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Abstract—This paper proposes a visual analytics framework
that addresses the complex user interactions required through
a command-line interface to run analyses in distributed data
analysis systems. The visual analytics framework facilitates the
user to manage access to the distributed servers, incorporate data
from the source, run data-driven analysis, monitor the progress,
and explore the result using interactive visualizations. We provide
a user interface embedded with generalized functionalities and
access protocols and integrate it with a distributed analysis
system. To demonstrate our proof of concept, we present two use
cases from the earth science and Sustainable Human Building
Ecosystem research domain.

Index Terms—visual analytics, distributed analysis, data-
driven analysis

I. INTRODUCTION

To support decision-making in a data-driven society, re-
search seeks to exploit the power of big data and the ben-
efits of derived insights, scientific discoveries, and enhanced
understanding. The advance and convergence of methods and
technologies – including advances in machine learning and
deep learning methods; increased storage capacities and re-
duced storage costs; higher network speeds and larger network
bandwidth; more economical and powerful high-performance
computing; and a growing prevalence of sensor networks
and smart technologies – are essential enablers to enhanced
sensemaking over big data. However, it is often the case that
important insights and discoveries reside not within a single
dataset, but instead are embedded within and across multiple
and distributed datasets. Therefore, realizing the maximal
potential for data-driven insights necessitates analyses and
sensemaking that occur across these distributed, disparate
datasets – analyses and sensemaking that, thereby, enable
accurate and reliable revelation of latent, complex correlations,
patterns, relationships, and such other knowledge that may not
be revealed from a single dataset alone.

There is an abundance of previous research (e.g., [1]–
[8]) spanning many disciplines that demonstrates the potential
value and impact of enabling analyses and sensemaking across
distributed, complex, and fragmented data. Yet, significant
challenges remain. In particular, to support sensemaking across

Fig. 1. Visual analytic system pipelines for distributed analysis systems.

such data, new visual analytic interfaces are needed, new
pipelines for optimized distributed data interaction and vi-
sualization are required, and new data access protocols and
application programmer interfaces (APIs) must be developed.
We highlight these challenges in Figure 1.

In support of sensemaking, users require a visual analytic
interface that seamlessly supports data discovery, exploration,
and analyses. In other words, the visual analytic interface
should support the full extent of the sensemaking loop [9],
[10] from foraging to hypothesizing to analyzing. Current
solutions, however, often emphasize specific aspects of sense-
making – for example, data exploration or data analyses –
and fail to support the full analytical lifecycle adequately. In
addition, it is infeasible to access large and remote datasets
using traditional pipelines for data transformation, conversion,
and presentation. Such pipelines are commonly preceded by
massive data downloads, which are infeasible or impractical
for many remote datasets. Thus, new pipelines are required,
pipelines that are not predicated on massive data downloads.
Finally, to generalize visual analytic interface for distributed
fragmented data, new APIs and data access protocols are
necessary. In particular, these APIs and protocols must account
for the full analytical lifecycle and must not be predicated on
massive, upfront data downloads.

In this paper, we present an interactive visual analytics
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framework (VAF) for the distributed data analysis systems
(DAS). VAF enables analyses over distributed, fragmented
data without the movement of massive data. Significant ad-
vancements in distributed data analysis over the past decade
[4], [8], [11]–[13] make our proposed framework a feasible
candidate to accelerate the analysis tasks of researchers and
analysts. To demonstrate our framework, we leveraged the
Virtual Information-Fabric Infrastructure (VIFI) [8], [14]–[19],
which is a computational infrastructure that enables analyses
across distributed, fragmented data without the movement of
massive data. Within VIFI, analyses migrate to the distributed
data and only derived data – e.g., result sets – migrate from
the data hosts. Our contributions of this paper are:

• We define a VAF for distributed, fragmented data as well
as design goals and associated implementation tasks.

• We present a generalized pipeline for data transformation,
conversion, and presentation – one that is not predicated
on massive, upfront data downloads.

• We provide a demonstration version of the visual analytic
user interface (UI) to support distributed analysis.

• We present generalized APIs and data access protocols to
enable proper integration with infrastructures that enable
analytics over distributed fragmented data.

• We demonstrate VAF with two analytic systems (i.e.,
VIFI and a simple file-based systems) and illustrate its
benefits using two uses cases from earth science and
Sustainable Human Building Ecosystem (SHBE) research
domains.

II. RELATED WORK

Current data-driven applications often require the identifi-
cation and mitigation of relevant data from multiple locations
to a common storage location, prior to performing analysis.
To overcome what is often a difficult, time-consuming, and
laborious task, some alternate solutions have been proposed
for data sharing using high-speed networks and cloud-based
hosting, while other alternative solutions focus on providing
shared computing resources. DataONE [1], [2] is a project
focused on providing easier access, search and discovery to
earth and environmental science data repositories. The Open
Science Grid [3], [20] enables scientific research by providing
distributed computing resources. SciServer [4], [21] is a cyber-
infrastructure system that provides a suite of tools and services
(including storage, access, query, and processing) for big
data analyses from various disciplines leveraging data with
different format and structure. While SciServer collects all
data at a common storage location, it attempts to minimize
data movement by collecting data at the location that contains
the majority of the required data. SciServer also migrates the
analyses by sending Jupyter Notebook [22] to the common
storage location.

