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Location-dependent Spatiotemporal Antialiasing
in Photoacoustic Computed Tomography
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Abstract—Photoacoustic computed tomography (PACT)
images optical absorption contrast by detecting ultrasonic
waves induced by optical energy deposition in materials
such as biological tissues. An ultrasonic transducer array
or its scanning equivalent is used to detect ultrasonic
waves. The spatial distribution of the transducer elements
must satisfy the spatial Nyquist criterion; otherwise, spatial
aliasing occurs and causes artifacts in reconstructed
images. The spatial Nyquist criterion poses different
requirements on the transducer elements’ distributions for
different locations in the image domain, which has not been
studied previously. In this research, we elaborate on the
location dependency through spatiotemporal analysis and
propose a location-dependent spatiotemporal antialiasing
method. By applying this method to PACT in full-ring array
geometry, we effectively mitigate aliasing artifacts with
minimal effects on image resolution in both numerical
simulations and in vivo experiments.

Index Terms—Photoacoustic computed tomography,
spatial Nyquist criterion, location-dependent
spatiotemporal antialiasing

[. INTRODUCTION

HOTOACOUSTIC computed tomography (PACT) images
biological tissues’ optical absorption through detection of
photon-induced ultrasonic waves [1]-[7]. PACT forms high-
resolution images at greater depths than ballistic optical
imaging [8] by using tissues’ much lower scattering to
ultrasonic waves than to photons. An ultrasonic transducer
array or its scanning equivalent is often used to detect photon-
induced ultrasonic waves. The detected signals are then used to
recover tissues’ optical absorption through image
reconstruction [9]-[13]. In ultrasonic detection, the Nyquist
sampling criterion must be satisfied in both spatial and temporal
dimensions to avoid aliasing. The Nyquist criterion in the
temporal dimension is typically satisfied because of the limited
bandwidth of the ultrasonic transducer and the high temporal
sampling frequency of the data acquisition system. However,
sparse spatial sampling is commonly used to reduce system cost
or scanning time, which may violate the Nyquist criterion in
spatial dimensions (spatial Nyquist criterion) and cause artifacts
in reconstructed images due to spatial aliasing [1], [14]-[16].
Various methods have been proposed to mitigate artifacts
caused by spatial aliasing. In the image domain, total variation

(TV) regularization has been used in model-based iterative
methods to mitigate noise and aliasing artifacts [12], [17]-[20].
In PACT, because the image domain is identical to the object
domain, we will use them interchangeably henceforth. TV
regularization shows high performance for piecewise smooth
images [21], [22]. However, for PACT images with rich blood
vessel structures, TV regularization tends to suppress vessels of
small diameters. A regularization strategy specifically suited
for vessel structures is needed. Deep learning has been proved
effective in processing images with complex structures [23]-
[28] and has shown an advantage in maintaining vessel
structures [29]. However, a neural network is often system
dependent and not universally applicable across different
imaging systems or detection geometries. In the signal domain,
temporal filtering and spatial interpolation have been used for
antialiasing [15]. However, it is still a challenge to find a
balance between mitigating aliasing artifacts and maintaining
image resolution. Another method proposed by Cai ef al. [30]
mitigates aliasing artifacts by connecting the image domain and
the signal domain. It identifies potential sources of aliasing
signals in the image domain, maps the sources to the signal
domain, suppresses all the signals in the mapped region, and
uses the remaining signals for image reconstruction [30]. This
method performs well if there exist only a few dominant
sources of aliasing signals. As sources of aliasing signals
increase, this method may cause substantial information loss.
To mitigate aliasing artifacts without compromising image
resolution, we perform detailed spatiotemporal analysis for
image subdomains here. We first reconstruct an image using the
universal back-projection (UBP) method [9]. Applying a
threshold to the reconstructed image, we identify the dominant
sources of aliasing signals. Then we divide the whole image
domain into multiple subdomains. We apply spatiotemporal
analysis to source points, transducer locations, and each
subdomain's reconstruction locations [15], revealing the spatial
aliasing effects on the subdomain in detail. Next, we apply
temporal filtering and spatial interpolation to signals so that the
filtered signals satisfy the spatial Nyquist criterion specifically
for this subdomain. We use the filtered signals to form an image
in this subdomain. Repeating this process for all subdomains,
we mitigate the aliasing artifacts for the whole image. We call
this method location-dependent spatiotemporal antialiasing.
Through numerical simulations, we demonstrate that the
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proposed method effectively mitigates aliasing artifacts with
minimal effects on the image resolution. We further validate
this method through in vivo human breast imaging.

[I. UBP METHOD AND LOCATION-DEPENDENT RECENTERING
OF SIGNALS

In the forward model in PACT with a homogeneous medium,
the signal detected by the element at the location r;, and time ¢t
is expressed as [8], [15]

1 < () I, — 1l
A PolI';m 'm—TI,
1) =—— — T pl - ——),
PO =Gz 2, " iy — 1, e( c )
m=1
n=12 .., N,t=>0. 1)

Here, we have M point sources distributed at r,,, m =
1,2,...,M, and N point transducer elements distributed at
r,n =12,..,N; cis the speed of sound; v, is the volume of
the m-th source point; p, (1) is the initial pressure at ry,; he(t)
is the ultrasonic transducer’s electric impulse response (EIR),
and h((t) denotes its time derivative. Based on the UBP method
[9], the initial pressure can be reconstructed from the detected
signals. In a spatially discrete form, the reconstruction can be

expressed as
N

. rl’ -r
ﬁo(r") ~ Z wyb (I‘n, t= M) ,r'"" €D. (2)

n=1
Here, po(r'") is the reconstructed initial pressure at r'”’, D is the
image domain, and b(r,,t) = 2p(r,, t) — Ztap(r" ) is the
back-projection term computed from the detected 51gnals. The

. . o .
weights w,,n = 1,2, ..., N express the solid-angle term — in
Qo

UBP [9]. Substituting @Y into (2) we obtain

A "o po(rm)
pO(r ) Z Z Um ”r n”
1 t+”r7’n Il ” IIr —rll e, =l
c at c c ’

r’ € D. 3)
As demonstrated in [15], spatial aliasing in PACT has two
sources: spatial sampling and image reconstruction. Spatial
aliasing in spatial sampling and image reconstruction can be

explained by analyzing the step size of w (in (1)) and
" =rnll _ flrm—

- e | (in (3)), respectively, as n varies [15]. Here,

we divide the whole image domain D into subdomains; then we
analyze these two terms and develop antialiasing strategies for
each subdomain.

For simplicity, we focus on 2D image reconstruction and
consider only rectangular subdomains. For a subdomain Dy,

of size I, X I, centered at r(g,,, we shift the time t to t’

”rc,sub 71”

accordingto t’' =t — ; instead of analyzing p(ry, t),

we analyze

Doy, (Tn t') = (rn,t + ez = "”),n =12,..,N, (4)

which corresponds to a temporal recentermg of signals based
on the transducer elements’ distances to the subdomain center

I'esup- After the recentering, the signals originating from r( g,
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arrive at all detectors at time 0, and the exact range of interest
for t' is dynamically determined for each subdomain. This
recentering is essential in antialiasing to minimize temporal
filtering and thus image blurring. Substituting (1) into (4)
yields

Po(Tr)
gy — 1

a%

n=12,..,N. (5)

1
stub (rn' t ) = 4”62
m

wle — ey, — | _ ”rc’,sub -
€ c c

[lI. SPATIOTEMPORAL ANTIALIASING FOR AN IMAGE
SUBDOMAIN

Given the subdomain Dg,;,, we categorize our analysis into
four cases with increasing complexities: without point sources
outside Dg,p,, with a single point source outside Dy, with
multiple point sources outside Dgy,, and with general sources
outside Dy}, In all cases, we discuss image reconstruction only
in Dsub'

A. Without point sources outside the subdomain

In the first case, without point sources outside the subdomain
Dgp, we perform spatiotemporal analysis only for source points
and reconstruction locations inside Dg,;,. Let r’ and r"” be a
source point and a reconstruction location, respectively, in
Dgyp- Let r and 1, 4; be two adjacent element locations, as shown
in Fig. 1(a).

