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ABSTRACT An almost all-digital time-to-digital converter (TDC) possessing sub-picosecond resolutions, 

scalable dynamic ranges, high linearity, high noise-immunity, and moderate conversion-rates can be achieved 

by a random sampling-and-averaging (RSA) approach with the self-antithetic variance reduction (SAVR) 

technique for time-correlated single-photon counting (TCSPC) quantum measurements. This paper presents 

detailed theoretical analysis and behavior-model verifications of the SAVR technique to effectively enhance 

the conversion-rate of an asynchronous RSA-based TDC by more than 62 with 7% power overhead. In 

addition, the proposed performance estimation methodology for SAVR can greatly improve the computation 

efficiency during the system-level design and reduce the read-out circuit complexity in the silicon-photonics 

RSA-based TCSPC realization. 

INDEX TERMS Antithetic variate, correlated random variable, joint probability density function, Monte 

Carlo method, quantum probability amplitude, single-photon counting, stochastic random sampling, time-

domain modulo operation, time-to-digital converter, variance reduction. 

I. INTRODUCTION 

Time-correlated single-photon counting (TCSPC) [1]–[5] has 

become the key functionality in a variety of emerging quantum 

technology, including quantum imaging/sensing [6]–[8], 

quantum-state preparations [9]–[12], quantum cryptography 

[13]–[15], positron emission tomography (PET) [16], [17], 

time-resolved spectroscopy [18], fluorescence-lifetime 

imaging (FLIM) [19], [20], molecular imaging, live-cell/tissue 

microscopy [2], free-space time-of-flight (TOF) 

measurements [21], and light detection-and-ranging (LiDAR) 

[6], [22]. One example of quantum-state detections shown in 

Fig. 1 exploits TCSPC to measure the quantum state of a light 

beam, which is a “vector” but very different from the vector 

defined in classical physics. Under the Dirac notation, a 

normalized quantum state, |, can be expressed by the 

superposition of the horizontal polarization-basis vector, |H, 

and vertical polarization-basis vector, |V, in the Hilbert space 

[10]: 

 

        |ψ⟩ = 𝑐𝐻 ∙ |H⟩ + 𝑐𝑉 ∙ |V⟩,      |𝑐𝐻|2 + |𝑐𝑉|2 = 1          (1) 

 

where cH and cV are complex coefficients, and the sum of their 

squared magnitudes is “1” in this orthonormal basis state-

expression. More importantly, cH and cV are referred to as 

complex probability amplitudes of the polarization-basis 

vectors, |H and |V, respectively. The physical meaning of 

these coefficients is that the squared magnitude of the 

coefficient, multiplying a particular polarization-basis vector, 

is equal to the probability of photons occurring in that 

polarization after many single-photon measurements, which 

can be performed by the apparatus with TCSPC shown in Fig. 

1(a); whenever TCSPCH receives a single photon from the |H 

output of the light polarizer at a certain time of ΔtH, the circuit 

in TCSPCH adds a one on the accumulated number, NH(ΔtH) 

and records the quantized ΔtH, i.e., a time-to-digital conversion 

(TDC) process, for the received photon. Similarly, TCSPCV 
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accumulates NV(ΔtV) and records the quantized ΔtV for the 

received photons from the |V output of the light polarizer. 

Thus, the probability of the photon in each polarization can be 

obtained as follows: 

 

𝑃(𝐻||𝜓⟩) = |𝑐𝐻|2 =
𝑁𝐻(∆𝑡𝐻)

𝑁𝐻(∆𝑡𝐻) + 𝑁𝑉(∆𝑡𝑉)
 

               𝑃(𝑉||𝜓⟩) = |𝑐𝑉|2 =
𝑁𝑉(∆𝑡𝑉)

𝑁𝐻(∆𝑡𝐻) + 𝑁𝑉(∆𝑡𝑉)
        (2) 

 

Note that the notations of the probabilities are conditioned on 

the measured quantum state, |. Meanwhile, since the 

quantum state is not affected by the reference phase of its 

complex coefficients, usually the phase of cH can be safely set 

to zero, and the phase of cV, , can be obtained by performing 

two more quantum-state measurements as shown in Fig. 1(b) 

and 1(c): 

 

𝑃(+45||𝜓⟩) =
1

2
+ |𝑐𝐻| ∙ |𝑐𝑉| ∙ 𝑐𝑜𝑠𝜙                     

                     =
𝑁+45(∆𝑡+45)

𝑁−45(∆𝑡−45) + 𝑁+45(∆𝑡+45)
 

𝑃(𝐿||𝜓⟩) =
1

2
+ |𝑐𝐻| ∙ |𝑐𝑉| ∙ 𝑠𝑖𝑛𝜙                

                                    =
𝑁𝐿(∆𝑡𝐿)

𝑁𝐿(∆𝑡𝐿) + 𝑁𝑅(∆𝑡𝑅)
                         (3) 

 

where (|−45, |+45) and (|L, |R) are the other two pairs of the 

orthonormal polarization-basis vectors. With these three 

conditional probability measurements, the complex 

probability amplitudes, cH and cV, of the quantum state can be 

fully determined from (2) and (3) [11]. In other words, the 

probability measurements performed by the TCSPC system 

are essential in order to determine a quantum state. 

Consequently, the TDC specifications in the TCSPC 

systems are required to achieve pico-seconds fine resolutions, 

sub-micro-seconds dynamic ranges, high linearity and fast 

conversion-rates under aggressive silicon-area, voltage, and 

power constraints of modern CMOS integrated-circuit process 

technology. The state-of-the-art TDC designs can satisfy some 

of these specifications, however, with trade-offs among the 

other performance metrics [1]–[4], [6]–[8], [16]–[44]. To 

simultaneously accommodate all performance requirements 

for the majority of quantum applications, a TCSPC system 

proposed in [45] incorporates the digital random sampling-

and-averaging (RSA) technique [46]–[49] into a two-step 

TDC procedure to enable high-resolution time-interval 

measurements without compromising the performance 

metrics among accuracy, dynamic range, linearity, and 

power/area efficiency. However, the slow conversion-rate of 

the RSA technique has greatly limited the broadness of its 

applications especially for high frame-rate/fill-factor quantum 

imaging and ranging systems [6]–[8], [16]–[22]. Fortunately, 

there is a concept of variance reduction (VR) which has been 

broadly used in the fields of applied mathematics and financial 

engineering [51], [52] to reduce time consumption of the 

Monte Carlo methods in derivatives pricing and risk 

management [52]. Based on the similar concept, this paper 

proposes a simple circuit implementation for the self-antithetic 

variance reduction (SAVR) technique [50] to effectively 

suppress the quantization-noise power or equivalently 

enhance the conversion-rate of an asynchronous RSA-based 

TCSPC system by automatically introducing auto-correlations 

into the sampled random variable during the TDC process. 

To comprehensively describe a practical RSA 

measurement with the SAVR technique, this paper derives 

the mathematical expressions of the theoretical variance and 

its approximation form for highly efficient performance-

predictions, which are all experimentally verified by the 

simulations. Meanwhile, the methodology of converting the 

mathematical models of the RSA with SAVR technique into 

an almost all-digital and low-power implementation is 

elaborated by a circuit-level example with a guideline of 

setting the circuit parameters. Compared to an ordinary RSA 

measurement [45], enabling the SAVR technique can 

enhance the conversion-rate by more than 62 with about 7% 

power overhead based on the simulation results. 

The remainder of the paper is organized as follows. The 

circuit-and-system level overview of an RSA-based TCSPC 

system with the SAVR technique is introduced in Section II. 

The required fundamentals of RSA and parameter definitions 

are summarized in Section III. The probability principles, 

theoretical variances, performance estimation methodology, 

and behavior-model simulations of the RSA with SAVR 

technique are derived and presented in Section IV. The 

conclusion and future work are summarized in Section V. 

II. CIRCUIT AND SYSTEM OVERVIEW 

The block diagram of the RSA-based TCSPC system with 

the SAVR techniques is shown in Fig. 2(a). The silicon-

photonics interface is similar to the system described in [45], 

where each detection pixel includes a single-photon 

avalanche diode (SPAD) with the quenching/clamping 

circuits [3], [6]–[8] for the optical-to-electrical power 

domain transition followed by a silicon-photonics analog 

front-end (AFE) [53] and high-bandwidth CMOS pulse 

generator to convert the received single photons to event-

triggered electrical voltage pulses. For the high-accuracy 
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   (b)                                                           (c) 

FIGURE 1.  Three quantum-state measurements using TCSPC for the 

orthonormal polarization-basis vectors of (a) |H and |V; (b) |−45 and 

|+45; (c) |L and |R. 
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time-interval measurement, the timing of TSTART is set by the 

START pulse from a specific single-photon detection pixel 

[2] while the multiplexer for the STOP pulse can select the 

timing of TSTOP from either the other specific single-photon 

detection pixel [2] or the system input clock, CKIN, [3], [4], 

[6]–[8]. In any configuration, the time-interval, Δt, between 

TSTART and TSTOP is the primary quantity under the 

measurement as shown in Fig. 2(a). The time-to-amplitude 

conversion (TAC) circuit, containing a current source and 

capacitor banks with low-resolution static controls for coarse 

dynamic-range/conversion-gain tunability, converts the 

time-interval information into a constant DC voltage [45] 

buffered by the variable-gain amplifier (VGA) offering 

noise-rejection and driving capabilities with additional 

tunability. 

