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Abstract 
Conventional integrated shading and lighting systems are 
usually sensor-dependent, which could entail excessive 
cost and labor associated with sensor installation, 
calibration, and maintenance. Advanced systems use 
daylight modeling to eliminate the use of physical 
sensors. However, real-time daylight simulation can be 
computation-heavy, leading to a slow response of the 
system. This paper proposed a data-driven method for 
integrated shading and lighting control, employing 
machine learning models developed from pre-simulated 
data to predict real-time daylighting and control the blind 
and lighting accordingly. Verification using climate-
based daylight simulation with a case study showed that 
the method prevented 94.7% of annual glare and reduced 
lighting use by 64%. The study will contribute to the 
development of effective daylight-linked control systems 
for industrial applications.   
Key Innovations 

• A simplified open-loop control strategy for 
integrated shading and lighting control is 
proposed. 

• The presented system is effective in preventing 
glare and reducing lighting energy use without 
using indoor sensors or intensive real-time 
daylight simulation. 

• The classification algorithm significantly 
outperformed the regression algorithm for the 
proposed control method.  

• The proposed control method is promising to 
become an industrial application. 

Practical Implications 
Classification algorithms are recommended for the 
proposed control method. Attention should be paid to 
possible imbalanced class distribution in the dataset for 
model development and appropriate techniques need to be 
applied to address the unequal distribution of data.  

Introduction 
Building shading systems are a promising solution to 
balance the benefits and drawbacks of daylight ingress in 
an indoor space. A well-designed and operated shading 
system is expected to prevent visual discomfort while 
maximizing daylight and view access under varying 
weather and sky conditions. Energy use associated with 
electric lighting can be reduced by integrating the control 

of the lighting and shading systems. These integrated 
systems can be divided into manual and automated 
systems. It is generally agreed that manual shading 
systems fail to optimize daylight penetration and glare 
prevention (O’Brien, Kapsis, & Athienitis, 2013). 
Typically, occupants close the shading devices to avoid 
visual discomfort and subsequently leave them closed 
even when there is no glare (Gunay, O’Brien, Beausoleil-
Morrison, & Gilani, 2017; O’Brien et al., 2013; Reinhart 
& Voss, 2003; Van Den Wymelenberg, 2012). In contrast, 
studies have shown that automated shading systems are 
capable of effectively optimizing daylight ingress and 
reducing energy demand (Jain & Garg, 2018; 
Konstantoglou & Tsangrassoulis, 2016; Tabadkani, 
Roetzel, Li, & Tsangrassoulis, 2020). Research also 
suggests that interior automated blinds are more cost-
effective than manual blinds over a 30-year time horizon 
(Al-Masrani & Al-Obaidi, 2019). Hence, integrated 
automated shading and lighting control have been 
proposed as a beneficial strategy to improve the indoor 
visual environment and reduce energy demands (Jain & 
Garg, 2018). 
Automated shading systems can be categorized as open-
loop and closed-loop systems (Jain & Garg, 2018). The 
major difference between the two systems is that the 
closed-loop system receives feedback while the open-
loop system does not. For a typical photometer-dependent 
system, an open-loop system usually relies on sensors 
mounted on the external surface of the façade to measure 
weather and sky conditions while a closed-loop system 
applies a series of indoor photosensors integrated with 
dimmers to maintain the desk illuminance at a desirable 
level. As discussed by Jain and Garg (2018), open-loop 
systems provide greater flexibility compared to closed-
loop systems. Careful sensor calibration is required for 
closed-loop systems. For instance, the calibration of 
photosensors in a typical closed-loop system is required 
for both day and night time (Caicedo, Pandharipande, & 
Willems, 2014; Park, Choi, Jeong, & Lee, 2011; Peruffo, 
Pandharipande, Caicedo, & Schenato, 2015). Lee et al. 
(2017) reported that the complex and expensive 
calibration required for closed-loop shading systems is 
challenging for their application in real-life settings (Lee 
et al., 2017). These systems can be prone to error. There 
have been studies reporting that closed-loop systems are 
less effective in reducing energy use compared to open-
loop systems (Delvaeye et al., 2016).  
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Various open-loop control methods for automated 
shading have been proposed in the literature. A typical 
strategy is the cut-off control that adjusts the blind slat 
angle according to the solar position (Chan & 
Tzempelikos, 2013). However, it is widely accepted 
among researchers that this method is not sufficient in 
preventing glare (Jain & Garg, 2018). There are other 
simple glare-prevention strategies such as controlling 
shades based on time, season, and occupancy. However, 
these methods have the main challenge of not responding 
to outdoor sky conditions. Another type of open-loop 
system relies on readings from various sensors. Notably, 
this method may entail excessive cost and labor for the 
installation, calibration, maintenance, and replacement of 
sensors. This shortcoming can be one major obstacle for 
daylight-linked systems to be applied to buildings (Bellia, 
Fragliasso, & Stefanizzi, 2016). Additionally, the use of 
sensors could be limited due to aesthetic considerations in 
commercial buildings.  
With the advancement of simulation and modeling tools, 
simulation-assisted control is gaining more popularity 
(Chaiwiwatworakul, Chirarattananon, & Rakkwamsuk, 
2009; Chan & Tzempelikos, 2013; Katsifaraki, Bueno, & 
Kuhn, 2017; van Hoof, Kort, Duijnstee, Rutten, & 
Hensen, 2010; Xiong & Tzempelikos, 2016). It replaces 
physical sensors in conventional systems with virtual 
sensors in a digital model to provide daylight 
measurements for shading control. With this method, 
lighting control can be easily integrated into shading 
control. Jain and Garg (2018) reviewed studies on 
simulation-assisted open-loop control strategies for 
shades, blinds, and integrated lighting, concluding that 
simulation-assisted control with careful calibration is 
more effective than conventional methods. However, 
real-time daylight modeling can be computationally 
intensive and leads to a slow response of the control 
system. Currently, there is a lack of suitable simulation 
tools that can be included in the control process. These 
limitations and obstacles could significantly prevent 
simulation-assisted control from becoming an industrial 
application.  
As discussed by Jain and Garg (2018), machine learning 
(ML) can be a promising technique to replace daylight 
modeling and significantly reduce simulation time. 
Although ML has been widely applied in studies on 
architectural design (Ayoub, 2020), a few studies can be 
found that have used it for building system control, 
especially integrated shading and lighting control (Jain & 
Garg, 2018). This paper aims to address this gap by 
proposing an integrated blind and lighting control strategy 
based on daylighting predictions using ML models. 
Specifically, it uses pre-simulated daylight measurements 
to train ML models that can estimate indoor daylighting 
and use them for integrated shading and lighting control. 
It is a simplified method that aims to promote daylight-
linked control systems for industrial applications.   
Regression algorithms are used in previous studies on 
estimating daylight measurements using ML while 
classification and clustering are rarely investigated 
(Ayoub, 2020). However, as suggested by Ayoub (2020), 

