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Abstract

Conventional integrated shading and lighting systems are
usually sensor-dependent, which could entail excessive
cost and labor associated with sensor installation,
calibration, and maintenance. Advanced systems use
daylight modeling to eliminate the use of physical
sensors. However, real-time daylight simulation can be
computation-heavy, leading to a slow response of the
system. This paper proposed a data-driven method for
integrated shading and lighting control, employing
machine learning models developed from pre-simulated
data to predict real-time daylighting and control the blind
and lighting accordingly. Verification using climate-
based daylight simulation with a case study showed that
the method prevented 94.7% of annual glare and reduced
lighting use by 64%. The study will contribute to the
development of effective daylight-linked control systems
for industrial applications.

Key Innovations

e A simplified open-loop control strategy for
integrated shading and lighting control is
proposed.

e The presented system is effective in preventing
glare and reducing lighting energy use without
using indoor sensors or intensive real-time
daylight simulation.

e The classification algorithm significantly
outperformed the regression algorithm for the
proposed control method.

e The proposed control method is promising to
become an industrial application.

Practical Implications

Classification algorithms are recommended for the
proposed control method. Attention should be paid to
possible imbalanced class distribution in the dataset for
model development and appropriate techniques need to be
applied to address the unequal distribution of data.

Introduction

Building shading systems are a promising solution to
balance the benefits and drawbacks of daylight ingress in
an indoor space. A well-designed and operated shading
system is expected to prevent visual discomfort while
maximizing daylight and view access under varying
weather and sky conditions. Energy use associated with
electric lighting can be reduced by integrating the control

of the lighting and shading systems. These integrated
systems can be divided into manual and automated
systems. It is generally agreed that manual shading
systems fail to optimize daylight penetration and glare
prevention (O’Brien, Kapsis, & Athienitis, 2013).
Typically, occupants close the shading devices to avoid
visual discomfort and subsequently leave them closed
even when there is no glare (Gunay, O’Brien, Beausoleil-
Morrison, & Gilani, 2017; O’Brien et al., 2013; Reinhart
& Voss, 2003; Van Den Wymelenberg, 2012). In contrast,
studies have shown that automated shading systems are
capable of effectively optimizing daylight ingress and
reducing energy demand (Jain & Garg, 2018;
Konstantoglou & Tsangrassoulis, 2016; Tabadkani,
Roetzel, Li, & Tsangrassoulis, 2020). Research also
suggests that interior automated blinds are more cost-
effective than manual blinds over a 30-year time horizon
(Al-Masrani & Al-Obaidi, 2019). Hence, integrated
automated shading and lighting control have been
proposed as a beneficial strategy to improve the indoor
visual environment and reduce energy demands (Jain &
Garg, 2018).

Automated shading systems can be categorized as open-
loop and closed-loop systems (Jain & Garg, 2018). The
major difference between the two systems is that the
closed-loop system receives feedback while the open-
loop system does not. For a typical photometer-dependent
system, an open-loop system usually relies on sensors
mounted on the external surface of the facade to measure
weather and sky conditions while a closed-loop system
applies a series of indoor photosensors integrated with
dimmers to maintain the desk illuminance at a desirable
level. As discussed by Jain and Garg (2018), open-loop
systems provide greater flexibility compared to closed-
loop systems. Careful sensor calibration is required for
closed-loop systems. For instance, the calibration of
photosensors in a typical closed-loop system is required
for both day and night time (Caicedo, Pandharipande, &
Willems, 2014; Park, Choi, Jeong, & Lee, 2011; Peruffo,
Pandharipande, Caicedo, & Schenato, 2015). Lee et al.
(2017) reported that the complex and expensive
calibration required for closed-loop shading systems is
challenging for their application in real-life settings (Lee
et al., 2017). These systems can be prone to error. There
have been studies reporting that closed-loop systems are
less effective in reducing energy use compared to open-
loop systems (Delvaeye et al., 2016).
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Various open-loop control methods for automated
shading have been proposed in the literature. A typical
strategy is the cut-off control that adjusts the blind slat
angle according to the solar position (Chan &
Tzempelikos, 2013). However, it is widely accepted
among researchers that this method is not sufficient in
preventing glare (Jain & Garg, 2018). There are other
simple glare-prevention strategies such as controlling
shades based on time, season, and occupancy. However,
these methods have the main challenge of not responding
to outdoor sky conditions. Another type of open-loop
system relies on readings from various sensors. Notably,
this method may entail excessive cost and labor for the
installation, calibration, maintenance, and replacement of
sensors. This shortcoming can be one major obstacle for
daylight-linked systems to be applied to buildings (Bellia,
Fragliasso, & Stefanizzi, 2016). Additionally, the use of
sensors could be limited due to aesthetic considerations in
commercial buildings.

