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Abstract—Deep neural networks (DNNs) have been widely 

adopted in modeling electromagnetic compatibility (EMC) 

problems, but the training data acquisition is usually time-

consuming through various simulators. This paper presents a 

powerful approach using an ensemble of DNNs to effectively 

reduce the training data size in DNN-based modeling problems. A 

batch of training data with the largest uncertainties is selected 

using active learning through the variance among the ensemble of 

DNNs. Subsequently, a greedy sampling algorithm is applied to 

select a data subset using diversity. Thus, the proposed method can 

achieve both uncertainty and diversity in data selection. By 

averaging the outputs of the DNN ensemble, the prediction error 

can be further reduced. Simple mathematical functions are used 

to validate the proposed method, and a high-dimensional stripline 

modeling problem also demonstrates the effectiveness of this 

DNN-ensemble approach. The proposed method is task agnostic 

and can be used in other surrogate modeling problems with DNNs.  

Keywords—Active learning, stripline modeling, deep neural 

network, machine learning, ensemble-based, greedy sampling. 

I. INTRODUCTION  

Deep neural networks (DNN) have been broadly utilized in 
the surrogate modeling of electromagnetic compatibility (EMC) 
problems by fitting the complex relationships between different 
features (“input” and “output” features) [1]-[6]. However, 
generating large amounts of data through various simulators to 
achieve the desired training accuracy has always been 
problematic due to the considerable simulation time. Hence, 
developing a methodology that can effectively relieve the 
burden of overly large data generation is necessary to promote a 
more successful application of machine learning in simulation-
based modeling. 

In previous machine-learning-related research, simple 
sampling methods, such as the Latin Hypercube Sampling [3] or 
Halton Sequence Sampling [6], were adopted to generate 
training data samples instead of random sampling [1], [5]. 
However, the Latin Hypercube Sampling and Halton Sequence 
Sampling methods are simple space-filling methods in the input 
space, which cannot handle complex functional variations in the 
output space.  

 
 

Fig. 1. Illustration of the active learning procedure in simulation-based 

surrogate modeling problems. 
 

There are also some adaptive sampling methods to tackle 
functional variations in the output space, such as the variance-
based method [7], the cross-validation-based method [7], and 
the gradient-based methods [7]. But these approaches are either 
model-dependent or cannot handle high-dimensional problems 
using DNN. 

The active learning (AL) technique has attracted increasing 
interest in computer vision to reduce image labeling costs [8]-
[11]. A deep Bayesian AL method was proposed to pick new 
data samples through uncertainty estimation using dropout 
layers [8], [9]. But dropout layers, used to prevent overfitting, 
will deteriorate the training accuracy of simulation-based 
regression modeling problems in many cases.  

Further, a core-set approach was developed for image 
classification to select new data by evaluating the geometric 
distances and increasing the diversity among training samples 
[10]. Also, a greedy sampling (GS) method was proposed for 
regression problems, which pursues diversity in the input and 
output space [12]. The greedy sampling algorithm in the input 
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space (GSx algorithm) [12] is similar to the core-set approach 
that seeks diversity in the training data. However, whether this 
greedy sampling approach performs well on complex high-
dimensional regression problems using DNN remains a 
question. Some researchers have also attempted to balance 
uncertainty and diversity [13][14]. Even though AL has been 
helpful in classification problems, little investigation has been 
performed on the training data selection of high-dimensional 
regression problems in DNN-based modeling.    

This paper adopts an ensemble-based AL method to tackle 
DNN-based regression problems. This ensemble-based AL 
method is similar to the query-by-committee method [7], [15] 
and has shown promise in image classification by estimating 
uncertainty from the outputs of an ensemble of DNNs [11]. As 
illustrated in Fig. 1, a training strategy is proposed to iteratively 
train the DNN model and query new samples with high 
uncertainty from an expensive simulator to minimize the 
required data size. To prevent the clustering phenomenon by 
selecting data with large uncertainties only, the GS method [12] 
is further applied to select a subset of data with enough diversity. 
The proposed method is referred to as the ALGS (AL + GS) 
method in this paper. Moreover, it is found that the prediction 
error can be greatly reduced by averaging the output from the 
ensemble of DNNs. The power and advantage of the DNN-
ensemble approach are validated using simple mathematical 
functions and a high-dimensional stripline modeling problem.  