Other data-driven applications aim to develop research
infrastructures that integrate storage, high-performance com-
puting, and analytic tools (e.g., XSEDE [11], [23], NeCTAR
[24], PRACE [25], and EGI [26]). The applications allow
end-users to share distributed computing resources and data

repositories. The solutions may be used by Science Gateways
(SGs) [5], [27]–[30] to provide (web) portals and UIs that
enable scientists (e.g., chemists, biologists) to access, build
and execute analytic workflows. SGs relieve scientists of
the burden and needed expertise to setup and maintain the
underlying distributed cyber-infrastructure. SG services can be
shared and reused by different end-users. SGs can be classified
into SG framework like WS-PGRADE/gUSE [27], and SG
instances like the computational neuroscience gateway [13].
SG frameworks are generic SGs that provide low-level services
for scientists from different domains. While SG frameworks
provide high-level abstractions for computing specialists, SG
frameworks require additional learning from the scientists to
leverage the full potential of the frameworks. SG instances
provide high-level services for scientists in a specific domain.
Thus, SG instances simplify scientific operations for end-
users, but limit flexibility when more functionalities are needed
from the SG instance. Some of the SG features and services
(e.g., security, data and workflow management) depend on the
underlying technology. Thus, it becomes challenging to port a
SG from one infrastructure to another [31], [32]. Gugnani et
al. [33] suggests a generic approach to integrate infrastructure
aware workflows, (e.g., WS-PGRAD/gUSE [27]) with bigdata
parallel processing tools (e.g., Hadoop). This work [33] uses
the CloudBroker platform [34] to provide required cloud-based
computational resources.

SGs can be accessed through different middleware like
Airavata [35], Agave [36], and Globus [37]–[39]. Airavata
[35] allows users to manage applications and workflows on
the provided resources (e.g., clouds, cluster, grids) through
component abstraction of major tasks. The system components
are indirectly accessed through component APIs. Agave [36]
provides web-access, through Representational State Transfer
(RESTful) APIs [40], to given resources (e.g., HPC, cloud)
to run analyses and and to manage data. Globus [37]–[39] is
software-as-a-service designed to make it easier to discover,
replicate, and access big data resources at different locations.
Globus is used to deliver scalable research data management
services in a secure manner to a variety of stakeholders. Some
Globus features, like data publication and managed endpoints,
include licensing fees.

In contrast to existing solutions, our VAF aims to support
“truly distributed analytics” where analytics are executed at
data sites without the massive movement of data. Our frame-
work avoids huge data transfer times while complying with
owner-defined authentication and authorization policies for
data access. Our framework does not add new infrastructure
for additional data and/or computational operations; rather, it
aims to integrate with existing data site infrastructure. The
framework utilizes containerization technology (e.g., Docker
[41]–[49]), rather than tools like Jupyter notebooks [22],
to migrate analyses. This provides more flexibility over the
analytics tools and analytic environments that can be used by
the scientists in conducting data-driven inquiries (i.e., analyses
are not limited to the tools provided by Jupyter). In addition,
unlike some related work, our framework depends entirely on

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 26,2023 at 21:43:37 UTC from IEEE Xplore.  Restrictions apply. 



231

open source technology. For example, our pipeline uses only
open-source components (e.g., Apache NiFi [50] and Docker
Swarm [51]) with free access to all features. Thus, users can
develop, reuse, and customize our framework for their needs.

III. SYSTEM DESIGN

This paper proposes an interactive VAF to simplify user
interactions and enhance the user experience with a DAS. To
design a pipeline for the VAF, we reviewed numerous dis-
tributed analytic systems (e.g., [4], [8], [52], [53]) to identify
the key user interactions required to operate these systems.
We discovered that many system utilized command line in-
terfaces. Nonetheless, we extracted the following fundamental
interactions: managing access to distributed servers, preparing
analytic scripts and runtime environments, importing data from
remote sources, executing analyses, monitoring the execution
progress, and inspecting and exploring the analytical results.
DAS commonly maintain data site to data site communication
using cloud infrastructures to run analyses [8], [14], [52]. To
operate a DAS from a command line interface requires access
for a user to multiple remote servers. Access control for such
interaction with the data sites and DAS sites can be complex
for the data owners. Consequently, the entire procedure to
run a data analysis can be similarly challenging for the data
analysts and the end users. Moreover, to explore the results,
users from different domain areas were required to pull the
resulted data from the server. Rather than using command line
interfaces, DAS often provide a visualization toolkit [52], [54].
However, users are responsible for generating the exploratory
visualizations or necessary artifacts to measure the perfor-
mance of the analysis [55]. Given all of these need interactions
and associate limitations of current solutions, we identified
associate design requirements and implementation tasks and
mitigate current complexities for user-DAS interaction.

A. Design Requirements

We propose an interactive VAF to provide more seamless
user interaction with distributed analysis systems. Related
work reveals the following design requirements for our VAF:
DR1 To mediate user interaction with distributed servers.

The framework should provide sufficient features to
allow users to execute analyses in DAS without requiring
direct user access to the distributed servers and data
hosts.

