Producing Tunable Broadband Near-Infrared Emission through Co-Substitution in \((\text{Ga}_{1-x}\text{Mg}_x)\text{(Ga}_{1-x}\text{Ge}_x)\text{O}_3:\text{Cr}^{3+}\)

Jiyou Zhong,* Liwei Zeng, Weiren Zhao, and Jakoah Brgoch*

ABSTRACT: Broadband near-infrared (NIR) phosphors are in high demand for creating “smart” NIR phosphor-converted light-emitting diode (pc-LED) sources. In this work, a series of \(\text{Cr}^{3+}\)-substituted NIR-emitting materials with highly efficient, broad, tunable emission spectra are achieved by modifying the simple oxide \(\text{Ga}_2\text{O}_3\) using \([\text{Mg}^{2+}\text{-Ge}^{4+}]\) and \([\text{Ga}^{3+}\text{-Ga}^{3+}]\) co-unit substitution. The results show that the emission peak can be shifted from 726 to 830 nm while maintaining a constant excitation peak in the blue light region, enabling extensive application. The optical properties stem from changes in the \(\text{Cr}^{3+}\) crystal field environment upon substitution. Intriguingly, the temperature-dependent photoluminescence emission peak position shows virtually no change in the \([\text{Mg}^{2+}\text{-Ge}^{4+}]\) co-substituted materials. This abnormal phenomenon is found to be a comprehensive embodiment of a weakening crystal field environment (red-shift) as the temperature increases and reduced local structure distortion (blue-shift) with increasing temperature. The high quantum yield, NIR emission, and net-zero emission shift as a function of temperature make this phosphor class optimal for device incorporation. As a result, their performance was studied by coating the phosphor on a 450 nm emitting LED chip. The fabricated device demonstrates an excellent NIR output power and NIR photoelectric conversion efficiency. This study provides a series of efficient, tunable, broadband NIR materials for spectroscopy applications and contributes to the basic foundation of \(\text{Cr}^{3+}\)-activated NIR phosphors.

KEYWORDS: co-substitution, photoluminescence, crystal field splitting, near-infrared, simple oxide

1. INTRODUCTION

Near-infrared (NIR) spectroscopy has gained significant attention recently due to its widespread application in night vision, nondestructive food quality analysis, and nonradiative bioimaging. The NIR region spanning \(\sim 700 \text{ to } 1100 \text{ nm}\) is particularly interesting because it covers the characteristic absorption signals of the \(\text{C-H, O-H, and N-H}\) normal vibrational modes, enabling many of these technologies. As a result, maximum spectral coverage in this region requires ultrabroadband NIR light sources centered near \(\lambda_{\text{em,max}} \approx 830 \text{ nm}\). The most promising method available today for generating long-wavelength light is by using NIR phosphor-converted light-emitting diodes (pc-LEDs). These devices are energy-efficient, have a compact size and high radiant flux, and have a tunable broadband emission in the correct device design. New pc-LED NIR light sources would enable the production of portable smart devices for quick biosensing and daily use. However, the output performance of the NIR pc-LED devices depends on the phosphor coating; thus, developing ultrabroadband and long-wavelength NIR phosphors is vital to advance this technology.

Trivalent chromium-substituted phosphors are considered the best NIR emitter for LED applications available today. They show excellent blue light \(\lambda_{\text{ex}} \approx 450 \text{ nm}\) absorption, a high photoluminescence quantum yield (PLQY), and a tunable emission maximum depending on the crystal field environment. Until recently, the development of red and NIR phosphors has traditionally focused on rare earth (Ce\(^{3+}\) and Eu\(^{2+}\)) ions with strong-crystal field splitting, which greatly limited the plausible crystal chemistries. \(\text{Cr}^{3+}\)-activated phosphors are different. These materials require a weak octahedral crystal field to generate a long-wavelength NIR emission. However, as the crystal field weakens, the excitation peak will be red-shifted, resulting in a mismatch with the blue LED chip. The emission efficiency will also inevitably decrease with a weaker crystal field due to the enhanced nonradiative relaxation according to the theory of multiphonon radiative and nonradiative transitions caused by the narrowed energy gap between the ground state and the excited state.