The rest of this paper is organized as follows. The proposed 
ALGS method is elaborated in Section II. Section III shows the 
verification result using two simple mathematical functions, and 
Section IV discusses the validation using a high-dimensional 
stripline modeling problem. Finally, the conclusion is drawn in 
Section IV.  

II. PROPOSED METHOD 

A. Ensemble-Based Active Learning 

The ensemble-based AL method [11] is similar to the deep 
Bayesian AL method [8], [9]. They both train DNNs using 
existing data and evaluate the uncertainty of unlabeled data. 
The unlabeled data with the most considerable uncertainties, 
together with the existing samples, are expected to represent the 
entire search space more effectively and bring more significant 
changes to the DNN parameters.  

 
Fig. 2. Illustration of the ensemble-based active learning algorithm. 
 

Fig. 2 illustrates how the ensemble-based AL method 
estimates uncertainties through an ensemble of DNN models. 

A popular way of generating these DNN models is to use the 
same network architecture but different random weight 
initializations [11]. In Fig. 2, a one-dimensional example and 
three DNN models are shown for simplification. The DNN 
models are trained with the same points, and their 
disagreement, i.e., variance on new samples, is used to evaluate 
uncertainty. The regions with larger variance are prioritized to 
be sampled. In contrast, the new samples with lower 
discrepancies among the DNN models are less valuable for 
improving the generalization performance of the DNN models.  

B. Greedy Sampling (GS) Algorithm 

In real applications, selecting a data batch rather than a 
single sample is desired, rendering the data generation (in this 
way, parallel data generation is feasible) and DNN training (the 
number of times to train the DNNs can be reduced) more 
efficient. However, multiple data samples chosen at one time 
can be located close to each other and cause the clustering 
phenomenon. Therefore, this paper further adopts the GS 
algorithm [10], [12] to select a data subset with the most 
diversity. 

Assume there are k labelled samples �������
�  and N 

unlabelled samples �	
�
��
�

. The process of the GS method can 

be summarized as 

 
( )Selected sample = arg max min

1, , ; 1, ,

j i
ij

i k j N

−

= =

X X

L L

. (1) 

The GS process can be decomposed into two steps, as 

illustrated in Fig. 3. In each iteration, one unlabelled sample is 

selected with the longest distance to the labelled samples. 

Selecting multiple unlabelled samples can be accomplished by 

choosing and labelling each unlabelled sample sequentially.  

 

Fig. 3. Illustration of the GS algorithm [10][12]. Step 1: For each unlabelled 
sample, find its minimum distance to the labelled samples. Step 2: Select the 

unlabelled sample with the maximum distances calculated in Step 1.  

C. Proposed Method 

Fig. 4 depicts a flow chart explaining the procedure of the 
proposed ALGS (AL + GS) method that seeks both uncertainty 
and diversity. In this paper, the input variables are assumed to 
have continuous variation space. Firstly, a certain number of 
sparse initial points 	 are generated using random sampling or 
space-filling methods such as the Latin Hypercube Sampling 
(LHS) and Halton Sequence Sampling methods. In this paper, 
the initial data points are generated using the LHS sampling 
method. A simulator is employed to obtain the corresponding 
output values 
. Afterward, an ensemble of DNNs with the 
same architecture but different random weight initializations 
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are generated and trained with the existing data 	 and 
. Since 
the input variables have continuous variation space with 
numerous possible combinations, a data pool with �� samples 

are generated using the LHS sampling. Subsequently, �� 
samples are selected from this data pool with the largest 
variance by evaluating the disagreement of the DNN ensemble. 
Afterward, ��  samples that have the greatest diversity 
compared with the existing training data are chosen from the 
�� samples. And this new set of data is added to the existing 
dataset, which can be further used to train the ensemble of DNN 
models. This iterative process is repeated until the testing 
accuracy of the trained DNNs satisfies the desired criterion. 