DR2 To provide a unified model for authentication and
access control for distributed servers. The framework
should provide proper access to data and analytic work-
flows according to data site policies. The framework
should integrate with existing authentication and autho-
rization mechanism to the computing servers and various
data sites.

DR3 To enable the exploration of data and resulting
analyses using interactive visualizations The frame-
work should utilize interactive visualizations to support
the sensemaking loop (i.e., foraging, hypothesizing, and
analyzing) while not requiring massive data downloads

as a means to enable accurate and reliable revelation of
latent, complex correlations, patterns, relationships, and
such other knowledge.

B. Implementation Requirements

To address the above design requirements, we identify the
following implementation requirements for our framework:

R1 To provide an interface to manage analytical scripts
and Portable Analytic Containers (PACs). Framework
users must be able to access, specify, and manage analyt-
ical scripts that are stored in an external repository – e.g.,
at a DAS data host. As such, the framework should offer
an end-to-end synchronization with the available analytic
scripts and PACs in DAS (DR1).

R2 To enable user efforts to configure analytical scripts
and workflows. To conduct analysis across distributed,
fragment data, coordinated execution of analytical scripts
is often required (hypothesizing). Workflows often contain
a set of configurations that points the dataset, analysis
scripts, required access credentials, etc. The framework
should provide affordances for users to modify analytical
workflow configurations (DR1).

R3 To support user-initiated execution of analytical work-
flows in DAS. After enabling the preparation analysis
scripts and configuring an analytical workflow, the frame-
work should allow the user to initiate workflow execution.
In addition the framework should minimize the need for
the user to authenticate directly to each data host (e.g.,
mediate authentication via single sign-on) (DR1, DR2).

R4 To mediate and comply with data host authentication
requirements and authorization policies for datasets,
analysis scripts, and workflows. The framework should
manage compliance with authentication requirements and
authorization policies for end users. Users should be
able to view, modify, and execute analysis scripts and
workflows on permitted datasets according to data host
authorization policies (DR2).

R5 To maintain user awareness of workflow execution sta-
tus. Workflows often require significant time to queue and
execute. The framework should maintain user awareness
of workflow execution status so that users may accurately
track their progression in the DAS (DR1).

R6 To provide access to the runtime and error logs.
Runtime logs are useful for the users to understand DAS
performance and anticipate expected runtimes of analyt-
ical workflows. Similarly, error logs are helpful to trace
script and workflow execution, particularly in exceptional
circumstances. The framework should effectively present
runtime and error logs to users (DR2, DR3).

R7 To provide an interactive visual analytic interface to
support data discovery and explore analytical results.
The framework should provide users interactive visual-
izations to discover data (foraging) and explore workflow
results (analyzing). The visualizations may be general-
purpose or analysis-specific. Thus, the framework should
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Fig. 2. Proposed VAF pipeline for DAS: A) User Interface, B) Middleware, C) DAS site, and D) Data site are the main modules in our framework. a)
Workflow Preparation, b) Workflow Execution, c) Task Management, and d) Visual Exploration show the flow of interactions within the VAF components.

be extensible to accommodate analysis-specific visualiza-
tions (DR3).

To satisfy the design and implementation requirements for
the proposed VAF for DAS, we developed: interactive, web-
based, visual analytic interfaces; a visual analytic pipeline;
and, an API / data access protocol.

IV. MIDDLEWARE

The middleware for the VAF is one of two major compo-
nents of the visual analytics pipeline as well as the imple-
menter of the data access API and protocol (Figure 2B). It
orchestrates use case (R1), workflow/task (R1-3, R5-6), and
script (DR1, DR2) management as well as authentication (R4)
and authorization integration (R4) with DAS. The primary
component is the Task Manager that mediates communications
between the VAF and DAS.

Use Case Management: Use case management provides
methods for creating, modifying, and projecting use cases. A
use case organizes a collection of analytical workflows and
results. The Task Manager creates a unique key for each new
use case. The user, then, specifies and name and one or more
workflows (Figure 2B1). Results from executed workflows are
also collected in a use case. As such, use cases provide a means
to organize analyses.

Workflow/Task Management: Workflow/task management
provides methods for the creation, mutation, execution, and
projection of workflow specifications and execution instances.
Executing workflows are called tasks. Each task is attributed
with script identifiers, user identifier, use case, and workflow.
When a user submits a request to execute a workflow, a new
task is created and scheduled for execution via the DAS (R2,
R3). The Task Manager collects the required information and
relates the information to a unique identifier corresponding to
its workflow and use case, respectively. The task along with

its related scripts are, then, sent to the DAS for execution
(Figure 2a). Task information, including execution steps and
status updates, is captured in the runtime and error logs (R5,
R6). Once a task completes, the Task Manager retrieves the
analytical results from the DAS.

Script Management: Script management provides methods
for the creation, mutation, and projection of scripts. Scripts
and their related configurations are associated with each
workflow/task. The script identifier is used during the task
creation process to ensure all relevant analyses are properly
identified and subjected to the DAS for execution (R1). The
alytics interface leverages use case, workflow/task, and script
management collectively in the Task Manager to support
hypothesizing activities as part of the sensemaking loop.

