
Improved Performance of CPG Parameter Inference for Path-following
Control of Legged Robots

Nathan D. Kent1, David Neiman2, Matthew Travers2, and Thomas M. Howard1

Abstract— The difficulty associated with the coordinated
locomotion of legged robots grows quickly as the number of
joints increases. Although prior approaches have addressed
this problem through sampling-based planners, learning-based
techniques have recently been explored as a means to handle
such complexity. Among these recent approaches are systems
that utilize probabilistic graphical models in order to infer
parameters for central pattern generators (CPGs) which en-
able the path-following locomotion of highly-articulated legged
robots through unstructured terrain. This paper presents a
novel formulation of a CPG parameter inference-based path-
following controller. The new inference process and accompa-
nying CPG formulation enforce oscillator convergence to the
limit-cycle specified by the inferred parameters in addition
to biasing towards parameters that quickly reach stable-state.
This formulation is shown to improve the performance of CPG
parameter inference-based path-following control for legged
robots across a number of simulated and physical experiments.

I. INTRODUCTION

Highly-articulated legged robots, such as the robot in
Fig. 1, are particularly well suited for traversing cluttered
and unstructured terrain. However, the high-dimensional
configuration spaces of these robots significantly increase
the complexity of the joint and limb coordination required
for locomotion. One studied approach for overcoming this
challenge is to utilize sampling-based planning methods to
generate motion plans in high-dimensional spaces in order to
guide feedback controllers [1, 2]. Unfortunately, the use of
these sampling techniques requires a compromise between
exhaustively searching the state-action space to find the
optimal motion plan versus the ability to quickly react to
changes in the state of the robot, the environment, or the
required locomotive behavior. By using a dense sampling
strategy, the motion planner is able to reason over a wider
variety of behaviors but limits the rate at which the robot is
able to respond to changes. A more sparse sampling strategy
reduces the amount of time required to generate a motion
plan but is limited in the portion of the state-action space
in which it can search for a solution, likely resulting in the
selection of a sub-optimal action.

*This work was supported by the National Science Foundation under
grants IIS-1724000 and IIS-1723972.

1 Nathan D. Kent and Thomas M. Howard are with the Robotics and
Artificial Intelligence Laboratory, University of Rochester, Joseph C Wilson
Blvd. Rochester, NY 14627, USA. nkent2@cs.rochester.edu,
thoward@ece.rochester.edu

2 David Neiman and Matthew Travers are with the Biorobotics Lab,
Carnegie Mellon University, 5000 Forbes ave, Pittsburgh, PA 15213, USA.
<dneiman, mtravers>@andrew.cmu.edu

Fig. 1: The Hebi Robotics Daisy hexapod robot used for both
the simulated and physical experiments. When standing, this
robot is approximately 1.1 m by 1.1 m.

Recently, machine learning techniques have become a
common solution to handling the complexity of locomo-
tion in legged robots [3–5]. One class of these methods
has been developed which encodes information about the
environment, robot kinematics, and motion commands within
a probabilistic graphical model (PGM) [6, 7]. Once encoded,
information about the desired motion commands can be fed
to the inference process via a path-following controller along
with information concerning the terrain from an on-board
depth camera. This information is then used to efficiently
search the space of parameterized central pattern generators
(CPGs) which represent coordinated walking behaviors and
enable the robot to locomote along the specified path. In-
spired by both earlier gait-controlled methods of controlling
legged robots [8] and work in PGMs for grounded language
communication [9–11], these methods exploit conditional
independence assumptions and information gleaned from
the robot’s kinematic model for efficient search in a high-
dimensional space.