The TDC mechanism, which is the main focus of this 

paper, is illustrated in the lower-half of Fig. 2(a). The two 

identical voltage-controlled delay lines (VCDL) are both 

driven by the input clock, CKIN, so the clock periods of CK1 

and CK2 are equal to the period of CKIN, T, but the time-

domain delays of CK1 and CK2 are functions of the DC 

voltages, VDD and VVGA, respectively; and the periodic delta, 

τ, between their delays represents the scaled version of Dt as 

described in [45]. After merging CK1 and CK2 by the rising 

clock-edge combiner, the resulting clock, CKτ, maintains the 

T periodicity while its positive duty-cycle, τ/T, is the primary 

quantity under the RSA measurement as shown in Fig. 3. To 

perform the random sampling process, a free-running ring-

based digitally-controlled oscillator (DCO) generates an 

asynchronous clock, CKDCO, to sample the waveform of CKτ 

through a 1-bit D flip-flop (DFF). At the meantime, the 

randomness of CKDCO sampling-instants is mainly 

accomplished by a digital pseudo-random-binary-sequence 

generator (PRBS Gen.) in Fig. 2(a) to dynamically modulate 

the DCO period and to ensure that the sampling probability 

density function (PDF) can satisfy the RSA criteria for the 

sampling outcome, Y, to be the random variable described in 

[45] or Section III. Finally, the averaging and noise-filtering 

processes are executed by the data and cycle accumulators 

(ACC.) to first count the numbers of ones, NY and NDCO, at 

the outputs of the DFF and DCO, respectively; then, the final 

result per measurement, Y̅ (mean value of all sampled Y), is 

basically the ratio of the counter outputs, NY/NDCO [45]. At 

this point, the process of an asynchronous RSA-based TDC 

has been completed.  
To enhance the conversion-rate of RSA, the SAVR 

technique can be realized on the top of asynchronous RSA 

by simply adding extra static coarse controls for the 

reconfigurabilities of the DCO frequency and PRBS energy-

level. The detailed circuit and reconfigurable schemes of the 

DCO are shown in Fig 2(b), including a 7-bit PRBS 

generator at the bottom and a four-stage pseudo-differential 

inverter-based DCO at the middle with static push-pull 

resistance-capacitance (RC) controls for SAVR. This PRBS 

generator produces a pseudo independent and identically 

distributed (I.I.D.) 7-bit binary control code, PRBS<6:0>, to 

dynamically modulate the DCO period through the digital-

transistor-capacitor banks in the rate of CKDCO: 

 

𝑇𝐷𝐶𝑂,𝑛 = 𝑇𝐷𝐶𝑂,𝑀𝐼𝑁 + ∆𝑇𝑃𝑅𝐵𝑆,𝑛                         

           𝑇𝐷𝐶𝑂,𝑀𝐼𝑁 ≤ 𝑇𝐷𝐶𝑂,𝑛 ≤ 𝑇𝐷𝐶𝑂,𝑀𝐼𝑁 + ∆𝑇𝑃𝑅𝐵𝑆,𝑀𝐴𝑋           (4) 

 

where “n” is the sample index from 1 to NDCO; TDCO,n is the 

n-th period of the DCO; ΔTPRBS,n is the n-th DCO period 

extension controlled by PRBS<6:0>; TDCO,MIN is the 

minimum DCO period when ΔTPRBS,n = 0; ΔTPRBS,MAX is the 

maximum DCO period extension which sets the span of the 

time-domain sampling PDF of a “single” CKDCO sampling 
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                                  (a)                (b)                   
FIGURE 2.  (a) The block diagram of the RSA-based TCSPC system with the SAVR technique. (b) The circuit and reconfigurabilities of the DCO for 
enabling SAVR with low power overhead. 
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edge, fDCO,1(t), as shown in Fig. 3. Intuitively, the 

nonlinearity of the binary-control scheme and only 127 (= 27 

− 1) possible digital-to-period conversion steps would cause 

poor uniform-distributed sampling PDFs, which are not only 

discrete but also unequally spaced. Fortunately, because of 

the phase-noise accumulation property of ring-oscillators 

[54], inherent circuit/device noise [54], Central Limit 

Theorem [55], and modulo-T circular Convolution Theorem 

[55], [56], this low-cost implementation can equivalently 

offer extremely high resolutions and continuous sampling 

PDFs as discussed in [45]. 

The low-power control schemes shown in Fig. 2(b) for 

enabling SAVR are the static reconfigurabilities of 

ΔTPRBS,MAX and TDCO,MIN highlighted in pink and green, 

respectively. To statically adjust ΔTPRBS,MAX (pink), the 

thermometer code S<6:0> can force the consecutive most-

significant-bits (MSBs) of PRBS<6:0> to zeros which 

accordingly shut down the MSB capacitor banks and only 

leave the residual activated least-significant-bits (LSBs) of 

PRBS<6:0> to modulate ΔTPRBS,n. In other words, the range 

of the ΔTPRBS,n, i.e., 0 to ΔTPRBS,MAX, can be scaled down in 

powers of two based on the number of zeros in S<6:0> with 

a constant LSB step-size; this coarse scaling approach 

correspondingly reduces the total number of the digital-to-

period conversion steps. Therefore, the other control knob is 

employed by universally tuning the common drain-source 

DC voltage of the capacitor banks through a power/area 

efficient R-2R resistive ladder digital-to-analog converter 

[57], i.e., R-2R DAC in Fig. 2(b), without an analog voltage 

buffer due to the pseudo-differential DCO architecture. 

Using the digital transistors to perform this varactor-based 

capacitance tunability [54] can moderately scale down the 

LSB step-size with negligible power overhead to partially 

maintain the total number of digital-to-period conversion 

steps when S<6:0> heavily scales down ΔTPRBS,MAX. It is 

important to note that the reconfigurability of ΔTPRBS,MAX is 

mainly for demonstrating the effect of SAVR; the theoretical 

and simulation results in Section IV both confirm that a 

smaller ΔTPRBS,MAX offers more SAVR, but this is limited by 

the achievable minimum LSB capacitance in CMOS process 

technology. In any case, the gaps among the LSB steps in the 

DCO sampling PDFs are filled by the accumulation of 

circuit/device noise as mentioned. On the other hand, to 

statically adjust TDCO,MIN (green in Fig. 2(b)), the primary 

inverter stages of the DCO are implemented in a cascode 

structure, so the gate terminals of the partial tail P/N 

transistors can be biased through the replica of the inverter 

stage [54] and controlled by a low-power current DAC as 

shown in Fig. 2(b). At first glance, the implementations of 

these static reconfigurabilities are simple and ordinary, 

which indeed indicates the low power/area overhead of this 

SAVR technique. However, the theory and concept in behind 

are quite complicated and unintuitive; the detailed analysis 

is elaborated in Section IV. 

All inherent phases of the DCO can be exploited to 

simultaneously sample the information signal, CKτ, and 

linearly improve the conversion-rate of each RSA 

measurement. To minimize the complexity, each DCO clock 

phase can actually manage its own asynchronous RSA 

process (DFF and ACC.) with its own clock (or phase) 

domain as shown at the top of Fig 2(b); once the common 

cycle accumulator reaches the designated sampling number, 

NDCO, an indicator is asynchronously sent to all data 

accumulators to stop individual counting processes all 

together, and then a final summer only needs a one-time 

operation to add all counter results in total. Note that the 

theoretical analysis in this paper only focuses on one of these 

parallel RSA processes since they are basically identical and 

just occurring simultaneously. More importantly, the 

correlation induced by SAVR only exists among all 

sequential samples of each individual random variable, Y 

(i.e., at each DFF output), generated by its own DCO 

sampling phase, not among multiple DFF outputs. Therefore, 

the theoretical analysis only considers one set of Y, CKDCO, 

NY and NDCO as shown at the top-right corner of Fig. 2(b). 