Results Management: Result management provides meth-
ods for the projection of analytical results (e.g., task results).
Results for each workflow are associated with a task identifier.
When the execution of a workflow completes, the DAS signals
the completion status to the Task Manager (R5). The Task
Manager, then, retrieves results from the DAS so that these
may be projected to the user via the visual analytics interface
(R7).

Authentication: To meet the VAF authentication require-
ments, the middleware uses InCommon [56] and WSO2 [57]
for identity management. The VAF, leveraging these services,
implements key-based authentication to enable trusted com-
munication between VAF and DAS components (R4).

InCommon is a federated identity management service
provided to education and research institutions using the
Shibboleth single sign-on architecture. Given the large number
of participating institutions and simplicity of setup, VAF
integrates with InCommon-based authentication services [56].

For users whose institution is not a member of the InCom-
mon federation, the WSO2 Identity Server (IS) is utilized
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for authentication. The WSO2 IS integrates with any IAM-
compliant architecture. For users with no IAM-compliant
architecture, WSO IS provides a built-in IAM architecture.
While WSO2 integrates with Shibboleth SSO, and thus may be
integrated with InCommon, the current VAF implementation
leverages InCommon outside of WSO2 IS to simplify config-
uration [57]. For VAF configurations that leverage WSO2 IS,
the middleware authorization service uses the WSO2 API to
handle user authorization requests. In such implementations,
user authorizations are configured using the WSO2 IS Admin-
istration application.

Within VAF, key-based authentication enables trusted com-
munication among VAF components and between VAF and
DAS. For WSO2 implementations of VAF, key-based authenti-
cation also is enabled between middleware services and WSO2
services. Key-based authentication leverages Hypertext Trans-
fer Protocol Secure (HTTPS) and requires valid certificates for
communication between endpoints.

Authorization: The middleware provides two options for
authorization support, either a proprietary solution or a WSO2
implementation. For VAF configurations that do leverage
WSO2, a proprietary authorization solution is provided via a
middleware authorization service. To set up user authorizations
using the service requires manual database updates.

We defined three user roles for VAF: a data owner, workflow
designer, and data analyst (R4). A data owner manages the
user’s access control in DAS data sites. A Workflow designer
setup an initial configuration and orchestration path for a new
workflow. While a data analyst is authorized tweak certain
configurations according to need, the designer’s role is to use
the workflows to conduct analyses.

V. VISUAL ANALYTICS INTERFACE

The visual analytics interface is the second major compo-
nent of the visual analytic pipeline. It provides coordinated
views [58] to support user actions for workflow execution
and result exploration in DAS. To satisfy the design re-
quirements, the UI introduces three main panels: workflow
management, task management, and result exploration. These
panels assist users in three different phases of sensemaking: 1)
data exploration (foraging); 2) analytical workflow and script
development and execution (hypothesizing); and, 3), exploring
and analyzing workflow results (analyzing). In the following
sections, we illustrate support for each phase by presenting
VAF support for workflow/script management (hypothesizing),
task management (hypothesizing), and interactive visual explo-
ration (foraging and analyzing).

A. Workflow/Script Management

The workflow/script management view consists of a File
Browser, a Code Editor, and a Terminal View (Figure 3A,B
and C). In the File Browser, the available use cases and
workflows are listed according to user access privileges to
the PAC repository (R1, R4). By default, the view provides
access to two types of directories: shared directories and user
directories. The shared directories contain all use cases and

workflows that are shared with other users. The user directories
contain the use cases and workflows (created or cloned) that
are private to the user. The File Browser is synchronized with
the middleware’s Task Manager component via RESTful API.
The workflow/script management view presents only those
use cases and workflows that are configured in the DAS and
flagged as enabled in the Task Manager. We require hierarchi-
cal presentation of PACs in the associated DAS as shown in
Figure 3A. The hierarchy is set in a manner that always gives
an ordered path (/[ root-directory ]/[ use-case
]/[ workflow ]/[ w-version ]/) when users select
a workflow to execute. For example, if the user decides
to execute the version 1 of the user workflow shown in
Figure 3A, the conceptual path to the script directory would
be /shared/lsu_ann1/user/v1/. The hierarchical ab-
stract organization is adopted for its familiarity and ease of
use. Moreover, it provides an encoding that facilitates interface
middleware communications.

We added operations to the File Browser (Figure 3A) to
create, duplicate, or modify the workflows (R1). To keep the
integrity of the file structure, each operation is implemented
with a set of constraints (Figure 2a). The ”Duplicate” operation
allows the user to clone a selected workflow. It also allows
users to clone scripts. For example, in Figure 3A1, ive2.py
is duplicated (or cloned) from ive1.py. However, this op-
eration does not allow users to clone use cases or the root
directory. Similarly, ”Add folder” only allows users to create
new version folders under a selected workflow, rather than
creating a folder at an arbitrary location in the hierarchy. The
”Upload” and ”Download” actions allow the user to migrate
analysis to and from the local machine and the DAS.