First, we analyze spatial aliasing in spatial sampling based on
(5). We define

;e =l | —l

t-r = - - c ) (6)

c
and its step size when the element location r changes to I,

’ N _ ’ 2 .
(X, Ly, Togune T') = |t ot =

v = ragill e =l
c C
”rc’,sub - rSldl'” _ ”rc,,sub - l'” ’
C C

r’ € Dyp, (7
For any r' € Dy, with |[r’ —r|| # ||r’ - radj”, there exists a
branch (blue-dotted curve in Fig. 1(a)) of a hyperbola crossing
r’ and with r and r,4; as the foci. We denote either one of the
intersection points (using the other one leads to the same result)
between the branch and the boundary of Dy, as £, as shown in
Fig. 1(a). For convenience, we denote the boundary of Dy, as
0Dg,, in the following discussions. Based on one of the
I’ —rasll

c

Il _

hyperbola’s  definitions, we have

c

¥ —ragjll (L}

For any r' € Dy, with |[r' —r|| = ||r —

ad]” r’ will be on the perpendicular bisector (black-dashed
line in Fig. 1(a)) of the line segment with r and r,q; as
endpoints. Here, we define

TDsup (r, radi) = max ‘[(r Tagj Tesubs T ) )]

r'€dDgy



We choose T’ as one of the intersection points between the
perpendicular bisector and dDg,p,. Thus, for any r’ € Dy,
replacing r' with £ in T(l‘, Tadj Yo subs r’) does not change its
value, yielding
T(I‘, Fagj, I‘cl,sub' I") = ‘[(l‘, Tagj, I'c’,sub' f’) < TDsub (I‘, radj)'
r' € Dyp. )
Through (9), we simplify the estimation of the upper limit of
T(I‘, Tadjs Tosubs r’) from searching r’ in Dg, to searching r’ on
0Dgp, which reduces the computation cost by one dimension.
Due to spatiotemporal coupling, as shown in the term t —
(”ri%_rn” _ ”r(’:,sub_rn”
c

c

) in (5), the upper cutoff frequency fss

for spatial sampling must meet the Nyquist criterion:

fess < s~ (10)
¢ ZTDsub (r, rad]-)
Denoting
. 1
fepgus (Tn) = I, is adjacent to r, 2tp_ (0, 1)’
nn =12, ..,N, (11D

we can remove aliasing in the spatial sampling by processing
signals of the element located at r;, using a lowpass filter with
an upper cutoff frequency f.p_ . (1), n = 1,2,..., N. The filter
is implemented as a third-order lowpass Butterworth filter
combined with a sinc filter with the same upper cutoff
frequency.

Next, we analyze spatial aliasing in the image reconstruction
based on (3). For this analysis, we first estimate the upper limit

" =rf| _ [’
c c
locations r and ryg;:

of the step size of between two adjacent element

I = eyl lIr" =l
C c
e A
c c

r',r" € Dgp.
Based on (9), we use the triangular inequality to obtain
T(I‘, Tagj, T, r”) < T(l', Tadj» Te subs r’) + T(l" Tagj) T subs r”)
< 27p,, (1, Tagj), ¥, 1" € Dy (13)
From (9) and (13) as well as (11), we conclude that removing
aliasing in the image reconstruction can be accomplished by

additional lowpass filtering with an upper cutoff frequency
f C'Dsub(rn)

(1, rag;, 1, 1) =

(12)

,n=1,2,..,N. We observe that this cutoff frequency

is half the value required for removing aliasing in the spatial
sampling. This observation agrees with our previous finding
[15], where the whole image domain was globally analyzed.
This filtering would further compromise the spatial resolution.

Fortunately, the additional filtering is avoided by spatial
interpolation if aliasing in the spatial sampling is removed first.
We denote the denser element locations after the spatial
interpolation as rg,,n = 1,2, ..., BN with § being an integer.
Note that the denser element locations coincide with the
physical element locations at r, = rggm-_1)+1,n = 1,2,...,N.
For each t', the recentered signals (pp_, (r,, t")) from all the
transducer elements form a vector of length N. We apply fast
Fourier transform (FFT) to the vector and pad zeros following
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the highest frequency components to form a new vector of
length SN. Then we apply inverse FFT to the new vector to
finish the spatial interpolation. Updating (11) with the denser
locations, we obtain

1
fCrDsubvB (rﬂrn) =

min )
Tpn! is adjacent to rgn ZTDsub (rﬁ,n' rﬁ,n’)
n,n' =1,2,..,BN. (14)
From (7) and (8), we see that the larger the value of 8, the
closer the adjacent element locations, the smaller the value of

TDeup (rﬁyn, rﬁ,nr), and the larger the value of fc,Dsub.B(rﬁ.n)-
According to (13) and (14), we can filter the signals of the n-

. fe n
th channel with upper cutoff frequency %ﬁ(rﬁ')

aliasing in the image reconstruction. To avoid compromising
spatial resolution further, we choose 8 such that

r -

fepauns g'ﬁ (1)) > fupon () =12,..,N.  (15)
Thus, after the first temporal filtering with the upper cutoff
frequency of fcp . (r,) to remove aliasing in the spatial
sampling and the spatial interpolation with factor 8, we no
longer need to perform additional temporal filtering for image
reconstruction. Because a general subdomain is off-centered in
the image domain, the spatial interpolation is applied to the
recentered signals pp_, (1, t") instead of the original signals
p(x,, t). In our previous study for the whole image domain [15],
we have 8 = 2. In this research, the minimal f satisfying (15)
is obtained through numerical computations for each
subdomain.

to remove

Fig. 1. Location-dependent spatiotemporal analysis. (a) No point sources
outside the subdomain. A full-ring transducer array (red circle), an image
subdomain (rectangle with gray interior and blue boundary, denoted as Dgy,,
centered at 1 g1, and of size I, X 1)), two adjacent element locations r and r,g;,
a source point r' inside Dg,y,, and a reconstruction location r" inside Dgyy,.
There exists a hyperbola with r and r,4; as the foci, and with one branch (blue
dotted curve) crossing r'. One of the branch’s intersection points with the
boundary of Dy, is denoted as T'. This graph is used in the spatiotemporal
analysis for Dg,, without point sources outside. (b) One or multiple point
sources outside the subdomain. A full-ring transducer array, an image
subdomain Dy, centered at I, two adjacent element locations r and I,
and a reconstruction location r"’ inside Dy}, We have a single source point (")
or multiple source points (ry, Iy, I3, ...) outside Dgyp,. This graph is used in the
spatiotemporal analysis for Dg;, with a single or multiple point sources outside.
(c) Multiple point sources outside multiple subdomains. A full-ring transducer
array, two image subdomains D; and D, (centered at 1, and r¢,, respectively),
and a group of source points: Iy, I}, I3, ....

In summary, to implement spatiotemporal antialiasing in
Dgup, we first apply location-dependent temporal filtering

(LDTF) to the recentered signals pp_ (I, t") of each element
with an upper cutoff frequency fcp_ . (r,), and obtain
Ppeyp Lot (T t’),n=12,..,N. Then we apply spatial
interpolation with a factor 8 to the filtered signals and obtain
ﬁDsub (rﬁ‘n,t'),n =1,2,..,BN. After reversing the temporal
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recentering of the signals based on the relation

I
ﬁ(rﬁ.n’ t) = ﬁDsub (rﬁ,n! t= || CsubC Bnn) ’

n=12,..,BN,t =0, (16)
we reconstruct the image in Dg,, using (2) for the denser
element locations.