Received: October 4, 2022
Accepted: October 26, 2022
Published: November 7, 2022
excited state. Therefore, finding ways to achieve an appropriate crystal field environment, maintain efficient blue-light excitation, and simultaneously red-shift the emission spectrum remains a significant challenge.

Over the past several years, researchers have developed multiple workarounds to overcome the lack of optimal Cr³⁺ coordination environments, including the “multiple-site strategy”, Cr³⁺-Yb³⁺ energy transfer, and crystal field engineering, all of which have been applied to increase the coverage of long-wavelength NIR emission. For example, La₃Ga₅GeO₁₄:Cr³⁺ and La₂MgZrO₃:Cr³⁺ have full width at half maximum (FWHM) values of 330 and 210 nm, respectively, due to their multiple substitution sites. Ca₂Lu₂Zr₂Al₂O₁₂:Cr³⁺, La₂MgHfO₆:Cr³⁺, Yb³⁺, Yb³⁺, Li₃ScO₃Cr³⁺,Yb³⁺, and LiScPO₄:Cr³⁺,Yb³⁺ each have a FWHM of over 210 nm benefiting from efficient Cr³⁺-Yb³⁺ energy transfer. Crystal field engineering was applied by forming solid solutions, like in MgₓLi₃Sc₄GeO₁₃:Cr³⁺, to shift the emission peak from 940 to 1110 nm and widen the corresponding FWHM from 236 to 300 nm. Although most of these strategies are effective, the basic way to regulate the luminescence properties of Cr³⁺-activated material still depends on controlling the strength of the crystal field.

Recently, the simple oxide β-Ga₃O₅ with a wide band gap (E_g = 4.7–4.9 eV), appropriate structural rigidity, and reasonable crystal field environment proved to be a promising host for Cr³⁺. The PLQY of Ga₅O₃:Cr³⁺ was found to be 92%, although the emission peak was only located in the far-red region (λ_{em,max} = 726 nm), limiting its versatility. The emission peak center could be moved to 830 nm by weakening the crystal field splitting through the substitution of (ionically) larger elements, like Sc⁴⁺ or In³⁺. Solid solutions following Gaₓ₋₆(SC₃In)₃O₃:Cr³⁺ each demonstrated the ability to red-shift the emission spectrum while maintaining the high PLQY (≥88%). Even with the complete substitution of octahedral Ga³⁺ by Sc³⁺ or In³⁺, the peak wavelength cannot exceed 830 nm. The full width at half maximum (FWHM) of the emission spectra is also relatively narrow (<160 nm). Moreover, In³⁺ substitution dramatically narrows the band gap of the host material and red-shifts the excitation peaks, triggering a low PLQY and poor thermal stability. Therefore, practical applications of this phosphor system require a different approach to red-shift the emission peak, maintain the excitation peak position, expand the FWHM, and maintain the high efficiency and high-temperature photoluminescence.

In this work, a new method based on chemical unit co-substitution was developed to regulate the crystal field environment while maintaining the rest of the optical properties in the Ga₅O₃:Cr³⁺ system. This method reduces the variations of the crystal field environment by using the [Mg₂⁴⁺-Ge⁴⁺] (r_{coors}(Mg²⁺) + r_{coors}(Ge⁴⁺) = 1.11 Å) unit with similar size to substitute the [Ga³⁺-Ga³⁺] (r_{coors}(Ga³⁺) + r_{coors}(Ga³⁺) = 1.09 Å) unit in Ga₅O₃:Cr³⁺. Although the substitution ratio only reaches 20%, an optimal red-shift and FWHM are achieved. More importantly, the efficiency and thermal stability can be retained. A comprehensive investigation of the local structure and the crystal field environment around Cr³⁺ provides insight into the mechanism(s) governing the change in optical properties. The product of this work includes a series of efficient long-wavelength ultrabroadband NIR materials. It also revises the fundamental understanding of Cr³⁺ luminescence, including a new approach for tuning the optical properties using co-substitution, which is important for future NIR materials design.