In the Code Editor (Figure 3B), the user can modify the
workflow, and create and modify scripts according to their
hypotheses for the corresponding use case. By selecting a
script, users are allowed to modify and execute the script
within the Code Editor for testing purposes (Figure 3B). The
File Browser also provides access to workflow configurations,
which users can select to modify in the Code Editor (R2). In
the File Browser (Figure 3A), the scripts and workflow con-
figurations are validated prior to execution to assess whether
modifications are permitted. The conf.yml file associated
with each workflow version contains the workflow specifica-
tion and identifies the appropriate DAS for execution. This
file includes, among other things, the DAS credentials (Figure
3B1), dataset identifiers, and the location where workflow
results are to be transferred after task execution completes
(Figure 3B2). The Terminal (Figure 3C) reflects the output
from an associated command line interface to the DAS (when
such an interface exists). It also shows log files and the output
of test script executions.

To execute a workflow in a DAS, the user selects the
conf.yml file for the workflow in the File Browser (shown
in Figure 3A1) and clicks the ”Run” button located bottom
right in the Code Editor (Figure 3B) (R3). The interface, then,
passes the command to the middleware and switches to the
Task Management view once execution is launched in the DAS
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Fig. 3. Analytic workflow management through our visual analytics systems. Workflow management view provides A) File Browser - to configure the
workflow, B) Code Editor - to prepare and run the analytic workflows, and C) Terminal - to stream raw outputs.

(Figure 2b).

B. Task Management

The task management view contains a Scheduled Task panel
that lists the workflows (i.e., tasks) that are currently executing
for the given user as shown in Figure 4. The Scheduled Task
panel provides graphical indicators of task progression. A
unique task ID is generated for each workflow execution (R5).
While executing the workflow, the task identifier is linked to
all runtime data, including the runtime environment, script
directory, logs, results files, etc (R6).

A task may take anywhere from fractions of a second to
hours or days to execute depending on the size of the data,
the complexity of the analysis, the computational resources
available, and the shared demand for the data and computing
resources. While a task is executing, the user can interact
with any tasks to inspect execution logs or view the results
of completed tasks (Figure 2c). The execution logs accessible
from the Task Manager are not the output logs from the
given script. Rather, these logs, retrieved from the middleware,
capture workflow progression checkpoints for a given task,
such as: a) queued – execution request sent to middleware;
b) queuing - middleware retrieving relevant scripts, preparing
for task execution, generating the unique task identifier, etc.;
c) created – the workflow execution request is validated
the request and the task is properly created; d) sending -
transferring the task to the appropriate DAS; e) sent - the task
is successfully sent to the DAS and awaiting execution, and f)
complete - the DAS completed the task execution and results
are returned to the middleware for user access.

The progress bar aligned with each task in the table (Figure
4) depicts an estimation of overall execution progression. The
Scheduled Task panel provides users with several operations
that may be applied to a given task, including: a) “Cancel” –
this operation allows a user to cancel task execution by the
DAS, b) “Rerun” – this operation allows a user to rerun a
task, possibly with updated parameters, after first canceling
the current execution; and, c) “Result” – this operation, avail-
able after task completion, takes a user to interactive visual
interfaces to explore the data that result from task execution.

C. Visual Exploration

The interactive, visual exploration views provide a threefold
means to explore both data/datasets (foraging) and task results
(analyzing). In this section, without loss of generality, we
focus our presentation on results exploration (Figure 2d).
The interactive, visual exploration views include two principal
panels: the variable exploration panel and visual exploration
panel (R7).

The variable exploration panel provides a view that allows
users to explore the properties of resulted data. Figure 5 shows
a sample illustration of the variable exploration panel using
this data [59]. The data variable exploration panel initially
provides the data dimension (Figure 5A), a triangle matrix
(Figure 5B) and a data table containing the variable properties
(Figure 5E). We implemented this panel recognizing that users
may not always be familiar with the data variables. This panel
provides the data type for each variable in the data. In addition,
for numeric data variables, the table provides some statistical
data (e.g., range, mean, and standard deviation), though this
may not always be relevant or useful. For categorical data, the
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Fig. 4. The UI for submitted analysis task management in our visual analytics system. Task management interface allows the user to interact with the
scheduled tasks for inspecting logs, tracking progress, visual exploration of the results or re-running the workflow.

Fig. 5. The variable exploration panel on the UI for analysis results. A)
Metadata, B) Triangle matrix - variable correlation, and C) Data variable
properties familiarize the user with the resulted.

panel provides count and frequency information. For example,
hovering over categorical data presents a bar chart providing
the frequency distribution of the categorical data. Additionally,
the matrix (Figure 5B) provides the correlation among data
variables, which may help users during analyses. The matrix
cells are color coded and denotes the correlation -1 to +1
using a red-yellow-green color scheme. The user can explore
the correlation between two variables by hovering the mouse
over the corresponding cell in the triangle matrix. The scatter
plot and bar chart (Figure 5C, D) based on the respective
interactions with variable properties (Figure 5B1, E1) allow
users to identify and explore patterns or outliers in the data.

The data transformation capabilities include scaling the data
variables, applying statistical summary or formula to transform
data variables, and injecting domain knowledge to nudge
the exploration panel in identifying relevant visualizations.
Additionally, the UI allows the user to input thresholds such
as good, moderate, and poor correlations, standard deviations,
and minimum and maximum factors for the unique values that
are perceived as the user’s domain knowledge. The user can
save the action items as a transformation profile to apply in
the future resulting data from the workflow.