With the advancement of simulation and modeling tools,
simulation-assisted control is gaining more popularity
(Chaiwiwatworakul, Chirarattananon, & Rakkwamsuk,
2009; Chan & Tzempelikos, 2013; Katsifaraki, Bueno, &
Kuhn, 2017; van Hoof, Kort, Duijnstee, Rutten, &
Hensen, 2010; Xiong & Tzempelikos, 2016). It replaces
physical sensors in conventional systems with virtual
sensors in a digital model to provide daylight
measurements for shading control. With this method,
lighting control can be easily integrated into shading
control. Jain and Garg (2018) reviewed studies on
simulation-assisted open-loop control strategies for
shades, blinds, and integrated lighting, concluding that
simulation-assisted control with careful calibration is
more effective than conventional methods. However,
real-time daylight modeling can be computationally
intensive and leads to a slow response of the control
system. Currently, there is a lack of suitable simulation
tools that can be included in the control process. These
limitations and obstacles could significantly prevent
simulation-assisted control from becoming an industrial
application.

As discussed by Jain and Garg (2018), machine learning
(ML) can be a promising technique to replace daylight
modeling and significantly reduce simulation time.
Although ML has been widely applied in studies on
architectural design (Ayoub, 2020), a few studies can be
found that have used it for building system control,
especially integrated shading and lighting control (Jain &
Garg, 2018). This paper aims to address this gap by
proposing an integrated blind and lighting control strategy
based on daylighting predictions using ML models.
Specifically, it uses pre-simulated daylight measurements
to train ML models that can estimate indoor daylighting
and use them for integrated shading and lighting control.
It is a simplified method that aims to promote daylight-
linked control systems for industrial applications.

Regression algorithms are used in previous studies on
estimating daylight measurements using ML while
classification and clustering are rarely investigated
(Ayoub, 2020). However, as suggested by Ayoub (2020),

more research is required to explore the use of these
algorithms as they can be useful for glare identification.
Therefore, this study also investigates and compares the
use of regression algorithm and classification algorithm in
the proposed control framework.

Methods

The goal of the proposed control framework is to predict
real-time discomfort glare and indoor illuminance using
data-driven models developed from pre-simulated data
and use the predicted measures to control the shading and
lighting system. It aims to prevent discomfort glare and
maximize daylight ingress and view access. Discomfort
glare is quantified by Daylight Glare Probability (DGP)
which is widely used to describe glare from daylight
(Wienold & Christoffersen, 2006). Electric lighting is
controlled by the average illuminance on the work plane
(Katsifaraki et al., 2017). The proposed control
framework consists of three steps: daylight simulation,
ML model development, and real-time system control. A
case study has been presented to demonstrate the
application of the proposed control strategy.

Research model

As shown in Figure 1, the research model is a 4.5 m><3.0
m X 2.5 m private office located in Pittsburgh,
Pennsylvania, USA (latitude 40.4N, longitude 80W) with
an east-facing window (2.6 m X 2.1m). It is equipped with
an internal automated Venetian blind with slats that can
rotate from 0° (fully open) to 90° (fully closed) in 10°
increments. Any angle between 0° and 90° refers to the
case that the upper side of the slats faces outwards. The
slats are flat specular lamellae with a width of 0.05 m and
a specularity of 0.8. The spacing between two adjacent
slats is also 0.05 m. The horizontal work plane isa 1.6 m
X 0.8 m desk at a height of 0.8 m. The occupant’s sitting
position is marked as the red dot in Figure 1. One LED
luminaire is mounted on the ceiling and controlled by an
on/off algorithm.
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Figure 1: The floor plan of the research model.

