈S

P(s′|s,a)Vπ(s′)] (27)

where the MCT learns the optimal policy π∗ using DQN
approach to find the optimal waypoint path by solving (27).

To do the path planning, we should first construct the
DQN through offline training using the historical ocean
environmental data, and the constructed DQN is then used to
find the optimal path in an online phase. Algorithm 1 details
the offline training process.

B. Path Tracking through Model Predictive Control

The path tracking will minimize the distance between the
plant’s current path and the optimal path commanded by the
path planner. MPC, as a powerful model-based algorithm, is
chosen to address path tracking due to the complex dynamics
consisting of multiple states and the availability of a detailed
MCT model.

Model Predictive Control (MPC): To design an MPC for
the DLTI system defined in (10), the following cost function
must be minimized:

Ṽ ≡1
2

(
k+Nt−1

∑
i=k+1

(
(y(i|k)− y∗(i))T Qpart (y(i|k)− y∗(i))

)
+

k+Nc−1

∑
i=k

(
(u(i|k)−u(i−1|k))T R∆part (u(i|k)−u(i−1|k))

+ (u(i|k)−d(i))T Rpart (u(i|k)−d(i))
)

+(y(k+Nt |k)− y∗(k+Nt))
T Qterm (y(k+Nt |k)− y∗(k+Nt))

)
(28a)

umin(i)≤ u(i)≤ umax(i) (28b)

∆umin(i)≤ ∆u(i)≤ ∆umax(i) (28c)

ymin(i)≤ y(i)≤ ymax(i) (28d)



Algorithm 1 Deep reinforcement learning for path planning

1: Initialize recorded training data sample of an uncertain
environment;

2: Initialize replay memory M and mini-batch size;
3: Initialize action-value function Q and target action-value

function Q̂ with random weights θ and θ− = θ ;
4: for episode i = 1 to Nepisode do
5: Initialize initial state;
6: for time step k = 1 to Np do
7: Select action ak using ε-greedy policy (20);
8: Take action ak and observe rk and sk+1;
9: Store transition (sk,ak,rk,sk+1) in M;

10: Sample random mini-batch of transitions
(s j,a j,r j,s j+1) from M;

11: Set t j = r j + γmax
a′

Q(s j+1,a′;θ−));

12: Perform a gradient descent step on L(θ) = [t j−
Q(s j,a j;θ)]2 with respect to θ ;

13: Update Q̂ every b steps and set θ− = θ ;
14: end for
15: end for
16: Output offline trained optimal deep Q-network Q∗;

where Nt and Nc are the prediction horizon and the control
horizon, respectively; d(i) is a vector of the arbitrary user-
selected target controls at time step i, Qpart and Qterm are
the weight factors for the states and the final state point,
respectively. Finally, R∆part and Rpart are the weight factors
for the control input changes and the desired control inputs,
respectively. Constraints (28b)-(28c) impose that control in-
put and control input change should stay within a predefined
bound. Constraint (28d) captures the need to bound the
system output. Here, (.)min(i) and (.)max(i) are the minimum
and maximum values of (.)(i).

After the algebraic manipulations as given in [7], the cost
function is converted to the quadratic form, which is then
minimized using the interior-point method, subject to the
constraints given in (28b)-(28d).

MPC-based Path Tracking: In our problem, we will
leverage the path tracking algorithm to obligate the plant
to follow the optimal path with a minimum error subject
to system constraints. Considering the MCT with a high
number of coupled states and the requirement of handling
many constraints, MPC provides a controller that meets the
desired objectives in a guaranteed manner. Also, the user-
defined weights bring flexibility about choosing the more
important states in the plant to be followed while giving
less priority to the other states that are relatively less crucial
for the desired performance. MPC is designed to minimize
the cost function as given in (28a), in which the weights
are defined to prioritize the states to follow the trajectory
with the minimum error. The reference path is defined in the
vector of target outputs, y∗(i), and at each sampling time,
the updated reference is received from the DRL-based path
planner. Algorithm 2 describes the MPC-based path tracking.
The constraints of the MPC solver are defined based on the

Algorithm 2 Model predictive control for path tracking

1: Discretize the continuous linear model based on Shan-
non’s Theorem;

2: Initialize the linear model inside the MPC solver;
3: Initialize the constraints for the actuators and the system

states;
4: Initialize Nt , Nc, Qpart, Qterm, R∆part and Rpart;
5: Initialize the initial state and control inputs;
6: for i = 1 to Noperation do
7: Initialize the reference trajectory based on the opti-

mal waypoint path from the DRL;
8: for j = 1 to Noperation-int do
9: Apply the interior-point method, select u∗ for Nc

over Nt ;
10: Solve the cost function Ṽ in (28a) and obtain

optimal [u∗(i|Nc), ...,u∗(i|i+Nc−1)];
11: Apply u∗(i|Nc) to the DLTI plant and obtain the

next system state x(i+1);
12: end for
13: Update the position error and send a feedback to

