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Abstract—Photoacoustic computed tomography (PACT) 

images optical absorption contrast by detecting ultrasonic 
waves induced by optical energy deposition in materials 
such as biological tissues. An ultrasonic transducer array 
or its scanning equivalent is used to detect ultrasonic 
waves. The spatial distribution of the transducer elements 
must satisfy the spatial Nyquist criterion; otherwise, spatial 
aliasing occurs and causes artifacts in reconstructed 
images. The spatial Nyquist criterion poses different 
requirements on the transducer elements’ distributions for 
different locations in the image domain, which has not been 
studied previously. In this research, we elaborate on the 
location dependency through spatiotemporal analysis and 
propose a location-dependent spatiotemporal antialiasing 
method. By applying this method to PACT in full-ring array 
geometry, we effectively mitigate aliasing artifacts with 
minimal effects on image resolution in both numerical 
simulations and in vivo experiments. 

 
Index Terms—Photoacoustic computed tomography, 

spatial Nyquist criterion, location-dependent 
spatiotemporal antialiasing 

I. INTRODUCTION 

HOTOACOUSTIC computed tomography (PACT) images 
biological tissues’ optical absorption through detection of 

photon-induced ultrasonic waves [1]–[7]. PACT forms high-
resolution images at greater depths than ballistic optical 
imaging [8] by using tissues’ much lower scattering to 
ultrasonic waves than to photons. An ultrasonic transducer 
array or its scanning equivalent is often used to detect photon-
induced ultrasonic waves. The detected signals are then used to 
recover tissues’ optical absorption through image 
reconstruction [9]–[13]. In ultrasonic detection, the Nyquist 
sampling criterion must be satisfied in both spatial and temporal 
dimensions to avoid aliasing. The Nyquist criterion in the 
temporal dimension is typically satisfied because of the limited 
bandwidth of the ultrasonic transducer and the high temporal 
sampling frequency of the data acquisition system. However, 
sparse spatial sampling is commonly used to reduce system cost 
or scanning time, which may violate the Nyquist criterion in 
spatial dimensions (spatial Nyquist criterion) and cause artifacts 
in reconstructed images due to spatial aliasing [1], [14]–[16]. 

Various methods have been proposed to mitigate artifacts 
caused by spatial aliasing. In the image domain, total variation 
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(TV) regularization has been used in model-based iterative 
methods to mitigate noise and aliasing artifacts [12], [17]–[20]. 
In PACT, because the image domain is identical to the object 
domain, we will use them interchangeably henceforth. TV 
regularization shows high performance for piecewise smooth 
images [21], [22]. However, for PACT images with rich blood 
vessel structures, TV regularization tends to suppress vessels of 
small diameters. A regularization strategy specifically suited 
for vessel structures is needed. Deep learning has been proved 
effective in processing images with complex structures [23]–
[28] and has shown an advantage in maintaining vessel 
structures [29]. However, a neural network is often system 
dependent and not universally applicable across different 
imaging systems or detection geometries. In the signal domain, 
temporal filtering and spatial interpolation have been used for 
antialiasing [15]. However, it is still a challenge to find a 
balance between mitigating aliasing artifacts and maintaining 
image resolution. Another method proposed by Cai et al. [30] 
mitigates aliasing artifacts by connecting the image domain and 
the signal domain. It identifies potential sources of aliasing 
signals in the image domain, maps the sources to the signal 
domain, suppresses all the signals in the mapped region, and 
uses the remaining signals for image reconstruction [30]. This 
method performs well if there exist only a few dominant 
sources of aliasing signals. As sources of aliasing signals 
increase, this method may cause substantial information loss. 

To mitigate aliasing artifacts without compromising image 
resolution, we perform detailed spatiotemporal analysis for 
image subdomains here. We first reconstruct an image using the 
universal back-projection (UBP) method [9]. Applying a 
threshold to the reconstructed image, we identify the dominant 
sources of aliasing signals. Then we divide the whole image 
domain into multiple subdomains. We apply spatiotemporal 
analysis to source points, transducer locations, and each 
subdomain's reconstruction locations [15], revealing the spatial 
aliasing effects on the subdomain in detail. Next, we apply 
temporal filtering and spatial interpolation to signals so that the 
filtered signals satisfy the spatial Nyquist criterion specifically 
for this subdomain. We use the filtered signals to form an image 
in this subdomain. Repeating this process for all subdomains, 
we mitigate the aliasing artifacts for the whole image. We call 
this method location-dependent spatiotemporal antialiasing. 
Through numerical simulations, we demonstrate that the 

P 
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proposed method effectively mitigates aliasing artifacts with 
minimal effects on the image resolution. We further validate 
this method through in vivo human breast imaging. 

II. UBP METHOD AND LOCATION-DEPENDENT RECENTERING 

OF SIGNALS 

In the forward model in PACT with a homogeneous medium, 
the signal detected by the element at the location �� and time � 
is expressed as [8], [15]  

�̂(��, �) =
1

4���
� ��

��(��
� )
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� = 1,2, … , �, � ≥ 0. (1)

 

Here, we have � point sources distributed at ��
� , � =

1,2, … , �, and � point transducer elements distributed at 
��, � = 1,2, … , �; � is the speed of sound; �� is the volume of 
the �-th source point; ��(��

� ) is the initial pressure at ��
� ; ℎ�(�) 

is the ultrasonic transducer’s electric impulse response (EIR), 
and ℎ�

� (�) denotes its time derivative. Based on the UBP method 
[9], the initial pressure can be reconstructed from the detected 
signals. In a spatially discrete form, the reconstruction can be 
expressed as  
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, ��� ∈ �. (2) 

Here, �̂�(���) is the reconstructed initial pressure at ���, � is the 

image domain, and ��(��, �) = 2�̂(��, �) − 2�
���(��,�)

��
 is the 

back-projection term computed from the detected signals. The 

weights ��, � = 1,2, … , � express the solid-angle term 
��

��
 in 

UBP [9]. Substituting (1) into (2), we obtain  
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As demonstrated in [15], spatial aliasing in PACT has two 
sources: spatial sampling and image reconstruction. Spatial 
aliasing in spatial sampling and image reconstruction can be 

explained by analyzing the step size of 
���

� ����

�
 (in (1)) and 

��������

�
−

���
� ����

�
 (in (3)), respectively, as � varies [15]. Here, 

we divide the whole image domain � into subdomains; then we 
analyze these two terms and develop antialiasing strategies for 
each subdomain. 

For simplicity, we focus on 2D image reconstruction and 
consider only rectangular subdomains. For a subdomain ���� 
of size �� × �� centered at ��,���

� , we shift the time � to �� 

according to �� = � −
���,���

� ����

�
; instead of analyzing �̂(��, �), 

we analyze  

�̂����
(��, ��) = �̂ ���, �� +

���,���
� − ���

�
� , � = 1,2, … , �, (4) 

which corresponds to a temporal recentering of signals based 
on the transducer elements’ distances to the subdomain center 
��,���

� . After the recentering, the signals originating from ��,���
�  

arrive at all detectors at time 0, and the exact range of interest 
for �� is dynamically determined for each subdomain. This 
recentering is essential in antialiasing to minimize temporal 
filtering and thus image blurring. Substituting (1) into (4) 
yields  
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III. SPATIOTEMPORAL ANTIALIASING FOR AN IMAGE 

SUBDOMAIN 

Given the subdomain ����, we categorize our analysis into 
four cases with increasing complexities: without point sources 
outside ����, with a single point source outside ����, with 
multiple point sources outside ����, and with general sources 
outside ����. In all cases, we discuss image reconstruction only 
in ����. 

A. Without point sources outside the subdomain 

In the first case, without point sources outside the subdomain 
����, we perform spatiotemporal analysis only for source points 
and reconstruction locations inside ����. Let �� and ��� be a 
source point and a reconstruction location, respectively, in 
����. Let � and ���� be two adjacent element locations, as shown 

in Fig. 1(a). 
First, we analyze spatial aliasing in spatial sampling based on 

(5). We define  
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and its step size when the element location � changes to ����:  

���, ����, ��,���
� , ��� = ������

� − ��
�� =

�
�

�
��� − �����

�
−

‖�� − �‖

�
� −

�
���,���

� − �����

�
−

���,���
� − ��

�
�

�
� ,

�� ∈ ����. (7)

 

For any �� ∈ ���� with ‖�� − �‖ ≠ ��� − �����, there exists a 

branch (blue-dotted curve in Fig. 1(a)) of a hyperbola crossing 
�� and with � and ���� as the foci. We denote either one of the 

intersection points (using the other one leads to the same result) 
between the branch and the boundary of ���� as ���, as shown in 
Fig. 1(a). For convenience, we denote the boundary of ���� as 
����� in the following discussions. Based on one of the 

hyperbola’s definitions, we have 
���������

�
−

������

�
=

����������

�
−

�������

�
. For any �� ∈ ���� with ‖�� − �‖ = ��� −

�����, �� will be on the perpendicular bisector (black-dashed 

line in Fig. 1(a)) of the line segment with � and ���� as 

endpoints. Here, we define  

�����
��, ����� = max

��∈�����

���, ����, ��,���
� , ��� . (8) 
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We choose ��� as one of the intersection points between the 
perpendicular bisector and �����. Thus, for any �� ∈ ����, 

replacing �� with ��� in ���, ����, ��,���
� , ��� does not change its 

value, yielding  

���, ����, ��,���
� , ��� = ���, ����, ��,���

� , ���� ≤ �����
��, �����,

�� ∈ ����. (9)
 