 

 
Fig. 4. Procedure of the proposed ALGS algorithm 
 

Denote �����  as the data pool in each selection iteration, � 

as the total number of DNN models (� � 5 in this paper), �� as 
the �-th DNN model, and x as the input data samples. In each 
iteration, new data points are selected by choosing the samples 
with the largest variance among the DNN ensemble [11] using  

 ( )
2

1

1
arg max

x Dpool

N

new i

i

x f x
N

µ
⊂ =

= −   , (2) 

where � is calculated as 

 ( )
1

1 N

i

i

f x
N

µ
=

=  . (3) 

A data batch is selected in each iteration by identifying the 
data samples with the highest variances calculated using (2) and 
3).  

Moreover, the output values of the DNN ensemble are 
averaged to further reduce the prediction error. The effect of the 
averaging operation will be shown in later sections. Therefore, 
the ensemble of DNNs is used not only to select new data 
samples from the discrepancy among the DNNs, but also to 
improve the prediction accuracy by taking their average values.  

In this paper, five DNNs with the same architectures but 
different random weight initializations (which can be realized 
in Pytorch [16]) are utilized as the ensemble of DNNs. This 
number of DNNs is a tradeoff between the training accuracy 
and training time. The more DNNs are used, the higher 

accuracy in the variance estimation and output averaging can 
be achieved, but more training time is required.  

III. VALIDATION USING SIMPLE FUNCTIONS 

This section uses two simple two-dimensional functions to 
validate the proposed method and visualize the sample 
distribution. The first function is 

 ( )
( )

( )

( )
[ ]1

sin 14 sin 56
, , , 0,1

2 cos 13 2 cos(55 )

x x y y
f x y x y

x y
= + ∈

+ +
 (4) 

The function ����, ��  and its gradient distribution are 
plotted in Fig. 5. It can be observed that this function has many 
local maximum and minimum regions, and the function 
gradient also changes dramatically.  

Four methods are compared to select sampling points, 
including random sampling, greedy sampling [10][12], active 
learning, and the proposed ALGS method. The active learning 
method means selecting data according to uncertainties only, 
while the greedy sampling method only uses the diversity 
information.  

  
(a)  (b)  

Fig. 5. (a) Function ����, ��. (b) Gradient of function ����, ��. 
 

 
 
Fig. 6. DNN structure for the ensemble of DNNs. The activation function after 

each hidden layer (except for the last hidden layer) is LeakyReLU [17]. 

 

The DNN architecture used for the DNN ensemble is shown 
in Fig. 6. The number of input variables n = 2. There are four 
hidden layers with 256, 128, 64, and 32 neurons. The 
LeakyReLU [17] function is used as the activation function 
after the first three hidden layers, and the last layer is a linear 
fully-connected layer without any activation functions. For a 
fair comparison, all the methods use an ensemble of five DNNs 
with different weight initializations. The random sampling and 
greedy sampling methods only use the DNNs to obtain their 
average results. The active learning and the proposed ALGS 
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method use the DNNs to calculate the uncertainties of 
unlabelled samples and also acquire the average output values.  

Other hyper-parameters of the data selection process 
include: ��= 200, �� = 10000, �� = 200, �� = 50 (namely, 50 

new samples are added in each iteration), the learning rate is 
0.001, the training batch size is 512, the test data size (randomly 
generated) is 200, and the Adam optimizer is used. Moreover, 
after new data is obtained in each iteration, the DNNs are not 
trained from scratch but started from the states saved in the 
previous iteration to save the training time. 

Fig. 7 compares the testing mean square error (MSE) of the 
four methods as the number of iterations increases. Fig. 7 (a) 
shows the testing MSE by averaging the outputs of the DNN 
ensemble, while Fig. 7 (b) shows the maximum testing MSE of 
the DNN ensemble. It can be observed that the proposed ALGS 
method has the lowest testing MSE. Also, comparing Fig. 7(a) 
and (b), it can be found that averaging the output of the DNN 
ensemble further reduces the testing MSE.  

 

  
(a)  (b)  

Fig. 7. (a) Testing error comparison using the averaging values of the DNN 
ensemble for function ����, �� . (b) Testing error comparison using the 
maximum prediction error from the DNN ensemble for function ����, ��. 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Sample distribution comparison of the four methods. (a) Random 
sampling. (b) Greedy sampling. (c) Active learning. (d) ALGS. 