more research is required to explore the use of these 
algorithms as they can be useful for glare identification. 
Therefore, this study also investigates and compares the 
use of regression algorithm and classification algorithm in 
the proposed control framework.  
Methods 
The goal of the proposed control framework is to predict 
real-time discomfort glare and indoor illuminance using 
data-driven models developed from pre-simulated data 
and use the predicted measures to control the shading and 
lighting system. It aims to prevent discomfort glare and 
maximize daylight ingress and view access. Discomfort 
glare is quantified by Daylight Glare Probability (DGP) 
which is widely used to describe glare from daylight 
(Wienold & Christoffersen, 2006). Electric lighting is 
controlled by the average illuminance on the work plane 
(Katsifaraki et al., 2017). The proposed control 
framework consists of three steps: daylight simulation, 
ML model development, and real-time system control. A 
case study has been presented to demonstrate the 
application of the proposed control strategy.  
Research model  
As shown in Figure 1, the research model is a 4.5 m×3.0 
m × 2.5 m private office located in Pittsburgh, 
Pennsylvania, USA (latitude 40.4N, longitude 80W) with 
an east-facing window (2.6 m×2.1m). It is equipped with 
an internal automated Venetian blind with slats that can 
rotate from 0º (fully open) to 90º (fully closed) in 10º 
increments. Any angle between 0º and 90º refers to the 
case that the upper side of the slats faces outwards. The 
slats are flat specular lamellae with a width of 0.05 m and 
a specularity of 0.8. The spacing between two adjacent 
slats is also 0.05 m. The horizontal work plane is a 1.6 m
×0.8 m desk at a height of 0.8 m. The occupant’s sitting 
position is marked as the red dot in Figure 1. One LED 
luminaire is mounted on the ceiling and controlled by an 
on/off algorithm.  