III. RANDOM SAMPLING-AND-AVERAGING OVERVIEW 

This section briefly summarizes the parameter definitions 

and important results from [45], which are essential 

information and background for the RSA with SAVR 

technique.  
In the asynchronous RSA-based TCSPC system of this 

paper, Y is the primary random variable; E[Y] is the 

expectation of the random variable; Yn is the n-th 

tSAMP,5 = 5·TDCO,MIN

CKt

t t t t t t t 

TDCO,MIN DTPRBS,1
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FIGURE 3.  The relationship among CK1, CK2, CKt, CKDCO and sampling PDFs of the asynchronous RSA technique in the absolute time-domain associated 

with the nature of the DCO phase-noise accumulation property [45]. 
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experimental sample of Y; NDCO is the total number of the 

samples; Y̅ is the mean of Yn and the primary result per RSA 

measurement, which is also the Monte Carlo estimate [52] of 

the “ideal” expectation, E[Y] = E[Y̅]. Therefore, the 

theoretical variance of Y̅, Var[Y̅], is the performance metric 

of the measurement, not Var[Y]. One example of the 

asynchronous RSA sampling processes is shown in Fig. 3, 

where the waveforms of CKτ and CKDCO are assumed to 

have coincident rising edges at t = 0 for the sake of 

simplicity. With the parameter definitions in (4) and the 

phase-noise accumulation property of ring-oscillators [54], 

the n-th absolute sampling time, tSAMP,n, illustrated in Fig. 3, 

can be generalized as follows: 

 

   𝑡𝑆𝐴𝑀𝑃,𝑛 = ∑ 𝑇𝐷𝐶𝑂,𝑘

𝑛

𝑘=1

= 𝑛 ∙ 𝑇𝐷𝐶𝑂,𝑀𝐼𝑁 + ∑ ∆𝑇𝑃𝑅𝐵𝑆,𝑘

𝑛

𝑘=1

     (5) 

 

Each tSAMP,n contains the deterministic term, n·TDCO,MIN, 

and stochastic term due to the DCO phase-noise 

accumulation, which describes the uncertainty of each 

sampling instant and can only be represented by a PDF, 

fDCO,n(t). Therefore, the n-th CKDCO rising edge occurs 

randomly but is confined within the distribution span and 

density magnitude of its own PDF, i.e., light-red areas in Fig. 

3. More importantly, the stochastic term of each tSAMP,n is the 

accumulation of “n” samples of an I.I.D. random variable 

(i.e., ΔTPRBS,k, k = 1 to n) created by the PRBS generator for 

“n” times as shown in the second term of (5); equivalently, 

the PDF of the n-th DCO sampling instant, fDCO,n(t), is the 

convolution result of total “n” fundamental PDFs, fDCO,1(t), 

from the PRBS generator based on the Convolution Theorem 

[55]. Note that the fundamental PDF, fDCO,1(t), has a 

∆TPRBS,MAX distribution span and constant 1/∆TPRBS,MAX 

density magnitude as shown in Fig. 3. When n >> 1, the 

Central Limit Theorem guarantees that fDCO,n(t) converges to 

a Gaussian distribution with a wide distribution span, 

n·ΔTPRBS,MAX, as shown at the bottom-right of Fig. 3 and top 

of Fig. 4(a) regardless of the sampling PDF, fDCO,1(t), from 

the PRBS generator. 

Because of the periodicity of CKτ, the entire distribution 

span of fDCO,n(t) is automatically segmented and compressed 

into a [0, T) duration and equivalently converted into a 

modulo-T random sampling PDF, fn(t), which still follows 

the Convolution Theorem but shall be mathematically 

expressed by a circular convolution, CConv[·], due to the 

modulo-T operation [56]: 

 

𝑓1(𝑡) = 𝐶𝐶𝑜𝑛𝑣[𝑓𝐷𝐶𝑂,1(𝑡), 𝛿(𝑡), 𝑇]                        

           𝑓𝑛(𝑡) = 𝐶𝐶𝑜𝑛𝑣[𝑓𝑛−1(𝑡), 𝑓1(𝑡), 𝑇], 𝑛 > 1         (6) 

 

where δ(t) is the unit impulse; the “t” of f1(t), fn−1(t), and fn(t) 

is the modulo-T time-domain variable within [0, T), but the 

“t” of fDCO,1(t) and δ(t) is the absolute time-domain variable 

referenced to t = 0. Based on (6), f1(t) plays as not only the 

PDF of the first sampling instant but also the fundamental 

PDF element to obtain any fn(t) from fn−1(t). According to 

both mathematical equation and statistical simulation in [45], 

as fDCO,n(t) converges to a Gaussian PDF with increasing “n”, 

fn(t) converges to a uniformly distributed PDF with a 

constant density magnitude 1/T across the [0, T) distribution 

span. In other words, for all “n” >> 1, fn(t) becomes an 

“identically distributed” PDF and independent from the 

parameters of TDCO,MIN, ΔTPRBS,MAX, and even “n” as 

illustrated in Fig. 4(a) and the top-row of Fig. 4(b). 

Therefore, the expectation of the asynchronous RSA 

measurement result also converges and can be expressed by 

a continuous one-dimensional geometric probability [55] 

format: 

 

𝐸[𝑌̅] = lim
𝑁𝐷𝐶𝑂→∞

𝑌̅ = lim
𝑁𝐷𝐶𝑂→∞

∑ 𝑌𝑛
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂

= lim
𝑁𝐷𝐶𝑂→∞

𝑁𝑌

𝑁𝐷𝐶𝑂

 

= 𝐸[𝑌] = ∫ 𝑦𝑛(𝑡) ∙ 𝑓𝑛(𝑡) ∙ 𝑑𝑡
𝑇

0

                          

              = ∫
1

𝑇
∙ 𝑑𝑡

𝜏

0

+ ∫
0

𝑇
∙ 𝑑𝑡

𝑇

𝜏

=
𝜏

𝑇
= 𝑃1                          (7) 

 

where yn(t) is the modulo-T waveform of CKτ sampled by 

the modulo-T sampling PDF, fn(t), of CKDCO; P1 (= 1 − P0) is 

the probability of obtaining a Yn as Logic-1, and P0 as Logic-

0. Finally, the time-interval under the RSA measurement can 

be obtained based on (8): 

 

∆𝑡 =
𝜏

𝐾𝑇𝐴𝐶 ∙ 𝐾𝑉𝐺𝐴 ∙ 𝐾𝐷𝐿

≈
𝑇 ∙ 𝑌̅

𝐾𝑇𝐴𝐶 ∙ 𝐾𝑉𝐺𝐴 ∙ 𝐾𝐷𝐿

 

                    =
𝑇

𝐾𝑇𝐴𝐶 ∙ 𝐾𝑉𝐺𝐴 ∙ 𝐾𝐷𝐿

∙
𝑁𝑌

𝑁𝐷𝐶𝑂

                                 (8) 

 

where KTAC, KVGA, and KDL are the conversion-gains of the 

TAC, VGA and VCDL, respectively. 

Although all fn(t) are identical when n >> 1, the correlation 

among all fn(t) is a complicated function of f1(t). As proven 

in [45], to implement I.I.D. sampling PDFs, the distribution 

span of f1(t), ΔTPRBS,MAX, has to satisfy one of the two 

criteria: Mod[ΔTPRBS,MAX, T] = 0 or ΔTPRBS,MAX >> T, where 

Mod[·] is the modulo-T operator, so the samples of the 

random variable, Yn, can be pairwise independent. And, the 

theoretical variance of the asynchronous RSA measurement 

under the I.I.D. random sampling condition can be expressed 

by 

 

    𝑉𝑎𝑟[𝑌̅] = 𝜎𝑌̅
2 =

𝜎𝑌
2

𝑁𝐷𝐶𝑂

=
𝐸[𝑌2] − 𝐸2[𝑌]

𝑁𝐷𝐶𝑂

=
𝑃1 ∙ 𝑃0

𝑁𝐷𝐶𝑂

       (9) 

 

In agreement with the weak law of large numbers [55], the 

theoretical variance, Var[Y̅], i.e., the power of the estimation 

error or quantization noise, in (9) reciprocally degrades with 

the total number of samples, NDCO, and additionally it is a 
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function of P1 and P0, which matches the variance of a 

Bernoulli [55] random variable as each Yn only has two 

possible outcomes, Logic-1 or Logic-0. In sum, an 

asynchronous RSA measurement can trade in a larger 

number of samples, NDCO, which is equivalent to a longer 

measurement time or slower conversion-rate, for achieving a 

higher accuracy.  
In this paper, the experimental variances obtained from 

simulation data are required to verify the theoretical 

derivations and can be expressed as follows [45], [52], [58]: 

 

     𝑉𝑎𝑟[𝑌̅] ≈
∑ (𝑌̅𝑚 −

1
𝑁𝐸𝑋𝑃 − 1

∙ ∑ 𝑌̅𝑚
𝑁𝐸𝑋𝑃
𝑝=1 )

2
𝑁𝐸𝑋𝑃
𝑚=1

𝑁𝐸𝑋𝑃 − 1
       (10) 

 

The accuracy of this experimental variance depends on the 

number of Y̅, NEXP, obtained from experiments or 

simulations. Note that, in realistic RSA measurements under 

a certain accuracy requirement with the settings of NDCO, 

TDCO,MIN, ΔTPRBS,MAX and T, only a single Y̅ is required to 

represent one measurement result [45]. 