The interactive, visual exploration panel provides a view
that recommends visualizations methods to users based on
the data type and format. Users may also independently
select relevant visualizations from the palette of available

visualization methods. This palette is also extensible to allow
users to add highly tailored visualizations for specialized data
or analysis tasks. This latter feature is provided in recognition
of anticipated unconventional visualization requirements for
different varying use cases (R7). To support interactive, visual
exploration, we modularized the exploration panel based on
the use case. As such, the visual exploration panel for each
use case inherits the common visualizations and includes
(optional) custom visualizations. For example, to support the
sensemaking in one use case (discussed in Section VII-B),
we implemented the interactive custom scatter plot shown
in Figure 8. The inherited visualization library includes line
charts, standard scatter plots, parallel-coordinates, box plots,
heat maps, geospatial maps, and tabular data presentations.

VI. DISTRIBUTED ANALYSIS SYSTEM: VIFI

To evaluate VAF, we integrate VAF with two DAS: a
simple file-based DAS and the Virtual Information Fabric
Infrastructure (VIFI) DAS. In this section, we describe the
latter DAS which serves as the foundation of most of our
VAF evaluation activities.

VIFI [8], [14], [15], [19] is a DAS that enables analyses
across distributed, fragmented data without the movement of
massive data. Within VIFI, analyses migrate to the distributed
data and only derived data – e.g., result sets – migrate
from the data hosts. VIFI supports research and analysis
in multiple domains including astronomy [19], earth science
[8], and sustainable human-building ecosystems (SHBE) [15].
The current implementation of VIFI consists of the following
components: Portable Analytic Containers, Registry Services,
Orchestrator, User Node, and Data Sites. Each is described
briefly in the following.

Portable Analytic Containers (PACs): A PAC is a
lightweight virtual machine, called a container, that hosts
software, libraries, and operating system needed by end users
to analyze data. A PAC can receive and execute analysis
programs (e.g., scripts) if the required programs are not
already contained in the PAC. Leveraging container technology
(e.g., Docker [41]–[49]). A PAC is portable to migrate and
execute on heterogeneous host platforms. A PAC facilitates
reusability by hosting and utilizing different analytical libraries
and programs pulled from shared repositories (e.g., Docker
hub [60]). Container technology enables the movement of
analytics rather than the movement of data; thus, alleviating
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problems related to the transfer of big data. PACs offer a
number of affordances for distributed analytics: i) they can be
easily transmitted over the network due to their limited size;
and ii) they simplify analytics development for inexperienced
users. The VIFI infrastructure is scalable as it enables the
integration of various VIFI nodes at different sites. The ability
for VIFI workflows to access fixed sites allows VIFI to co-
operate with non-open-source resources, assuming that a VIFI
user has the proper credentials. Currently, VIFI researchers are
extending VIFI to use Singularity [61]–[63] to run on High
Performance Computing (HPC) clusters at different sites.

Registry Services: Distinctive PACs are stored, searched,
utilized and shared through Registry Services. Currently, VIFI
uses Docker hub [60] to implement the Registry Services. We
expect future VIFI versions to incorporate additional services
to advance download and transfer times of PACs.

Orchestrator: The Orchestrator automatically coordinates
workflow (i.e., task) execution across multiple VIFI sites (i.e.,
distributed datasets). Each analysis step in a workflow is
implemented by a script running in a PAC at a data site.
Although initial VIFI implementations used NiFi [50], [53]
as its orchestrator, current implementation use RESTful APIs
to improve orchestrator customizability.

User Node: The user node is the means by which users in-
teract with the VIFI framework. The user node provides a user
interface, communication, and basic computation capacities.

Data Site: Data Sites are locations in the VIFI infrastructure
where distributed, fragmented data reside. Each VIFI Data
Site interacts with the Orchestrator (i.e., NIFI and/or RESTful
APIs) and runs PACs (e.g., by Docker Swarm [64]). VIFI
uses Docker Swarm to execute parallel analytics. Each Data
Site runs a VIFI server supported by a configuration file that
configures hosted data sets and log files at this site.

VIFI workflows are either launched from the command line
interface of the VIFI server running at each Data Site or via
the User Node. The VAF reported in this paper functions as
the VIFI User Node for the use case evaluations reported in
the following section that used VIFI.

VII. USE CASES

To evaluate the affordances of our visual analytics frame-
work, we implemented the framework leveraging the VIFI
DAS. As part of our evaluation, we present two use cases:
one from the earth sciences and the other from the SHBE
domain [65]. Guided by researchers from these domains,
we implemented workflows that integrated the researcher’s
analytic scripts. The earth sciences use case included two
workflows and the SHBE use case included three workflows.

Implementing a new use case in VAF includes three steps.
First, we use the workflow/script management view to create
the new use case in the use case management middleware
repository. This step generates a unique use case key and asso-
ciates it with a used-specified name. All subsequent workflows
and their execution results will be associated with this key. The
user also specifies the DAS data site(s) or hosts that will be
leveraged by the workflows.

Fig. 6. The visual analytic interface for the earth science use case, leveraging
VIFI. Interactive geospatial visualization and trends for seasonal regional
temperature and precipitation assist climate scientists in their analytic tasks.