However, a limitation of these earlier works is that the
current positions of all robot limbs are not considered when
selecting a new set of CPG parameters, which leaves the
potential to infer parameters that may delay or prevent the
convergence of the oscillators. If such a behavior is used
for path-following control that replans at a fixed rate, such
as in the work of Kent et al. [7], the selected parameters
may not ever allow the CPG to converge to the desired
behavior before new parameters have been inferred, resulting
in undesirable expressed behaviors. Thus, the work pre-



sented herein is an improvement to CPG parameter-based
path-following control for highly-articulated robots [7] by
enforcing that inferred parameters produce consistent and
predictable behaviors regardless of the relative positions of
the robot limbs.

This is achieved with two modifications. First, the CPG
formulation is modified to ensure that the expressed relative
positions of the legs at stable-state matches the desired
relative positions regardless of legs’ initial states while also
enforcing that the expressed step shape is identical to the
desired step shape. Second, the inference process is modified
to search over only the set of CPG parameters that can
quickly reach stable-state from the current positions of the
limbs. The proposed closed-loop controller is then compared
against the controller found in Kent et al. [7] by comparing
the performance of a simulated robot when traveling through
a series of complex, unstructured environments. Additionally,
a set of experiments are also performed on a physical robot.

Simulation results show a performance improvement com-
pared to the previous framework both on flat and non-
flat (a flat environment ridden with rigid obstacles) terrain,
where the robot is following predefined paths. The results of
the physical experiments show that framework is applicable
to physical robots as well as simulated, which was not
previously shown. Thus, the work presented here represents
an improvement in the locomotion performance exhibited by
robots following the framework specified in Kent et al. [7]
both in terms of path accuracy and the ability to traverse
cluttered terrain.

The remainder of this paper is organized as follows.
Section II contains background information on CPGs with
a technical overview of the CPG used within this work.
In Section III, overviews of controller and the inference
process are provided, detailing the proposed improvements
to the path-following controller. Section IV specifies the
experimental setup used to compare this work against the
previous work as well as the experiments on the physical
system, with Section V providing comparative experimental
results. Finally, Section VI details the current limitations and
future work.

II. CENTRAL PATTERN GENERATOR MODELING

CPGs are biological neural circuits that produce rhythmic
output without requiring rhythmic input, though they can be
modulated by various inputs in order to modify the output.
These circuits are pervasive in animals and are the networks
that drive many of the cyclical activities done by these
animals, such as breathing, walking, and chewing. Inspired
by these biological examples, various models of CPGs have
been developed for robot locomotion [12–14], most often
in the form of coupled oscillators with various parameters
modulating the resulting limit cycles. However, the ability to
transition between sets of CPG parameters while maintaining
effective movement is still an active area of research which
largely focuses on transitioning between a small set of well-
known gaits [15]. This work thus presents a new CPG for-
mulation inspired by the CPG models presented by Sartoretti

et al. [16] and Kent et al. [7], with modifications to allow
for more predictable stable-state behavior when transitioning
between CPG parameters which vary both gait and limit
cycle. As with the previous works, this work assumes that the
integral curve associated with the ith oscillator’s dynamics
are representative of the position of the robot’s ith end-
effector and is constrained to be super-elliptical, such that
the trajectory is defined by

Hi(x, y) =

∣∣∣∣ xai
∣∣∣∣di +

∣∣∣∣ ybi
∣∣∣∣di = 1 (1)

where ai and bi are the lengths of the semi-major/minor
axes of the limit super-ellipse and di specifies the shape of
the limit cycle (as seen in Fig. 2). These curves are then
transformed to a coordinate frame that is fixed relative to
the robot’s base coordinate fame.

(a) Rectangle step shape. (b) Ellipse step shape.

Fig. 2: Comparison between CPG oscillators with various
starting positions for rectangular and elliptical shapes. The
elliptical step has been found to be more efficient on smooth
terrains while the rectangular step is less prone to becoming
stuck.