IV. SELF-ANTITHETIC VARIANCE REDUCTION 

To comprehensively elaborate SAVR and its realization 

methodology in an asynchronous RSA system, the analysis 

process can be started from formulating the variance of a 

Monte Carlo estimate in general: 

 

𝑉𝑎𝑟[𝑌̅]                                                                                                 

     = 𝑉𝑎𝑟 [
∑ 𝑌𝑛

𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂

] =
𝑉𝑎𝑟[∑ 𝑌𝑛

𝑁𝐷𝐶𝑂
𝑛=1 ]

𝑁𝐷𝐶𝑂
2                             

        =
∑ ∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]𝑁𝐷𝐶𝑂

𝑘=1
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
2 =

𝐸[∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]𝑁𝐷𝐶𝑂
𝑘=1 ]

𝑁𝐷𝐶𝑂

 

       =
∑ 𝑉𝑎𝑟[𝑌𝑛]𝑁𝐷𝐶𝑂

𝑛=1

𝑁𝐷𝐶𝑂
2 +

2 ∙ ∑ ∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]𝑁𝐷𝐶𝑂
𝑘=𝑛+1

𝑁𝐷𝐶𝑂−1
𝑛=1

𝑁𝐷𝐶𝑂
2  

          =
𝑃1 ∙ 𝑃0

𝑁𝐷𝐶𝑂

+
2 ∙ ∑ ∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]𝑁𝐷𝐶𝑂

𝑘=𝑛+1
𝑁𝐷𝐶𝑂−1
𝑛=1

𝑁𝐷𝐶𝑂
2          (11) 

 

where Cov[Yn, Yk] is the pairwise covariance of any two 

samples, Yn and Yk; both “n” and “k” are the sample indexes. 

When n = k, Cov[Yn, Yk] = Var[Yn], i.e., the variance of the 

n-th sample, otherwise Cov[Yn, Yk] = Cov[Yk, Yn] which is 

a symmetric covariance matrix. If Y1, Y2, …, and YNDCO
 are 

all pairwise independent, then Cov[Yn, Yk] = 0 for all n ≠ k 

in (11), and the pairwise covariance sum (the 2nd term in the 

5th line of (11)) is zero, so (11) becomes the I.I.D. situation 

as shown in (9). The key idea of SAVR is to create non-zero 

correlations among the samples, i.e., Y1, Y2, …, and YNDCO
, 

of the random variable, Y, so that the pairwise covariance 

sum can be negative, and then overall variance, Var[Y̅], per 
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                          (a)                     (b) 

FIGURE 4.  (a) The concept of the modulo-T operation and density-magnitude convergence of a random sampling PDF in the asynchronous RSA 
implementation [45]. (b) The development examples of the conditional joint sampling PDFs of a [Yn, Yk] pair from “n” to “k” = (n + 1), (n + 2) and (n + 3), 

where t = T/2, Mod[TDCO,MIN, T]  T/2, and ΔTPRBS,MAX  T/4. 
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RSA measurement can be effectively less than the variance 

of the I.I.D. situation in (9). 

A. THEORETICAL CONCEPT AND PERFORMANCE 
ESTIMATION 

According to the detailed analysis about the covariances of 

the adjacent samples, Cov[Yn, Yn+1], under three DTPRBS,MAX 

scenarios (i.e., DTPRBS,MAX <, =, or > T) in [45], the 

conclusion shows Cov[Yn, Yn+1] can have pronounced non-

zero values when Mod[DTPRBS,MAX, T] < T due to the non-

uniform conditional joint PDFs within their own integral 

time-intervals, [0, τ) and [τ, T). In this paper, the case of non-

zero covariances between adjacent samples is further 

extended to the deduction of any pairwise correlation 

between Yn and Yk due to the fact of the DCO phase-noise 

accumulation property reflected by (5) and (6). Thus, if the 

technique can take advantage of these non-zero covariances, 

Cov[Yn, Yk], and assure the pairwise covariances sum is 

negative, then VR can be successfully performed. 

To find Cov[Yn, Yk], all conditional joint PDFs of any [Yn, 

Yk] pair have to be first formulated, where n = 1 to (NDCO − 

1) and k = (n + 1) to NDCO are sufficient to cover all 

covariance elements in the symmetric covariance matrix. 

Though there are only four possible binary combinational 

outcomes of a certain [Yn, Yk] pair, its conditional joint PDFs 

shall also cover all possible binary combinational outcomes 

from Yn+1 to Yk−1 because the accumulation property and 

Convolution Theorem described in (6) form the chain of 

correlations from each specific Yn through Yn+1, Yn+2, …, 

Yk−2, and Yk−1 all the way to each specific Yk. Thus, the 

conditional joint PDFs of a [Yn, Yk] pair under all possible 

conditions of [Yn, …, Yk−1] shall be generalized as follows: 

 

𝑓𝑛,𝑘(𝑡)|
[𝑌𝑛,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

                                                             

         = 𝐶𝐶𝑜𝑛𝑣 [𝑓𝑛,𝑘−1(𝑡)|
[𝑌𝑛,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

  , 𝑓1(𝑡), 𝑇]   (12) 

 

where q = 0, 1, 2, …, (2k−n – 1); all possible binary 

combinational conditions of [Yn, …, Yk−1] are represented by 

the corresponding decimal numbers, “q”, and decimal-to-

binary operators, D2B[·], for the sake of simplicity. In Fig. 

4(b), the PDF curves and annotations highlighted in black 

represent the examples of (12), including k = (n + 1), (n + 2), 

and (n + 3), which follows the Convolution Theorem under 

the conditions of [Yn, …, Yk−1]. Since the location of “τ” 

within the modulo-T time-interval, [0, T), defines the PDF 

boundaries for the probability of Yk to be Logic-1 or Logic-

0, the conditional joint PDF of a [Yn, Yk] pair under all 

possible conditions of [Yn, …, Yk] can be obtained by forcing 

one part, i.e., [0, τ) or [τ, T), of the PDF in (12) to zero to 

satisfy one of the possible Yk conditions: 

 

𝑓𝑛,𝑘(𝑡)|
[𝑌𝑛 ,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

[𝑌𝑘]=1
                                                                

        = {
𝑓𝑛,𝑘(𝑡)|

[𝑌𝑛 ,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]
   , 0 ≤ 𝑡 < 𝜏

      0                                       , 𝜏 ≤ 𝑡 < 𝑇
        (13) 

𝑓𝑛,𝑘(𝑡)|
[𝑌𝑛,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

[𝑌𝑘]=0
                                                                 

        = {
      0                                       , 0 ≤ 𝑡 < 𝜏

𝑓𝑛,𝑘(𝑡)|
[𝑌𝑛,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

    , 𝜏 ≤ 𝑡 < 𝑇        (14) 

 

In other words, each conditional joint PDF under the 

conditions of [Yn, …, Yk−1] in (12) can diversify into two 

conditional joint PDFs under the conditions of [Yn, …, Yk] 

as shown in (13) and (14), which are highlighted in blue and 

orange, respectively, in Fig. 4(b). Note that the distribution 

profiles of all conditional joint PDFs are convoluted 

functions of τ and f1(t), and f1(t) itself is a function of 

Mod[TDCO,MIN, T] and ΔTPRBS,MAX. Therefore, the plots 

shown in Fig. 4(b), where τ = T/2, Mod[TDCO,MIN, T] = T/2, 

and ΔTPRBS,MAX = T/4, can be very different if the values of 

these parameters are set differently; i.e., these parameters 

dominantly affect the behaviors of the pairwise covariances, 

Cov[Yn, Yk], which now can be generalized as follows based 

on the information of all conditional joint PDF of a [Yn, Yk] 

pair from (13) and (14): 

 

𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]                                                                                          

= ∫(𝑦𝑛(𝑡) − 𝑃1) ∙ (𝑦𝑘(𝑡) − 𝑃1) ∙ 𝑓𝑛,𝑘(𝑡) ∙ 𝑑𝑡

𝑇

0

                            