Through (9), we simplify the estimation of the upper limit of 

���, ����, ��,���
� , ��� from searching �� in ���� to searching �� on 

�����, which reduces the computation cost by one dimension. 
Due to spatiotemporal coupling, as shown in the term � −

�
���

� ����

�
−

���,���
� ����

�
� in (5), the upper cutoff frequency ��,�� 

for spatial sampling must meet the Nyquist criterion:  

��,�� <
1

2�����
��, �����

. (10) 

Denoting  

��,����
(��) = min

��� �� �������� �� ��

1

2�����
(��, ���)

,

�, �� = 1,2, … , �, (11)

 

we can remove aliasing in the spatial sampling by processing 
signals of the element located at �� using a lowpass filter with 
an upper cutoff frequency ��,����

(��), � = 1,2, … , �. The filter 

is implemented as a third-order lowpass Butterworth filter 
combined with a sinc filter with the same upper cutoff 
frequency. 

Next, we analyze spatial aliasing in the image reconstruction 
based on (3). For this analysis, we first estimate the upper limit 

of the step size of 
�������

�
−

������

�
 between two adjacent element 

locations � and ����: 
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Based on (9), we use the triangular inequality to obtain  

���, ����, ��, ���� ≤ ���, ����, ��,���
� , ��� + ���, ����, ��,���

� , ����

≤ 2�����
��, �����, ��, ��� ∈ ����. (13)

 

From (9) and (13) as well as (11), we conclude that removing 
aliasing in the image reconstruction can be accomplished by 
additional lowpass filtering with an upper cutoff frequency 
��,����

(��)

�
, � = 1,2, … , �. We observe that this cutoff frequency 

is half the value required for removing aliasing in the spatial 
sampling. This observation agrees with our previous finding 
[15], where the whole image domain was globally analyzed. 
This filtering would further compromise the spatial resolution. 

Fortunately, the additional filtering is avoided by spatial 
interpolation if aliasing in the spatial sampling is removed first. 
We denote the denser element locations after the spatial 
interpolation as ��,�, � = 1,2, … , �� with � being an integer. 

Note that the denser element locations coincide with the 
physical element locations at �� = ��,�(���)��, � = 1,2, … , �. 

For each ��, the recentered signals (�̂����
(��, ��)) from all the 

transducer elements form a vector of length �. We apply fast 
Fourier transform (FFT) to the vector and pad zeros following 

the highest frequency components to form a new vector of 
length ��. Then we apply inverse FFT to the new vector to 
finish the spatial interpolation. Updating (11) with the denser 
locations, we obtain  

��,����,����,�� = min
��,�� �� �������� �� ��,�

1

2�����
���,�, ��,���

,

�, �� = 1,2, … , ��. (14)

 

From (7) and (8), we see that the larger the value of �, the 
closer the adjacent element locations, the smaller the value of 

�����
���,�, ��,���, and the larger the value of ��,����,����,��. 

According to (13) and (14), we can filter the signals of the �-

th channel with upper cutoff frequency 
��,����,����,��

�
 to remove 

aliasing in the image reconstruction. To avoid compromising 
spatial resolution further, we choose � such that  

��,����,����,�(���)���

2
≥ ��,����

(��), � = 1,2, … , �. (15) 

Thus, after the first temporal filtering with the upper cutoff 
frequency of ��,����

(��) to remove aliasing in the spatial 

sampling and the spatial interpolation with factor �, we no 
longer need to perform additional temporal filtering for image 
reconstruction. Because a general subdomain is off-centered in 
the image domain, the spatial interpolation is applied to the 
recentered signals �̂����

(��, ��) instead of the original signals 

�̂(��, �). In our previous study for the whole image domain [15], 
we have � = 2. In this research, the minimal � satisfying (15) 
is obtained through numerical computations for each 
subdomain. 

 
Fig. 1. Location-dependent spatiotemporal analysis. (a) No point sources 
outside the subdomain. A full-ring transducer array (red circle), an image 
subdomain (rectangle with gray interior and blue boundary, denoted as ����, 
centered at ��,���

� , and of size �� × ��), two adjacent element locations � and ����, 

a source point �� inside ����, and a reconstruction location ��� inside ����. 
There exists a hyperbola with � and ���� as the foci, and with one branch (blue 

dotted curve) crossing ��. One of the branch’s intersection points with the 
boundary of ���� is denoted as ���. This graph is used in the spatiotemporal 
analysis for ���� without point sources outside. (b) One or multiple point 
sources outside the subdomain. A full-ring transducer array, an image 
subdomain ���� centered at ��,���

� , two adjacent element locations � and ����, 

and a reconstruction location ��� inside ����. We have a single source point (��) 
or multiple source points (��

�, ��
�, ��

� , …) outside ����. This graph is used in the 
spatiotemporal analysis for ���� with a single or multiple point sources outside. 
(c) Multiple point sources outside multiple subdomains. A full-ring transducer 
array, two image subdomains �� and �� (centered at ��,�

�  and ��,�
� , respectively), 

and a group of source points: ��
�, ��

�, ��
� , …. 

In summary, to implement spatiotemporal antialiasing in 
����, we first apply location-dependent temporal filtering 
(LDTF) to the recentered signals �̂����

(��, ��) of each element 

with an upper cutoff frequency ��,����
(��), and obtain 

�̂����,����(��, ��), � = 1,2, … , �. Then we apply spatial 

interpolation with a factor � to the filtered signals and obtain 

������
���,�, ���, � = 1,2, … , ��. After reversing the temporal 
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recentering of the signals based on the relation 

�����,�, �� = ������
���,�, � −

���,���
� − ��,��

�
� ,

� = 1,2, … , ��, � ≥ 0, (16)

 

we reconstruct the image in ���� using (2) for the denser 
element locations. 

B. With a single point source outside the subdomain 

We increase the complexity of our theory by adding a single 
point source at �� outside the subdomain ����, as shown in Fig. 
1(b). For the single source point ��, (5) reduces to  
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(��, ��) =

���(��)
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where ��(��) is the initial pressure at �� ∈ �\���� and � is the 
volume of the source point. Similarly, (3) reduces to  

�̂�(���) ≈
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�
� , ��� ∈ ����. (18) 

Here, we confine the image reconstruction in ���� by letting 
��� ∈ ����. 

We first analyze spatial aliasing in spatial sampling for 
signals from the source point ��. Based on (17), the spatial 

aliasing is determined by the step size of 
�������

�
−

���,���
� ����

�
 as 

� varies. Using (7), we express the step size as 

����, ���, ��,���
� , ��� for adjacent element locations �� and ���, 

and we define the upper cutoff frequency as  

��,��,����,��(��, ��) = min
��� �� �������� �� ��

1

2����, ���, ��,���
� , ���

,

�, �� = 1,2, … , �. (19)

 

To remove aliasing in spatial sampling (SS in the subscript) for 
signals from the source point �� outside the subdomain (OS in 
the subscript), we apply lowpass filtering to �̂����

(��, ��) with 

the above upper cutoff frequency. We assume that the value of 
ℎ�

� (�) is nonzero only for � in an interval [0, ��] ([0, 1.8 μs] for 
this research), which is often small for the transducers used in 
PACT. To minimize unwanted smoothing of signals, we filter 

�̂����
(��, ��) only for �� − �

�������

�
−

���,���
� ����

�
� ∈  [0, ��]. 

Then we analyze spatial aliasing in the image reconstruction 
for signals from the source point �� based on (18). We estimate 

the upper limit of the step size of 
��������

�
−

�������

�
 as � varies 

using  

���, ����, ��, ���� ≤ ���, ����, ��, ��,���
� � + ���, ����, ��,���

� , ����

≤ ���, ����, ��, ��,���
� � + �����

��, �����,

�� ∈ �\����, ��� ∈ ����. (20)

 

To remove aliasing in the image reconstruction (IR in the 
following subscript) for signals from the source point ��, we can 

apply a second lowpass filtering to �̂����
(��, ��) with an upper 

cutoff frequency  
��,��,����,��(��, ��) =

min
��� �� �������� �� ��

1

2 �����, ���, ��, ��,���
� � + �����

(��, ���)�
,

�, �� = 1,2, … , �. (21)

 

To avoid the second lowpass filtering, after the first lowpass 
filtering, we apply spatial interpolation to the filtered signals 
and obtain the interpolated signals at virtual locations ��,�, � =

1,2, … , ��. Updating (21) with these virtual locations, we 
obtain  

��,��,����,��,����,�, ��� = 

min
��,�� �� �������� �� ��,�

1

2 �����,�, ��,��, ��, ��,���
� � + �����

���,�, ��,����
, 

�, �� = 1,2, … , ��. (22) 
Here, we still have the relation �� = ��,�(���)��, � = 1,2, … , �. 