These oscillators are quantified in terms of the relative
phase differences such that every point in R2 is assigned
a phase corresponding to its position on the super-ellipse
concentric and belonging to the same family as Hi(x, y) = 1.
The absolute phase of the oscillator θi is defined as the four-
quadrant tangent inverse of the point fi(xi, yi), where f is
a function that maps the current position of the oscillator to
the unit circle:

fi(x, y) =

sign(x)
∣∣∣ xrai ∣∣∣ di2

sign(y)
∣∣∣ yrbi ∣∣∣ di2

 (2)

where

r =
di

√∣∣∣∣ xai
∣∣∣∣di +

∣∣∣∣ ybi
∣∣∣∣di (3)

In the prior work, desired coupling was specified as phase
differences between adjacent limbs and was enforced by
driving the oscillators directly to the position with the desired
offset. However, directly applying this penalty term to the
equations governing the oscillation can result in expressed



behaviors that are unexpected when considering the param-
eters. Specifically, the penalty term can result in expressed
super ellipses with shapes that do not correspond to the stated
values of ai and bi. An example of this can be seen in Fig. 3
and is compared to the formulation found below in Eq. (4).
Additionally, coupling all of the oscillators together poten-
tially results parameters that have multiple possible stable
states depending on the initial positions of the oscillators. To
account for these issues, the CPG formulation here achieves
robust coupling between limbs via modulating the tangential
velocity of the oscillator along the super ellipse. Defining
ki to be the desired phase difference between oscillators i
and 1 (with k1 = 0), the differential equations governing the
dynamics are modeled as[

ẋi
ẏi

]
= Mi(ki + θ1 − θi)ωit̂i + γi(1−Hi(xi, yi))n̂i (4)

where n̂i is the unit vector in the normal direction relative
to the super ellipse and t̂ is the unit vector tangential to the
super ellipse. Additionally, ωi is proportional to oscillation
frequency, γi is proportional to the speed at which an
oscillator converges to the limit cycle, and Mi is a function
such that the following hold:

Mi(θ) > 1 if θ > 0

Mi(θ) < 1 if θ < 0
(5)

This formulation has two major advantages when com-
pared to the formulation present in Kent et al. [7] which
result in more consistent stable-state behavior of the CPG
regardless of the initial state of the oscillators. The primary
change is that oscillator coupling is created by modulating
the angular velocity of the oscillators rather than via an
additive penalty vector, meaning that the expressed shape of
the super ellipse is exactly defined by ai and bi. The second
advantage is that reasoning about the relative offsets for the
oscillators only requires reasoning about the behavior of Mi

rather than the initial state of the system.

III. CPG PARAMETER INFERENCE

The inference process utilized in this work is an extension
of the frameworks described in Chavali et al. [6] and Kent
et al. [7] to infer the optimal set of ten parameters P∗ in the
space of possible CPG parameters P . Specifically, we utilize
the block diagram shown in Fig. 4 for path-following control
of legged robots. This controller utilizes a learned model of
the CPG parameters that depend on estimates of the robot’s
environment and desired behavior. Terrain information is
estimated by compressing information from an on-board
RGB-D camera into a parametric representation of terrain
roughness and path-following information is provided using
an estimate of the robot’s position (x, y, ψ) and attempts to
follow a path that is either defined a priori or continuously
updated by a path planning module. The CPG parameter
inference estimates the most likely CPG parameters P∗ from
these estimations using the PGM described below, which are
then used to integrate Eq. (4) and provide desired positions
for the robot’s end-effectors.

(a) Converging trend of the for-
mulation from Kent et al. [7].

(b) Converging trend of Eq. (4).

Fig. 3: Examples of converging behavior of the CPG formu-
lations. Oscillators are in an “alternating tripod” configura-
tion, where oscillators 3 and 5 are in-phase with oscillator
1 and oscillators 2, 4, and 6 are 180° out-of-phase with
oscillator 1. For all oscillators, a = 1 and b = 2. Note that
Fig. 3a does not readily stay on the specified super ellipse.