B. With a single point source outside the subdomain
We increase the complexity of our theory by adding a single
point source at r’ outside the subdomain Dy, as shown in Fig.
1(b). For the single source point r’, (5) reduces to
vp,(r’)
4rc?||r’ — x|l

hé ¢ (”l" - rn” _ ”rc’,sub - rn”)
n=12..N, (17)

c c
where po (r’") is the initial pressure at r’ € D\Dg,;,, and v is the
volume of the source point Similarly, (3) reduces to

vpo (1’

5 () ~ ) =m0
Pt~ e ler -r ||(1_< c )%)

i
hg( ll € Doy

c c
Here, we confine the image reconstruction in Dy, by letting
r’' e Dsub-
We first analyze spatial aliasing in spatial sampling for
signals from the source point r'. Based on (17), the spatial

ol

ﬁDSub (rn’ t,) =

lIr' — r|l

(18)

”ré,sub_rn”

as
c
size

aliasing is determined by the step size of e
Using (7), we express the step
‘r(rn, | RS ) for adjacent element locations r,, and r,;,
and we define the upper cutoff frequency as

n varies. as

1

"N o_ .
fesspep,0s(@mI) = min
r,r is adjacentto rp Zf(rn, I, c sub' r )

nn =12, ..,N. (19)
To remove aliasing in spatial sampling (SS in the subscript) for
signals from the source point r’ outside the subdomain (OS in
the subscript), we apply lowpass filtering to pp_ (1, t") with
the above upper cutoff frequency. We assume that the value of
he(t) is nonzero only for ¢ in an interval [0, T,] ([0, 1.8 ps] for
this research), which is often small for the transducers used in
PACT. To minimize unwanted smoothing of signals, we filter

A ! ’ - n ”rcl,su —rn”
Dpgyp, (Tns t') only for ¢ — <”r Cr I : ) € [0,T.].

Then we analyze spatial aliasing in the image reconstruction
for signals from the source point r’ based on (18). We estimate

—rnII _ =]l

the upper limit of the step size of — I’ as n varies

using
T(l‘, radj’ l", l'”) < T(l‘, rad]" l", r(;,sub) + T(l‘, l.adj' rc’,sub’ l'")
= T(l‘, radj’ l", ré,sub) + TDsub (l‘, radj):
r’ € D\Dgyp,, I"" € Dgy- (20)
To remove aliasing in the image reconstruction (IR in the
following subscript) for signals from the source point r’, we can
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apply a second lowpass filtering to pp_ , (¥, t") with an upper
cutoff frequency
fc,IR,Dsub,OS(rw r') =
1

___min ,

r,r isadjacenttor, 2 (T(l‘n, Ty, r, rc’,sub) + TDsub (rn’ rn’))
nn =12,..,N (21)
To avoid the second lowpass filtering, after the first lowpass
filtering, we apply spatial interpolation to the filtered signals
and obtain the interpolated signals at virtual locations rg ,, n =
., BN. Updating (21) with these virtual locations, we

obtain

fc,IR,Dsub,OS,ﬁ (rp’,n: 1") =
1

min
Tgn! isadjacenttorg

2 (T(l"ﬁ_n, ot U Tun) + oy (Tpns rﬁ_n:))
n,n' =1,2,..,BN. (22)
Here, we still have the relation v, = rg g-1)+1,7 = 1,2, ..., N.
We choose a minimal S such that
ferRpeyp058 (Tppm-1+1T") = foss gy 0s T T,
n=12,..,N.
The factor £ is obtained through numerical computations.
In practice, we have signals from both the subdomain Dy,
and the source point r'. First, we rewrite (19) (for the source
point r"), which applies to only the time domain subsets, as

f (rp, tr)= fC‘SS'DSub'OS(rn‘r’)’ t'—to € Te
C,SS,Dgyp,0S\tnr & fC'IS’ else
n=12,..,N,

(23)

’

which applies to the whole time domain. Here, t} = I =rall _

T, —I; . .
Iresun—tnll denotes the recentered first arrival time from r’ to 1,

and f.1s denotes the upper cutoff frequency of the imaging
system (IS in the subscript). Next, we combine the upper cutoff
frequencies in (11) (for the subdomain Dg;,) and (24) to yield
the following upper cutoff frequency of the recentered signal
ﬁDsub (rn' t’):

fc,Dsub,r’ (rnr t,) = min{fc,Dsub (rn)' fc,SS,Dsub,OS(rn' t,: l")} . (25)
For the n-th element at time t’, by applying lowpass filtering
with the above upper cutoff frequency, we remove aliasing in
spatial sampling for signals from both the subdomain Dy, and
the source point r'. This LDTF process is computationally
intensive if implemented directly. In this research, we provide
an efficient implementation through precomputation and
interpolation, as shown in Appendix A. Based on (31) in
Appendix A, we express the filtered signals as
Dpg pLoTEr’ (T, t'). Further, we apply to the filtered signals a
spatial interpolation with the minimal factor § satisfying (15)
and (23), and reverse the recentering of the interpolated
signals. We finish the reconstruction in the subdomain Dg,
based on (2) for the virtual locations and denote the
reconstructed image in Dgyp as Pop_, v (r'"),r" € Dgyp-

C. With multiple point sources outside the subdomain

We further extend our theory to include multiple point sources
outside the subdomain Dg,;,. We denote the set of source points

(24)



outside Dy, as G = {r{, 13,13, ... }, as shown in Fig. 1(b), and
update the upper cutoff frequency as follows:
fepeuyc (T t) =
min {fc,Dsub (rn)' {_I,lég fc,SS,Dsub,OS(rn: t’, l")} ,

n=12,..,N. (26)
To remove spatial aliasing in the spatial sampling for signals
from the subdomain Dy, and the source points in G, we apply
lowpass filtering with the above upper cutoff frequency to the
recentered signal pp_ (1, t") of the n-th element at time t',
and obtain pp_, 1016 (n, t') ((31) in Appendix A). Then we
find the minimal B such that (15) and (23) are satisfied for all
n=12,..,N and r’' € G. Spatially interpolating the filtered
signals with the factor f, reversing the recentering of the
interpolated signals, and using (2) for the denser locations, we
reconstruct the image for the subdomain Dgy,,, denoted as
Do,0guy ¢ ('), " € Dy

D. With general sources outside the subdomain

In the fourth case, we consider general sources outside the
subdomain Dgy,. A direct method for LDTF with general
sources is selecting all voxels outside Dy, as source points
(grouped as G) and using (26) to obtain the upper cutoff
frequencies for lowpass filtering. However, this direct method
causes severe blurring in the reconstructed images due to
unwanted filtering. To minimize unwanted filtering during
spatiotemporal antialiasing, we select multiple sets of sparsely
distributed source points in the image domain (Appendix B),
denoted as Gy, Gy, ..., G;. We repeat the process in the previous
case for each G; and obtain an image of the subdomain Dgyy,,
denoted as ﬁO,Dsub.Gj(r,,)’ r" € Dgyp,j = 1,2,...,J. The final

image for the subdomain Dy, is obtained through averaging

]
A 114 1 A n n
Do,ngyy, (") = 7 } pO,Dsub,Gj(r ), 1" € Dgyp,. (27)

j=1
n A "
For r"" € D\Dyyp,, we define pop_ , (r") as zero.

IV. DIVISION OF IMAGE DOMAIN AND MOSAICKING OF
SUBDOMAIN IMAGES

We divide the whole image domain D into multiple
subdomains Dy, D,, ..., D;, as shown in Appendix B. In Fig.
1(c), we depict two subdomains with a group of outside point
sources. To form the whole image, these subdomains must

satisfy

D=D,UD,U..UD,. (28)
To mitigate artifacts caused by pixel-value mismatch on
subdomain boundaries, we overlap adjacent subdomains by a
length of &pp (Fig. 8(b) in Appendix B). Then, for each
subdomain D;, we repeat the process described in the fourth
case above to obtain Py p,(r""),i = 1,2, ... 1. Finally, we mosaic
these subdomain images to form the whole image:

I

Po(r") = Z Wlx(Di),ly(Di),EDD (r” - ré,i)ﬁo,bi(r”) , 1" €D.(29)
i=1

Here, L,(D;) and L, (D;) denote the sizes of the rectangle D; in

x-axis and y-axis directions, respectively, and r¢; is the center
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of D;. The normalized weight function W is defined by (34) in
Appendix B.