We choose a minimal � such that  

��,��,����,��,����,�(���)��, ��� ≥ ��,��,����,��(��, ��),

� = 1,2, … , �. (23)
 

The factor � is obtained through numerical computations. 
In practice, we have signals from both the subdomain ���� 

and the source point ��. First, we rewrite (19) (for the source 
point ��), which applies to only the time domain subsets, as  

��,��,����,��(��, ��, ��) = �
��,��,����,��(��, ��), �� − ��

� ∈  ��

��,��, else
,

� = 1,2, … , �, (24)

 

which applies to the whole time domain. Here, ��
� =

�������

�
−

���,���
� ����

�
 denotes the recentered first arrival time from �� to ��, 

and ��,�� denotes the upper cutoff frequency of the imaging 

system (IS in the subscript). Next, we combine the upper cutoff 
frequencies in (11) (for the subdomain ����) and (24) to yield 
the following upper cutoff frequency of the recentered signal 
�̂����

(��, ��): 

��,����,��(��, ��) = min���,����
(��), ��,��,����,��(��, ��, ��)� . (25) 

For the �-th element at time ��, by applying lowpass filtering 
with the above upper cutoff frequency, we remove aliasing in 
spatial sampling for signals from both the subdomain ���� and 
the source point ��. This LDTF process is computationally 
intensive if implemented directly. In this research, we provide 
an efficient implementation through precomputation and 
interpolation, as shown in Appendix A. Based on (31) in 
Appendix A, we express the filtered signals as 
�̂����,����,��(��, ��). Further, we apply to the filtered signals a 

spatial interpolation with the minimal factor � satisfying (15) 
and (23), and reverse the recentering of the interpolated 
signals. We finish the reconstruction in the subdomain ���� 
based on (2) for the virtual locations and denote the 
reconstructed image in ���� as �̂�,����,��(���), ��� ∈ ����. 

C. With multiple point sources outside the subdomain 

We further extend our theory to include multiple point sources 
outside the subdomain ����. We denote the set of source points 
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outside ���� as � = {��
�, ��

�, ��
�, … }, as shown in Fig. 1(b), and 

update the upper cutoff frequency as follows:  
��,����,�(��, ��) =

min ���,����
(��), min

��∈�
��,��,����,��(��, ��, ��)� ,

� = 1,2, … , �. (26)

 

To remove spatial aliasing in the spatial sampling for signals 
from the subdomain ���� and the source points in �, we apply 
lowpass filtering with the above upper cutoff frequency to the 
recentered signal �̂����

(��, ��) of the n-th element at time ��, 

and obtain �̂����,����,�(��, ��) ((31) in Appendix A). Then we 

find the minimal � such that (15) and (23) are satisfied for all 
� = 1,2, … , � and �� ∈ �. Spatially interpolating the filtered 
signals with the factor �, reversing the recentering of the 
interpolated signals, and using (2) for the denser locations, we 
reconstruct the image for the subdomain ����, denoted as 
�̂�,����,�(���), ��� ∈ ����. 

D. With general sources outside the subdomain 

In the fourth case, we consider general sources outside the 
subdomain ����. A direct method for LDTF with general 
sources is selecting all voxels outside ���� as source points 
(grouped as �) and using (26) to obtain the upper cutoff 
frequencies for lowpass filtering. However, this direct method 
causes severe blurring in the reconstructed images due to 
unwanted filtering. To minimize unwanted filtering during 
spatiotemporal antialiasing, we select multiple sets of sparsely 
distributed source points in the image domain (Appendix B), 
denoted as ��, ��, … , ��. We repeat the process in the previous 

case for each �� and obtain an image of the subdomain ����, 

denoted as �̂�,����,��
(���), ��� ∈ ����, � = 1,2, … , �. The final 

image for the subdomain ���� is obtained through averaging  

�̂�,����
(���) =

1

�
� �̂�,����,��

(���)

�

���

, ��� ∈ ����. (27) 

For ��� ∈ �\����, we define �̂�,����
(���) as zero. 

IV. DIVISION OF IMAGE DOMAIN AND MOSAICKING OF 

SUBDOMAIN IMAGES 

We divide the whole image domain � into multiple 
subdomains ��, ��, … , ��, as shown in Appendix B. In Fig. 
1(c), we depict two subdomains with a group of outside point 
sources. To form the whole image, these subdomains must 
satisfy  

� = �� ∪ �� ∪ … ∪ ��. (28) 
To mitigate artifacts caused by pixel-value mismatch on 
subdomain boundaries, we overlap adjacent subdomains by a 
length of ��� (Fig. 8(b) in Appendix B). Then, for each 
subdomain ��, we repeat the process described in the fourth 
case above to obtain �̂�,��

(���), � = 1,2, … �. Finally, we mosaic 

these subdomain images to form the whole image:  

�̂�(���) ≈ � ����(��),��(��),���
���� − ��,�

� ��̂�,��
(���)

�

���

, ��� ∈ �. (29) 

Here, ��(��) and ��(��) denote the sizes of the rectangle �� in 

�-axis and �-axis directions, respectively, and ��,�
�  is the center 

of ��. The normalized weight function ��  is defined by (34) in 
Appendix B. 

In summary, we have the general workflow of the location-
dependent spatiotemporal antialiasing for PACT, shown in Fig. 
2. 

 
Fig. 2. Workflow of the location-dependent spatiotemporal antialiasing for 
PACT. 

V. NUMERICAL SIMULATIONS WITH POINT SOURCES 

A. Spatial aliasing in the image domain and signal 
domain 

Before applying spatiotemporal antialiasing, we first visualize 
the spatial aliasing in both the image domain and signal domain 
through simulations with point sources. In fact, we were 
inspired to propose LDTF by observing the connection between 
spatial aliasing in these two domains. We use the MATLAB k-
wave toolbox [31] for the 2D forward simulation with a ring 
transducer array of radius � = 110 mm. We let the frequency 
range of the transducer be from 0.1 MHz to 4.5 MHz (2.3-MHz 
central frequency, 191% one-way bandwidth, the upper cutoff 
frequency ��,�� = 4.5 MHz) and the number of transducer 

elements be � = 512. We set the speed of sound as � =
1.5 mm ⋅ μs��. The shorter cutoff wavelength of this 

transducer is �� =
�

��,��
≈ 0.33 mm.  

In this simulation, non-zero initial pressure exists only at 
three point sources A, B, and C located at ��, ��, and ��, 
respectively. We reconstruct an image of the initial pressure 
from the simulated signals using the UBP method, shown in 
Fig. 3(a) with the three points labeled. Both this image and the 
ring array are centered at the origin. We denote the one-way 

Nyquist zone �� = ����‖��‖ <
���

��
� for the ring array [15] as a 
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blue-solid circle in Fig. 3(a), where the radius of �� is 
���

��
≈

13.6 mm. For source points in ��, there is no aliasing in the 
spatial sampling. Closeup images of both subdomains (�� and 
��) in the red-dashed box and the yellow-dashed box (Fig. 3(b) 
and (c)) show aliasing artifacts. 

 
Fig. 3. Spatial aliasing in the image domain and signal domain. (a) A 
reconstructed image of three point sources (A, B, and C) with the one-way 
Nyquist zone �� (blue-solid circle). (b) and (c) Closeup subsets of (a) in the (b) 
red-dashed box and (c) the yellow-dashed box. Reconstruction locations P1–P5 
along an artifact streak and Q1–Q5 from different artifact streaks are picked in 
(b) to identify the sources of artifacts. (d) Signals recentered based on (5) with 
��,�

� = ��. The signals used in the reconstructions at locations P1–P5 are marked 

by dotted curves with different colors. (e) The same recentered signals as in (d) 
but marked by colored-dotted curves showing signals used for the 
reconstructions at locations Q1–Q5. (f1)-(g1), (f2)-(g2), (f3)-(g3), (f4)-(g4), 
and (f5)-(g5) Signals acquired with spatial sampling frequencies of (f1) 3.33 
MHz, (f2) 4.00 MHz, (f3) 5.00 MHz, (f4) 6.67 MHz, and (f5) 10.00 MHz, and 
their integration values along the respective dashed vertical lines ((g1)–(g5)). 
(h) Normalized STD of the integration value versus the spatial sampling 
frequency. 

To identify the sources of aliasing artifacts in the signal 
domain, we recenter the detected signals based on (5) by letting 
��,�

� = ��. The recentered signals are shown in both Fig. 3(d) 

and (e), with the horizontal direction representing the time (��) 
and the vertical direction as the element index (�). For better 
visualization, the recentered signals are truncated in the 
temporal dimension while still containing all signals from the 
subdomain ��. Because the spatial Nyquist criterion is satisfied 
after recentering, signals from both B and C are smooth in both 
spatial and temporal dimensions. By contrast, signals from A 
appear dashed in Fig. 3(d) and (e) because the spatial Nyquist 
criterion is violated. 