A digital fisheye camera is placed at the occupant’s sitting
position (1.2 m above the floor) to detect time-varying
glare. It should be noted that only the regular view
direction (parallel to the window) is considered. Daylight
simulation is only conducted for occupied hours (8 am to
6 pm). Table 1 summarizes the properties of the materials
used in the simulation.
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Table 1: Material properties in the simulation.

Material Type Reflectance/
Transmissivity

Ceiling Opaque 0.7

Wall Opaque 0.7

Floor Opaque 0.2

Blind Metal 0.7

Desk Opaque 0.5

Window glazing Transparent 0.87

Daylight modeling

The software Rhinoceros (Rhino) is used to create the
office geometry and the daylight modeling tool DIVA is
used to perform the simulation. Specifically, DIVA for
Rhino is used to conduct annual glare and illuminance
simulations. DIVA for Rhino computes annual glare in a
simplified way using the enhanced simplified DGP
(eDGP) (Wienold, 2009). It separates the computation of
the illuminance and luminance contrast and uses a
simplified image to derive DGP, thus significantly
reducing the computation time. Wienold (2009) suggested
that this simplified DGP computation method applies to
fagade with a specular Venetian blind system. Therefore,
it is appropriate to use eDGP in this study as the simulated
office is equipped with a specular blind. The simulation
parameters used in Radiance are listed in Table 2.
Downloaded TMY3 weather file of Pittsburgh airport
from the EnergyPlus website is used to run the simulation.
Perez all-weather sky model is selected for the modeling
to cover all possible sky conditions. The simulations were
repeated with varying salt angles from 0° to 90° in 10°
increments.

Table 2: Radiance parameters used in the modeling.

Parameter Value
Direct jitter (-dj) 0
Direct sampling (-ds) 0.2
Direct threshold (-dt) 0
Direct certainty (-dc) 0.25
Direct relays (-dr) 2
Direct pretest (-dp) 512
Specular threshold (-st) 0.85
Ambient bounce (-ab) 3
Ambient accuracy (-aa) 0.1
Ambient resolution (-ar) 300
Ambient divisions (-ad) 1000
Ambient super-sample (-as) 20
Ray reflection limit (-Ir) 6
Ray weight limit (-Iw) 0.0004

Machine learning model development

In this study, individual ML models are developed for
each blind position. In theory, ten models are required as
the blind can rotate from 0° to 90° in 10° increments. The
development of the ML predictive models follows a
standard machine learning process, consisting of four
steps: data processing, model selection, model training,
and model testing. The machine learning module scikit-
learn for Python is used to perform the process.

Data
processing

Figure 2: The workflow for machine learning model
development.

1) Data processing

For the classification algorithm, the original output
measure needs to be labeled as different categories. In this
study, only two categories are considered as summarized
in Table 3. It was found that the obtained dataset was
imbalanced, especially for the glare dataset, with more
cases without glare (labeled as “0”) than cases with glare
(labeled as “17”). The dataset becomes more imbalanced
with a larger slat angle. A classification model developed
from such an imbalanced dataset usually performs poorly
on the minority class. To overcome this problem, the
technique of oversampling the minority class is
introduced. With this method, new data points for the
minority class can be synthesized from the existing data.
As a result, the distribution of the class will become more
balanced. This is a data augmentation technique for the
minority class that is called the Synthetic Minority
Oversampling Technique (SMOTE). In this study, the
number of the minority class is increased to that of the
majority class after applying the SMOTE. For the
regression algorithm, no specific data transformation is
conducted.

Table 3: Outcome label for the classification algorithm.

DGP Average Label
Illuminance
>0.35 > 500 lux 1
<=0.35 <= 500 lux 0

2) Model selection
e  Algorithm selection

Multi-layer feed-forward artificial neural networks
(ANNSs) are selected to develop the ML predictive models.
Specifically, two-layer ANN regression and ANN
classification are used to develop the ML models. As
reviewed by Ayoub (2020), ANN is the most widely used
ML algorithm in existing studies on daylighting
prediction. Also, it can solve both regression and
classification problems. Therefore, it is selected in this
study.

e  Model input selection

With the sitting position and view direction of the
occupant pre-defined in this study, major factors that
influence the daylighting performance include the sky
conditions and the solar position. Accordingly, four
relevant measures are selected as the model input: direct
normal irradiance (DNI), diffuse horizontal irradiance
(DHI), solar altitude angle, and solar azimuth angle.
These input parameters have been applied in a previous
study on illuminance-based blind control (Hu & Olbina,
2011). They are also easy to obtain for real-time control.