2. EXPERIMENTAL SECTION

2.1. Synthesis. The polycrystalline powder samples were all synthesized using a one-step high-temperature solid-state reaction method. First, the raw materials including Ga₅O₃ (Aladdin, 99.99%), MgO (Aladdin, 99.9%), GeO₂ (Aladdin, 99.99%), InOₓ (Aladdin, 99.99%), and Cr₂O₃ (Aladdin, 99.9%) were weighed out according to the stoichiometric ratio. Then, the powders were mixed and ground for half an hour with an agate mortar and pestle. The mixtures were transferred to corundum crucibles and put into a muffle furnace. The furnace first increased the temperature to 1300 °C with a heating rate of 5 °C/min, which was then held for 6 h under air. The furnace was naturally cooled down to room temperature, and the products were removed and ground into fine powders with an agate mortar and pestle for subsequent measurement. The preparation of LiIn₃Si₂O₇:Cr³⁺ phosphor is based on the relevant literature.

2.2. Characterization. Sample phase purity was first checked by powder X-ray diffraction collected on a laboratory X-ray diffractometer (X'pert, PRO, PANalytical, Netherlands, λ = 1.54 Å). Rietveld refinement was performed by using the software of GSAS. The crystal structure was analyzed and visualized by VESTA. Electron paramagnetic resonance (EPR) spectroscopy was performed on an EPR spectrometer (JES-FA300, Japan) at 77 K. The diffuse reflectance (DR) spectra were collected on a UV–vis–NIR spectrophotometer (Shimadzu, Japan). The photoluminescence excitation and emission spectra at different temperatures as well as the decay curves were obtained on an FLS-980 fluorescence spectrophotometer (Edinburgh Instruments), while the photoluminescence quantum yields and absorption of all these samples were measured by using an absolute photoluminescence quantum yield measurement system (Quantaurus-QY Plus C13534-12, Hamamatsu Photonics). The prototype NIR pc-LED devices were fabricated by coating a mixture of the phosphors and resin with a 1:1 ratio (by weight) on 450 nm blue LED chips (Epistar). The input and output parameters and the electroluminescence spectra of the fabricated NIR pc-LEDs were measured using a HAAS2000 photodelectric measuring system (EVERFINE, China).

2.3. Computation. The structural models (1 × 2 × 2 supercell) of Ga₇₋₅(Mg₀.₀₃Ge₀.₉₇)O₅ (x = 0, 0.0625, 0.125, 0.1875, and 0.25) were constructed and optimized using the Vienna ab initio Simulation Package (VASP), which is a plane-wave pseudopotential total energy package based on density functional theory (DFT). The atomic positions and lattice parameters were relaxed with an energy convergence criterion of 1 × 10⁻⁵ eV and an atomic convergence criterion of 0.01 eV Å⁻¹. The cutoff energy of 500 eV was used for the basis set of the plane waves, and a 4 × 2 × 4 Γ-centered Monkhorst–Pack k-point grid was used to sample the first Brillouin zone. The Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional was employed for structure optimization and stress tensor calculation to estimate the Debye temperature.