We show that these dashed patterns are sources of aliasing 
artifacts in Fig. 3(b) by visualizing the connection between the 
image domain and signal domain. In fact, from (2), we know 
that reconstruction at each point in the image domain using the 
UBP method is a weighted integration of a subset in the signal 
domain. In subdomain ��, we pick reconstruction locations P1–
P5 along an artifact streak and locations Q1–Q5 on different 
artifact streaks, as shown in Fig. 3(b). Subsets for integrations 
in the signal domain for the two groups of reconstruction 
locations are shown as colored-dotted curves in Fig. 3(d) and 
(e), respectively. In Fig. 3(d), the five colored-dotted curves all 

intersect with the signals from point A at approximately the 
same point. Spatial aliasing at this point in the signal domain is 
transformed by the UBP method to an artifact streak in the 
image domain. In other words, sharing the same point in the 
signal domain corresponds to sharing the same artifact streak in 
the image domain. In Fig. 3(e), the five colored-dotted curves 
intersect with the signals from point A at different points, which 
correspond to different artifact streaks in the image domain. In 
summary, aliasing artifacts in a subdomain are caused by 
dashed portions of signals that are recentered to this subdomain. 
For the subdomain ��, the spatially dashed portions of 
recentered signals may come from all three points, which are 
far from ��. Thus, the artifacts in Fig. 3(c) have more complex 
patterns than those in Fig. 3(b). 

We further intuitively explain spatial aliasing. The colored-
dotted curves in Fig. 3(d) and (e) intersect with not only the 
signals from point A but also the signals from points B and C. 
Signals from points B and C do not contribute to the aliasing 
artifacts in Fig. 3(b), which can be explained by the Nyquist 
criterion based on (5), as well as by the following intuitive 
geometric description. For each combination of a source point 
and a reconstruction location, the signals from the source point 
and the integration subset intersect. Both the signals and the 
integration subset have temporal step sizes when the element 
index � varies. It is the difference between the two temporal 
step sizes at the intersection points that determines the 
amplitude of the aliasing artifact at the reconstruction location. 
Signals with differential temporal step sizes of 0.30 μs, 0.25 μs, 
0.20 μs, 0.15 μs, and 0.10 μs (corresponding to spatial sampling 
frequencies 3.33 MHz, 4.00 MHz, 5.00 MHz, 6.67 MHz, and 
10.00 MHz, respectively) are shown in Fig. 3(f1)–(f5), 
respectively. In the simplest case that the temporal step size of 
the integration subset is approximately zero within a 
sufficiently small subdomain, we let the temporal step size of 
the signals vary. Thus, the integration subsets in Fig. 3(f1)–(f5) 
are vertical lines as indicated by the white-dotted line in Fig. 
3(f2). Normalized integration values (integrals) at different 
times in Fig. 3(f1)–(f5) are shown in Fig. 3(g1)–(g5), 
respectively. We see that the oscillation amplitude of the 
integral decreases as the spatial sampling frequency increases. 
Comparing integrations in Fig. 3(f1) and Fig. 3(f5), we see a 
key difference: at different times in Fig. 3(f1), the values along 
an integration line are dominated by positive values or negative 
values, resulting in fluctuating integrals; however, in Fig. 3(f5), 
there is no such dominance, resulting in a close-to-zero integral 
at any time. Thus, intuitively, the amplitudes of aliasing 
artifacts (caused by signals from a given source point) in the 
image domain are determined by the dominance of values of 
certain signs in the integration subsets, which are further 
determined by the relative temporal step sizes of the signals and 
integration subsets at their intersection points. Using standard 
deviation (STD) to quantify the amplitude of integrals in Fig. 
3(g1)–(g5), we obtain the amplitude’s dependency on the 
spatial sampling frequency, as shown in Fig. 3(h). Based on the 
Nyquist criterion, the amplitude is negligible for a spatial 
sampling frequency greater than 2��,�� = 9.0 MHz. 
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B. Image reconstruction with spatiotemporal 

antialiasing 

To mitigate aliasing artifacts, our previous work [15] used 
spatial interpolation and radius-dependent temporal filtering 
(RDTF) for a centered subdomain without strong outside 
sources, and here we propose LDTF for off-centered 
subdomains. We consider image reconstructions for only the 
two subdomains, �� and ��, shown in Fig. 3(a). 

We first visualize the final signals used for the reconstruction 
of the subdomain �� in each method. For UBP without 
antialiasing, the signals (�̂��

(��, ��)) recentered based on (5) 

with ��,�
� = �� are shown in Fig. 4(a1) (the same as in Fig. 3(d) 

and (e)). For UBP with spatial interpolation, the original signals 
(�̂(��, �)) are interpolated in spatial dimension then recentered 
for better comparison, as shown in Fig. 4(a2). For UBP with 
RDTF and spatial interpolation, the original signals (�̂(��, �)) 
are processed first by RDTF then by spatial interpolation. The 
results are further recentered for better comparison, as shown in 
Fig. 4(a3). For UBP with LDTF and spatial interpolation, the 
recentered signals (�̂��

(��, ��)) are processed first by LDTF 

with only one set of source points � = {��, ��, ��} shown in Fig. 
3(a) then by spatial interpolation, resulting in Fig. 4(a4). 

 
Fig. 4. Spatiotemporal antialiasing for the image reconstruction of point 
sources. (a1)–(a4) Final spatiotemporal signals used for reconstructions of the 
subdomain �� in UBP, UBP with spatial interpolation (SI), UBP with RDTF 
and SI, and UBP with LDTF and SI. (b1)–(b4) Images of the subdomain �� 
reconstructed using (b1) UBP, (b2) UBP with SI, (b3) UBP with RDTF and SI, 
and (b4) UBP with LDTF and SI. (c1)–(c4) Images of the subdomain �� 
reconstructed using the four methods to show artifacts only. (d)–(g) 
Comparisons of the values along dashed lines (d) L1, (e) L2, (f) L3, and (g) L4, 
respectively, for the four methods. The full width at half maximum (FWHM) 
of the main lobe in (f) is 0.79 mm for UBP with RDTF and SI, and 0.40 mm for 
UBP with LDTF and SI. The amplitudes are 0.67 and 1.09, respectively. 

The image of the subdomain �� reconstructed using UBP, 
UBP with spatial interpolation, UBP with RDTF and spatial 
interpolation, and UBP with LDTF and spatial interpolation are 
shown in Fig. 4(b1)–(b4), respectively. Aliasing artifacts in the 
subdomain �� are caused by signals from the source point A. 
These artifacts appear in the whole subdomain in Fig. 4(b1) and 
partially in Fig. 4(b2) and (b3). They are substantially mitigated 

in the whole subdomain in Fig. 4(b4). In addition, the images 
of point sources B and C in Fig. 4(b4) maintain the isotropy 
shown in (b1) while those in Fig. 4(b2) and (b3) are 
anisotropically blurred. These differences in aliasing artifacts 
and image blurring are determined by the final signals used for 
reconstruction in the different methods. Comparing Fig. 4(a1) 
and (a2), we see that the signals from A (sources of aliasing 
artifacts in ��) are partially mitigated by spatial interpolation 
and the signals from B and C are partially disrupted by spatial 
interpolation. These partial mitigation and disruption are caused 
by the fact that the spatial Nyquist criterion is only partially 
satisfied in the original signals (�̂(��, �)). The partial mitigation 
of the signals from A causes partial mitigation of the aliasing 
artifacts in ��, whereas the partial disruption of the signals from 
B and C causes anisotropic blurring in ��, as shown in Fig. 
4(b2). RDTF further blurs signals from all the three points, as 
shown in Fig. 4(a3); however, large numbers of aliasing 
artifacts remain, as shown in Fig. 4(b3). In contrast, LDTF with 
spatial interpolation substantially suppresses signals from A 
while maintaining signals from B and C. Thus, as shown in Fig. 
4(b4), LDTF substantially mitigates aliasing artifacts and 
maintains the spatial resolution.  

Repeating the four reconstruction methods for the subdomain 
�� yields the images shown in Fig. 4(c1)–(c4). Aliasing 
artifacts in �� are caused by signals from all the three point 
sources. Neither RDTF nor spatial interpolation effectively 
mitigates signals from these points, resulting in abundant 
aliasing artifacts in the reconstructed images, as shown in Fig. 
4(c1)–(c3). By contrast, LDTF with spatial interpolation 
substantially suppresses signals from all the three points, 
resulting in markedly reduced aliasing artifacts, as shown in 
Fig. 4(c4). 