3) Model training
e  Cross validation

Cross validation is a common model validation technique
for assessing how the results of an ML model generalize

Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3174
https://doi.org/10.26868/25222708.2021.30629



INTERNATIONAL
BUILDING
PERFORMANCE
SIMULATION
ASSOCIATION

to a new dataset. The procedure for cross validation
involves a single parameter called k that refers to the
number of groups (or folds) the training dataset is to be
randomly split into. k-1 subgroups are used to train the
model and the other group is used to validate its
performance. This procedure is repeated k times such that
each of the k subgroups will be used as the validating
dataset once. The average of the selected performance
metric across the k processes is used to evaluate the
performance of the model. This process is called k-fold
cross validation. A typical 10-fold cross-validation is
applied in this study.

e  Model evaluation metric selection

The performance of a binary ML classification model can
be described by the confusion matrix in Table 4. Various
performance metrics have been proposed based on the
confusion metrics, such as recall and precision. The
selection of the evaluation metric depends on the specific
problem. In this study, more weight has been placed on
the False Negative in glare prediction, i.e., the ML model
failing to predict the occurrence of actual glare, than False
Positive. Therefore, recall score is selected as the model
performance metric for glare classification. In the case of
illuminance prediction, the regular accuracy score is used.
For regression models, Root Mean Square Error (RMSE)
is selected as the model evaluation metric.

Table 4: The confusion matrix for binary classification.

Table 5: Selected hyperparameters and their examined
range.

Hyperparameter

Selected Alternatives

Learning rate

0.0003, 0.001, 0.01

Layer structure

(32, 16), (32, 8), (16, 8)

Learning epoch

300, 500

Predicted = Predicted =
Yes No
Actual = Yes True Positive | False Negative
(TP) (FN)
Actual = No False Positive | True Negative
(FP) (TN)
Recall = —=~ (1)
TP+ FN
Accuracy = S L — 2)
TP + TN +FP+ FN

’ N D)2
RMSE = El=1(3’1\; i) (3)

where y; is the actual DGP (-) or illuminance (lux), y; is
the predicted DGP (-) or illuminance (lux), N is the
number of data points.

e  Hyperparameter optimization

In machine learning, hyperparameter optimization is the
process of choosing the ideal hyperparameter for a
learning algorithm. A hyperparameter is a pre-determined
parameter that controls the overall learning process of an
ML model. A model usually has more than one
hyperparameter. In this study, three hyperparameters of
the ANN model are selected for the optimization,
including learning rate, number of neurons in a given
layer, and learning epoch (the number of passes of the
entire training dataset the machine learning algorithm has
completed). The examined alternatives for each
hyperparameter are given in Table 5. A grid search to find
the optimal hyperparameter combination is conducted. In
total, there are 18 possible combinations.

Integrated blind and lighting control strategy

Figure 3 illustrates the detailed algorithm for the
integrated blind and lighting control. At each time step,
the ML predictive models estimate the glare and
illuminance with real-time solar irradiance measurements
and solar position. The algorithm selects the minimal slat
angle that prevents glare to maximize daylight utilization.
After the optimal slat angle is determined, the ML model
predicts the average work plane illuminance. The light
will be switched off if the prediction indicates illuminance
is above 500 lux. Otherwise, it will be switched on.

v

Glare = f(solar
radiation, sun
position, slat angle)

Real-time measured
solar irradiance +
solar postion

-——]

Y

glare if slat angle = No/ Setslatat0°

Yes
Y

No»[ Set slat at 10°

glare if slat angle =

Yes

Set slat at 90°

)
|

[lumiannce =
f(solar radiation, sun
position, slat angle)

I
Y

Is illuminance
> 500lux°?

No—{ Turn on the light

Yes

Switch off the light

Figure 3: The algorithm for the integrated blind and
lighting control.