3. RESULTS AND DISCUSSION

3.1. Crystal Structure, Site Occupation, and Morphology. Figure 1a presents the powder X-ray diffractograms of Ga₁₋₀.₇₅Ge₁₋₀.₃₅O₅ (x = 0, 0.02, 0.04, 0.08, 0.12, 0.16, and 0.2). Each diffractogram can be indexed to β-Ga₅O₃ (ICSD no. 15647), indicating that the phase pure samples have been successfully synthesized. Further increasing the substitution ratio will cause the presence of the MgGa₅O₃ spinel phase, indicating that the solubility limit is ~20 mol % Ga³⁺-Ga³⁺ units being substituted by (Mg²⁺-Ge⁴⁺) units in β-Ga₅O₃. To confirm the crystal structure and phase purity, the Rietveld refinement of the Ga₁₋₀.₇₅Ge₁₋₀.₃₅O₅ (x = 0 and 0.2) powder X-ray diffractograms was performed as shown in Figure 1b and Figure S1. The refined crystal structure, atomic
coordinates sphere as Cr$^{3+}$ shifts from a single type of Ga–Cr–Ga environment to a mixture of Ga–Cr–Ga, Ga–Cr–Mg, and Mg–Cr–Mg. The EPR signal captures this disorder as a broad signal.

The morphology of Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ was examined by a SEM image, as shown in Figure S2a. The particles tend to present irregular shapes with an average size of ~3 μm. EDS mapping of the elemental distribution on randomly selected crystallites (Figure S2b) shows that all the elements loaded in this material can be detected and are uniformly distributed, further directly proving the success of introducing the [Mg$^{2+}$–Ge$^{4+}$] unit and Cr$^{3+}$ into the lattice of Ga$_2$O$_3$.

3.2. Reflectivity and Tunable Photoluminescence

The diffuse reflection (DR) spectra of Ga$_{3-x}$Mg$_x$Ge$_{0.5}$O$_3$ (x = 0 and 0.2) hosts and Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ (x = 0, 0.12, and 0.2) phosphors are presented in Figure 2a. A slight red-shift of the DR spectra can be observed after [Mg$^{2+}$–Ge$^{4+}$] is incorporated into Ga$_2$O$_3$, implying the optical band gap narrowing from 4.73 to 4.63 eV, as measured from the Kubelka–Munk transformed absorption spectrum (Figure S3). This decrease (0.1 eV) of the band gap is almost neglectable compared to the changes caused by In$^{3+}$ or Sc$^{3+}$ substituted in Ga$_2$O$_3$.46,47 Measuring the DR spectra upon varying x in Ga$_{3-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ (x = 0, 0.12, and 0.2) indicated that the two absorption bands, which can be assigned to the 4T_2 → 4A_2 (F) transitions of Cr$^{3+}$, remain nearly constant. Interestingly, the absorptivity does increase with increasing x. This surprising result must stem from the introduction of odd-parity to break the parity-forbidden nature of Cr$^{3+}$ 3d–3d electronic transitions, which can only arise from a distortion in the local coordination environment.46

The normalized photoluminescence excitation spectra of Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ (x = 0, 0.02, 0.04, 0.08, 0.12, 0.16, and 0.2) are illustrated in Figure 2b. The excitation peak in the blue region does not change regardless of the x value, while the excitation band in the red region shows a slight shift to lower energy due to peak broadening. These results are consistent with the DR spectra, suggesting that a minor influence on the

Figure 1. (a) Powder X-ray diffactograms of Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ (x = 0, 0.02, 0.04, 0.08, 0.12, 0.16, and 0.2) samples comparing with the standard card of β-Ga$_2$O$_3$ (ICSD no. 15647). (b) Rietveld refinement of the powder X-ray diffractionogram for the Ga$_{3-x}$Mg$_x$Ge$_{0.5}$O$_3$ sample. (c) Refined (normalized) unit cell parameters as a function of x value. (d) Refined crystal structure of Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ and coordination environment of cations. (e) EPR spectrum of Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ (x = 0, 0.02, and 0.2) samples.