For quantitative comparisons, we first pick a line L1 labeled 
in Fig. 4(a1) with the values along the line for the four methods 
shown in Fig. 4(d). In comparison to the raw signal, signals 
from B and C are distorted by spatial interpolation, blurred by 
RDTF, but maintained by LDTF with spatial interpolation. To 
compare the effects in the image domain, we draw two lines L2 
and L3 in the subdomain ��, as shown in Fig. 4(b1). The values 
along lines L2 and L3, respectively, for the four methods, are 
compared in Fig. 4(e) and (f). LDTF with spatial interpolation 
is superior in antialiasing as shown in Fig. 4(e) while 
maintaining the spatial resolution as shown in Fig. 4(f). 
However, spatial interpolation anisotropically blurs the image 
through signal disruption; RDTF further blurs the image 
through temporal lowpass filtering. These blurring effects in the 
image domain are shown in Fig. 4(f). To compare aliasing 
artifacts in ��, we show the values along a line L4 labeled in 
Fig. 4(c1) for the four methods in Fig. 4(g). We see that LDTF 
with spatial interpolation is still superior for antialiasing in ��. 
Note that RDTF and spatial interpolation’s ineffectiveness for 
antialiasing in �� and �� is not contradictory with the results in 
[15], where aliasing artifacts are mainly caused by signals from 
sources close to or inside the one-way Nyquist zone ��. 
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VI. NUMERICAL SIMULATIONS OF BLOOD VESSEL 

PHANTOMS 

We further validate the proposed method using two 
numerical blood vessel phantoms. The first numerical phantom 
consists of simple blood vessel structures, as shown in Fig. 
5(a1). Two subsets of the simple numerical phantom enclosed 
in the red-dashed box and the yellow-dashed box, respectively, 
are shown in Fig. 5(b1) and (c1). 

In the point source simulations presented in the above 
section, we select only two subdomains and all the three source 
points for spatiotemporal antialiasing, as shown in Fig. 4(a4), 
(b4), and (c4). For a general numerical phantom with blood 
vessel structures, multiple parameters are used to control the 
image reconstruction. As shown in Appendix B, the selection 
of source points is controlled by subdomain size ���, candidacy 
ratio �, and the number of sets �; while the image-domain 
division is controlled by subdomain size ��� and overlapping 
size ���. Additionally, we reduce �� in (24) to an optimal value 
�� to minimize unwanted blurring of images. For more efficient 
tuning of the ranges, we scale �� for each subdomain to a 
balanced location-dependent parameter ��(��), � = 1,2, … , �, as 
proposed in Appendix C. In summary, six parameters 
(���, �, �, ���, ���, ��) need to be tuned for best reconstruction. 
In Appendix D, we propose a parameter-tuning strategy based 
on alternating-direction optimization. 

 
Fig. 5. Applying spatiotemporal antialiasing to the image reconstruction of a 
numerical phantom with simple blood vessel structures. (a1) A numerical 
phantom consisting of simple blood vessel structures. The one-way Nyquist 
zone �� with a radius of 13.6 mm is marked by a blue-solid circle. (b1) and (c1) 
Closeup subsets of the simple numerical phantom enclosed in the red-dashed 
box and the yellow-dashed box, respectively. (a2)–(c2), (a3)–(c3), and (a4)–
(c4) Images of the simple numerical phantom reconstructed using UBP, UBP 
with RDTF and spatial interpolation (SI), and UBP with LDTF and SI, 
respectively, and their closeup subsets. A line L and two small regions A and B 
are picked for comparisons of the three methods. (d) Comparisons of the values 
along the line L for the three methods. The FWHM of one main lobe is 0.79 
mm for UBP with RDTF and SI, and 0.49 mm for UBP with LDTF and SI. The 
amplitudes are 0.75 and 1.25, respectively. (e) Comparisons of the STDs of 
pixel values in regions A and B for the three methods. 

Applying the parameter-tuning strategy to the first numerical 
phantom with simple structures, we choose 

(���, �, �, ���, ���, ��) to be (0.6 mm, 0.02, 36, 18 mm, 1.8 mm, 
1.2 μs). Reconstructions of the simple numerical phantom using 
UBP, UBP with RDTF and spatial interpolation, and UBP with 
LDTF and spatial interpolation are shown in Fig. 5(a2)–(a4), 
respectively. Reconstructions of the subdomains in Fig. 5(b1) 
and (c1) using the three methods are shown in Fig. 5(b2)-(c2), 
(b3)-(c3), and (b4)-(c4), respectively. Comparing Fig. 5(c2)–
(c4), we see that LDTF with spatial interpolation is more 
effective than RDTF with spatial interpolation in mitigating 
aliasing artifacts, which agrees with the comparison for point 
sources shown in Fig. 4(b1)–(b4). Moreover, comparing Fig. 
5(b2) and (b3), we observe that RDTF with spatial interpolation 
compromises image resolution and introduces additional 
artifacts during antialiasing. These observations also agree with 
the results in Fig. 4(b1)–(b4) and are mainly caused by the fact 
that the spatial Nyquist criterion is partially unsatisfied after 
RDTF, as explained in Fig. 4(a1)–(a4). In summary, LDTF with 
spatial interpolation has better performance than RDTF with 
spatial interpolation in both mitigating aliasing artifacts and 
maintaining image resolution. 

For quantitative comparisons, we draw a line L (marked in 
Fig. 5(b2)) in the red-boxed subdomain. The values along the 
line L for the three methods are shown in Fig. 5(d). We observe 
that RDTF with spatial interpolation blurs the image and 
introduces artifacts, whereas LDTF with spatial interpolation 
maintains the image resolution and maintains the low-
amplitude background. It needs to be noted that aliasing 
artifacts only appear for certain combinations of source point 
and reconstruction location. The low-amplitude background 
around L in Fig. 5(b2) means that aliasing artifacts in this region 
are caused only by low-amplitude point sources. For 
quantitative comparisons of aliasing artifacts, we pick two 
small regions A and B (marked in Fig. 5(c2)) in the yellow-
boxed subdomain. The amplitudes of aliasing artifacts in A and 
B are quantified by STDs of the pixel values in them. We 
compare these STDs in Fig. 5(e), which further validates that 
LDTF with spatial interpolation outperforms RDTF with spatial 
interpolation in mitigating aliasing artifacts. 

The second numerical phantom is shown in Fig. 6(a1), which 
consists of blood vessels with complex structures. Two subsets 
of the complex numerical phantom are shown in Fig. 6(b1) and 
(c1), respectively. Applying the parameter-tuning strategy to 
the complex numerical phantom, we choose 
(���, �, �, ���, ���, ��) to be (3.6 mm, 0.08, 36, 18 mm, 1.8 mm, 
1.2 μs). Reconstructions of the complex numerical phantom 
using UBP, UBP with RDTF and spatial interpolation, and UBP 
with LDTF and spatial interpolation are shown in Fig. 6(a2)–
(a4), respectively. The subdomain images reconstructed by the 
three methods are shown in Fig. 6(b2)-(c2), (b3)-(c3), and (b4)-
(c4), respectively. Comparing these subdomain images, we see 
that LDTF with spatial interpolation more effectively mitigates 
aliasing artifacts than RDTF with spatial interpolation. 
Moreover, using numerical simulations of the complex 
numerical phantom, we demonstrate the advantage of using the 
location-dependent parameter ��(��) over using a constant 
parameter �� across all subdomains for temporal filtering 
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(Appendix E). 

 
Fig. 6. Applying spatiotemporal antialiasing to the image reconstruction of a 
numerical phantom with complex blood vessel structures. (a1)–(c1) A 
numerical phantom consisting of complex blood vessel structures, and its 
closeup subsets. (a2)–(c2), (a3)–(c3), and (a4)–(c4) Images of the complex 
numerical phantom reconstructed using UBP, UBP with RDTF and spatial 
interpolation (SI), and UBP with LDTF and SI, respectively, and their closeup 
subsets. (d) Comparisons of the values along the line L marked in (b2) for the 
three methods. The FWHM of the dominant lobe is 0.93 mm for UBP with 
RDTF and SI, and 0.73 mm for UBP with LDTF and SI. The amplitudes are 
1.15 and 1.31, respectively. (e) Comparisons of the STDs of pixel values in 
regions A and B marked in (b2) and (c2), respectively, for the three methods. 

For quantitative comparisons, we draw a line L (marked in 
Fig. 6(b2)) in the red-boxed subdomain and pick two small 
regions A and B (marked in Fig. 6(b2) and (c2), respectively) 
in different subdomains for the three methods. The values along 
the line L are shown in Fig. 6(d) while the STDs of the pixel 
values in A and B are compared in Fig. 6(e). In Fig. 6(d), we 
still see that RDTF with spatial interpolation blurs the image 
and introduces new artifacts; whereas LDTF with spatial 
interpolation blurs the image to a smaller degree and mitigates 
the aliasing artifacts. The blurring effect of LDTF with spatial 
interpolation is more obvious in the complex numerical 
phantom than in the simple numerical phantom. In fact, 
compared with the simple numerical phantom, more source 
points are selected for LDTF in the complex numerical 
phantom, which results in the filtering of more signals and more 
blurring of the image. Thus, for images with complex 
structures, we find a balance between mitigating aliasing 
artifacts and maintaining image resolution by tuning the 
parameters. Because of this balance, aliasing artifacts still 
appear in Fig. 6(b4). In Fig. 6(e), we still observe that LDTF 
with spatial interpolation is better than RDTF with spatial 
interpolation in mitigating aliasing artifacts. 