In summary, we have the general workflow of the location-
dependent spatiotemporal antialiasing for PACT, shown in Fig.

2.
D,p(r,, t),n=12,..,N,t =0
L], K
0<fe1<fe2 <+ <fox <fex+1=fc
Initial UBP:
Pousp ('), 1" €D

Image-domain division:
D=D,UD,U--UD,;
Precomputation for LDTF:
pAfC‘k(r71- o),

k=12.,K+1, A 4
n=12,..,N,t>0 Source-points selection:
i1 Gy, G, .. Gy
SlgnaIsA recenterlng for D;: Upper-cutoff-frequency ‘
Ppyfer Tt NG LDTF:
if ek estimation: | ,
k=12,..,K+1, Fopg (Tt P pD,,LDTF,a,("n: t"),
n=12.,N RSP n=12.,N
je1 n= *
[j —j+1 | [ Spatial interpolation of factor g ]
iei+1 Yes *
Image reconstruction in D;:
Yes Popy; ("), r" € D;
No
) . N 1 N N
@ Averaging for Gj,j = 1,2,...,J: Bop,(r'") = 7):§:1pgluilci(r ), r" € D; l

No

Mosaicking subdomain images:

Fig. 2. Workflow of the location-dependent spatiotemporal antialiasing for
PACT.

1
Po(r") = Z W 00,1, 006pp (I = Te1)Po,p, ("), 1" € D
i=1

V. NUMERICAL SIMULATIONS WITH POINT SOURCES

A. Spatial aliasing in the image domain and signal
domain

Before applying spatiotemporal antialiasing, we first visualize
the spatial aliasing in both the image domain and signal domain
through simulations with point sources. In fact, we were
inspired to propose LDTF by observing the connection between
spatial aliasing in these two domains. We use the MATLAB k-
wave toolbox [31] for the 2D forward simulation with a ring
transducer array of radius R = 110 mm. We let the frequency
range of the transducer be from 0.1 MHz to 4.5 MHz (2.3-MHz
central frequency, 191% one-way bandwidth, the upper cutoff
frequency f.;s = 4.5 MHz) and the number of transducer
elements be N =512. We set the speed of sound as ¢ =
1.5mm - pus~t. The shorter cutoff wavelength of this

transducer is A. = fc ~ 0.33 mm.

cIS

In this simulation, non-zero initial pressure exists only at
three point sources A, B, and C located at r,, rg, and rg,
respectively. We reconstruct an image of the initial pressure
from the simulated signals using the UBP method, shown in
Fig. 3(a) with the three points labeled. Both this image and the
ring array are centered at the origin. We denote the one-way

Nyquist zone §; = {r'|||r'|| < I:—’};} for the ring array [15] as a



Nic
am
13.6 mm. For source points in S;, there is no aliasing in the
spatial sampling. Closeup images of both subdomains (D; and
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Fig. 3. Spatial aliasing in the image domain and signal domain. (a) A
reconstructed image of three point sources (A, B, and C) with the one-way
Nyquist zone S; (blue-solid circle). (b) and (c) Closeup subsets of (a) in the (b)
red-dashed box and (c) the yellow-dashed box. Reconstruction locations P1-P5
along an artifact streak and Q1-Q5 from different artifact streaks are picked in
(b) to identify the sources of artifacts. (d) Signals recentered based on (5) with
r.;, = I'c. The signals used in the reconstructions at locations P1-P5 are marked
by dotted curves with different colors. (¢) The same recentered signals as in (d)
but marked by colored-dotted curves showing signals used for the
reconstructions at locations Q1-Q5. (f1)-(gl), (f2)-(g2), (f3)-(g3), (f4)-(g4),
and (f5)-(g5) Signals acquired with spatial sampling frequencies of (f1) 3.33
MHz, (f2) 4.00 MHz, (f3) 5.00 MHz, (f4) 6.67 MHz, and (f5) 10.00 MHz, and
their integration values along the respective dashed vertical lines ((gl)—(g5)).
(h) Normalized STD of the integration value versus the spatial sampling
frequency.

To identify the sources of aliasing artifacts in the signal
domain, we recenter the detected signals based on (5) by letting
rc1 = rc. The recentered signals are shown in both Fig. 3(d)
and (e), with the horizontal direction representing the time (t")
and the vertical direction as the element index (n). For better
visualization, the recentered signals are truncated in the
temporal dimension while still containing all signals from the
subdomain D, . Because the spatial Nyquist criterion is satisfied
after recentering, signals from both B and C are smooth in both
spatial and temporal dimensions. By contrast, signals from A
appear dashed in Fig. 3(d) and (e) because the spatial Nyquist
criterion is violated.

We show that these dashed patterns are sources of aliasing
artifacts in Fig. 3(b) by visualizing the connection between the
image domain and signal domain. In fact, from (2), we know
that reconstruction at each point in the image domain using the
UBP method is a weighted integration of a subset in the signal
domain. In subdomain D;, we pick reconstruction locations P1—
PS5 along an artifact streak and locations Q1-Q5 on different
artifact streaks, as shown in Fig. 3(b). Subsets for integrations
in the signal domain for the two groups of reconstruction
locations are shown as colored-dotted curves in Fig. 3(d) and
(e), respectively. In Fig. 3(d), the five colored-dotted curves all
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intersect with the signals from point A at approximately the
same point. Spatial aliasing at this point in the signal domain is
transformed by the UBP method to an artifact streak in the
image domain. In other words, sharing the same point in the
signal domain corresponds to sharing the same artifact streak in
the image domain. In Fig. 3(e), the five colored-dotted curves
intersect with the signals from point A at different points, which
correspond to different artifact streaks in the image domain. In
summary, aliasing artifacts in a subdomain are caused by
dashed portions of signals that are recentered to this subdomain.
For the subdomain D,, the spatially dashed portions of
recentered signals may come from all three points, which are
far from D,. Thus, the artifacts in Fig. 3(c) have more complex
patterns than those in Fig. 3(b).

We further intuitively explain spatial aliasing. The colored-
dotted curves in Fig. 3(d) and (e) intersect with not only the
signals from point A but also the signals from points B and C.
Signals from points B and C do not contribute to the aliasing
artifacts in Fig. 3(b), which can be explained by the Nyquist
criterion based on (5), as well as by the following intuitive
geometric description. For each combination of a source point
and a reconstruction location, the signals from the source point
and the integration subset intersect. Both the signals and the
integration subset have temporal step sizes when the element
index n varies. It is the difference between the two temporal
step sizes at the intersection points that determines the
amplitude of the aliasing artifact at the reconstruction location.
Signals with differential temporal step sizes of 0.30 ps, 0.25 us,
0.20 ps, 0.15 ps, and 0.10 ps (corresponding to spatial sampling
frequencies 3.33 MHz, 4.00 MHz, 5.00 MHz, 6.67 MHz, and
10.00 MHz, respectively) are shown in Fig. 3(f1)—(f5),
respectively. In the simplest case that the temporal step size of
the integration subset is approximately zero within a
sufficiently small subdomain, we let the temporal step size of
the signals vary. Thus, the integration subsets in Fig. 3(f1)—(f5)
are vertical lines as indicated by the white-dotted line in Fig.
3(f2). Normalized integration values (integrals) at different
times in Fig. 3(f1)—~(f5) are shown in Fig. 3(gl)—(g5),
respectively. We see that the oscillation amplitude of the
integral decreases as the spatial sampling frequency increases.
Comparing integrations in Fig. 3(f1) and Fig. 3(f5), we see a
key difference: at different times in Fig. 3(f1), the values along
an integration line are dominated by positive values or negative
values, resulting in fluctuating integrals; however, in Fig. 3(f5),
there is no such dominance, resulting in a close-to-zero integral
at any time. Thus, intuitively, the amplitudes of aliasing
artifacts (caused by signals from a given source point) in the
image domain are determined by the dominance of values of
certain signs in the integration subsets, which are further
determined by the relative temporal step sizes of the signals and
integration subsets at their intersection points. Using standard
deviation (STD) to quantify the amplitude of integrals in Fig.
3(gl)—(g5), we obtain the amplitude’s dependency on the
spatial sampling frequency, as shown in Fig. 3(h). Based on the
Nyquist criterion, the amplitude is negligible for a spatial
sampling frequency greater than 2f.;5 = 9.0 MHz.