 
Figure 1: The floor plan of the research model. 

A digital fisheye camera is placed at the occupant’s sitting 
position (1.2 m above the floor) to detect time-varying 
glare. It should be noted that only the regular view 
direction (parallel to the window) is considered. Daylight 
simulation is only conducted for occupied hours (8 am to 
6 pm). Table 1 summarizes the properties of the materials 
used in the simulation.  
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Table 1: Material properties in the simulation. 
Material Type Reflectance/ 

Transmissivity 
Ceiling Opaque 0.7 
Wall Opaque 0.7 
Floor Opaque 0.2 
Blind Metal 0.7 
Desk Opaque 0.5 

Window glazing Transparent 0.87 
Daylight modeling  
The software Rhinoceros (Rhino) is used to create the 
office geometry and the daylight modeling tool DIVA is 
used to perform the simulation. Specifically, DIVA for 
Rhino is used to conduct annual glare and illuminance 
simulations. DIVA for Rhino computes annual glare in a 
simplified way using the enhanced simplified DGP 
(eDGP) (Wienold, 2009). It separates the computation of 
the illuminance and luminance contrast and uses a 
simplified image to derive DGP, thus significantly 
reducing the computation time. Wienold (2009) suggested 
that this simplified DGP computation method applies to 
façade with a specular Venetian blind system. Therefore, 
it is appropriate to use eDGP in this study as the simulated 
office is equipped with a specular blind. The simulation 
parameters used in Radiance are listed in Table 2. 
Downloaded TMY3 weather file of Pittsburgh airport 
from the EnergyPlus website is used to run the simulation. 
Perez all-weather sky model is selected for the modeling 
to cover all possible sky conditions. The simulations were 
repeated with varying salt angles from 0º to 90º in 10º 
increments. 

Table 2: Radiance parameters used in the modeling. 
Parameter Value 

Direct jitter (-dj) 0 
Direct sampling (-ds) 0.2 
Direct threshold (-dt) 0 
Direct certainty (-dc) 0.25 

Direct relays (-dr) 2 
Direct pretest (-dp) 512 

Specular threshold (-st) 0.85 
Ambient bounce (-ab) 3 

Ambient accuracy (-aa) 0.1 
Ambient resolution (-ar) 300 
Ambient divisions (-ad) 1000 

Ambient super-sample (-as) 20 
Ray reflection limit (-lr) 6 
Ray weight limit (-lw) 0.0004 

Machine learning model development 
In this study, individual ML models are developed for 
each blind position. In theory, ten models are required as 
the blind can rotate from 0º to 90º in 10º increments. The 
development of the ML predictive models follows a 
standard machine learning process, consisting of four 
steps: data processing, model selection, model training, 
and model testing. The machine learning module scikit-
learn for Python is used to perform the process.  
 

 
Figure 2: The workflow for machine learning model 

development. 
1) Data processing  
For the classification algorithm, the original output 
measure needs to be labeled as different categories. In this 
study, only two categories are considered as summarized 
in Table 3. It was found that the obtained dataset was 
imbalanced, especially for the glare dataset, with more 
cases without glare (labeled as “0”) than cases with glare 
(labeled as “1”). The dataset becomes more imbalanced 
with a larger slat angle. A classification model developed 
from such an imbalanced dataset usually performs poorly 
on the minority class. To overcome this problem, the 
technique of oversampling the minority class is 
introduced.  With this method, new data points for the 
minority class can be synthesized from the existing data. 
As a result, the distribution of the class will become more 
balanced.  This is a data augmentation technique for the 
minority class that is called the Synthetic Minority 
Oversampling Technique (SMOTE). In this study, the 
number of the minority class is increased to that of the 
majority class after applying the SMOTE. For the 
regression algorithm, no specific data transformation is 
conducted.  
Table 3: Outcome label for the classification algorithm. 

DGP Average 
Illuminance 

Label 

> 0.35 > 500 lux 1 
<= 0.35 <= 500 lux 0 

2) Model selection  
• Algorithm selection 

Multi-layer feed-forward artificial neural networks 
(ANNs) are selected to develop the ML predictive models. 
Specifically, two-layer ANN regression and ANN 
classification are used to develop the ML models. As 
reviewed by Ayoub (2020), ANN is the most widely used 
ML algorithm in existing studies on daylighting 
prediction. Also, it can solve both regression and 
classification problems.  Therefore, it is selected in this 
study.  