Due to the more intricate temporal filtering for antialiasing, 
the proposed method has a significantly higher computation 
cost. On a computer with Windows 10 Home and Intel® Core™ 
i7-6700 CPU @ 3.40 GHz, the reconstructions of the simple 
numerical phantom through UBP, UBP with RDTF and spatial 
interpolation, and UBP with LDTF and spatial interpolation 
(single-thread implementations) take 17.6 s, 98.8 s, and 682.7 s 

(average values for 10 repetitions), respectively. For the 
complex numerical phantom, the computation times of the first 
two methods do not change but the third one takes 1345.5 s due 
to the differences in reconstruction parameters. All methods can 
be accelerated through GPU. For example, using an NVIDIA 
GeForce GTX 1050 Ti graphics card, we reduce the 
computation time of the UBP method from 17.6 s to 0.54 s. 
Although not demonstrated in this study, an efficient GPU 
acceleration of the proposed method is preferred for faster 
parameter tuning and image reconstruction in future studies. 

VII. IN VIVO EXPERIMENTS 

Finally, we apply the proposed LDTF with spatial 
interpolation to human breast imaging in vivo. The imaging 
system has been reported by Lin et al. [2], in which a 512-
element full-ring ultrasonic transducer array (Imasonic, Inc., 
110-mm radius, 2.25-MHz central frequency, 95% one-way 
bandwidth) was used. In our previous study [15], the cutoff 
frequency has been estimated to be ��,�� ≈ 3.80 MHz. Here we 

use the speed of sound � = 1.49 mm ⋅ μs��. A cross-sectional 
image of a breast in vivo is reconstructed using UBP and shown 
in Fig. 7(a1). The result of UBP with RDTF and spatial 
interpolation is shown in Fig. 7(a2). 

 
Fig. 7. Applying spatiotemporal antialiasing to human breast imaging in vivo. 
(a1)–(a3) Images of a human breast cross section in vivo reconstructed using 
(a1) UBP, (a2) UBP with RDTF and spatial interpolation (SI), and (a3) UBP 
with LDTF and SI. Two subdomains in the red-dashed box and the yellow-
dashed box, respectively, are picked for comparisons of the three methods. (b1)-
(c1), (b2)-(c2), and (b3)-(c3) Closeup images of the two subdomains for the 
three methods, respectively. Lines L1 and L2 are picked for comparisons. (d) 
and (e) Values along lines L1 and L2, respectively, for the three methods. 

To use LDTF with spatial interpolation in UBP for image 
reconstruction, we tune the parameters (���, �, �, ���, ���, ��). 
This parameter tuning is simplified by comparing the 
parameters used for the numerical blood vessel phantoms. In 
those simulations, we use (���, �) = (0.6 mm, 0.02) for the 
simple numerical phantom, (���, �) = (3.6 mm, 0.08) for the 
complex numerical phantom, and (�, ���, ���, ��) = (36, 18 
mm, 1.8 mm, 1.2 μs) for both phantoms. Considering that the 
structural complexities of the simple numerical phantom and 
the complex numerical phantom occupy a complexity range 



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 
 

large enough for our study, we still use (�, ���, ���, ��) = (36, 
18 mm, 1.8 mm, 1.2 μs) for the breast imaging. Following the 
same parameter-tuning protocol, we select (���, �) = (1.8 mm, 
0.04) for the breast imaging. In summary, we use 
(���, �, �, ���, ���, ��) = (1.8 mm, 0.04, 36, 18 mm, 1.8 mm, 1.2 
μs) for the reconstruction of the breast image. The result of UBP 
with LDTF and spatial interpolation is shown in Fig. 7(a3). 

For better comparisons, we select two subdomains in a red-
dashed box and a yellow-dashed box, respectively, as shown in 
Fig. 7(a1)–(a3). Closeup images of the subdomains are shown 
in Fig. 7(b1)-(c1), (b2)-(c2), and (b3)-(c3) for the three 
methods, respectively. Comparing Fig. 7(b1)–(b3), we see that 
both RDTF with spatial interpolation and LDTF with spatial 
interpolation mitigate aliasing artifacts. However, RDTF with 
spatial interpolation compromises image resolution. From Fig. 
7(c1)–(c3), we see that LDTF with spatial interpolation is more 
effective than RDTF with spatial interpolation in mitigating the 
aliasing artifacts. For quantitative comparisons, we pick two 
lines L1 and L2 in the red-boxed subdomain (Fig. 7(b1)). Pixel 
values along these two lines, respectively, for the three methods 
are shown in Fig. 7(d) and (e), which further validate that LDTF 
with spatial interpolation is more effective than RDTF with 
spatial interpolation in both mitigating aliasing artifacts and 
maintaining image resolution. 

VIII. CONCLUSIONS AND DISCUSSION 

In this research, we proposed an antialiasing method for 
PACT based on LDTF with spatial interpolation, which exhibits 
better performance in mitigating aliasing artifacts while 
maintaining image resolution. We applied this method to UBP 
and validated it through numerical simulations and in vivo 
experiments. To apply this method, we first divide the image 
domain into subdomains and select multiple groups of source 
points with maximum amplitudes from an initial image 
reconstructed using UBP. Then for each subdomain and each 
group of source points, we temporally filter the signals from the 
source points that overlap with signals from the subdomain. We 
recentered signals for this subdomain, apply spatial 
interpolation to the recentered signals, and use them to 
reconstruct the image in the subdomain. In this process, doing 
temporal filtering only for signals from source points with high 
amplitudes is essential for mitigating the dominant aliasing 
artifacts while minimizing unwanted blurring of the image. 
Location-dependent recentering of signals before spatial 
interpolation is essential for protecting signals from the 
subdomain of interest during spatial interpolation and 
maintaining image resolution. The proposed method 
outperforms our previous method based on RDTF with spatial 
interpolation in mitigating aliasing artifacts and maintaining 
image resolution. 

To get the best performance of LDTF with spatial 
interpolation, we analyzed the sensitivities of all the 
parameters. We found that parameters (�, ���, ���, ��) are 
relatively insensitive for this study whereas parameters (���, �) 
are sensitive. Thus, in all numerical simulations and in vivo 
experiments, we have the same choice of the four parameters 
(�, ���, ���, ��) and only vary the other two (���, �). For a 

certain application, (���, �) can be varied for different 
preferences for mitigating aliasing artifacts and maintaining 
image resolution. Also, we proposed just one strategy for 
determining the location-dependent parameter ��(��) given the 
parameter �� and a group of source points, which can be further 
improved in future studies. Moreover, in applications with 
subdomain illuminations or patterned illuminations, we can 
select the source points based on prior knowledge of the 
illumination patterns to achieve more efficient LDTF. 

The spatiotemporal analysis in this research relies on the 
homogeneous-medium assumption, which is satisfied in the 
numerical simulations. The effectiveness of LDTF with spatial 
interpolation in human breast imaging in vivo further validates 
that our theory applies to approximately homogenous media. 
For strongly inhomogeneous media, such as in transcranial 
PACT, more studies need to be done to demonstrate and 
improve the method’s performance. 

LDTF with spatial interpolation is applicable to other image 
reconstruction methods and other detection geometries. In fact, 
we can use LDTF with spatial interpolation as a filter for 
preprocessing and use another method for reconstruction. For 
example, we can use LDTF with spatial interpolation before a 
model-based iterative method with TV regularization to reduce 
the requirement of the regularization parameter and minimize 
unwanted blurring. We also can use LDTF with spatial 
interpolation before a deep neural network to reduce the 
network’s burden in antialiasing, which potentially makes the 
network more robust. Importantly, the proposed method does 
not rely on a specific transducer array geometry, thus is directly 
applicable to other geometries, such as a linear array. Moreover, 
the proposed method is not limited to 1D arrays for 2D imaging. 
Through dimension decomposition, the method is applicable to 
2D arrays, such as arrays of spherical, cylindrical, and planar 
geometries, allowing for spatiotemporal antialiasing in 3D 
imaging. An efficient GPU acceleration of the proposed method 
is preferred for faster parameter tuning and image 
reconstruction in future studies. 