B. Image  reconstruction with

antialiasing

To mitigate aliasing artifacts, our previous work [15] used
spatial interpolation and radius-dependent temporal filtering
(RDTF) for a centered subdomain without strong outside
sources, and here we propose LDTF for off-centered
subdomains. We consider image reconstructions for only the
two subdomains, D; and D,, shown in Fig. 3(a).

We first visualize the final signals used for the reconstruction
of the subdomain D; in each method. For UBP without
antialiasing, the signals (Pp, (1, t")) recentered based on (5)
with r{; = r¢ are shown in Fig. 4(al) (the same as in Fig. 3(d)
and (e)). For UBP with spatial interpolation, the original signals
(P(ry, t)) are interpolated in spatial dimension then recentered
for better comparison, as shown in Fig. 4(a2). For UBP with
RDTF and spatial interpolation, the original signals (H(xy, t))
are processed first by RDTF then by spatial interpolation. The
results are further recentered for better comparison, as shown in
Fig. 4(a3). For UBP with LDTF and spatial interpolation, the
recentered signals (Pp, (1, t")) are processed first by LDTF
with only one set of source points G = {r,, rg, Ic} shown in Fig.
3(a) then by spatial interpolation, resulting in Fig. 4(a4).
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Fig. 4. Spatiotemporal antialiasing for the image reconstruction of point
sources. (al)—(a4) Final spatiotemporal signals used for reconstructions of the
subdomain D; in UBP, UBP with spatial interpolation (SI), UBP with RDTF
and SI, and UBP with LDTF and SI. (b1)—(b4) Images of the subdomain D,
reconstructed using (b1) UBP, (b2) UBP with SI, (b3) UBP with RDTF and SI,
and (b4) UBP with LDTF and SI. (cl1)—(c4) Images of the subdomain D,
reconstructed using the four methods to show artifacts only. (d)—(g)
Comparisons of the values along dashed lines (d) L1, (e) L2, (f) L3, and (g) L4,
respectively, for the four methods. The full width at half maximum (FWHM)
of the main lobe in (f) is 0.79 mm for UBP with RDTF and SI, and 0.40 mm for

UBP with LDTF and SI. The amplitudes are 0.67 and 1.09, respectively.

The image of the subdomain D; reconstructed using UBP,
UBP with spatial interpolation, UBP with RDTF and spatial
interpolation, and UBP with LDTF and spatial interpolation are
shown in Fig. 4(b1)—(b4), respectively. Aliasing artifacts in the
subdomain D; are caused by signals from the source point A.
These artifacts appear in the whole subdomain in Fig. 4(b1) and
partially in Fig. 4(b2) and (b3). They are substantially mitigated
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in the whole subdomain in Fig. 4(b4). In addition, the images
of point sources B and C in Fig. 4(b4) maintain the isotropy
shown in (bl) while those in Fig. 4(b2) and (b3) are
anisotropically blurred. These differences in aliasing artifacts
and image blurring are determined by the final signals used for
reconstruction in the different methods. Comparing Fig. 4(al)
and (a2), we see that the signals from A (sources of aliasing
artifacts in D,) are partially mitigated by spatial interpolation
and the signals from B and C are partially disrupted by spatial
interpolation. These partial mitigation and disruption are caused
by the fact that the spatial Nyquist criterion is only partially
satisfied in the original signals (p(ry, t)). The partial mitigation
of the signals from A causes partial mitigation of the aliasing
artifacts in Dy, whereas the partial disruption of the signals from
B and C causes anisotropic blurring in D,, as shown in Fig.
4(b2). RDTF further blurs signals from all the three points, as
shown in Fig. 4(a3); however, large numbers of aliasing
artifacts remain, as shown in Fig. 4(b3). In contrast, LDTF with
spatial interpolation substantially suppresses signals from A
while maintaining signals from B and C. Thus, as shown in Fig.
4(b4), LDTF substantially mitigates aliasing artifacts and
maintains the spatial resolution.

Repeating the four reconstruction methods for the subdomain
D, vyields the images shown in Fig. 4(cl)—(c4). Aliasing
artifacts in D, are caused by signals from all the three point
sources. Neither RDTF nor spatial interpolation effectively
mitigates signals from these points, resulting in abundant
aliasing artifacts in the reconstructed images, as shown in Fig.
4(c1)—~(c3). By contrast, LDTF with spatial interpolation
substantially suppresses signals from all the three points,
resulting in markedly reduced aliasing artifacts, as shown in
Fig. 4(c4).

For quantitative comparisons, we first pick a line L1 labeled
in Fig. 4(al) with the values along the line for the four methods
shown in Fig. 4(d). In comparison to the raw signal, signals
from B and C are distorted by spatial interpolation, blurred by
RDTF, but maintained by LDTF with spatial interpolation. To
compare the effects in the image domain, we draw two lines L2
and L3 in the subdomain D,, as shown in Fig. 4(b1). The values
along lines L2 and L3, respectively, for the four methods, are
compared in Fig. 4(e) and (f). LDTF with spatial interpolation
is superior in antialiasing as shown in Fig. 4(e) while
maintaining the spatial resolution as shown in Fig. 4(f).
However, spatial interpolation anisotropically blurs the image
through signal disruption; RDTF further blurs the image
through temporal lowpass filtering. These blurring effects in the
image domain are shown in Fig. 4(f). To compare aliasing
artifacts in D,, we show the values along a line L4 labeled in
Fig. 4(cl) for the four methods in Fig. 4(g). We see that LDTF
with spatial interpolation is still superior for antialiasing in D,.
Note that RDTF and spatial interpolation’s ineffectiveness for
antialiasing in D; and D, is not contradictory with the results in
[15], where aliasing artifacts are mainly caused by signals from
sources close to or inside the one-way Nyquist zone S;.



VI. NUMERICAL SIMULATIONS OF BLOOD VESSEL
PHANTOMS

We further validate the proposed method using two
numerical blood vessel phantoms. The first numerical phantom
consists of simple blood vessel structures, as shown in Fig.
5(al). Two subsets of the simple numerical phantom enclosed
in the red-dashed box and the yellow-dashed box, respectively,
are shown in Fig. 5(bl) and (c1).