For the hexapod robot utilized in this work, we assume
a space of parameters which include the values the shape
of the step (d), the angular offsets between the first limb
and the successive limbs (k2...6), the width of the left and
right steps (a1,2), the height of all steps (b), and the height
of the robot’s chassis from the ground (h). This framework
exploits information from the robot’s kinematic model for
efficient search over P and treats the inference process as
a search over a factor graph, which is completed at a fixed
rate in order to enable path-following control. Specifically,
the inference process is formulated as the search for the
CPG parameters that are most likely to be optimal given
the behavior and environment:

P∗ = arg max
d,ki,a1,a2,b,h

p(h)p(a2)p(a1)p(b)p(d)
6∏
i=2

p(ki) (6)

CPG
parameter
inference

central
pattern

generator

inverse
kine-

matics

robot

terrain
estimator

path-
following
controller

P∗ x1,...,n
y1,...,n
z1,...,n

θ1,...,m

x, y, ψ

pointcloud

B E

Fig. 4: The block diagram for path-following control using
CPG parameter inference. This is based on the work de-
scribed in Kent et al. [7].

However, the approach used here deviates from the frame-
work described in Kent et al. [7] in two major ways. First,



CPG parameters that will not reach a stable state within a
fixed time are removed from the search process and those
that do converge within that time constraint are scored by a
linear combination of probability and convergence time. The
result of this additional step is that the expressed behavior of
the CPG will match the behavior indicated by the inferred
parameters rather than the behavior expressed during the
converging phase. This is expressed as a function s(P),
which filters the CPG parameters from Eq. (6) that do not
converge within the time constraint and weigh those that do
by a combination of the time required to reach stable-state
and their probabilities. Second, the curvature parameter of
the super ellipse is also inferred, allowing for the system
to select between an ellipse step shape and a rectangle step
shape, with the differences in these shapes seen in Fig. 2.
The work of Sartoretti et al. [16] found that a elliptical step
was more efficient on smooth surfaces while a rectangular
step was less prone to becoming stuck in cluttered terrains,
and the modification to the inference process here allows the
system to decide between the two as appropriate.

environment

behavior

E

Ba1

b

a2

h

d

k6

k5

k4

k3

k2

Fig. 5: An illustration of the factor graph used to in-
fer a distribution of parameters for this CPG model. The
model exploits conditional independence assumptions to
efficiently infer the most likely set of CPG parameter values
k2...6, a1,2, d, b, h from models of the environment (E) and
behavior (B). Note that the robot’s model M is implicit
within the inference process as only a single robot model
is considered in the experiments presented in Section IV.
Additionally, the value of k1 is specified as 0 rad.

These expressions are simplified by assuming that the
probability of behavior B is conditionally independent from
the probabilities of the environment model E . Just as in
Kent et al. [7] the environment models and behaviors are
integrated at latent variables, permitting a distribution of
these values to be used during inference when estimation
of these values is uncertain. In order to simplify the in-
ference procedure, it is assumed that the probability of the
behavior B is conditionally independent from the probability
environment model E . Additionally, other assumptions of
conditional independence between parameters are made, with
the factor graph for this system being illustrated in Fig. 5 and
the factors in this graph being approximated using neural
networks.

In order to make the inference process tractable, a beam

search is used to efficiently generate a distribution of ef-
fective CPG parameter sets. These sets are then passed
on to the path-following controller which prioritizes the
CPG parameter sets based on a linear combination of the
likelihood of the sets and the amount of time required for
those sets to converge. The highest scoring set of parameters
is then executed until the next iteration of the inference
process.