Figure 2. (a) Diffuse reflection spectra of Ga$_{3-x}$Mg$_x$Ge$_{0.5}$O$_3$ (x = 0 and 0.2) hosts and Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ (x = 0, 0.12, and 0.2) phosphors. Normalized (b) excitation spectra and (c) emission spectra of Ga$_{1-x}$Mg$_x$Ge$_{0.5}$Cr$_{0.03}$O$_3$ (x = 0–0.2) phosphors.
strength of the crystal field is generated by the \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) unit co-substitution.\(^9\) Upon 450 nm excitation, the normalized photoluminescence emission spectra (Figure 2c) indicate a tunable emission as a function of \([\text{Mg}^{2+}-\text{Ge}^{4+}]\). As shown in Figure S4, the emission peak can be significantly red-shifted from 726 to 830 nm, while the FWHM can be extended from 122 to 186 nm (2201.0 to 2714.4 cm\(^{-1}\)) as the \(x\) value increases from 0 to 0.2. Although the increased FWHM is beneficial to its spectral coverage in the NIR region, it is also a reflection of enhanced electron–lattice coupling, which may increase the probability of radiative transitions.

Such a significant red-shift and broadening of the emission spectrum are well beyond expectation. The crystal field was not expected to weaken with \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) based on the DR as much as is observed. It is therefore vital to identify the mechanism leading to this response. Generally, there are two considerations for red-shifting the emission spectrum of \(\text{Cr}^{3+}\)-activated materials. One involves the coupling of \(\text{Cr}^{3+}\).\(\text{Cr}^{4+}\) ion pairs,\(^9\) which will induce significant energy level splitting due to the strong exchange interactions between \(\text{Cr}^{3+}-\text{Cr}^{4+}\), whereas the other is through the weakening of the crystal field environment.\(^61,62\) The EPR spectrum does not support the presence of \(\text{Cr}^{3+}-\text{Cr}^{4+}\) ion pairs, and the nearly unchanged absorption (DR and excitation peaks) indicates an essentially constant crystal field environment. Thus, the red-shift caused by \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) co-substitution must follow a different mechanism.

As we known, the emission of rare earth ion \(\text{Eu}^{2+}\) with \(4f \leftrightarrow 5d\) transitions can also be affected by crystal field strength and symmetry, changing the centroid shift and energy levels’ splitting, respectively. Similarly, the crystal field strength and symmetry can also influence the centroid shift and energy levels’ splitting of \(\text{Cr}^{3+}\) with \(3d \leftrightarrow 3d\) transitions. Weakening the crystal field strength is well accepted as a regulation method for tuning the emission and excitation spectrum of \(\text{Cr}^{3+}\) toward a longer wavelength. Reducing the crystal field symmetry through a local structural distortion that will change the photoluminescence spectrum is unknown. Herein, we propose that a local structure distortion should be responsible for this red-shift of emission spectra (Figure 3a). In this mechanism, the degenerate energy levels will split, while the other energy levels will show an enlarged degree of splitting by incorporating \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) co-substitution (with a neglectable centroid shift). This will allow the excited electrons to relax to a lower energy level and produce the observed red-shifted emission spectrum while maintaining the excitation energy.

This hypothesis is supported by first eliminating the influence of crystal field effects. A smaller co-substitution, the \([\text{Mg}^{2+}-\text{Si}^{4+}]\) unit (0.98 Å) for the \([\text{Ga}^{3+}-\text{Ga}^{3+}]\) unit (1.09 Å), was therefore tested.\(^{48}\) The synthesis of phosphors following \(\text{Ga}_{1.97-2y}\text{Mg}_{y}\text{Si}_{0.03}\text{O}_3\) showed a solubility limit of \(\leq 12\) mol % (Figure S5). The unit cell volume shows a linear decrease as the co-substituting ratio increases (Figure S6), which should generate a stronger crystal field environment and blue-shift the emission spectrum. The excitation spectra (Figure S7a) of \(\text{Ga}_{1.97-2y}\text{Mg}_{y}\text{Si}_{0.03}\text{O}_3\) \((x = 0, 0.02, 0.04, 0.08, \text{and} 0.12)\) also show a nearly unchanged spectrum, although there is slight broadening. Under 450 nm excitation, the emission spectra (Figure S7b) of \(\text{Ga}_{1.97-2y}\text{Mg}_{y}\text{Si}_{0.03}\text{O}_3\) \((x = 0, 0.02, 0.04, 0.08, \text{and} 0.12)\) also exhibit a significant red-shift from 726 to 794 nm. Considering that the excitation and emission spectrum of \([\text{Mg}^{2+}-\text{Si}^{4+}]\) co-substituted systems is nearly identical to that of the \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) co-substituted materials, the dominant mechanism for red-shifting the emission spectrum must be similar.