DRL;
14: end for

MCT design and specifications. Control inputs saturations
and the slew rates constraints are defined as:

[|Bf| , |Ba| , |τem|]≤ [%50,%50,0.2× τ
eq
em Nm] (29)

[∣∣Ḃaft
∣∣ , ∣∣Ḃfront

∣∣]≤ [7.45×10−4,7.45×10−4]%/s (30)

Since the desired performance is to track the depth
reference, the related state, z, has the only weight de-
fined in Qpart and the rest is set to be zero as Qpart =
diag(0,0,0,0,0,0,0,0,0,1,0,0,0). The other rates are de-
fined as Qterm = I13,Rpart = 0, and R∆part = I3, where In is
the n×n identity matrix.

IV. NUMERICAL RESULTS

We evaluate the proposed path planning and path tracking
for the MCT with the total mass of 4.98×105 kg, and mass
moments of Ixx = 1.35× 107 kgm3, Iyy = 4.74× 107 kgm3,
and Izz = 3.45× 107 kgm3 [24]. The other parameters for
the power equations include ρ = 1030 kg/m3, A = 100π ,
cp = 41.5%, ζ1 = 9.113, and ζ2 = −0.0365. For the path
planner, we select a DQN with two hidden layers with a
buffer size of 5e5, a batch size of 64, γ = 0.5, εmin = 0.01,
and εmax = 1. The experimental tests show that setting the
reward value to α = +1 justifies a successful training in
our problem. For the tracking controller, the horizons are
selected as Nt = 40, and Nc = 20 considering the system’s
performance with highly-limited actuator slew rates. For the
path planning and DQN training, the experimental tests are
implemented in Python 3.7 and Tensorflow 2.4, where each
training step takes 58 ms within 3000 steps and 100 episodes.
To find the sampling time, the eigenvector analysis is carried



Fig. 4: Trajectory followed by the MCT along with the

optimal reference trajectory for two ocean shear profiles.

out and the eigenvalues of the linear MCT model are:⎡⎢⎢⎣
−0.2731±1.2585i −0.1121±0.1549i
−0.2588±0.9618i −0.0033±0.0021i
−0.2647±0.3564i −0.0483

−0.1754±0.3793i

⎤⎥⎥⎦ (31)

According to this analysis, the maximum frequency of the

MCT system is calculated ωn,max = 1.29 rad/s so that we

opt for a sampling time of Ts = 2 s satisfying the minimum

requirement based on the Shannon sampling theorem. The

path tracking is implemented in MATLAB, and the simula-

tion time for solving (28a) per iteration is 140 ms.

The goal is to maximize the net power of the MCT through

modifying the operating water depth z (i.e., vertical path

planning), where the tracking controller tracks the optimal

depth with the minimized error. After the path planning,

the z trajectory is sent to the tracking controller, where the

error is minimized through (28a). Fig. 4 shows the trajectory

followed by the MCT along with the optimal reference

trajectory for two shear profiles, verifying that the proposed

path tracking controller successfully follows the assigned

optimal path by the path planner for the entire trajectory.

It is shown that the path planner is able to find the optimal

trajectory over low and high shear profiles, where the MCT

also navigates the commanded reference paths. Results show

the efficiency of the path planner in finding the optimal path

to maximize the net power, where the total harvested power

after 24 hours shows an over 9 % increase compared to

the baseline case (the MCT maintains at zeq = 50m without

path planning). Note that the baseline case is selected based

on the equilibrium depth of the MCT, which can produce

the highest power while keeping a constant depth. Fig.

5 demonstrates that the Euler angles of the MCT remain

within the acceptable bounds (±6◦), and Fig. 6 illustrates

the control inputs applied to the MCT to track the reference

trajectory. We can see that the control inputs do not violate

the constraints presented in (29).

V. CONCLUSIONS

In this paper, we presented an integrated path planning and

tracking control framework for the MCT wherein the planner

was designed using a DRL approach to develop a strategy in

order to optimize a cost criterion (maximizing the harvested

Fig. 5: Euler angles of the MCT system for two ocean shear

profiles.

power from the MCT). The tracking control was addressed

through an MPC approach considering the linear model of

the system obtained from the nonlinear dynamic model. The

proposed approach was applied to a buoyancy controlled

MCT, and the numerical results verified that our proposed

approach was able to maximize the net power through path

planning compared with the baseline. Results also demon-

strated that the tracking controller could effectively track

the optimal path by considering the sluggish dynamics while

avoiding any aggressive motion and instability.
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