IV. EXPERIMENTAL DESIGN

In order to evaluate the performance of the model, a set
of simulated experiments identical to those found in Kent
et al. [7] were performed within the Gazebo simulator [17].
Additionally, a set of physical experiments were completed
in order to demonstrate that the model can be realized on
a complex physical system. For both sets of experiments,
a mapping of environment and behavior to ideal CPG pa-
rameters was generated using a genetic algorithm process.
The environment was modeled as the average obstacle height
for obstacles within 0.5 m of the robot and the heights
used to create these mappings were one of 0.0 m (flat
ground), 0.01 m, 0.025 m, 0.035 m, 0.05 m, and 0.1 m with
the obstacles being distributed across a simulated terrain
using a Poisson Random Process (see Fig. 6). The behaviors
included in the mapping consisted of locomotion with desired
curvatures of 0 m−1, 0.2 m−1, 0.286 m−1, 0.4 m−1, and
1.0 m−1.

Fig. 6: Example of 0.1 m terrain and simulated robot used in
both the genetic algorithm-based training and the simulated
evaluation.

A base score for each individual within the genetic al-
gorithm process was calculated as the line integral of the
individual’s path through the vector field caused by the
normalization of F (x, y) from Eq. (7), where c is the desired
curvature value. Figure 7 contains an example vector field
that is generated by Eq. (7) for the purpose of finding
CPG parameters for turning with a radius of 2.5 m. Unlike
previous works, measures to prevent damage to the physical
robot were taken in the form of reducing the base score
based on whether the individual’s CPG parameters resulted in
either self-contact or contact between the robot’s chassis and
the terrain. When self-contact occurred between the robot’s



legs, the score was reduced to 75% of the original score.
Furthermore, the base score was reduced by the percentage
of time the chassis was in contact with the terrain. E.g., an
individual that spend 50% of its time in contact with the
terrain received a score that was 50% of the base score. The
highest scoring individuals at the end of the genetic algorithm
process were added to the mapping.

Φ(x, y) = c2x2 + (cy − 1)2

Wx(x, y) = (1− Φ(x, y))
∂Φ

∂x
(x, y)

Wy(x, y) = (1− Φ(x, y))
∂Φ

∂y
(x, y)

F (x, y) =

〈
∂Φ

∂y
+
Wx(x, y)

2c
, −∂Φ

∂x
+
Wy(x, y)

2c

〉 (7)

Fig. 7: Example vector field with c = 0.4m−1 used for
evaluating individuals while creating the mapping via genetic
algorithm.

Using this method, approximately 200 data points were
collected. As with Kent et al. [7], the mapping of envi-
ronments and behaviors to probability distributions of CPG
parameters was extracted from the data and used to train
neural networks approximating the factors within the PGM.
In contrast to the work in Kent et al. [7], these neural
networks consisted of a single hidden layer of 10 units for
factors involving k2...6 and no hidden units otherwise. These
smaller networks were utilized as they were found to be
sufficient to learn the required distributions.

Path following controllers for both the simulated and
physical robots were evaluated on flat and non-flat terrain
across predefined paths. Terrain information was fed into the
system as a 2.5D heightmap generated using the on-board
depth camera. The desired curvature for path-following was
supplied through an adaptation of the Pure Pursuit algorithm
[18] with path tracking performance being quantified as a
function of the average distance between the desired path
and the path that the robot executes (i.e., crosstrack error)
calculated at a rate of 1 Hz. The CPG parameter inference

process was run at a rate of 1 Hz and the selected set of
parameters P were the candidate parameters that maximized
p(P) + 0.1(2 − TP) where TP was the time required for
the CPG to reach stable-state, as determined by repeated
evaluation of Eq. (4).

For the simulated experiments, the non-flat terrain was
generated using a Poisson Random Process, with the height
of the obstacles increasing linearly from flat ground to 0.1 m.
Three different paths were used to evaluate the system
with all evaluations repeated 20 times, resulting in a total
120 simulated experiments (3 paths × 2 terrains × 20
evaluations). In order to provide a baseline for analyzing
the performance of these controllers, a non-inference based
controller was designed, tuned, and evaluated on the same
sets of paths and terrains for a total of 60 evaluations. This
hand-crafted controller was utilized a fixed alternating tripod
gait, an elliptical step shape, and held both the step height
and body height (b and h, respectively) at fixed values of
0.2 m, which was double the height of the largest obstacles
in the experiment. Left and right step widths (a1,2) were
selected based on the desired curvature reported from the
pure-pursuit algorithm. Specifically, a1 = 0.15B + 0.05 and
a2 = 0.15(1−B)+0.05 with both a1 and a2 being clamped
to the range of [0.05, 0.15] and B being the desired curvature.