= (1 − 𝑃1)2 ∙ ∑ ∫𝑓𝑛,𝑘(𝑡)|
[𝑌𝑛+1,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

[𝑌𝑛 ,𝑌𝑘]=[1,1]
𝑑𝑡

𝜏

0

2𝑘−𝑛−1−1

𝑞=0

            

   −(𝑃1 − 𝑃1
2) ∙ ∑ ∫𝑓𝑛,𝑘(𝑡)|

[𝑌𝑛+1,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

[𝑌𝑛,𝑌𝑘]=[1,0]
𝑑𝑡

𝑇

𝜏

2𝑘−𝑛−1−1

𝑞=0

          

   −(𝑃1 − 𝑃1
2) ∙ ∑ ∫𝑓𝑛,𝑘(𝑡)|

[𝑌𝑛+1,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

[𝑌𝑛 ,𝑌𝑘]=[0,1]
𝑑𝑡

𝜏

0

2𝑘−𝑛−1−1

𝑞=0

          

   +(0 − 𝑃1)2 ∙ ∑ ∫𝑓𝑛,𝑘(𝑡)|
[𝑌𝑛+1,…,𝑌𝑘−1]=𝐷2𝐵[𝑞]

[𝑌𝑛,𝑌𝑘]=[0,0]
𝑑𝑡

𝑇

𝜏

2𝑘−𝑛−1−1

𝑞=0

(15) 

 

As shown in (15), Cov[Yn, Yk] can be grouped into four 

terms based on the binary combinational outcomes of a [Yn, 

Yk] pair, and each term is the summation of 2k−n−1 integrals 

of the conditional joint PDFs under all possible conditions of 

[Yn+1, …, Yk−1]. Thus, the total number of summation terms 

or conditional joint PDFs in (15) is 22·2k−n−1 = 2k−n+1 for each 

Cov[Yn, Yk]. In addition, each conditional joint PDF, 

fn,k(t)|
[Yn,…,Yk-1]

, in (15) is obtained by (k − n) times of the 

modulo-T circular convolutions shown in (12). Overall, the 

computation effort of (15) is dominated by total (k − n)·2k−n+1 

modulo-T circular convolutions for each Cov[Yn, Yk]. On 

top of this, an overall variance, Var[Y̅], calculation, requires 

total (NDCO
2  − NDCO)/2 of Cov[Yn, Yk] elements in the whole 
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covariance summation as shown in 5th line of (11), and 

usually NDCO is in the range of 28 to 218 even with the VR 

techniques. In short, the computation effort of the theoretical 

variance with non-zero pairwise covariance formulated by 

(15) turns out to be impractical for the performance 

estimation of the RSA with SAVR technique. This issue 

reflects the necessity of developing a computation-efficient 

approach for the overall variance calculation.  
To simplify the analysis process, the mechanism of SAVR 

is elaborated by specific examples in an asynchronous RSA 

system, and then general cases can be further summarized. 

The following two examples have common parameter 

setups: the time-domain quantity under the RSA 

measurement, τ/T = 0.5 (= P1), NDCO = 256, and 

Mod[TDCO,MIN, T]  T/2. The only difference is that their 

DTPRBS,MAX are set to T/8 and T/16 individually through the 

static PRBS energy-level control shown in Fig. 2. The 

correlation function between Yn and Yk can be observed by 

plotting Cov[Yn, Yk] of each “n” across all possible “k” (= 1 

to NDCO) as shown in Fig. 5(a) and 5(b), where only the cases 

of n = 1, 128 (NDCO/2), and 256 (NDCO) are included with 

NEXP = 213. For the purpose of reference, the I.I.D. scenario 

(i.e., ΔTPRBS,MAX = T) verified in [45] is also included in Fig. 

5, where the I.I.D. correlation functions (black) are basically 

zero for all n ≠ k and have the non-zero value, 0.25 (= P1·P0), 

at n = k. From these examples of ΔTPRBS,MAX < T (red), 

multiple attributes can be observed: first, Cov[Yn, Yk] of 

each “n” is self-symmetrical with respect to “k = n”, e.g., 

Cov[Y128, Y127] = Cov[Y128, Y129]; second, because of the 

symmetric covariance matrix and Cov[Yn, Yk] = Var[Yn] = 

P1·P0 when k = n, all correlation functions have the same 

profile but shift along the k-axis based on the value of “n”, 

e.g., Cov[Y1, Yk], Cov[Y128, Yk], and Cov[Y256, Yk] shift 

their peaks to k = 1, 128, and 256, respectively, and therefore 

Cov[Yn, Yk] = Cov[YNDCO−n+1, YNDCO−k+1]; third, the 

correlation is enhanced (longer correlation tails) with 

decreasing ΔTPRBS,MAX; fourth, the correlation degrades with 

increasing |k − n|; fifth, more importantly, the Cov[Yn, Yk] 

of each “n” has a consistent sign-alternation pattern within 

each correlation-envelop period which guarantees the 

cancellation in the total covariance sum, i.e., effective VR, 

though the amplitude of the correlation-envelop attenuates 

with |k − n|. The zoom-in versions of the correlation 

functions at the top of Fig. 5(a) and 5(b) respectively 

highlight the least-common-multiple periods (LCMP) of the 

sign-alternation patterns and correlation-envelop periods of 

the two ΔTPRBS,MAX scenarios. The theoretical variance 

calculation can be greatly simplified by grouping the effect 

of covariance cancellation into single or multiple LCMPs 

instead of considering all the covariance elements. 

The effect of this SAVR technique can be more 

comprehensively demonstrated by the single-dimensional 

covariance sums and the overall (two-dimensional) 

covariance sum, Var[Y̅]. The single-dimensional covariance 

sum is defined as the summation of all Cov[Yn, Yk] from k = 

1 to NDCO with respect to each “n”, e.g., the summation of all 

red data points in the Cov[Y128, Yk] plot is the single-

dimensional covariance sum at n = 128. The single-
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Black: DTPRBS,MAX  T, RSA Sim. (I.I.D.)

Blue: DTPRBS,MAX  T/16, Eq. (15), k =          to (128+15)
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                                   (a)                     (b)                                  (c) 

FIGURE 5.  Under the asynchronous RSA setting of Mod[TDCO,MIN, T]  T/2, t/T = 0.5, NDCO = 256, and NEXP = 213, (a) the correlation functions of n = 128, 1, 

and 256 across k = 1 to NDCO when ΔTPRBS,MAX  T/8; (b) the correlation functions of n = 128, 1, and 256 across k = 1 to NDCO when ΔTPRBS,MAX  T/16. (c) 

The single-dimensional covariance sums and partial covariance sums of RSA w/o SAVR (ΔTPRBS,MAX  T) and w/ SAVR (ΔTPRBS,MAX  T/8 & T/16). 
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dimensional covariance sums of the uncorrelated (I.I.D.) and 

two correlated examples are shown in Fig. 5(c) whose 

horizontal-axis variable is “n”, and n = 1 to NDCO. The single-

dimensional covariance sums of the I.I.D. example (black 

dots) are always 0.25 for all “n” since each “n” only has its 

non-zero covariance Var[Yn] = 0.25 at n = k. On the other 

hand, the single-dimensional covariance sums of the two 

correlated examples (red dots) are all smaller than 0.25 

across all “n” in Fig. 5(c) because the periodical sign-

alternation patterns of their correlation functions are 

canceling the power of Var[Yn] = 0.25 at n = k as shown in 

Fig. 5(a) and 5(b). This is the reason for naming this 

technique as self-antithetic VR. Finally, the overall variance 

of RSA can be obtained by the summation of all single-

dimensional covariance sums divided by NDCO
2  as shown in 

the 3rd line of (11). According to the fact shown in Fig. 5(c), 

the overall variances (sums of red dots) are reduced from the 

value of the I.I.D. variance (sums of black dots). 