APPENDIX A 

AN EFFICIENT IMPLEMENTATION OF LDTF 

If implemented directly, processing signal �̂����
(��, ��) of 

each element at time �� using a lowpass filter with an upper 
cutoff frequency of � is computationally intensive. For fast 
reconstruction, we give an efficient implementation of the 
LDTF through precomputation and interpolation. Before the 
reconstruction of any subdomain, we process the original 
signals �̂(��, �) of each element using lowpass filters with upper 
cutoff frequencies of ��,�, � = 1,2, … , � + 1 satisfying 0 <
��,� < ��,� < ⋯ < ��,� < ��,��� = ��. Here, a lowpass filter 
with an upper cutoff frequency means a third-order lowpass 
Butterworth filter followed by a sinc filter with the same upper 
cutoff frequency. We denote the filtered signals as 
�̂��,�

(��, �), � = 1,2, … , � + 1. For reconstruction of a 

subdomain ����, we recenter the filtered signals based on (4) 
and obtain  
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�̂����,��,�
(��, ��) = �̂��,�

���, �� +
���,���

� − ���

�
� ,

� = 1,2, … , �, � = 1,2, … , � + 1. (30)

 

For a general cutoff frequency � > 0, we obtain the filtered 
signals through the following linear interpolation: 

�̂����,�(��, ��)

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

�

��,�
�̂����,��,�

(��, ��), 0 < � ≤ ��,�

��,��� − �

��,��� − ��,�
�̂����,��,�

(��, ��) +

� − ��,�

��,��� − ��,�
�̂����,��,���

(��, ��), ��,� < � ≤ ��,���,

� = 1,2, … , �
�̂����,��

(��, ��), � > ��,��� = ��

, 

� = 1,2, … , �, � > 0. (31) 
In practice, we let the upper cutoff frequencies ��,�, � =
1,2, … , � + 1 be dense enough so that further increasing their 
density has minor effects on the reconstructed images. As an 
application, we substitute ��,����,��(��, ��) (��,����,�(��, ��)) for 

� in (31) to obtain �̂����,����,��(��, ��) (�̂����,����,�(��, ��)). 

APPENDIX B 

SELECTION OF SOURCE POINTS AND DIVISION OF IMAGE 

DOMAIN 

For LDTF with spatial interpolation, we select multiple 
groups of source points in the image domain and divide the 
image domain into subdomains for reconstructions. To select 
source points, we first reconstruct an image using the UBP 
method and select the �� pixels with the largest absolute 
values as source-point candidates, shown as white pixels in Fig. 
8(a). Here, � is the number of all pixels, and � is the candidacy 
ratio. Then we divide the image domain into subdomains of size 
��� × ��� for further selection. In each subdomain, if there exist 
source-point candidates, we randomly select one; otherwise, we 
do not select. The selected source points in all subdomains form 
a group of source points for LDTF. Repeating this random 
selection � times, we obtain � groups of source points: 
��, ��, … , ��. The first two groups are shown in Fig. 8(a) as blue 

dots and red triangles, respectively. 

 

Fig. 8. Selection of source points and division of image domain. (a) Selection 
of source points from a UBP reconstructed image. The white pixels indicate the 
�� pixels with the largest absolute pixel values in the image. Subdomains have 
a size of ��� × ��� and are visualized by a grid. Two groups of selected source 
points are shown as blue dots (��) and red triangles (��), respectively. (b) 

Domain division in a UBP reconstructed image. Initially, subdomains have a 
size of ��� × ��� (residual subdomains are smaller), shown as a grid. Then each 

subdomain is extended by 
���

�
 out of its boundaries inside the image domain. 

For image-domain division, we start from one corner of the 
image domain and choose a square subdomain for every 
distance ��� in each dimension, as shown in Fig. 8(b). The 
residual subdomains are rectangles whose sizes are determined 
by the residual lengths. To mitigate artifacts caused by pixel 
value mismatch on subdomain boundaries, we extend each 

subdomain by 
���

�
 outside of its boundaries inside the image 

domain. The extended subdomains are denoted as ��, ��, …, 
��. To mosaic the subdomain images, we define a 2D weight 
function  

���,��,�(�) = ���,��,�(�, �) = ���,�(�)���,�(�), (32) 

where the 1D weight function is defined as  

��,�(�) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1, |�| ≤

�

2

1 −
2|�| − �

�
,

�

2
< |�| ≤

� + �

2

0, |�| >
� + �

2

. (33) 

We normalize the weight functions for these subdomains as  

����(��),��(��),���
���� − ��,�

� � =

���(��),��(��),���
���� − ��,�

� �

∑ ��������,�������,���
���� − ��,��

� ��
����

,

� = 1,2, … , �, (34)

 

where ��(��) and ��(��) denote the sizes of the rectangle �� in 

�-axis and �-axis directions, respectively, and ��,�
�  is the center 

of ��. Then, we mosaic images in subdomains ��, ��, …, �� 
through (29) to form the whole image in �. 

APPENDIX C 

LOCATION-DEPENDENT PARAMETER ��(��) FOR TEMPORAL 

FILTERING 

The parameter �� determines the range for temporal filtering: 
as �� increases, wider temporal ranges of signals are filtered. In 
practice, we tune �� to find a balance between mitigating 
aliasing artifacts and maintaining image resolution. In 
numerical simulations, we observe that for the same ��, 
different amounts of signals are filtered for the reconstructions 
of different subdomains. This observation means that an 
optimal choice of �� for one subdomain may not be optimal for 
another subdomain, which makes the tuning of �� location-
dependent and computationally intensive. To make the tuning 
of �� more efficient, we propose a strategy to scale �� for 
different subdomains automatically. 

Before an adjustment of ��, we first quantify the amount of 
temporal filtering for each subdomain through numerical 
simulation. In an image domain with a size of 120 × 120 mm�, 
we have 14 × 14 evenly distributed source points, shown as 
white dots in Fig. 9(a). We choose ��� =  12 mm and ��� =
1.8 mm for image-domain division, which results in 100 
subdomains. Two of the subdomains, �� and ��, are marked in 
Fig. 9(a) as a red-dashed box and a yellow-dashed box, 
respectively. We conduct a forward simulation to visualize the 
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signals from the source points, which occupy a subset of the 
signal domain marked as white pixels in Fig. 9(b). Here, we use 
a relatively small parameter �� = 0.3 μs in the simulation to 
avoid saturation of the occupancy. In the reconstruction of a 
subdomain using the UBP method, signals from only a subset 
are used. For subdomains �� and ��, the used signal subsets are 
marked by two red curves and two yellow curves, respectively, 
in Fig. 9(b). The signals from the centers of the two subdomains 
are marked by two blue curves, respectively. Based on (4), we 
recenter signals in the two subsets with respect to the 
subdomain centers, as shown in Fig. 9(c1) and (c2), 
respectively. For each subdomain, the corresponding signal 
subset is partially occupied by signals from the source points: 
for �� and ��, the occupancy ratios are 0.405 and 0.606, 
respectively. We have shown that temporal filtering is 
determined not only by the occupancy ratio but also by the 
relative temporal step sizes. Here, as an approximation, we 
ignore the effects of the relative temporal step sizes and use 
only the occupancy ratio to quantify the amount of temporal 
filtering. 

 
Fig. 9. Location-dependent parameter ��(��) for temporal filtering. (a) Evenly 
distributed source points, shown as white dots, and two subdomains �� and ��, 
marked by a red-dashed box and a yellow-dashed box, respectively. (b) The 
subset of the signal domain (white pixels) that is occupied by signals (with �� =
0.3 μs) from the source points in (a). Signals from subdomains �� and �� 
occupy a region between two red curves and a region between two yellow 
curves, respectively. Signals from the centers of �� and �� are indicated by two 
blue curves. (c1) and (c2) Subsets of (b) recentered for �� and ��, respectively, 
showing a difference between the occupancy rates of signals from the source 
points: 0.405 for �� and 0.606 for ��. (d1) and (d2) The occupancy rates for �� 
and �� (0.405 and 0.390, respectively) after using the location-dependent 
parameter ��(��). 

Next, we use the occupancy ratio to adjust �� for each 
subdomain to achieve a low variation of occupancy ratios 
across subdomains. We denote the occupancy ratio of the 
subdomain �� as ��, � = 1,2, , … , �. Instead of using the same �� 
for all subdomains, we use  

��(��) = �
min
�����

��

��
�

�

�� (35) 

for temporal filtering in the reconstruction of the subdomain 
��, � = 1,2, … , �. Here, we use � to account for the occupancy 
ratio’s nonlinear dependency on �� due to the overlapping of 
signals from different source points. After multiple tests, we 
choose � = 1.8 to achieve a low variation of occupancy ratios 

across subdomains. Applying the location-dependent parameter 
��(��) to all the 100 subdomains, we obtain a new set of 
occupancy ratios. For subdomain ��, the occupancy ratio does 
not change. For subdomain ��, the occupancy ratio reduces 
from 0.606 to 0.390. The new signal occupancies for �� and �� 
are visualized in Fig. 9(d1) and (d2), respectively. The 
occupancy ratios for the constant �� and the location-dependent 
��(��) are compared in Fig. 9(e). From this comparison, we see 
that the variation of the occupancy ratios across subdomains is 
reduced by using the location-dependent parameter ��(��), 
which is controlled only by �� for a given group of source 
points. In practice, we only tune �� in (35), then the amount of 
temporal filtering in each subdomain is automatically adjusted 
by using ��(��). Thus, we simplify tuning �� for each 
subdomain to tuning a single �� for all subdomains. 