The physical experiments utilized the robot seen in Fig. 1
with an attached forward-facing Intel Realsense camera. Pose
information for this system was provided using a motion
capture system that was able to observe an area of approxi-
mately 6 m by 15 m. Two different paths through this space
were used for evaluation and both flat and non-flat terrain
was considered. For the non-flat terrain, wooden boards were
placed in the path of the robot resulting in obstacles that were
0.1143 m tall and 0.0889 m wide. Notably, these obstacles
were taller than those that had been used in the genetic
algorithm-based training process. A total of 40 physical
experiments were performed (2 paths × 2 terrains × 10
evaluations).

V. EXPERIMENTAL RESULTS

A. Simulated Experiments

Following the procedure outlined in Section IV, the av-
erage crosstrack error was recorded for three predefined
paths through flat and non-flat terrain, using the new CPG
formulation and inference process. Tables Ia and Ib contain
a performance comparison between the controller presented
within this paper, the previous results found in Kent et al. [7],
and the baseline controller described in the previous section.
The expressed paths of all three controllers plotted against
the desired paths are found within Tables III and IV, for
flat and non-flat terrain respectively. As expected, the new
CPG formulation and the inference process which takes into
account the time required for the CPG to converge greatly
improved the ability of the simulated robot to both remain
on the desired path and to overcome obstacles within the
terrain. In all cases, the proposed system was more successful
at traversing the terrain and reaching the end of the path
and, with the exception of a single combination of path and



Path 1 Path 2 Path 3
Baseline 0.24m (100) 0.22m (100) 0.38m (100)

Kent et al. [7] 0.35m (100) 0.45m (100) 0.49m (100)
Proposed 0.14m (100) 0.12m (100) 0.61m (100)

(a) Flat Terrain
Path 1 Path 2 Path 3

Baseline 0.32m (10) 0.33m (0) 0.42m (0)
Kent et al. [7] 0.81m (50) 0.66m (10) 0.58m (0)

Proposed 0.20m (85) 0.22m (60) 0.27m (50)

(b) Non-flat Terrain

TABLE I: Comparison of the average crosstrack error for
both the controller described in this work, the controller
described in Kent et al. [7], and a baseline controller with
hand-tuned parameters. In parenthesis are the percentage
of experimental runs that resulted in the robot successfully
reaching the end of the pre-defined path.

terrain, the average crosstrack error was significantly reduced
when compared to the previous work.

In the case of the Path 3 with no obstacles, we theorize that
the CPG parameter filtering process described in Sections III
and IV resulted in a system that was less able to respond
to abrupt changes in the desired path when compared to
the previous work. For Paths 1 and 2, the changes in the
desired path were less abrupt and, in the case of Path 3
with obstacles, the improvement in the robot’s ability to
traverse obstacles was sufficient to see an improvement in
the expressed path.

B. Physical Experiments

The average crosstrack error for the physical experiments
can be found in Table II. Additionally, plots of the desired
and expressed paths of the robot can be found in Fig. 8.
As seen from the results, the effectiveness of the proposed
system on a physical platform mirrors that of the larger
scale simulated experiments. Based on the results of the
baseline controller in simulation, the experiments on the
physical platform were concentrated on the performance of
the proposed controller.