To further test the two mechanisms in this material system, a series of \([\text{Mg}^{2+}-\text{Ge}^{4+}-\text{In}^{3+}]\) co-substituted materials with the formula \(\text{Ga}_{1.97-2y}\text{Mg}_{y}\text{Ge}_{x}\text{In}_{0.03}\text{O}_3\) were prepared. Fixing \(x = 0.16\) and varying \(y = 0\) to 0.6 show an even more dramatic red-shift in the emission spectrum from 813 to 920 nm. This wavelength simultaneously guarantees the excitation peak with \(^{4}A_2 \rightarrow {^4}T_1\) transition located in the blue region of the electromagnetic spectrum (Figure S8). This result also demonstrates the ability of \(\text{Ga}_3\text{O}_3\text{Cr}^{3+}\) system to break the current limit of long-wavelength NIR emission in the first biowindow.

The photoluminescence quantum yield (PLQY) and absorption efficiency (AE) of \(\text{Ga}_{1.97-2y}\text{Mg}_{y}\text{Ge}_{x}\text{In}_{0.03}\text{O}_3\) \((x = 0.02, 0.04, 0.08, 0.12, 0.16, \text{and} 0.2)\) were measured as shown in Figure 3b. The PLQY gradually decreases from 92.3 to 58.3%, while the absorption efficiency increases from 43.3 to 45.2% as \(x\) goes from 0 to 0.2. The decrease in PLQY can be mainly ascribed to the gradually enhanced lattice–electron coupling effect, which can be deduced from the dramatically increased FWHM of the emission spectra, increasing the energy loss in the pathway of the nonradiative relaxation process. The increase in AE is mainly due to the introduction of odd-parity to break the parity-forbidden nature of \(\text{Cr}^{3+}\) 3d–3d electronic transitions. Both phenomena must arise from the lattice distortions around \(\text{Cr}^{3+}\) induced by \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) unit incorporation.

The gradually enhanced nonradiative relaxation process can be deduced from the decay behavior as depicted in Figure 3c. Fitting the decay curves with a single-exponential function (Figure S9), the lifetime drops from 221.2 to 55.9 μs as the \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) co-substitution ratio increases. This behavior differs from \(\text{Ga}_{3-2x}\text{In}_{0.2x}\text{Cr}^{3+}\) or \(\text{Ga}_{3-2x}\text{Sc}_{0.2x}\text{Cr}^{3+}\) which require a multi-exponential fit.\(^{46,47}\) The incorporation of \([\text{Mg}^{2+}-\text{Ge}^{4+}]\) did not change the preference of \(\text{Cr}^{3+}\)—it always occupies the octahedral \(\text{Ga}^{3+}\) site due to their similar ionic size and valence state.\(^5,64\)
3.3. Thermal Stability. The thermal stability of phosphor is among the most important criteria for future application. This is particularly true for phosphors with an huge Stokes shift like Cr$^{3+}$ that will generate additional heat when converting blue light into NIR light. The temperature dependence of the emission spectra for Ga$_{3-x}$Mg$_x$Ge$_y$Cr$_{0.03}$O$_3$ with $x = 0$ and 0.2 is shown as a contour plot (Figure 4a,b, respectively).