In the point source simulations presented in the above
section, we select only two subdomains and all the three source
points for spatiotemporal antialiasing, as shown in Fig. 4(a4),
(b4), and (c4). For a general numerical phantom with blood
vessel structures, multiple parameters are used to control the
image reconstruction. As shown in Appendix B, the selection
of source points is controlled by subdomain size lgp, candidacy
ratio a, and the number of sets J; while the image-domain
division is controlled by subdomain size lpp and overlapping
size épp. Additionally, we reduce T, in (24) to an optimal value
T, to minimize unwanted blurring of images. For more efficient
tuning of the ranges, we scale T, for each subdomain to a
balanced location-dependent parameter T, (D;), i = 1,2, ..., 1, as
proposed in Appendix C. In summary, six parameters
(Isp, a, ], lpp, épp, T,,) need to be tuned for best reconstruction.
In Appendix D, we propose a parameter-tuning strategy based
on alternating-direction optimization.
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Fig. 5. Applying spatiotemporal antialiasing to the image reconstruction of a
numerical phantom with simple blood vessel structures. (al) A numerical
phantom consisting of simple blood vessel structures. The one-way Nyquist
zone S; with a radius of 13.6 mm is marked by a blue-solid circle. (bl) and (c1)
Closeup subsets of the simple numerical phantom enclosed in the red-dashed
box and the yellow-dashed box, respectively. (a2)—(c2), (a3)—(c3), and (a4)-
(c4) Images of the simple numerical phantom reconstructed using UBP, UBP
with RDTF and spatial interpolation (SI), and UBP with LDTF and SI,
respectively, and their closeup subsets. A line L and two small regions A and B
are picked for comparisons of the three methods. (d) Comparisons of the values
along the line L for the three methods. The FWHM of one main lobe is 0.79
mm for UBP with RDTF and SI, and 0.49 mm for UBP with LDTF and SI. The
amplitudes are 0.75 and 1.25, respectively. (e) Comparisons of the STDs of
pixel values in regions A and B for the three methods.

Applying the parameter-tuning strategy to the first numerical
phantom with simple structures, we choose
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(Isp, ., lpp, €pp, Tyy) to be (0.6 mm, 0.02, 36, 18 mm, 1.8 mm,
1.2 ps). Reconstructions of the simple numerical phantom using
UBP, UBP with RDTF and spatial interpolation, and UBP with
LDTF and spatial interpolation are shown in Fig. 5(a2)—(a4),
respectively. Reconstructions of the subdomains in Fig. 5(b1)
and (c1) using the three methods are shown in Fig. 5(b2)-(c2),
(b3)-(c3), and (b4)-(c4), respectively. Comparing Fig. 5(c2)—
(c4), we see that LDTF with spatial interpolation is more
effective than RDTF with spatial interpolation in mitigating
aliasing artifacts, which agrees with the comparison for point
sources shown in Fig. 4(b1)—~(b4). Moreover, comparing Fig.
5(b2) and (b3), we observe that RDTF with spatial interpolation
compromises image resolution and introduces additional
artifacts during antialiasing. These observations also agree with
the results in Fig. 4(b1)—(b4) and are mainly caused by the fact
that the spatial Nyquist criterion is partially unsatisfied after
RDTF, as explained in Fig. 4(al)—(a4). In summary, LDTF with
spatial interpolation has better performance than RDTF with
spatial interpolation in both mitigating aliasing artifacts and
maintaining image resolution.

For quantitative comparisons, we draw a line L (marked in
Fig. 5(b2)) in the red-boxed subdomain. The values along the
line L for the three methods are shown in Fig. 5(d). We observe
that RDTF with spatial interpolation blurs the image and
introduces artifacts, whereas LDTF with spatial interpolation
maintains the image resolution and maintains the low-
amplitude background. It needs to be noted that aliasing
artifacts only appear for certain combinations of source point
and reconstruction location. The low-amplitude background
around L in Fig. 5(b2) means that aliasing artifacts in this region
are caused only by low-amplitude point sources. For
quantitative comparisons of aliasing artifacts, we pick two
small regions A and B (marked in Fig. 5(c2)) in the yellow-
boxed subdomain. The amplitudes of aliasing artifacts in A and
B are quantified by STDs of the pixel values in them. We
compare these STDs in Fig. 5(e), which further validates that
LDTF with spatial interpolation outperforms RDTF with spatial
interpolation in mitigating aliasing artifacts.

The second numerical phantom is shown in Fig. 6(al), which
consists of blood vessels with complex structures. Two subsets
of the complex numerical phantom are shown in Fig. 6(b1) and
(cl), respectively. Applying the parameter-tuning strategy to
the  complex  numerical  phantom, we  choose
(Isp, , J, Ipp, épp, Tyy) to be (3.6 mm, 0.08, 36, 18 mm, 1.8 mm,
1.2 ps). Reconstructions of the complex numerical phantom
using UBP, UBP with RDTF and spatial interpolation, and UBP
with LDTF and spatial interpolation are shown in Fig. 6(a2)—
(a4), respectively. The subdomain images reconstructed by the
three methods are shown in Fig. 6(b2)-(c2), (b3)-(c3), and (b4)-
(c4), respectively. Comparing these subdomain images, we see
that LDTF with spatial interpolation more effectively mitigates
aliasing artifacts than RDTF with spatial interpolation.
Moreover, using numerical simulations of the complex
numerical phantom, we demonstrate the advantage of using the
location-dependent parameter T, (D;) over using a constant
parameter T, across all subdomains for temporal filtering



9

(Appendix E).
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Fig. 6. Applying spatiotemporal antialiasing to the image reconstruction of a
numerical phantom with complex blood vessel structures. (al)—(cl) A
numerical phantom consisting of complex blood vessel structures, and its
closeup subsets. (a2)—(c2), (a3)—(c3), and (a4)—(c4) Images of the complex
numerical phantom reconstructed using UBP, UBP with RDTF and spatial
interpolation (SI), and UBP with LDTF and SI, respectively, and their closeup
subsets. (d) Comparisons of the values along the line L marked in (b2) for the
three methods. The FWHM of the dominant lobe is 0.93 mm for UBP with
RDTF and SI, and 0.73 mm for UBP with LDTF and SI. The amplitudes are
1.15 and 1.31, respectively. (e¢) Comparisons of the STDs of pixel values in
regions A and B marked in (b2) and (c2), respectively, for the three methods.

For quantitative comparisons, we draw a line L (marked in
Fig. 6(b2)) in the red-boxed subdomain and pick two small
regions A and B (marked in Fig. 6(b2) and (c2), respectively)
in different subdomains for the three methods. The values along
the line L are shown in Fig. 6(d) while the STDs of the pixel
values in A and B are compared in Fig. 6(¢). In Fig. 6(d), we
still see that RDTF with spatial interpolation blurs the image
and introduces new artifacts; whereas LDTF with spatial
interpolation blurs the image to a smaller degree and mitigates
the aliasing artifacts. The blurring effect of LDTF with spatial
interpolation is more obvious in the complex numerical
phantom than in the simple numerical phantom. In fact,
compared with the simple numerical phantom, more source
points are selected for LDTF in the complex numerical
phantom, which results in the filtering of more signals and more
blurring of the image. Thus, for images with complex
structures, we find a balance between mitigating aliasing
artifacts and maintaining image resolution by tuning the
parameters. Because of this balance, aliasing artifacts still
appear in Fig. 6(b4). In Fig. 6(e), we still observe that LDTF
with spatial interpolation is better than RDTF with spatial
interpolation in mitigating aliasing artifacts.

Due to the more intricate temporal filtering for antialiasing,
the proposed method has a significantly higher computation
cost. On a computer with Windows 10 Home and Intel® Core™
i7-6700 CPU @ 3.40 GHz, the reconstructions of the simple
numerical phantom through UBP, UBP with RDTF and spatial
interpolation, and UBP with LDTF and spatial interpolation
(single-thread implementations) take 17.6 s, 98.8 s, and 682.7 s
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(average values for 10 repetitions), respectively. For the
complex numerical phantom, the computation times of the first
two methods do not change but the third one takes 1345.5 s due
to the differences in reconstruction parameters. All methods can
be accelerated through GPU. For example, using an NVIDIA
GeForce GTX 1050 Ti graphics card, we reduce the
computation time of the UBP method from 17.6 s to 0.54 s.
Although not demonstrated in this study, an efficient GPU
acceleration of the proposed method is preferred for faster
parameter tuning and image reconstruction in future studies.