The sample distributions of the four methods are plotted in 
Fig. 8. It can be observed that the greedy sampling method 
tends to sample the data uniformly on the input space. In the 
active learning method, some of the samples are clustered 
together as expected since diversity is not considered. 
Comparing Fig. 8 (d) and Fig. 5, it can be noticed that the 
proposed ALGS method samples denser points over the regions 
with greater gradient values. This is reasonable because, 
intuitively, the areas with more function variations should be 
sampled more densely to improve the fitting accuracy. 

  
(a)  (b)  

Fig. 9. (a) Function � ��, ��. (b) Gradient of function � ��, ��. 

  
(a)  (b)  

Fig. 10. (a) Testing error comparison using the averaging values of the DNN 
ensemble for function � ��, �� . (b) Testing error comparison using the 
maximum prediction error from the DNN ensemble for function � ��, ��. 

Another simple function � ��, �� � � ! �"  with weaker 
functional variations is used to validate the proposed approach. 
The function and its gradient distribution are shown in Fig. 9. 
The hyper-parameters are the same as the verification using 
function ����, ��. The testing MSE comparison is shown in Fig. 
10. Different from the function ����, ��, the proposed ALGS 
approach does not have advantages over other methods for the 
function � ��, �� . This indicates that the proposed ALGS 
method is only advantageous for problems with large functional 
variations. But still, averaging the output results from the DNN 
ensemble can effectively reduce the prediction error, as shown 
in the comparison between Fig. 10 (a) and (b). 

IV. VALIDATION USING STRIPLINE MODELING 

A high-dimensional stripline modeling problem is 
introduced in this section to demonstrate the reduction in the 
training data for the proposed ensemble-based ALGS method. 
The input and output parameters are explained, and the DNN 
training process is clarified.  
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A. Stripline Model 

Even though modeling differential striplines using DNN has 
been successful [1], [2], little investigation has been performed 
on intelligently selecting suitable training sets and improving 
prediction accuracy. To validate the effectiveness of the 
proposed method, a differential stripline modeling scenario is 
chosen with 14 input variables. The stripline cross-section 
structure is shown in Fig. 11, and the physical meaning and 
variation range of each input variable are listed in Table I.  

The output variable for the DNN models to learn is the 
differential impedance at 1 GHz, which ranges from about 20 
Ohms to 180 Ohms. Even though some input variables in Table 
I are not closely related to the differential impedance, they are 
still considered in the input parameters to validate the capability 
of the proposed method to handle high-dimensional modeling 
tasks.  

 
Fig. 11. Illustration of the differential stripline structure being modeled. 
 

TABLE I. Input and output parameter definition 

Parameter Meaning Range 

#$ Trace width (%) 2-16 mils 

#& Trace spacing (') 2-16 mils 

#( Core height ()*) 2-10 mils 

#+ Core DK (,-*) 2.5-4.5 

#. Core DF (,/*) 0.001-0.03 

#0 Trace height (1) 0.4-2.6 mils 

#2 Resin Pocket DK (,-3) 2.5-4.5 

#4 Resin Pocket DF (,/3) 0.001-0.03 

#5 Prepreg height ()6) 2-30 mils 

#$7 Prepreg DK (,-6) 2.5-4.5 

#$$ Prepreg DF (,/6) 0.001-0.3 

#$& Roughness level (8) -10-10 

#$( Pair-to-pair distance (D) 6-40 mils 

#$+ Etch factor (9) 0.1-1 


 Differential impedance (:) (From simulator) 

 

A commercial 2D cross-section simulation tool is employed 
to compute the differential impedance given the 14 input 
parameters. Each simulation consumes 1 minute on average. To 
generate a large number of simulation cases, 5000, for example, 
approximately 84 hours in total are required. The active 
learning technique can effectively relieve this high burden of 
time and computational resource consumption, as will be 
shown later. 

B. DNN Training 

The DNN structure for the ensemble of DNNs is illustrated 
in Fig. 6. The input layer has 14 neurons, and the output layer 
has one neuron. Seven hidden layers with 512, 1024, 256, 128, 
64, 32, and 16 neurons are embedded between the input and 
output layers. 

 As shown in Table I, different input variables have 
different variation ranges. To equalize the weighted 
contribution from each variable and accelerate the training 
convergence, each variable is linearly normalized between 0 
and 1.  