APPENDIX D 

PARAMETER SENSITIVITY ANALYSIS BASED ON ALTERNATING-

DIRECTION OPTIMIZATION 

The purpose of parameter tuning is to balance mitigating 
aliasing artifacts with maintaining image resolution. For this 
purpose, we quantify the amplitude of aliasing artifacts and 
image resolution for different choices of parameters. In a 
numerical phantom, we identify regions with zero initial 
pressure in the ground-truth image as background. For each 
reconstructed image, we use the STD of the background pixel 
values to quantify the amplitude of aliasing artifacts. As for 
image resolution, we use values along lines of interest in the 
reconstructed image for comparison. Location-dependent 
spatiotemporal antialiasing is affected by parameters used in the 
source points selection (���, �, �), the image-domain division 
(���, ���), and the temporal filtering ��. Here, by tuning these 
parameters for image reconstruction of the simple numerical 
phantom, we analyze the proposed method’s sensitivity to these 
parameters. This analysis is then used to guide the parameter 
tuning for the complex numerical phantom and the in vivo 
experiments. 

 
Fig. 10. Parameter sensitivity analysis. (a1)-(a2), (b1)-(b2), (c1)-(c2), (d1)-(d2), 
(e1)-(e2), and (f1)-(f2) Normalized STDs of the background pixel values and 
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values along the line L1 in Fig. 5(c2) for different choices of a parameter (���, 
�, �, ���, ���, or ��, respectively), while others are kept as constants. 

Exploring all combinations of the six parameters is 
computationally intensive. We use alternating-direction 
optimization for more efficient tuning, meaning we tune one 
parameter each time without changing others. We start the 
tuning process by letting (���, �, �, ���, ���, ��) = (1 mm, 0.01, 
10, 10 mm, 1 mm, 1 μs), which is an order-of-magnitude 
empirical estimation. After multiple iterations, we obtain the 
best choice (���, �, �, ���, ���, ��) = (0.6 mm, 0.02, 36, 18 mm, 
1.8 mm, 1.2 μs) for the numerical phantom with simple blood 
vessel structures. 

To justify the choice, we first tune ��� while keeping 
(�, �, ���, ���, ��) = (0.02, 36, 18 mm, 1.8 mm, 1.2 μs). For 
aliasing artifacts, we obtain the STDs of the background pixel 
values for different values of ��� and normalize them by 
dividing the average STD, as shown in Fig. 10(a1). For image 
resolution, we compare the values along the line L in Fig. 5(b2) 
for ��� of 0.3 mm, 0.6 mm, and 1.2 mm, respectively, as shown 
in Fig. 10(a2). As we see in Fig. 10(a1), for ��� > 0.6 mm, the 
STD increases as ��� increases. In fact, a greater value of ��� 
means fewer source points for spatiotemporal antialiasing, 
which results in a greater amplitude of aliasing artifacts and less 
blurring of the image, as shown in Fig. 10(a1) and (a2), 
respectively. As a balance, we choose ��� = 0.6 mm. Then we 
tune � while letting (���, �, ���, ���, ��) = (0.6 mm, 36, 18 mm, 
1.8 mm, 1.2 μs). For mitigating aliasing artifacts, � = 0.02 is 
the best choice, as shown in Fig. 10(b1). For � < 0.02, a smaller 
� means fewer source points for spatiotemporal antialiasing, 
which results in a higher amplitude of aliasing artifacts. For � 
> 0.02, a greater � means more source point candidates 
including low-amplitude ones. However, in the random-
selection step, having more low-amplitude source points means 
that the dominant source points are less likely to be selected. As 
a result, the spatiotemporal antialiasing is less effective, leading 
to a higher amplitude of aliasing artifacts. For maintaining 
image resolution, � = 0.02 still turns out to be the best choice, 
as shown in Fig. 10(b2). Thus, we choose � = 0.02. The tuning 
of � is simpler. As shown in Fig. 10(c1) and (c2), the increase 
of � reduces the STD but has minor effects on image resolution. 
Considering that the computational time has linear dependency 
on �, we choose � = 36 for a balance between antialiasing 
performance and computational efficiency. Further, we tune 
��� while keeping (���, �, �, ���, ��) = (0.6 mm, 0.02, 36, 1.8 
mm, 1.2 μs). As we see in Fig. 10(d1), the STD is relatively 
small for ��� < 20 mm. For ��� > 20 mm, the STD increases as 
��� increases, which is explained by the fact that the advantage 
of the location dependency in our proposed method is mitigated 
as the subdomain size increases. In Fig. 10(d2), we see that ��� 
= 18 mm is the best choice for maintaining image resolution. 
Combining the observations in Fig. 10(d1) and (d2), we choose 
��� = 18 mm. Next, we tune ��� while letting (���, �, �, ���, ��) 
= (0.6 mm, 0.02, 36, 18 mm, 1.2 μs). As we see in Fig. 10(e1) 
and (e2), changing the value of ��� has minor effects on both 
aliasing artifacts and image resolution. We let ��� be one-tenth 
of ���: 1.8 mm. Finally, the tuning of �� for the simple 
numerical phantom is simple. As shown in Fig. 10(f1) and (f2), 
the increase of �� reduces the STD but has minor effects on 
image resolution. We choose �� to be 1.2 μs. Further increasing 

�� has minor benefits in mitigating aliasing artifacts and may 
blur other regions of the image. 

In summary, for the simple numerical phantom, the tuning of 
every parameter is a robust process without abrupt changes. The 
performance of the location-dependent spatiotemporal 
antialiasing is sensitive to ��� and � but insensitive to ���. The 
sensitivity is low for � ≥ 36, ��� ≤ 20 mm, and �� ≥ 1.2 μs. 
These observations serve as guidance for parameter tuning of 
the complex numerical phantom and in vivo experiments. In 
fact, we use the same (�, ���, ���, ��) for these reconstructions 
and only tune (���, �). For another imaging system, we can 
update (�, ���, ���, ��) accordingly through numerical 
simulations and only tune (���, �) for different datasets. 

APPENDIX E 

THE ADVANTAGE OF USING THE LOCATION-DEPENDENT 

PARAMETER ��(��) OVER USING A CONSTANT �� FOR 

TEMPORAL FILTERING 

We choose to use the location-dependent parameter ��(��) 
for temporal filtering in this research. Here, based on numerical 
simulations of the complex numerical phantom, we 
demonstrate the choice’s advantage over using the same 
parameter �� for all subdomains. We use parameter values 
(���, �, �, ���, ���, ��) = (3.6 mm, 0.08, 36, 18 mm, 1.8 mm, 1.2 
μs) in these simulations. 

 
Fig. 11. Comparison of using the location-dependent range ��(��) and using a 
constant �� for temporal filtering. (a1) Reconstructed image of the complex 
numerical phantom through UBP. (a2) and (a3) Reconstructed images through 
UBP with LDTF and spatial interpolation (SI), using the location-dependent 
parameter ��(��) and a constant parameter ��, respectively. Two subdomains 
in a red-dashed box and a yellow-dashed box, respectively, are picked for 
comparisons. (b1)-(c1), (b2)-(c2), and (b3)-(c3) Closeup images of the two 
subdomains for the three methods, respectively. (d) and (e) Comparisons of 
values along lines L1 and L2, respectively, for the three methods. 

The reconstructed image of the complex numerical phantom 
using the UBP method without spatiotemporal antialiasing is 
shown in Fig. 11(a1). Using the location-dependent parameter 
��(��) for temporal filtering in the proposed spatiotemporal 
antialiasing, we obtain the image shown in Fig. 11(a2). Using 
the same parameter �� across all subdomains for temporal 
filtering, we obtain the image shown in Fig. 11(a3). We pick 
two subdomains, marked by a red-dashed box and a yellow-
dashed box, respectively, in the three images for comparisons. 
Closeup images of the subdomains are shown in Fig. 11(b1)-
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(c1), (b2)-(c2), and (b3)-(c3), respectively. Comparing Fig. 
11(b1)–(b3), we see that the image resolution is maintained in 
the central region by using the location-dependent parameter 
��(��); whereas the image is blurred by using a constant �� 
across subdomains. Comparing Fig. 11(c1)–(c3), we notice 
similar performances of using the location-dependent 
parameter ��(��) and using a constant �� in mitigating aliasing 
artifacts in the peripheral region. Quantitatively, we pick two 
lines, L1 and L2, in the two subdomains (shown in Fig. 11(b1) 
and (c1), respectively) and compare the values on them for the 
three methods in Fig. 11(d) and (e), respectively. As we see in 
Fig. 11(d), the image resolution in the central region is not 
affected by using the location-dependent parameter ��(��) but 
compromised by using a constant ��. For the peripheral region, 
we see similar performances of the two choices in Fig. 11(e). 

In summary, to achieve similar performances in mitigating 
aliasing artifacts (most abundant in the peripheral region), using 
the location-dependent parameter ��(��) is better than using a 
constant �� in maintaining image resolution (most obvious in 
the central region). 
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