VII. IN VIVO EXPERIMENTS

Finally, we apply the proposed LDTF with spatial
interpolation to human breast imaging in vivo. The imaging
system has been reported by Lin ef al. [2], in which a 512-
element full-ring ultrasonic transducer array (Imasonic, Inc.,
110-mm radius, 2.25-MHz central frequency, 95% one-way
bandwidth) was used. In our previous study [15], the cutoff
frequency has been estimated to be f;s = 3.80 MHz. Here we
use the speed of sound ¢ = 1.49 mm - us™t. A cross-sectional
image of a breast in vivo is reconstructed using UBP and shown
in Fig. 7(al). The result of UBP with RDTF and spatial
interpolation is shown in Fig. 7(a2).
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Fig. 7. Applying spatiotemporal antialiasing to human breast imaging in vivo.
(al)—~(a3) Images of a human breast cross section in vivo reconstructed using
(al) UBP, (a2) UBP with RDTF and spatial interpolation (SI), and (a3) UBP
with LDTF and SI. Two subdomains in the red-dashed box and the yellow-
dashed box, respectively, are picked for comparisons of the three methods. (b1)-
(cl), (b2)-(c2), and (b3)-(c3) Closeup images of the two subdomains for the
three methods, respectively. Lines L1 and L2 are picked for comparisons. (d)
and (e) Values along lines L1 and L2, respectively, for the three methods.

To use LDTF with spatial interpolation in UBP for image
reconstruction, we tune the parameters (lgp, @, , lpp, épp, T)-
This parameter tuning is simplified by comparing the
parameters used for the numerical blood vessel phantoms. In
those simulations, we use (lgp, @) = (0.6 mm, 0.02) for the
simple numerical phantom, (Igp, @) = (3.6 mm, 0.08) for the
complex numerical phantom, and (J, lpp, épp, Tp) = (36, 18
mm, 1.8 mm, 1.2 ps) for both phantoms. Considering that the
structural complexities of the simple numerical phantom and
the complex numerical phantom occupy a complexity range
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large enough for our study, we still use (J, Ipp, épp, Tp) = (36,
18 mm, 1.8 mm, 1.2 ps) for the breast imaging. Following the
same parameter-tuning protocol, we select (Igp, @) = (1.8 mm,
0.04) for the breast imaging. In summary, we use
(Isp, . ], lpp, épp, To) = (1.8 mm, 0.04, 36, 18 mm, 1.8 mm, 1.2
us) for the reconstruction of the breast image. The result of UBP
with LDTF and spatial interpolation is shown in Fig. 7(a3).

For better comparisons, we select two subdomains in a red-
dashed box and a yellow-dashed box, respectively, as shown in
Fig. 7(al)—(a3). Closeup images of the subdomains are shown
in Fig. 7(bl)-(cl), (b2)-(c2), and (b3)-(c3) for the three
methods, respectively. Comparing Fig. 7(b1)—(b3), we see that
both RDTF with spatial interpolation and LDTF with spatial
interpolation mitigate aliasing artifacts. However, RDTF with
spatial interpolation compromises image resolution. From Fig.
7(c1)—(c3), we see that LDTF with spatial interpolation is more
effective than RDTF with spatial interpolation in mitigating the
aliasing artifacts. For quantitative comparisons, we pick two
lines L1 and L2 in the red-boxed subdomain (Fig. 7(b1)). Pixel
values along these two lines, respectively, for the three methods
are shown in Fig. 7(d) and (e), which further validate that LDTF
with spatial interpolation is more effective than RDTF with
spatial interpolation in both mitigating aliasing artifacts and
maintaining image resolution.

VIII.

In this research, we proposed an antialiasing method for
PACT based on LDTF with spatial interpolation, which exhibits
better performance in mitigating aliasing artifacts while
maintaining image resolution. We applied this method to UBP
and validated it through numerical simulations and in vivo
experiments. To apply this method, we first divide the image
domain into subdomains and select multiple groups of source
points with maximum amplitudes from an initial image
reconstructed using UBP. Then for each subdomain and each
group of source points, we temporally filter the signals from the
source points that overlap with signals from the subdomain. We
recentered signals for this subdomain, apply spatial
interpolation to the recentered signals, and use them to
reconstruct the image in the subdomain. In this process, doing
temporal filtering only for signals from source points with high
amplitudes is essential for mitigating the dominant aliasing
artifacts while minimizing unwanted blurring of the image.
Location-dependent recentering of signals before spatial
interpolation is essential for protecting signals from the
subdomain of interest during spatial interpolation and
maintaining image resolution. The proposed method
outperforms our previous method based on RDTF with spatial
interpolation in mitigating aliasing artifacts and maintaining
image resolution.

To get the best performance of LDTF with spatial
interpolation, we analyzed the sensitivities of all the
parameters. We found that parameters (J,lpp,épp,T,) are
relatively insensitive for this study whereas parameters (Igp, @)
are sensitive. Thus, in all numerical simulations and in vivo
experiments, we have the same choice of the four parameters
(, lop, épp, T,) and only vary the other two (lsp, @). For a

CONCLUSIONS AND DISCUSSION
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certain application, (lgp,@) can be varied for different
preferences for mitigating aliasing artifacts and maintaining
image resolution. Also, we proposed just one strategy for
determining the location-dependent parameter Ty, (D;) given the
parameter T, and a group of source points, which can be further
improved in future studies. Moreover, in applications with
subdomain illuminations or patterned illuminations, we can
select the source points based on prior knowledge of the
illumination patterns to achieve more efficient LDTF.

The spatiotemporal analysis in this research relies on the
homogeneous-medium assumption, which is satisfied in the
numerical simulations. The effectiveness of LDTF with spatial
interpolation in human breast imaging in vivo further validates
that our theory applies to approximately homogenous media.
For strongly inhomogeneous media, such as in transcranial
PACT, more studies need to be done to demonstrate and
improve the method’s performance.

LDTF with spatial interpolation is applicable to other image
reconstruction methods and other detection geometries. In fact,
we can use LDTF with spatial interpolation as a filter for
preprocessing and use another method for reconstruction. For
example, we can use LDTF with spatial interpolation before a
model-based iterative method with TV regularization to reduce
the requirement of the regularization parameter and minimize
unwanted blurring. We also can use LDTF with spatial
interpolation before a deep neural network to reduce the
network’s burden in antialiasing, which potentially makes the
network more robust. Importantly, the proposed method does
not rely on a specific transducer array geometry, thus is directly
applicable to other geometries, such as a linear array. Moreover,
the proposed method is not limited to 1D arrays for 2D imaging.
Through dimension decomposition, the method is applicable to
2D arrays, such as arrays of spherical, cylindrical, and planar
geometries, allowing for spatiotemporal antialiasing in 3D
imaging. An efficient GPU acceleration of the proposed method
is preferred for faster parameter tuning and image
reconstruction in future studies.

APPENDIX A
AN EFFICIENT IMPLEMENTATION OF LDTF

If implemented directly, processing signal pp_, (1, t") of
each element at time t' using a lowpass filter with an upper
cutoff frequency of f is computationally intensive. For fast
reconstruction, we give an efficient implementation of the
LDTF through precomputation and interpolation. Before the
reconstruction of any subdomain, we process the original
signals p(r,, t) of each element using lowpass filters with upper
cutoff frequencies of f.x, k =1,2,..,K +1 satisfying 0 <
fo1 <fe2 < <fex < fex+1 = fe. Here, a lowpass filter
with an upper cutoff frequency means a third-order lowpass
Butterworth filter followed by a sinc filter with the same upper
cutoff frequency. We denote the filtered signals as
ﬁfc,k(rn' t),k=12,..,K+1. For reconstruction of a

subdomain Dy, we recenter the filtered signals based on (4)
and obtain
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Py fer T t) = Dy, (rn’ ¢t [Irésus — n”)

n=12..,Nk=1,2 .,K+1. (30)
For a general cutoff frequency f > 0, we obtain the filtered
signals through the following linear interpolation:

ﬁDsub'f (rn' t,)

f :
Estubfm (ry, t), 0<f<fer
fc,k+1 - f N ,
fc k+1 — fck pDSUb'fC'k(rn’ t ) +
RS '
fck+1 Cf kasubfck+1(rn’t) fC.k < f = fC,k+1'
k=12,..,K
ﬁDsub:fc(rn’t,)' f > fC,K+1 = ﬁ:
n=12..,Nf>0. (31)

In practice, we let the upper cutoff frequencies fi,, k =
1,2,...,K + 1 be dense enough so that further increasing their
density has minor effects on the reconstructed images. As an
application, we substitute fp (¥, t) (fe,pgyp.6 (Tns t1)) for

fin (31) to obtain pp_, 1.p1rr’ (Fns t) (Ppgyp, LoTE6 (s t1)).