Equivalently, the first term in the 5th line of (11), i.e., 

P1·P0/NDCO, equals the I.I.D. variance without any VR, and 

the second term in the 5th line of (11) is negative to 

successfully perform VR.  
The analysis results demonstrated in Fig. 5 offer further 

insights: first, a smaller ΔTPRBS,MAX, i.e., a narrower 

fundamental sampling PDF, f1(t), creates stronger 

correlations across all sampling points (i.e., longer 

correlation tails), longer LCMPs (e.g., 16 points for T/8, 32 

points for T/16), and eventually more variance reduction; 

second, though the sign of each single-dimensional 

covariance sum can be either positive or negative with VR, 

the average of all single-dimensional covariance sums is 

always above zero as shown in Fig. 5(c), which verifies the 

principles of non-negative variances and finite measurement 

resolutions; third, more importantly, the computation 

efficiency of each theoretical single-dimensional covariance 

sum and overall variance can be greatly improved by only 

summing the covariances surrounding the “k = n” within a 

few LCMPs:  

 

𝐼𝑓 ∆𝑇𝑃𝑅𝐵𝑆,𝑀𝐴𝑋 =
2 ∙ 𝑇

𝐿𝐶𝑀𝑃
                                          

& 
𝑟 ∙ 𝐿𝐶𝑀𝑃 + 2

2
≤ 𝑛 ≤

2 ∙ 𝑁𝐷𝐶𝑂 − 𝑟 ∙ 𝐿𝐶𝑀𝑃 + 2

2
   

𝐸 [ ∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]

𝑁𝐷𝐶𝑂

𝑘=1

] ≈ ∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]

𝑛+
𝑟∙𝐿𝐶𝑀𝑃

2
−1

𝑘=𝑛−
𝑟∙𝐿𝐶𝑀𝑃

2

             (16) 

 

where “r” is the number of LCMP included in the 

approximation of (16). In Fig. 5(c), the red dots represent the 

accurate one-dimensional covariance sums; the blue dots 

represent the partial one-dimensional covariance sums 

formulated by the right-hand side of (16) with r = 1 and k = 

(n − LCMP/2) to (n + LCMP/2 − 1). Although the red and 

blue dots at each “n” contain certain amounts of delta, the 

distribution of the blue dots is relatively constant and 

basically the average of the red dots except the values of “n” 

approach 1 or NDCO since the correlation functions of these 

“n” have significantly unbalanced correlation-tail lengths, 

e.g., Cov[Y1, Yk] and Cov[Y256, Yk] in Fig. 5(a) and 5(b). 
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FIGURE 6.  Under the asynchronous RSA setting of NDCO = 256 and NEXP = 213, (a) the required covariance elements for complete (top) and approximate 

(bottom) overall variance calculations when Mod[TDCO,MIN, T]  T/2 and ΔTPRBS,MAX  T/8; (b) the correlation functions of n = 128 across k = 1 to NDCO when 

t/T = 0.2, 0.3, 0.7 & 0.8, Mod[TDCO,MIN, T]  T/2, and ΔTPRBS,MAX  T/16; (c) the correlation functions of n = 128 across k = 1 to NDCO when t/T = 0.5, Mod[TDCO,MIN, 

T]  0.75·T, and ΔTPRBS,MAX  T/2 & T/8. 
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Therefore, any partial single-dimensional covariance sum 

(blue dot) at any “n” far away from 1 or NDCO is sufficient 

for approximating the average of the accurate one-

dimensional covariance sums formulated by the left-hand-

side of (16). For example, by plugging (16) into the 3rd line 

of (11) with “n = NDCO/2”, the overall variance can be 

approximated as follows:  

 

𝑉𝑎𝑟[𝑌̅] =
𝐸[∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]𝑁𝐷𝐶𝑂

𝑘=1 ]

𝑁𝐷𝐶𝑂

                                                  

               ≈
1

𝑁𝐷𝐶𝑂

∙ ∑ 𝐶𝑜𝑣 [𝑌
(

𝑁𝐷𝐶𝑂
2

)
, 𝑌𝑘]

𝑁𝐷𝐶𝑂+𝑟∙𝐿𝐶𝑀𝑃
2

−1

𝑘=
𝑁𝐷𝐶𝑂−𝑟∙𝐿𝐶𝑀𝑃

2

       (17) 

 

Note that the Cov[Yn, Yk] in (16) and (17) is referring to its 

theoretical definition in (15) and annotated as blue circles in 

Fig. 5(a) and 5(b), while the all red dots in Fig. 5 are obtained 

from the statistical simulation results. And, the 

approximation errors in (16) and (17) can be improved by 

extending the number of LCMP, i.e., “r”, included in the 

summation operators.  
As discussed earlier, if the theoretical computation effort 

is dominated by the modulo-T circular convolutions, the 

computation efficiency improvement from (11) to (17) can 

be evaluated by the ratios between their operation numbers 

of modulo-T circular convolutions. The covariance matrix in 

the case of ΔTPRBS,MAX  T/8 (LCMP = 16) with NDCO = 256 

is shown in Fig. 6(a). Since the correlation tails of this 

example are roughly vanished when |k − n| > NDCO/2 as 

shown in Fig. 5(a), only the covariance elements circled in 

black need to be considered to estimate the computation 

efforts for both (11) and (17). For (11), because the Cov[Yn, 

Yk] of each “n” is self-symmetrical with respect to “k = n”, 

the covariance elements circled in dashed-red are identical to 

those circled in solid-red, and covariance elements circled in 

green are the images of those circled in red. With the 

property of this symmetric covariance matrix, i.e., Cov[Yn, 

Yk] = Cov[Yk, Yn], all covariance elements circled in black 

can be fully obtained by only calculating the covariance 

elements circled in solid-red as shown in the upper-half of 

Fig. 6(a), and the required number of modulo-T circular 

convolutions in (11) is expressed in the numerator of (18). 

On the other hand, to cover two LCMPs for (17), only the 

covariance elements within one LCMP circled in blue shown 

in the lower-half of Fig. 6(a) need to be calculated, and the 

other LCMP circled in orange is again the image of those 

circled in blue, so the required number of modulo-T circular 

convolutions in (17) is expressed in the denominator of (18). 
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(𝑘−
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2
+1)𝑁𝐷𝐶𝑂−1

𝑘=
𝑁𝐷𝐶𝑂

2
+1

∑ (𝑘 −
𝑁𝐷𝐶𝑂

2
) ∙ 2

(𝑘−
𝑁𝐷𝐶𝑂

2
+1)

𝑁𝐷𝐶𝑂
2 +𝐿𝐶𝑀𝑃

𝑘=
𝑁𝐷𝐶𝑂

2
+1

               (18) 

 

The ratio of modulo-T circular convolution numbers 

between (11) and (17) under this specific example is about 

2.181034. This incredible “computation effort reduction” 

(NOT variance reduction), even just for NDCO = 28 and two 

LCMPs included, is again mainly because all pairwise 

covariances theoretically have to be included in (11) due to 

the inevitable correlations (based on the DCO phase-noise 

accumulation property and Convolution Theorem) among 

the majority of NDCO samples, but actually only the average 

of all the covariances matters and can be approximated by 

summing the theoretical covariances within a few LCMPs of 

the central correlation function as shown in (17) and Fig. 

5(c). In sum, as the zoom-in versions of Cov[Y128, Yk] shown 

at the top of Fig. 5(a) and 5(b), the theoretical calculation 

results, i.e., blue circles from (15), and the statistical 

asynchronous RSA simulation results, i.e., red dots, match 

well, but the computation efficiency of the theoretical 

variance with SAVR enabled is actually quite low if relying 

on the equations from (11) to (15). On the other hand, 

Equation (17) brings the computation efficiency to a 

reasonable level but losing the accuracy. Only the Monte 

Carlo approach (red dots from the statistical software/lab 

experiments) can simultaneously offer the efficiency and 

accuracy from the analytical point of view. 

B. PRACTICAL CONSIDERATION AND SIMULATION 
RESULTS 

In realistic applications, the SAVR technique has to be 

effectively applicable to a wide dynamic range of τ/T. Four 

more examples of the correlation functions for the variates 

of τ/T (= 0.2, 0.3, 0.7, and 0.8) are shown in Fig. 6(b) to 

illustrate the effects of SAVR with respect to the time-

intervals under the asynchronous RSA measurements. All 

parameter settings in Fig. 6(b) are consistent with those in 

Fig. 5(b) except the different values of τ/T, so their 

correlation functions exhibit similar correlation tails, 

LCMPs, and sign-alternation patterns; however, in Fig. 6(b), 

the amplitudes and upper/lower swings of the covariance 

envelopes are basically attenuated and distorted with |τ/T − 

0.5|. Especially, the unbalanced upper/lower envelope 

swings around the central covariances (at n = k) degrades the 

efficiency of SAVR when τ/T is moving away from 0.5.  
The variance of asynchronous RSA vs. dynamic range 

with different SAVR settings is shown in Fig. 7(a) where 

Mod[TDCO,MIN, T]  T/2, NDCO = 214, and NEXP = 211. Multiple 

important conclusions have been verified and demonstrated 

in this figure. First, a stronger VR can be statically enabled 

by decreasing the PRBS time-domain noise power (or 

energy-level), i.e., ΔTPRBS,MAX, (or the PDF span of f1(t)) to 

extend the covariance cancellation effect (or widening the 

Cov[Yn, Yk] envelopes and correlation tails) without any 

extra hardware/circuit cost required to enhance the resolution 

of the PRBS generator since the infinite phase resolution has 

been taking care of by the inherent circuit/system noise 
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accumulations through the DCO [45], [54]. Second, the 