• Model input selection 
With the sitting position and view direction of the 
occupant pre-defined in this study, major factors that 
influence the daylighting performance include the sky 
conditions and the solar position. Accordingly, four 
relevant measures are selected as the model input: direct 
normal irradiance (DNI), diffuse horizontal irradiance 
(DHI), solar altitude angle, and solar azimuth angle. 
These input parameters have been applied in a previous 
study on illuminance-based blind control (Hu & Olbina, 
2011). They are also easy to obtain for real-time control.  
3) Model training  

• Cross validation 
Cross validation is a common model validation technique 
for assessing how the results of an ML model generalize 
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to a new dataset. The procedure for cross validation 
involves a single parameter called k that refers to the 
number of groups (or folds) the training dataset is to be 
randomly split into. k-1 subgroups are used to train the 
model and the other group is used to validate its 
performance. This procedure is repeated k times such that 
each of the k subgroups will be used as the validating 
dataset once. The average of the selected performance 
metric across the k processes is used to evaluate the 
performance of the model. This process is called k-fold 
cross validation. A typical 10-fold cross-validation is 
applied in this study. 

• Model evaluation metric selection 
The performance of a binary ML classification model can 
be described by the confusion matrix in Table 4. Various 
performance metrics have been proposed based on the 
confusion metrics, such as recall and precision. The 
selection of the evaluation metric depends on the specific 
problem. In this study, more weight has been placed on 
the False Negative in glare prediction, i.e., the ML model 
failing to predict the occurrence of actual glare, than False 
Positive. Therefore, recall score is selected as the model 
performance metric for glare classification. In the case of 
illuminance prediction, the regular accuracy score is used.  
For regression models, Root Mean Square Error (RMSE) 
is selected as the model evaluation metric.  
Table 4: The confusion matrix for binary classification. 

 Predicted = 
Yes 

Predicted = 
No 

Actual = Yes True Positive 
(TP) 

False Negative 
(FN) 

Actual = No False Positive 
(FP) 

True Negative 
(TN) 

 

                𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
                                          (1)   

                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +𝐹𝑃+ 𝐹𝑁
                                 (2)                     

                       𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑁

𝑖=1

N
                                     (3)                            

where 𝑦𝑖 is the actual DGP (-) or illuminance (lux), 𝑦̂𝑖 is 
the predicted DGP (-) or illuminance (lux), N is the 
number of data points.  

• Hyperparameter optimization 
In machine learning, hyperparameter optimization is the 
process of choosing the ideal hyperparameter for a 
learning algorithm. A hyperparameter is a pre-determined 
parameter that controls the overall learning process of an 
ML model. A model usually has more than one 
hyperparameter. In this study, three hyperparameters of 
the ANN model are selected for the optimization, 
including learning rate, number of neurons in a given 
layer, and learning epoch (the number of passes of the 
entire training dataset the machine learning algorithm has 
completed). The examined alternatives for each 
hyperparameter are given in Table 5. A grid search to find 
the optimal hyperparameter combination is conducted. In 
total, there are 18 possible combinations.  

Table 5: Selected hyperparameters and their examined 
range. 

Hyperparameter Selected Alternatives 
Learning rate 0.0003, 0.001, 0.01 

Layer structure (32, 16), (32, 8), (16, 8) 
Learning epoch 300, 500 

Integrated blind and lighting control strategy 
Figure 3 illustrates the detailed algorithm for the 
integrated blind and lighting control. At each time step, 
the ML predictive models estimate the glare and 
illuminance with real-time solar irradiance measurements 
and solar position. The algorithm selects the minimal slat 
angle that prevents glare to maximize daylight utilization. 
After the optimal slat angle is determined, the ML model 
predicts the average work plane illuminance. The light 
will be switched off if the prediction indicates illuminance 
is above 500 lux. Otherwise, it will be switched on.  