The second step involves reviewing the DAS configuration
data. For VIFI, these data, stored in the conf.yml file
and submitted to VIFI during task execution, specify the
constraints that govern VIFI communications.

The third and final step for use case creation involves
verifying that proper infrastructure constraints are satisfied.
For example, proper firewall and security standards need
verification with the organizations that will be hosting the VIFI
infrastructure. Once a use case is created, workflows may be
specified and executed, and results may be explored. In the
following sections, we illustrate VAF through workflows from
each evaluation use case. Figure 2 denotes the technologies
we leveraged for our implementation.

A. Earth Science: Exploring Climate Projections

We used our VAF, leveraging the VIFI DAS, on NASA
Earth Exchange published downscaled climate projections
(NEX-DCP30) [66]. The United States National Climate As-
sessment (NCA) [67] reports the future projections of the
various climate variables from NEX-DCP30 to assess chang-
ing climate scenarios [68], [69]. Recognizing its importance,
the NASA Earth Exchange project released NEX-DCP30
data (observed and projected) that contain monthly averaged
precipitation and temperature data for the contiguous US from
1985 to 2099. The projection data are stored in Network
Common Data Form (NetCDF) [70] format and provide access
to the projection output for 36 climate models [66].

To perform demonstration evaluations of our VAF integrated
with VIFI, we worked with a NASA climate scientist to de-
velop workflows for analyzing NEX-DCP30. These workflows
extracted the NetCDF data files and summarized monthly av-
eraged spatiotemporal data for interactive, visual exploration.
The first workflow executes data extraction analyses based
on user provided parameters, such as projection model(s),
climate variable(s), and year(s). An analytic script uses these
parameters to find the corresponding NetCDF data and extracts
geospatial contours for each month of the given year. The
script and workflow configuration were authored and stored
in the middleware using the Code Editor. The configuration
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file identifies the dataset (e.g., DEX-DCP30) and links via the
middleware to authorization credential required for execution.
In fact, the workflow configuration file contains all of the
required parameters to execute this workflow. Hence, each
time users execute a workflow, they update the parameters
in the configuration file to extract the projection model of
interest. The resulting data are formatted as GeoJSONs [71],
subsequently stored in the middleware repository (e.g., an S3
bucket). Once data extraction is complete, the user can visual-
ize and interactively explore the results as shown in Figure 6C.
Recall that the VAF visualization library provides a generic
map view that renders the geospatial contour visualizations.
The geospatial navigator in Figure 6C is coordinated with the
geospatial view, rendered using a configurable slider built-in
the visualization library.

The second earth sciences workflow summarizes the spa-
tiotemporal climate projections from NEX-DCP30 for explo-
ration and analyses. This workflow contains multiple analytic
scripts to summarize data from different perspectives while
using different statistical techniques. Multiple scripts are in-
cluded in this workflow since they share similar analysis goals.
Users can reconfigure the workflow to use different scripts
based on preference and interest. Workflow results contain
monthly, seasonal, and yearly summaries of precipitation and
temperature grouped by season and region. We created custom
visualizations for this workflow as depicted in Figure 6. The
requirement for this custom visualization was identified and
co-designed by the participating climate scientist. Figure 6A
shows multiple bar charts, sharing similar axes, illustrating the
mean precipitation from 1985 to 2098, for each season. Figure
6B provides small multiples of precipitation and temperature
trends for the 21st century. Each small multiple denotes a
region and season correspondingly from top to bottom and
left to right. In this use case, the custom visualization can be
used for exploration and analyses independent of the script
that configures the workflow.

B. SHBE: Light Switching in Smart Buildings

The SHBE domain is a multidisciplinary field that explores
the interplay of human behaviors and the built environment
with the goal toward a more sustainable future. Multiple
workflows have been explored in collaboration with SHBE
researchers. For space consideration, we highlight just one
of these workflows to illustrate how more complex workflow
designs are supported and enabled by VAF. The analytical
purpose of the highlighted SHBE workflow is to explore
the use and efficacy of Artificial Neural Networks (ANN)
for the predication light on-off switching probabilities for
the work area illuminance in a smart building as shown in
the interactive VAF visualization presented in Figure 8. To
illustrate the complexity of the analyses, we summarize the
workflow implementation in VIFI below.

As shown in Figure 7, the workflow involves analysis over
three distributed datasets at three different VIFI Data Sites.
The data at each VIFI Data Site is used by the ANN model
for training and prediction. The third VIFI Data Site collects

Fig. 7. Workflow implementation for SHBE light switch on-off probability
in smart buildings.

Fig. 8. The SHBE use case result exploration for the smart building workflow.
The scatterplot illustrates the light switching on-off probabilities based on the
work area illuminance using the ANN model.

the updated ANN model and determines whether further model
refinement is required using any of the other 2 VIFI Nodes.
Thus, the third VIFI Node sends a different command file to
each Node to specify what to do in the next step (e.g., fit the
ANN model using existing data, use the ANN model to make
predictions, etc.). Finally, when the third VIFI Node decides
that the model is ”good enough”, the stopping condition is
reached. The VIFI Orchestrator terminates the workflow and
results are returned to the VAF middleware.