![Contour plot of the emission spectra of Ga$_{3-x}$Mg$_x$Ge$_y$Cr$_{0.03}$O$_3$ with (a) $x = 0$ and (b) $x = 0.2$ as a function of temperature. Emission peak (c) intensity and (d) position for Ga$_{3-x}$Mg$_x$Ge$_y$Cr$_{0.03}$O$_3$ ($x = 0$, 0.04, 0.12, and 0.2) as a function of temperature. (e) Fitting the relationship between FWHM and temperature. (f) Fitting this equation (Figure 4e), the obtained Huang–Rhys factor values were 4.83 and 2.51 for $x = 0$ and 0.2, respectively. (f) DFT-PBE-calculated Debye temperature for Ga$_{3-x}$Mg$_x$Ge$_y$O$_3$ ($x = 0$, 0.0625, 0.125, 0.1875, and 0.25).

The emission peak intensity (the integral intensity is shown in Figure S10) when $x = 0$, 0.04, 0.12, and 0.2 is plotted as a function of temperature in Figure 4c. The emission peak intensity at 423 K (I_{298K}), the approximate working temperature of an LED-based device, remains at 77% at room temperature when $x = 0$. The increase in x causes the I_{298K} to gradually decrease from 58.5 to 47.3 to 42.8% for $x = 0.04$, 0.12, and 0.2, respectively. The emission peak position as a function of temperature is shown in Figure 4d. When $x = 0$, the emission peak presents a significant red-shift (726 to 760 nm) with the increase in temperature, which should stem from a weaker crystal field environment due to temperature-dependent lattice expansion. However, for $x = 0.04$, 0.12, and 0.2, the peak positions remain unchanged or exhibit a slight blue-shift with an increase in temperature. This abnormal phenomenon is a comprehensive embodiment of a weakening crystal field environment (red-shift) as the temperature increases and reduced local structure distortion (blue-shift) with increasing temperature, which can be verified by the temperature-dependent unit-cell volume and distortion index (Figure S11), derived from refinements of temperature-dependent XRD data of Ga$_{3}-$Mg$_{0.2}$Ge$_{0.2}$Cr$_{0.03}$O$_3$ (Figure S12).

Minimizing the change in the emission peak is undoubtedly useful, while the rapid decrease in emission intensity is harmful to the application of this material. The thermal quenching of Cr$^{3+}$-activated material is closely related to the electron–phonon coupling (EPC) effect, which can be represented by the Huang–Rhys factor (S). The Huang–Rhys factor can be determined by fitting the relationship between the FWHM of the emission spectra and the temperature following eq 1.

$$\text{FWHM}(T) = \sqrt{8 \ln 2 \times \frac{\hbar v}{k T}} \times \coth\left(\frac{hv}{2kT}\right)$$

where FWHM (eV) refers to the full width at half maximum of the emission spectrum at a given temperature, T (K). The \hbar and k represent the phonon energy and Boltzmann’s constant, respectively. Fitting this equation (Figure 4e), the obtained Huang–Rhys factor values were 4.83 and 2.51 for $x = 0$ and 0.2 samples, respectively, demonstrating a significant decrease in the electron–phonon coupling with the [Mg^{2+}–Ge^{4+}] unit incorporation. These results cannot support the observed change in temperature-dependent photoluminescence as a function of temperature, indicating the failure of Huang-Rhys factor in describing electron-phonon coupling effect in a material system with significant local structure distortion.

Moreover, the host crystal’s structural rigidity and band gap are important for thermal quenching. Structural rigidity, represented by the material’s Debye temperature (Θ_D), is closely related to the compound’s vibration energy. A highly rigid structure is conducive to suppressing the nonradiative relaxation process. Figure 4f presents the theoretically calculated Debye temperature for

![Figure 5. (a–d) Electroluminescence spectra of Ga$_{3-x}$Mg$_x$Ge$_y$Cr$_{0.03}$O$_3$ ($x = 0$, 0.04, 0.12, and 0.2) phosphors with the insets showing the corresponding NIR pc-LEDs. (e) NIR output power and (f) NIR photoelectric conversion efficiency of Ga$_{3-x}$Mg$_x$Ge$_y$Cr$_{0.03}$O$_3$ ($x = 0$, 0.04, 0.12, and 0.2) as a function of driving current. Photographs of fruit captured under (g) natural light and (h) NIR light of the fabricated NIR pc-LED.](https://doi.org/10.1021/acsmi.2c17902)
Therefore, the dominant factor that should be responsible for the degradation of thermal stability after [Mg2+−Ge4+] unit co-substitution needs further exploration.