Path 1 Path 2
Flat 0.18m (90) 0.27m (90)

Non-flat 0.07m (90) 0.11m (100)

TABLE II: The average crosstrack error during physical
experiments. In parentheses is the percentage of experimental
runs in which the robot successfully reached the end of
the pre-defined path. Issues with the actuators on the robot
are believed to be the cause of the unexpected decrease in
crosstrack error when obstacles were introduced. In paren-
thesis are the percentage of experimental runs which resulted
in the robot successfully reaching the end of the pre-defined
path.

In order to apply this approach on the physical robot within
the chosen experimental space, certain modifications to the
experimental process were made. Primarily, the calculation

of the obstacle height was modified to accommodate the
presence of furniture and walls in the room. Specifically,
all detected obstacles higher than 0.3 m were assumed to
be walls and not obstacles. We also found that there was
significant noise in the generation of the 2.5D height map
due to interference between the motion capture system and
the depth camera. Additionally, significant encoder drift in
the robot’s actuator modules was an issue during these
experiments, requiring that the robot be reset between each
run. These encoder issues may have been exacerbated by
self-collision, so as a preventative measure the step length
values (a1 and a2) were capped at 0.15 m, with an equal
reduction on the uncapped value in order to preserve the
desired angular velocity.

While the robot was successful at path-following in the
majority of cases, there were a few instances (noticeable
in the paths without obstacles) where we believe the en-
coder issues resulted in the robot not correctly following
the commanded motions. The experiments with suspected
encoder issues are the cause of the unexpected improvement
in crosstrack error when obstacles are introduced.

VI. CONCLUSION

General solutions for safe and robust control of legged
robots remains a difficult and unsolved problem in robotics.
While learning-based approaches eliminates the need for
hand-engineering of gaits and controlled behaviors, such
models can produce novel, unforeseen motions as the CPG
parameters change from joint configurations not observed in
the training data, causing suboptimal, unpredictable, and po-
tentially unsafe locomotion. This paper presents an advance
in our ability to use PGM-based models for inferring CPG
parameters for legged robots by modifying the formulation
of the CPG to produce more predictable behaviors and by fil-
tering results that exhibit slow convergence rates. Simulation
results show an improvement over the system presented in
Kent et al. [7] across a number of different path and terrain
shapes while the novel physical experiments demonstrated
that this process is effective on physical robots as well.

We recognize that there are several limitations to this
approach. Primarily among them is the limitation caused by
the usage of a genetic algorithm-based process for generat-
ing a mapping of behavior and environment to ideal CPG
parameters. While this process works for environments like
those in these experiments, it may prove difficult to scale it
to more complex terrains and behaviors. Future work will
use techniques described in recent works in reinforcement
learning in order to directly train the neural networks within
the PGM. Removing this limitation would allow the system
to utilize a more dense environmental model in order to infer
more efficient sets of parameters that we hypothesize would
allow the robot to better traverse obstacles.

ACKNOWLEDGEMENT

The authors would like to thank Julian Whitman for advice
given during this work and Judson Kyle for assistance in
running experiments on the physical platform.



Path 1 Path 2 Path 3

B
as

el
in

e
K

en
t

et
al

.[
7]

Pr
op

os
ed

C
on

tr
ol

le
r

TABLE III: Performance of the simulated experiments on flat terrain. The outlying path seen in Path 1 for the proposed
controller may be a result of the initial converging behavior of the CPG.

Path 1 Path 2 Path 3

B
as

el
in

e
K

en
t

et
al

.[
7]

Pr
op

os
ed

C
on

tr
ol

le
r

TABLE IV: Performance of the simulated experiments on non-flat terrain.



(a) Path 1 (flat) (b) Path 1 (non-flat) (c) Path 2 (flat) (d) Path 2 (non-flat)

Fig. 8: Physical path-following performance of inferred CPG parameters across two path shapes on both flat and non-flat
terrain. The unusual paths in Figs. 8a and 8c are believed to be caused by issues with the actuators on the physical platform.