The hyper-parameters of the training process include: ��= 
100, ��  = 20000, ��  = 400, ��  = 100 (100 new samples are 

added in each iteration), the learning rate is 0.0005, the training 
batch size is 256, the test data size (randomly generated) is 500, 
and the Adam optimizer is used. The DNN training is 
performed on an NVIDIA Tesla K80 GPU. 

C. Validation Result 

Similar to the verification using the simple functions, the 
four methods are compared in the stripline modeling problem. 
The loss convergence comparison between the four methods is 
shown in Fig. 12. As observed in Fig. 12, the proposed ALGS 
method does not have significant advantages over the other 
three methods. The possible reason is that the stripline 
modeling problem does not have enough complexity and 
function variations to demonstrate the advantages of our 
proposed method. The relationship between the impedance 
value and each relevant input parameter by fixing the other 
input parameters can be considered monotonic. Even so, by 
averaging the results of the DNN ensemble, the prediction error 
can be greatly reduced, as shown in Fig. 12. With the same 
amount of training data, the prediction error using the DNN 
ensemble is lower than the prediction error using a single DNN. 
In other words, to achieve the same desired prediction accuracy, 
the DNN ensemble can significantly reduce the required data 
size. 

 
 

Fig. 12. Loss convergence of the four methods: random sampling, greedy 
sampling [12], [10], active learning, and the proposed ALGS method.  

 

The training time for the five DNN models in each iteration 
is approximately 2 minutes in the active learning algorithm, 
which is negligible compared to the consumed time for 
simulating 100 new samples. Even though training the 
ensemble of five DNNs takes some extra time, the simulation 
time of generating data is still dominant. Therefore, the 
ensembled-based AL method can effectively reduce the 
required data size and the corresponding data acquisition time. 
For example, assume the dashed horizontal line in Fig. 12 is the 
desired testing accuracy. In that case, the proposed ALGS 
method by averaging the results of the DNN ensemble only 
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needs approximately 2500 groups of data (about 42 hours of 
simulation time) to achieve this accuracy, while the other 
methods using a single DNN require about 5000 groups of data 
(about 84 hours of simulation time). 

The histogram of the impedance prediction errors for the 
500 testing cases is plotted in Fig. 13. It is shown that the 
impedance prediction errors can be significantly reduced by 
averaging the prediction results of the five DNNs. In this 
stripline modeling problem, the advantage of the proposed 
method is dominated by the averaging effect of the DNN 
ensemble. 

 
Fig. 13. Histogram of the impedance prediction errors for the 500 testing cases. 

“ALGS worst” means the worst prediction error of the five DNNs using the 
proposed ALGS method; “ALGS avg” means the prediction error by averaging 

the predictions of the five DNNs using the proposed ALGS method. 

 

V. CONCLUSION 

This paper presents an effective DNN-ensemble-based 
approach to reducing the prediction error and selecting valuable 
training data for DNN-based surrogate modeling. The DNN 
ensemble is utilized to estimate the uncertainties of unlabelled 
data samples. Also, by averaging the prediction results of the 
DNN ensemble, the prediction error can be further reduced. To 
prevent the samples with high uncertainties from being 
clustered together, a greedy sampling method is incorporated to 
select a data subset with diversity. The proposed method is 
validated by two simple functions. It is found that the proposed 
method shows more advantages in training data selection for 
the function with larger functional variations. For the function 
with small function variations, the proposed method does not 
exhibit enough advantages in the data selection. However, 
averaging the prediction results of the DNN ensemble is always 
effective in improving the prediction accuracy. A high-
dimensional differential-stripline modeling problem is further 
used to validate the effectiveness of this approach. The 
proposed approach is not advantageous over other sampling 
methods in the data selection, which may be due to the simple 
function variations in the stripline modeling problem. But by 
averaging the output results of the DNN ensemble, the 
impedance prediction error can still be effectively decreased. 
The proposed DNN-ensemble-based method is robust and task 
agnostic, which can be applied in various EMC modeling 
problems using DNN that require a long simulation time for 
data generation. 

The proposed DNN-ensemble-based method will be applied 
to other high-dimensional EMC modeling problems with 
complex functional variations in the near future. Further, how 

to appropriately select the hyper-parameter values to achieve an 
optimum balance between uncertainty and diversity will be 
investigated. 
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