efficiency of SAVR degrades with the increase of |τ/T − 0.5| 

as discussed, but the quantization power of the RSA 

measurement, Var[Y̅], stays relatively constant across the 

entire dynamic range. Third, the blue dots are the theoretical 

variance approximations based on (17) with covering at least 

two LCMPs (r ≥ 2) for different ΔTPRBS,MAX scenarios. Even 

on a linear scale, the theoretical approximations (blue dots) 

from (17) match well with the statistical results (red dots) 

from the RSA experimental simulations; this verifies the 

contribution of (17) which can greatly improve the 

computation efficiency without compromising the 

estimation accuracy.  
In Fig. 7(c), the variances of asynchronous RSA are 

plotted as functions of NDCO on the dBW scale with different 

SAVR settings at τ/T = 0.5 with NEXP = 28. Similar to the 

cases of the oversampling synchronous RSA in [45], the 

weak law of large numbers still holds for the asynchronous 

RSA regardless of the VR technique; also, both theoretical 

approximation (blue lines) and simulation (red dots) results 

are well aligned and perform consistent variance 

degradations at −3 dBW per octave of NDCO or equivalently 

−6 dBW per octave of ENOB [45]. More importantly, the 

variances at τ/T = 0.5 exhibit −3 dBW per octave of the 

ΔTPRBS,MAX divisor for all NDCO in both Fig. 7(a) and 7(c). 

The key contribution of SAVR is not only to improve the 

ENOB, which can be obtained by increasing NDCO anyway, 

but more significantly improves the conversion-rate of the 

asynchronous RSA measurement. For example, to achieve 

the same variance of −60 dBW in Fig. 7(c), when ΔTPRBS,MAX 

 T (SAVR disabled), it requires NDCO = 218 and TDCO,AVG = 

(TDCO,MIN + ΔTPRBS,AVG)  (T/2 + T/2) = T; On the other hand, 

when ΔTPRBS,MAX  T/32 (SAVR enabled), it requires NDCO 

= 213 and TDCO,AVG = (TDCO,MIN + ΔTPRBS,AVG)  (T/2 + T/64) 

= 0.516·T, so the conversion-rate, i.e., 1/(NDCO·TDCO,AVG), is 

improved by 62 when the SAVR technique is enabled. Note 

that this example is at τ/T = 0.5, which has the worst 

quantization-noise power when SAVR is disabled (I.I.D.) 

but maximum variance reduction across the entire τ/T 

dynamic range as shown in Fig. 7(a). Besides, the required 

setting of Mod[TDCO,MIN, T]  0.5·T gives the flexibility of 

design options for TDCO,MIN, including 0.5·T, 1.5·T, 2.5·T, 

and so on. If the DCO frequency has reached the limit due to 

circuit bandwidth or power limitations, then proportionally 

extending τ and T together can be an alternative way to 

achieve the fastest sampling option (TDCO,MIN  0.5·T), which 

can be simply accomplished by statically scaling the 

conversion gains of the analog circuits, i.e., KTAC, KVGA, and 

KDL, through the inherent calibration capability of the RSA 

measurement system [50]. Meanwhile, the nonlinearities and 

offsets due to analog-circuit nonidealities and mismatches 

can be pre-calibrated by RSA itself without any assistance 

from extra hardware [45], [49], [50]. 
Regarding the power overhead, the DCO power 

consumption with vs. without SAVR includes four major 

factors in the comparison: first, the DCO average frequency 

(FDCO,AVG  1/TDCO,AVG) is almost doubled, i.e., 1/(0.516·T) 

vs. 1/T; second, the per-stage capacitance load (CL) 

controlled by the PRBS generator is smaller since it is 

dominantly scaled with ΔTPRBS,MAX, i.e., T/32 vs. T; third, the 

power of the PRBS digital circuit is doubled with the DCO 

average frequency, i.e., 0.5 mW vs. 0.25 mW; fourth, 

additional DC power, i.e., 0.2 mW, of the R-2R and current 

DACs is required for the DCO static reconfigurations plotted 

by the green and pink lines in Fig. 2(b). Therefore, according 

to the simulation results and power estimations above 

(CL·VDD
2 ·FDCO,AVG + PRBS power + DC power), the overall 

DCO power roughly stays the same with and without SAVR, 

i.e., (2.4 + 0.5 + 0.2) mW vs. (2.75 + 0.25 + 0) mW = 3.1 

mW vs. 3 mW. Meanwhile, the power consumptions of the 

TAC, VGA, VCDL and edge-combiner are all independent 

from the SAVR technique, but the dynamic power of the 

DFF and clock buffers are scaled up with the DCO average 

frequency. Thus, the TDC power numbers (TAC + VGA + 

VCDL + edge-combiner + DFF + clock buffer) with and 

without SAVR are 1.5 mW and 1.3 mW, respectively. 
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FIGURE 7.  The theoretical (blue) and simulated (red) variances of asynchronous RSA plotted as functions of t/T under different ∆TPRBS,MAX settings with 

NDCO = 214 and NEXP = 211, when (a) Mod[TDCO,MIN, T]  T/2; (b) Mod[TDCO,MIN, T]  0.75·T. (c) The theoretical (blue) and simulated (red) variances of 

asynchronous RSA plotted as functions of NDCO with t/T = 0.5 and NEXP = 28, including the I.I.D., VR, and VA scenarios based on the combinational 

settings of TDCO,MIN, ΔTPRBS,MAX, and T. 
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Overall, the total RSA-based TDC power, i.e., DCO + TDC 

= 4.6 mW vs. 4.3 mW, is increased only by 7% after enabling 

SAVR for a 62 conversion-rate enhancement since the 

DCO power is roughly independent from this technique as 

discussed. Note that the power estimations above include one 

clock generator (i.e., DCO) and one TDC, but in real TCSPC 

applications one clock generator with proper clock 

distribution can support multiple TDCs in the pixel array. 

Regarding the area overhead of the SAVR technique, the 

additional hardware includes the R-2R and current DACs for 

the DCO static reconfigurations plotted by the green and 

pink lines in Fig. 2(b), which add an extra 25 μm  25 μm 

overhead on the top of the DCO active area in a 22-nm 

CMOS process technology. 

Based on the theoretical analysis and experimental 

simulations of the SAVR technique so far, two practical 

concerns may be raised. One is about the limitation of SAVR 

or its conversion-rate enhancement. Because it seems that a 

smaller ΔTPRBS,MAX (or noise energy-level) offers more 

SAVR, and if the minimum achievable ΔTPRBS,MAX is 

dominated by the single LSB capacitance, which is process-

technology dependent as mentioned in Section II, modulated 

by a 1-bit PRBS, then the system could simply rely on the 

noise accumulation of inherent thermal-noise from the DCO 

circuit. This idea is theoretically valid, but accumulating 

such low-energy noise meanwhile induces two issues to 

offset the benefit of SAVR: first, the sampling PDF, fn(t), 

now requires “n” to be extremely large to form a uniform 

PDF as shown in Fig. 4(a) [45] and satisfy the expectation in 

(7); second, now the values of LCMP also become extremely 

large for effective SAVR due to its reciprocal relation with 

the noise energy-level shown in (16). Both cause each RSA 

measurement to require a very large number of NDCO in total, 

so SAVR turns out to even slow down the conversion-rate in 

this case. The other concern is about whether variance 

addition (VA) can occur due to a combinational setup of 

TDCO,MIN, ΔTPRBS,MAX, and T deviating from the one for VR. 

The answer can be elaborated by an example shown in Fig. 