REFERENCES

[1] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and
H. Inoue, “Motion planning for humanoid robots,” in
Robotics Research. The Eleventh International Sympo-
sium, P. Dario and R. Chatila, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 365–374.

[2] K. Hauser, T. Bretl, J.-C. Latombe, and B. Wilcox,
“Motion planning for a six-legged lunar robot,” in
Algorithmic Foundation of Robotics VII: Selected Con-
tributions of the Seventh International Workshop on the
Algorithmic Foundations of Robotics, S. Akella, N. M.
Amato, W. H. Huang, and B. Mishra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 301–
316.

[3] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA:
Rapid Motor Adaptation for Legged Robots,” in Pro-
ceedings of Robotics: Science and Systems, Virtual, July
2021.

[4] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and
M. Hutter, “Learning quadrupedal locomotion over
challenging terrain,” Science robotics, vol. 5, no. 47,
2020.

[5] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee,
J. Tan, and S. Levine, “Learning agile robotic lo-
comotion skills by imitating animals,” arXiv preprint
arXiv:2004.00784, 2020.

[6] R. A. Chavali, N. Kent, M. E. Napoli, T. M. Howard,
and M. Travers, “Inferring distributions of parameter-
ized controllers for efficient sampling-based locomotion
of underactuated robots,” in 2019 American Control
Conference (ACC). IEEE, 2019, pp. 5767–5773.

[7] N. D. Kent, R. M. Bhirangi, M. Travers, and T. M.
Howard, “Inferring task-space central pattern generator
parameters for closed-loop control of underactuated
robots,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp.
8833–8839.

[8] U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex:
A simple and highly mobile hexapod robot,” The
International Journal of Robotics Research, vol. 20,
no. 7, pp. 616–631, 2001. [Online]. Available:
https://doi.org/10.1177/02783640122067570

[9] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G.
Banerjee, S. Teller, and N. Roy, “Understanding natural
language commands for robotic navigation and mobile

manipulation,” in Twenty-Fifth AAAI Conference on
Artificial Intelligence, 2011.

[10] T. M. Howard, S. Tellex, and N. Roy, “A natural
language planner interface for mobile manipulators,” in
2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2014, pp. 6652–6659.

[11] R. Paul, J. Arkin, D. Aksaray, N. Roy, and T. M.
Howard, “Efficient grounding of abstract spatial con-
cepts for natural language interaction with robot plat-
forms,” International Journal of Robotics Research,
Jun. 2018.

[12] A. Crespi and A. J. Ijspeert, “Online optimization of
swimming and crawling in an amphibious snake robot,”
IEEE Transactions on Robotics, vol. 24, no. 1, pp. 75–
87, 2008.

[13] J. Conradt and P. Varshavskaya, “Distributed central
pattern generator control for a serpentine robot,” in Pro-
ceedings of the International Conference on Artificial
Neural Networks (ICANN), 2003, pp. 338–341.

[14] A. J. Ijspeert, “Central pattern generators for locomo-
tion control in animals and robots: a review,” Neural
networks, vol. 21, no. 4, pp. 642–653, 2008.

[15] H. Yu, H. Gao, L. Ding, M. Li, Z. Deng, and G. Liu,
“Gait generation with smooth transition using cpg-
based locomotion control for hexapod walking robot,”
IEEE Transactions on Industrial Electronics, vol. 63,
no. 9, pp. 5488–5500, 2016.

[16] G. Sartoretti, S. Shaw, K. Lam, N. Fan, M. Travers,
and H. Choset, “Central pattern generator with inertial
feedback for stable locomotion and climbing in unstruc-
tured terrain,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp.
1–5.

[17] N. Koenig and A. Howard, “Design and use paradigms
for gazebo, an open-source multi-robot simulator,”
in 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[18] R. C. Coulter, “Implementation of the pure pursuit path
tracking algorithm,” Carnegie-Mellon UNIV Pittsburgh
PA Robotics INST, Tech. Rep., 1992.