Performance evaluation of the proposed shading and
lighting control strategy

Climate-based daylight simulation is applied to validate
the performance of the presented control strategy in
preventing glare and reducing lighting use on an annual
basis. Specifically, a concept of “on-state-hit” is defined
to assess the system’s capability to eliminate glare. It
refers to the cases when glare is successfully predicted
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and prevented. The lighting energy savings is quantified
by the percentage reduction of hours that require electric
lighting compared to a simple on/off control based on
office hours.

A historical year’s solar irradiance data (the year 2017)
obtained from the National Solar Radiation Data Base
(NSRDB) is used to conduct the annual glare and
illuminance simulation. NSRDB is a publicly open
dataset created by the National Renewable Energy
Laboratory (NREL). It provides half-hourly and hourly
solar irradiance and meteorological data from 1998 to
2019 over the United States at a 4-km horizontal
resolution. The data are computed by NREL’s Physical
Solar Model (PSM) using multi-channel measurements
from geostationary satellites. Several studies have
validated the NSRDB data using ground-based
measurements (Habte, Sengupta, & Lopez, 2017;
Sengupta et al., 2018; Yang, 2018). The results show that
the data agree with surface observations with acceptable
error. The NSRDB irradiance data can be freely accessed
via the NSRDB Viewer or through an application
programming interface (API). In this study, the hourly
solar irradiance data are directly downloaded from the
website using the NSRDB Viewer.

Results

Comparison between the TMY weather and the
historical weather

Figure 4 shows the boxplots of the DNI and DHI extracted
from the TMY weather and actual weather. Overall, the
actual weather seems to have higher DNI and lower DHI
compared to the TMY weather, indicating that there might
be more clear days. To further compare the two weather
profiles, a detailed analysis of the sky condition was
performed according to a model developed by a few
researchers (Fakra, Boyer, Miranville, & Bigot, 2011).
They proposed the concept of sky ratio. As indicated in
Equation (4), this measure can be computed with DHI and
Global Horizontal Irradiance (GHI). Using the threshold
for sky ratio and the sky condition categories presented by
Motamed et al. (2020), the sky conditions with the two
weather files can be described (Motamed, Bueno,
Deschamps, Kuhn, & Scartezzini, 2020). As shown in
Figure 5, the actual weather has more clear days and fewer
cloudy days compared to the TMY weather. The result
further supports that the two weather profiles are
different.

io = AL
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Figure 4: Boxplots of the solar irradiance with the TMY
weather and the historical year weather.
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Figure 5: Distribution of the sky conditions of the two
weather files.

Performance of the regression model and the
classification model

1) Glare prediction

The annual glare simulation with TMY weather indicated
that there was only one sample that was classified as “1”
(with glare) in the training dataset when the slat was
rotated to 70°. If the slat was rotated to 80°, there were no
cases with glare. Such datasets cannot be used to train an
ML model and therefore were excluded from the model
development. It is therefore assumed that glare could be
fully avoided with a slat angle of 70° and the slats would
not be rotated to a position beyond this angle. As a result,
a total of 7 predictive models were trained for the
classification algorithm and 8 models were developed for
the regression algorithm (including the 70° model). The
RMSE of the regression model for each slat angle is
shown in Figure 6. Note that RMSE varied from 0.05 to
0.15, decreasing with the increase of blind slat angle. The
decreasing pattern was due to the reduced DGP values for
larger slat angles. It should be highlighted that for slat
angles of 0° and 10° RMSE was above 0.15, which was
not satisfying considering the small varying range of DGP
(0-1). The models might misclassify the glare conditions
and fail to predict actual glare, leading to the occurrence
of glare when the presented control strategy is applied.
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Figure 6: RMSE of DGP prediction with ANN
regression algorithm.

Figure 7 displays the recall score for glare prediction with
the ANN classification algorithm. Overall, the models had
a high recall score for slat angles below 50° all above
0.95. The performance of the 60° model was quite low
(0.42), which was due to the imbalanced distribution of
the training dataset. There were only 11 data points that
were classified with glare. Applying the SMOTE
technique was not helpful in this case. However, it was
expected that the performance of the control strategy
would not be significantly impacted as there would not be
many glare cases when the blind was rotated 60°.
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Figure 7: Recall of DGP prediction with ANN
classification algorithm.