 
Figure 3: The algorithm for the integrated blind and 

lighting control. 
Performance evaluation of the proposed shading and 
lighting control strategy 
Climate-based daylight simulation is applied to validate 
the performance of the presented control strategy in 
preventing glare and reducing lighting use on an annual 
basis.  Specifically, a concept of “on-state-hit” is defined 
to assess the system’s capability to eliminate glare. It 
refers to the cases when glare is successfully predicted 
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and prevented. The lighting energy savings is quantified 
by the percentage reduction of hours that require electric 
lighting compared to a simple on/off control based on 
office hours.  
A historical year’s solar irradiance data (the year 2017) 
obtained from the National Solar Radiation Data Base 
(NSRDB) is used to conduct the annual glare and 
illuminance simulation. NSRDB is a publicly open 
dataset created by the National Renewable Energy 
Laboratory (NREL). It provides half-hourly and hourly 
solar irradiance and meteorological data from 1998 to 
2019 over the United States at a 4-km horizontal 
resolution. The data are computed by NREL’s Physical 
Solar Model (PSM) using multi-channel measurements 
from geostationary satellites. Several studies have 
validated the NSRDB data using ground-based 
measurements (Habte, Sengupta, & Lopez, 2017; 
Sengupta et al., 2018; Yang, 2018). The results show that 
the data agree with surface observations with acceptable 
error. The NSRDB irradiance data can be freely accessed 
via the NSRDB Viewer or through an application 
programming interface (API). In this study, the hourly 
solar irradiance data are directly downloaded from the 
website using the NSRDB Viewer. 
Results 
Comparison between the TMY weather and the 
historical weather 
Figure 4 shows the boxplots of the DNI and DHI extracted 
from the TMY weather and actual weather. Overall, the 
actual weather seems to have higher DNI and lower DHI 
compared to the TMY weather, indicating that there might 
be more clear days. To further compare the two weather 
profiles, a detailed analysis of the sky condition was 
performed according to a model developed by a few 
researchers (Fakra, Boyer, Miranville, & Bigot, 2011). 
They proposed the concept of sky ratio. As indicated in 
Equation (4), this measure can be computed with DHI and 
Global Horizontal Irradiance (GHI). Using the threshold 
for sky ratio and the sky condition categories presented by 
Motamed et al. (2020), the sky conditions with the two 
weather files can be described (Motamed, Bueno, 
Deschamps, Kuhn, & Scartezzini, 2020). As shown in 
Figure 5, the actual weather has more clear days and fewer 
cloudy days compared to the TMY weather. The result 
further supports that the two weather profiles are 
different.  

                               𝑆𝑘𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝐷𝐻𝐼

𝐺𝐻𝐼
                                       (4) 

 
Figure 4: Boxplots of the solar irradiance with the TMY 

weather and the historical year weather.                                                   

 
Figure 5:  Distribution of the sky conditions of the two 

weather files. 
Performance of the regression model and the 
classification model  
1) Glare prediction  
The annual glare simulation with TMY weather indicated 
that there was only one sample that was classified as “1” 
(with glare) in the training dataset when the slat was 
rotated to 70º. If the slat was rotated to 80º, there were no 
cases with glare. Such datasets cannot be used to train an 
ML model and therefore were excluded from the model 
development. It is therefore assumed that glare could be 
fully avoided with a slat angle of 70º and the slats would 
not be rotated to a position beyond this angle. As a result, 
a total of 7 predictive models were trained for the 
classification algorithm and 8 models were developed for 
the regression algorithm (including the 70º model). The 
RMSE of the regression model for each slat angle is 
shown in Figure 6. Note that RMSE varied from 0.05 to 
0.15, decreasing with the increase of blind slat angle. The 
decreasing pattern was due to the reduced DGP values for 
larger slat angles. It should be highlighted that for slat 
angles of 0º and 10º RMSE was above 0.15, which was 
not satisfying considering the small varying range of DGP 
(0-1). The models might misclassify the glare conditions 
and fail to predict actual glare, leading to the occurrence 
of glare when the presented control strategy is applied.  
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Figure 6: RMSE of DGP prediction with ANN 

regression algorithm. 
Figure 7 displays the recall score for glare prediction with 
the ANN classification algorithm. Overall, the models had 
a high recall score for slat angles below 50º, all above 
0.95. The performance of the 60º model was quite low 
(0.42), which was due to the imbalanced distribution of 
the training dataset. There were only 11 data points that 
were classified with glare. Applying the SMOTE 
technique was not helpful in this case. However, it was 
expected that the performance of the control strategy 
would not be significantly impacted as there would not be 
many glare cases when the blind was rotated 60º.  