The ANN model, as well as other intermediate results, are
sent between the VIFI Data Sites using RESTful API-based
VIFI Orchestrator. The RESTful API is also used by each
VIFI Data Site to accept incoming requests for analyses from
users launching workflow. Similar to the earth science use
case, each request for analyses contains the required scripts,
parameters, and workflow configuration. The configuration
contains important information for proper workflow execution
including the dataset(s), PAC(s), and input parameters as well
as operation settings such as where to send intermediate and
final results, whether to keep local copy of the (intermediate)
results for further analysis, whether to add timestamps to
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results for potential time-series analyses, and other similar
settings. In this workflow, analysis at each VIFI Data Site
consists of two steps (or scripts). The output of each step
is stored locally and transferred to other VIFI Data Sites for
further processing. The first step in each Data Site in this
workflow, executes only once but its output is used in multiple
subsequent steps at this and other Data Sites. In other words,
the initial ANN model is created at one of the VIFI Data
sites as step one and it is used to predict outcomes and/or to
train models at subsequent steps. Thus, it may execute any
number of times until it is decided that the ANN model is
“good enough” and the workflow is terminated. As mentioned
previously, VAF supports the specification of the workflow
and renders the output as a scatter plot as depicted in Figure
8. This interactive visualization is customized so that square
and diamond shaped glyphs denote switch-on and switch-off
operations while color is used to denote independent workflow
runs. The visualization describes the probability of light switch
behavior for work area illuminance.

VIII. DISCUSSION AND LIMITATION

We presented a VAF for DAS to assist the data own-
ers, researchers, and analysts to manage the infrastructure
and conduct analysis through a web-based graphical UI. We
have reviewed several distributed analysis systems such as
XSEDE [11], SciServer [4], and VIFI [8] to identify the
design requirements to resolve the requirement for the user to
directly access the server, manage the access control from the
application layer, and facilitate the user to explore the result
using interactive visualizations.

We identified 7 implementation requirements that satisfies
the design requirements to develop a web-based graphical
UI for DAS. An interface for preparing the analytic scripts,
configuring the workflow, and running the workflow in DAS
sites resolves the requirement for the users to directly access
the DAS servers. The middleware orchestrates the transactions
between the UI and DAS. Moreover, the middleware manages
the authentication and authorization from the application layer
to reduce the workload of data owners. The workflows exe-
cuted by the users through the UI are queued in the middleware
database. The middleware communicates with the DAS sites to
decide when to push the queued tasks and provide runtime and
error logs to the UI that help the user to monitor the progress
of the task. Finally, the visual exploration panel produces
interactive visualizations to explore the resulted data from the
analytic scripts.

We demonstrated the UI that satisfies the design require-
ments and illustrates the implementation requirements of our
proposed VAF. The UI consists of 3 main panels - workflow
management, task management, and visual exploration. The
workflow management provides access to a hierarchical file
structure (Figure 3A), a component for creating or updating
analytic scripts (Figure 3B), and a terminal (Figure 3C) to
provide raw streaming logs. The middleware serves RESTful
APIs to synchronize the UI with the DAS site on user’s interac-
tions. The task management panel provides status updates for

the running workflows, overall runtime progress, and allows
the user to either re-run the workflow or explore the result
(Figure 4). The visual exploration panel familiarizes the user
with the data (Figure 5), perceive their preferences to produce
a set of interactive visualizations.

We implemented VAF in two use cases from earth sci-
ence and SHBE domain. We leverage VIFI [8] DAS to
implement 2 workflows from earth science and 3 workflows
from SHBE. These workflows were initially configured and
executed through a command line interface. The users were
required to access multiple servers including the data sites
to run their analyses. In contrast, after initial configuration
and setup of VAF, the users are not required to access the
distributed servers to create, update and run their analytical
scripts. The pre-configured visual exploration panels for re-
spected workflows assisted the analyst users to explore the
result without any effort on creating interactive visualizations.

Nevertheless, we identified a few limitations of VAF based
on our implementation experience. Our framework complies
only with the DAS that provides RESTful APIs. We plan
to address this issue by developing a generic RESTful API
and deploy at the DAS sites to comply with more distributed
systems. The workflow configuration from the UI requires a
learning curve for the users to be familiar with the config-
uration keywords We plan to provide a better interface with
more readable labels and input validations for the configuration
items which would ease the user with workflow configuration.
We understand our visualization library lacks the use case
specific visualization and interaction requirement to explore
the results, which required workflow designers effort to preset
the visualizations. We plan to create more input scopes for
the users to inject their domain knowledge to influence the
visualization recommendation [72].

IX. CONCLUSION

In this paper, we presented a visual analytics framework
(VAF) for distributed data analysis systems (DAS) to mediate
user’s direct interaction with the distributed servers, provide
access control from application layer, and enable the ex-
ploratory visual analysis of results. To demonstrate the benefit
of our proposed framework, we developed workflows for two
use cases from earth science and SHBE research domains,
working with respective domain experts. While we understand
the potential of our VAF in distributed data analysis, we have
several takeaways for future directions. Our future work will
focus complying with more distributed systems developing a
generic API service to deploy at DAS sites. Moreover, we
aim to provide a more convenient interface for configuration
management and perceive user’s domain knowledge to pro-
vide interactive visualization recommendation to explore the
resulted data.
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