3.4. NIR pc-LED Fabrication and Application.

The device performance of Ga\textsubscript{1.97−x}Mg\textsubscript{x}Ge\textsubscript{2}O\textsubscript{3} (x = 0, 0.04, 0.12, and 0.2) was evaluated by coating the luminescent materials on 2 mm blue LED chips, which would make them viable NIR light sources in portable smart devices. The prototype NIR pc-LEDs and electroluminescence spectra are presented in Figure S5a–d, while the NIR output power and NIR photoelectric conversion efficiency are plotted in Figure 5e,f, respectively. The visual appearance of these phosphors is nearly identical, displaying a light green body color. The NIR output power increases as a function of driving current in the range of 25 to 250 mA and does not reach saturation. The NIR photoelectric conversion efficiency decreases as the driving current increases, mainly due to the lower efficiency of the LED chip. Under 100 mA driving current, the NIR output power values are measured to be 43.4, 34.8, 29.4, and 25.1 mW, and the corresponding NIR photoelectric conversion efficiency values are determined to be 15.3, 12.3, 10.1, and 8.7%, for x = 0, 0.04, 0.12, and 0.2, respectively. The origin of the observed decrease in NIR output power and NIR photoelectric conversion efficiency stems from the gradually decreasing PLQY, although some of the drop is an experimental artifact due to the lack of spectral coverage in the measurement above 1000 nm. Nevertheless, the NIR output power and photoelectric conversion efficiency of all these devices are better than those fabricated by using the well-known efficient LiInS\textsubscript{2}O\textsubscript{3}:Cr3+ phosphor (24.5 mW@8.7%, driven by 100 mA) under the same conditions as shown in Figure S13, demonstrating the excellent fabrication performance of this series of materials.

Finally, the practical application of a fabricated NIR pc-LED is demonstrated in imaging. The photograph of fruit captured under natural light and NIR light of the fabricated NIR pc-LED are shown in Figure 5g,h, respectively. As shown, the black-and-white images of fruit can be easily resolved under the exposure of NIR light generated by this prototype device. These results indicate that these materials may have a good potential for spectroscopy applications.

4. CONCLUSIONS

In summary, a series of Ga\textsubscript{1.97−x}Mg\textsubscript{x}Ge\textsubscript{2}O\textsubscript{3} (x = 0, 0.02, 0.04, 0.08, 0.12, 0.16, and 0.2) phosphors with tunable broadband NIR emission were obtained by using chemical unit co-substitution. As x increases, the emission peak can be tuned up to 830 nm and the FWHM can be expanded, covering 186 nm (2714.4 cm-1). The crystal field splitting model was proposed to explain the red-shift of the emission spectrum, while additional signatures in the photoluminescence spectra indicate a concurrent local structural distortion. The photoluminescence quantum yield and thermal stability also show a decrease with increasing x, although the absolute values remain acceptable and can be improved. The nearly unchanged emission peak position results from a weakened crystal field and reduced local structure distortion with increasing temperature. The degradation of thermal stability induced by co-substitution cannot simply be ascribed to the variation in electron–phonon coupling effect, a decrease in the host’s structural rigidity or slightly narrowed band-gap. Finally, the fabricated NIR pc-LED exhibits excellent imaging performance, demonstrating these materials’ great potential for NIR spectroscopy applications in portable smart devices.

ACKNOWLEDGMENTS

The authors thank the Guangzhou Basic and Applied Basic Research Project (202201010689), the National Natural Science Foundation of China (51702057), and the National Natural Science Foundation (DMR-1847701).

Lin2SbO6:Cr3+ Phosphors for Light-Emitting Diodes. iScience 2021, 24, No. 102250.