 
Figure 7: Recall of DGP prediction with ANN 

classification algorithm. 
2) Illuminance prediction 
The RMSE of each regression model for average 
illuminance prediction is shown in Figure 8. Overall, the 
RMSE for illuminance was large, ranging from 89.09 lux 
to 1055.32 lux. It exhibited a similar trend in the DGP 
prediction, decreasing as the slat angle increased. Similar 
to DGP prediction, this decrease was due to the lower 
illuminance at higher slat angles. Overall, the prediction 
appears to be unsuccessful. Another explanation of the 
large RMSE is that average illuminance over the entire 
work plane was used as the outcome variable instead of 
the illuminance at a reference point. As horizontal 
illuminance is location-dependent, the prediction should 
be more accurate if the illuminance at one point is used as 
the outcome measure.  

 
Figure 8: RMSE of illuminance prediction with ANN 

regression algorithm. 
The accuracy for illuminance classification is provided in 
Figure 9.  It is found that the accuracy for each of the 
predictive models was close, varying from 0.90 to 0.94. 
Generally, all classification models had high accuracy, 
suggesting a satisfying predicting capability.  

 
Figure 9:  Accuracy of illuminance prediction with ANN 

classification algorithm. 
Comparison between the performance of the 
proposed control strategy based on the regression 
model and the classification model  
Figure 10 illustrates the comparison between the proposed 
integrated shading and lighting control strategy using the 
regression and classification algorithm. Notably, the 
ANN classification model-based control achieved a high 
percentage of “on-state-hit” (94.7%) while the regression-
based control only prevented 61.2% of the annual glare. 
Both regression- and classification-based control reduced 
lighting use by approximately 64%, exhibiting negligible 
difference. Considering the overall performance, the 
classification algorithm outperformed the regression 
algorithm and should be used for the presented control 
strategy.  
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Figure 10:  Percentage “on-state-hit” and lighting use 

reduction of the proposed control strategy based on 
ANN regression and classification. 

Discussion  
The presented control strategy in this paper can eliminate 
indoor sensors that are used in conventional open-loop 
systems. It also avoids intensive real-time daylight 
modeling that is required by advanced model predictive 
control. It makes use of pre-simulated data rather than 
physically measured data to derive machine learning 
predictive models for real-time control. Therefore, it is 
promising to become an industrial application, 
contributing to the development of effective daylight-
linked control systems for real-life applications.   
Despite the strengths, the study has several limitations. 
The main limitation is that the presented control strategy 
was not physically verified. Instead, climate-based 
daylight simulation was used to demonstrate the use of the 
presented control method, and a control interval of one 
hour was considered. This time interval will be too long 
for real-time control.  In physical validation, the first step 
is to obtain a well-calibrated daylight model. Annual 
daylight simulation with the shading device at selected 
positions will be conducted and the result will be used to 
train machine learning predictive models. Solar irradiance 
will be collected in real-time using pyranometers on the 
rooftop of the building and used to feed the data-driven 
models for daylighting prediction. The control algorithm 
selects the shade position that prevents glare while 
maximizing daylight ingress and determine if the lighting 
needs to be switched on. The control interval should be 
determined according to multiple considerations. For 
instance, a time lag for operation for motor-driven blinds 
should be considered. Frequent shading operations could 
disrupt or disturb occupants and shorten the lifespan of 
the motor, which should be avoided. Pre-experimentation 
and communication with the occupants are required to 
establish an appropriate control interval. Other challenges 
include how to apply the control method for shading 
control in open-plan offices and how to include occupants 
in the control loop to increase user satisfaction. Future 
studies are required to address these challenges.  

Conclusion 
This paper proposed a simplified open-loop control 
method for integrated blind and lighting systems. The 
presented method makes use of machine learning models 

developed from daylight simulation data to predict real-
time glare and work plane illuminance. The blind and 
lighting are controlled based on the prediction to 
eliminate glare and maximize daylight ingress. The 
application of the proposed control strategy was 
demonstrated with a case study.  ANN classification and 
regression algorithm were used to develop the ML 
predictive models and their performance was compared. 
Climate-based daylight simulation was used to verify the 
performance of the presented control strategy in glare 
prevention and lighting energy saving. It was found that 
94.7% of annual glare was prevented with the 
classification models while 61.2% was avoided with the 
regression models. Both algorithms resulted in reduced 
lighting use by approximately 64%. The result suggests 
that the classification algorithm outperforms the 
regression algorithm and is recommended for the 
proposed control framework. Future experimental studies 
are required to further verify the findings from this study.  
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