2) [lluminance prediction

The RMSE of each regression model for average
illuminance prediction is shown in Figure 8. Overall, the
RMSE for illuminance was large, ranging from 89.09 lux
to 1055.32 lux. It exhibited a similar trend in the DGP
prediction, decreasing as the slat angle increased. Similar
to DGP prediction, this decrease was due to the lower
illuminance at higher slat angles. Overall, the prediction
appears to be unsuccessful. Another explanation of the
large RMSE is that average illuminance over the entire
work plane was used as the outcome variable instead of
the illuminance at a reference point. As horizontal
illuminance is location-dependent, the prediction should
be more accurate if the illuminance at one point is used as
the outcome measure.
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Figure 8: RMSE of illuminance prediction with ANN
regression algorithm.

The accuracy for illuminance classification is provided in
Figure 9. It is found that the accuracy for each of the
predictive models was close, varying from 0.90 to 0.94.
Generally, all classification models had high accuracy,
suggesting a satisfying predicting capability.
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Figure 9: Accuracy of illuminance prediction with ANN
classification algorithm.

Comparison between the performance of the
proposed control strategy based on the regression
model and the classification model

Figure 10 illustrates the comparison between the proposed
integrated shading and lighting control strategy using the
regression and classification algorithm. Notably, the
ANN classification model-based control achieved a high
percentage of “on-state-hit” (94.7%) while the regression-
based control only prevented 61.2% of the annual glare.
Both regression- and classification-based control reduced
lighting use by approximately 64%, exhibiting negligible
difference. Considering the overall performance, the
classification algorithm outperformed the regression
algorithm and should be used for the presented control
strategy.
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Figure 10: Percentage “on-state-hit” and lighting use
reduction of the proposed control strategy based on
ANN regression and classification.

Discussion

The presented control strategy in this paper can eliminate
indoor sensors that are used in conventional open-loop
systems. It also avoids intensive real-time daylight
modeling that is required by advanced model predictive
control. It makes use of pre-simulated data rather than
physically measured data to derive machine learning
predictive models for real-time control. Therefore, it is
promising to become an industrial application,
contributing to the development of effective daylight-
linked control systems for real-life applications.

Despite the strengths, the study has several limitations.
The main limitation is that the presented control strategy
was not physically verified. Instead, climate-based
daylight simulation was used to demonstrate the use of the
presented control method, and a control interval of one
hour was considered. This time interval will be too long
for real-time control. In physical validation, the first step
is to obtain a well-calibrated daylight model. Annual
daylight simulation with the shading device at selected
positions will be conducted and the result will be used to
train machine learning predictive models. Solar irradiance
will be collected in real-time using pyranometers on the
rooftop of the building and used to feed the data-driven
models for daylighting prediction. The control algorithm
selects the shade position that prevents glare while
maximizing daylight ingress and determine if the lighting
needs to be switched on. The control interval should be
determined according to multiple considerations. For
instance, a time lag for operation for motor-driven blinds
should be considered. Frequent shading operations could
disrupt or disturb occupants and shorten the lifespan of
the motor, which should be avoided. Pre-experimentation
and communication with the occupants are required to
establish an appropriate control interval. Other challenges
include how to apply the control method for shading
control in open-plan offices and how to include occupants
in the control loop to increase user satisfaction. Future
studies are required to address these challenges.

Conclusion

This paper proposed a simplified open-loop control
method for integrated blind and lighting systems. The
presented method makes use of machine learning models

developed from daylight simulation data to predict real-
time glare and work plane illuminance. The blind and
lighting are controlled based on the prediction to
eliminate glare and maximize daylight ingress. The
application of the proposed control strategy was
demonstrated with a case study. ANN classification and
regression algorithm were used to develop the ML
predictive models and their performance was compared.
Climate-based daylight simulation was used to verify the
performance of the presented control strategy in glare
prevention and lighting energy saving. It was found that
94.7% of annual glare was prevented with the
classification models while 61.2% was avoided with the
regression models. Both algorithms resulted in reduced
lighting use by approximately 64%. The result suggests
that the classification algorithm outperforms the
regression algorithm and is recommended for the
proposed control framework. Future experimental studies
are required to further verify the findings from this study.
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