6(c) having the identical parameter settings as those in Fig. 5 

(τ/T = 0.5, NDCO = 28, NEXP = 213) except Mod[TDCO,MIN, T] 

 0.75·T instead. When ΔTPRBS,MAX  T/8 shown in the 

lower-half of Fig. 6(c), the correlation function exhibits a 

different sign-alternation pattern and envelope from these 

shown in Fig. 5(a), but the single-dimensional covariance 

sum is still less than that of the I.I.D. case (i.e., 0.25); 

equivalently this is VR. However, when ΔTPRBS,MAX  T/2 

shown in the upper-half of Fig. 6(c), the correlation function 

contains all positive values, so definitely the single-

dimensional covariances and overall variance are larger than 

those of the I.I.D. case; equivalently this is VA. The 

asynchronous RSA variance vs. dynamic range plots shown 

in Fig. 7(a) and 7(b) contains identical parameter settings 

except Mod[TDCO,MIN, T]  T/2 and 0.75·T, respectively, for 

the purpose of the side-by-side comparison. Any 

quantization-noise power lower than the I.I.D. variance 

curve performs VR otherwise VA. The unfavorable VA 

occurs whenever the coincident interactions between 

Mod[TDCO,MIN, T] and ΔTPRBS,MAX always generates positive 

pairwise covariances as the example of simultaneously 

Mod[TDCO,MIN, T]  0.75·T and ΔTPRBS,MAX  T/2 shown in 

Fig. 6(c) and 7(b). In other words, there could be several 

possible combinations of Mod[TDCO,MIN, T] and ΔTPRBS,MAX 

TABLE I.  TDC Technique Comparison & Summary 

Work 
[45] 

TCAS-I’22 

[45] 

TCAS-I’22 
This Work 

[59] 

JSSC’14 

[60] 

JSSC’18 

[61] 

TCAS-I’20 

[62] 

Access’21 

[63] 

TCAS-I’22 

Technology 22 nm 22 nm 22 nm 90 nm 65 nm 40 nm 28 nm 65 nm 

Technique Syn. RSA Asyn. RSA 
Asyn. RSA w/ 

SAVR 
SRO CT ΔΣ Flash ΔΣ CCRO 

URFC & 

Vernier 

Clock Gen. PLL & PI DCO DCO No Info. PLL No Info. Ring OSC DLL 

Clock Power 25 mW 3 mW 3.1 mW No Info. No Info. No Info. No Info. No Info. 

Sampling 

Frequency 

4 GS/s 

 1/T 

4 GS/s 

 1/TDCO,AVG 

7.8 GS/s 

 1/TDCO,AVG 
750 MS/s 250 MS/s 50 MS/s 125 MS/s 200 MS/s 

Sampling 

Phases 
8 8 8 N/A N/A N/A 126 16 

Dynamic 

Range (DR) 

10 ns ~ 1 μs 

(Scaled to T) 

10 ns ~ 1 μs 

(Scaled to T) 

10 ns ~ 1 μs 

(Scaled to T) 

4 ns 

(Fixed) 

2 ns 

(Fixed) 

320 ps 

(Fixed) 

7.8 ns 

(Fixed) 

2.5 μs 

(Fixed) 

ENOB 
10 

(Fixed) 

12 @ NDCO  224 

14 @ NDCO  228 

12 @ NDCO  219 

14 @ NDCO  223 

13.2 

(Fixed) 

13.1 

(Fixed) 

10.7 

(Fixed) 

9.29 

(Fixed) 

14.74 

(Fixed) 

Effective 

Resolution * 

9.76 ps ~ 976 ps 

@ 10 ENOB 

0.61 ps ~ 61 ps 

@ 14 ENOB 

0.61 ps ~ 61 ps 

@ 14 ENOB 

0.315 ps 

(Fixed) 

0.182 ps 

(Fixed) 

0.147 ps 

(Fixed) 

12.5 ps 

(Fixed) 

91.4 ps 

(Fixed) 

Conversion-

Rate (CVR) 

32 kHz 

@ 10 ENOB 

2 kHz 

@ 12 ENOB 

120 kHz 

@ 12 ENOB 
2 MHz 2 MHz 5 MHz 125 MHz 1 MHz 

TDC Power 1.3 mW 1.3 mW 1.5 mW 1.5 mW 8.4 mW 1.32 mW 12.3 mW 51.4 mW 

TDC FoM ** 
39.7 pJ/step 

@ 10 ENOB 

159 pJ/step 

@ 12 ENOB 

3.1 pJ/step 

@ 12 ENOB 
0.08 pJ/step 0.47 pJ/step 0.16 pJ/step 0.16 pJ/step 1.88 pJ/step 

TDC Area 0.01 mm2 0.01 mm2 0.01 mm2 0.02 mm2 0.055 mm2 0.08 mm2 0.078 mm2 0.15 mm2 

Linearity 

Calibration 

RSA Self-

Calibration 

RSA Self-

Calibration 

RSA Self-

Calibration 

Off-Chip 

Correction 
No Info. 

Off-Chip 

Correction 

On-Chip 

Correction 

United Ref. 

Correction 

Post Noise 

Filtering 

1-bit Digital 

Accumulator 

1-bit Digital 

Accumulator 

1-bit Digital 

Accumulator 

Digital Phase 

Filter 

PLL Loop 

Filter 

High-order 

Digital Filter 
No Info. No Info. 

Expect Eq. (10) in [45] (15) in [45] (7) N/A N/A N/A N/A N/A 

Variance Eq. (11) in [45] (7) in [45] (17) N/A N/A N/A N/A N/A 

Parameters 

@ T =250 ps 
OSR = 1 

TDCO,MIN  T/2 

ΔTPRBS,MAX  T 

TDCO,MIN  T/2 

ΔTPRBS,MAX  T/32 
N/A N/A N/A N/A N/A 

* Effective Resolution = DR/(2ENOB).  ** TDC FoM = (TDC Power)/(2·BW·2ENOB) = (TDC Power)/(CVR·2ENOB). 
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which can cause severe variance additions. And, this is the 

primary downside of the SAVR technique associated with 

the upside of high conversion-rate improvement and 

negligible extra power cost for an asynchronous RSA 

measurement system. Fortunately, the variance 

approximation, i.e., (17), developed in this research can 

efficiently predict the quantization-noise power under any 

combination of the signal and circuit parameters, including 

all τ/T, NDCO, TDCO,MIN, ΔTPRBS,MAX, and T. In sum, the 

verified results from both RSA simulation and theoretical 

approximation conclude that SAVR can offer favorable 

variance reduction under the minimum requirement of 

having Mod[TDCO,MIN, T]  [0.25·T, 0.75·T] with 

ΔTPRBS,MAX ≤ T/4. Also, note that Mod[TDCO,MIN, T]  T/2 

with T/32 < ΔTPRBS,MAX ≤ T/4 can offer the maximum 

flattened variance distribution across the entire τ/T dynamic 

range. 

Multiple case studies in this section are summarized in 

Fig. 7(c), including I.I.D., VR, and VA scenarios as 

discussed. Note that each red dot for a certain NDCO 

approximately on the I.I.D. theoretical variance line is 

obtained from (10) by averaging 28 (= NEXP) grey dots in Fig. 

7(c). All theoretical approximation (i.e., blue lines) and 

simulation (i.e., red dots) results are well aligned and all 

follow the weak law of large numbers to perform a consistent 

variance degradation at −3 dBW per octave of NDCO.  

V. SUMMARY AND FUTURE WORK 

The key signal-and-circuit parameters are summarized 

below for enabling the RSA with SAVR technique: τ 

(converted from Δt) is the quantity under each measurement; 

T (converted from ΔtMAX) is the dynamic range under each 

measurement; TDCO,MIN is the deterministic portion of each 

DCO period; ΔTPRBS,MAX is the PDF span of the stochastic 

portion of each DCO period; the relations among TDCO,MIN, 

ΔTPRBS,MAX, and T are the key parameters to perform 

effective SAVR; NDCO is the total number of the samples; 

NEXP is not involved in the circuit implementation but 

required for the software/lab experiments to statistically 

verify the theoretical formulas and the performance 

estimations of the RSA-based technique. 

The comparison of the RSA-based TCSPC systems in [45] 

and this paper is summarized in Table I based on the circuit 

simulations along with the silicon measurement results of 

multiple state-of-the-art TDC implementations. Note that the 

primary focus of this paper is to comprehensively elaborate 

the probability theories and implementable mathematical 

models of the SAVR technique, so the intent of this 

comparison is to cover a bigger picture of the modern TDC 

evolution in standard CMOS process nodes; not to show 

unfair competition by taking advantage of simulation results. 

Overall, the SAVR technique enhances the conversion-

rate by 62 (up to 120 kHz) with 7% power overhead 

compared to those of the ordinary RSA-based TDC in [45]. 

This improvement is also reflected by the energy efficiency 

of 3.1 pJ/step. To further broaden the potential of RSA in the 

quantum applications, a couple of VR related techniques are 

under investigation. One is to stretch the limit of SAVR, i.e., 

scaling down the ΔTPRBS,MAX and/or LSB capacitance for the 

DCO frequency modulation toward the limit of advanced 

CMOS process technology, which can pretty much offer 

additional 4 conversion-rate improvement without any 

extra power consumption. The other is to utilize a well-

controlled VR technique with the downside of higher 

power/area overhead [50]. The forthcoming research and 

silicon-photonics realization will take the complementary 

benefits of these VR techniques to boost the conversion-rate 

of RSA up to the range of MHz and accordingly to achieve 

sub-pJ/step energy efficiency. 
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