APPENDIX B
SELECTION OF SOURCE POINTS AND DIVISION OF IMAGE

DOMAIN

For LDTF with spatial interpolation, we select multiple
groups of source points in the image domain and divide the
image domain into subdomains for reconstructions. To select
source points, we first reconstruct an image using the UBP
method and select the aM pixels with the largest absolute
values as source-point candidates, shown as white pixels in Fig.
8(a). Here, M is the number of all pixels, and « is the candidacy
ratio. Then we divide the image domain into subdomains of size
lsp X lgp for further selection. In each subdomain, if there exist
source-point candidates, we randomly select one; otherwise, we
do not select. The selected source points in all subdomains form
a group of source points for LDTF. Repeating this random
selection J times, we obtain J groups of source points:
Gy, Gy, ..., G;. The first two groups are shown in Fig. 8(a) as blue

dots and red triangles, respectively.

Bl

aM pixels with largest
gbsolute values

Fig. 8. Selection of source points and division of image domain. (a) Selection
of source points from a UBP reconstructed image. The white pixels indicate the
aM pixels with the largest absolute pixel values in the image. Subdomains have
a size of lgp X lgp and are visualized by a grid. Two groups of selected source
points are shown as blue dots (G;) and red triangles (G,), respectively. (b)
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Domain division in a UBP reconstructed image. Initially, subdomains have a
size of Ipp X lpp (residual subdomains are smaller), shown as a grid. Then each

subdomain is extended by fLD out of its boundaries inside the image domain.

For image-domain lelSlOIl, we start from one corner of the
image domain and choose a square subdomain for every
distance lpp in each dimension, as shown in Fig. 8(b). The
residual subdomains are rectangles whose sizes are determined
by the residual lengths. To mitigate artifacts caused by pixel

value mismatch on subdomain boundaries, we extend each

fDD

subdomain by =— outside of its boundaries inside the image

domain. The extended subdomains are denoted as D;, D,, ...,
D;. To mosaic the subdomain images, we define a 2D weight
function

Wi, e () = w1 e(,y) = wi e (0w, £ (V), (32)
where the 1D weight function is defined asl
1, |X| < E
w0 =11-2 << @)
[+
0, [x]| > Tf

We normalize the weight functions for these subdomains as
Wi 0,1y 0p.epp (T — Tei) =
Wi (0t (0 &sp (T = Té)
1 " ! !
Lira Wi, (0;)ly(Dyr)pD (r'— rc,i’)

i=12..,1 (34)
where 1, (D;) and L,,(D;) denote the sizes of the rectangle D; in
x-axis and y-axis directions, respectively, and r

of D;. Then, we mosaic images in subdomains Dl, D,, ..., D;
through (29) to form the whole image in D.

; 1s the center

APPENDIX C
LOCATION-DEPENDENT PARAMETER T}, (D;) FOR TEMPORAL

FILTERING

The parameter T, determines the range for temporal filtering:
as T, increases, wider temporal ranges of signals are filtered. In
practice, we tune T, to find a balance between mitigating
aliasing artifacts and maintaining image resolution. In
numerical simulations, we observe that for the same T,
different amounts of signals are filtered for the reconstructions
of different subdomains. This observation means that an
optimal choice of T, for one subdomain may not be optimal for
another subdomain, which makes the tuning of T, location-
dependent and computationally intensive. To make the tuning
of T, more efficient, we propose a strategy to scale T, for
different subdomains automatically.

Before an adjustment of T,, we first quantify the amount of
temporal filtering for each subdomain through numerical
simulation. In an image domain with a size of 120 X 120 mm?,
we have 14 X 14 evenly distributed source points, shown as
white dots in Fig. 9(a). We choose lpp = 12 mm and &pp =
1.8 mm for image-domain division, which results in 100
subdomains. Two of the subdomains, D; and D,, are marked in
Fig. 9(a) as a red-dashed box and a yellow-dashed box,
respectively. We conduct a forward simulation to visualize the
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signals from the source points, which occupy a subset of the
signal domain marked as white pixels in Fig. 9(b). Here, we use
a relatively small parameter T, = 0.3 ps in the simulation to
avoid saturation of the occupancy. In the reconstruction of a
subdomain using the UBP method, signals from only a subset
are used. For subdomains D; and D,, the used signal subsets are
marked by two red curves and two yellow curves, respectively,
in Fig. 9(b). The signals from the centers of the two subdomains
are marked by two blue curves, respectively. Based on (4), we
recenter signals in the two subsets with respect to the
subdomain centers, as shown in Fig. 9(cl) and (c2),
respectively. For each subdomain, the corresponding signal
subset is partially occupied by signals from the source points:
for D; and D,, the occupancy ratios are 0.405 and 0.606,
respectively. We have shown that temporal filtering is
determined not only by the occupancy ratio but also by the
relative temporal step sizes. Here, as an approximation, we
ignore the effects of the relative temporal step sizes and use
only the occupancy ratio to quantify the amount of temporal
filtering.

Constant T,
Location-dependent T,(D)

60

distributed source points, shown as white dots, and two subdomains D, and D,,
marked by a red-dashed box and a yellow-dashed box, respectively. (b) The
subset of the signal domain (white pixels) that is occupied by signals (with T, =
0.3 ps) from the source points in (a). Signals from subdomains D; and D,
occupy a region between two red curves and a region between two yellow
curves, respectively. Signals from the centers of D, and D, are indicated by two
blue curves. (c1) and (c2) Subsets of (b) recentered for D, and D,, respectively,
showing a difference between the occupancy rates of signals from the source
points: 0.405 for D, and 0.606 for D,. (d1) and (d2) The occupancy rates for D;
and D, (0.405 and 0.390, respectively) after using the location-dependent
parameter Ty, (D;).

Next, we use the occupancy ratio to adjust T, for each
subdomain to achieve a low variation of occupancy ratios
across subdomains. We denote the occupancy ratio of the
subdomain D; as 0;,i = 1,2,, ..., . Instead of using the same T,

for all subdomains, we use

Ty(Dy) = (%) T,

i

(35)

for temporal filtering in the reconstruction of the subdomain
D;, i =1,2,..,1. Here, we use y to account for the occupancy
ratio’s nonlinear dependency on T, due to the overlapping of
signals from different source points. After multiple tests, we
choose y = 1.8 to achieve a low variation of occupancy ratios
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across subdomains. Applying the location-dependent parameter
Ty (D;) to all the 100 subdomains, we obtain a new set of
occupancy ratios. For subdomain D,, the occupancy ratio does
not change. For subdomain D,, the occupancy ratio reduces
from 0.606 to 0.390. The new signal occupancies for D, and D,
are visualized in Fig. 9(dl) and (d2), respectively. The
occupancy ratios for the constant T, and the location-dependent
Ty, (D;) are compared in Fig. 9(e). From this comparison, we see
that the variation of the occupancy ratios across subdomains is
reduced by using the location-dependent parameter Ty, (D;),
which is controlled only by T, for a given group of source
points. In practice, we only tune T, in (35), then the amount of
temporal filtering in each subdomain is automatically adjusted
by using T,(D;). Thus, we simplify tuning T, for each
subdomain to tuning a single T, for all subdomains.

APPENDIX D
PARAMETER SENSITIVITY ANALYSIS BASED ON ALTERNATING-

DIRECTION OPTIMIZATION

The purpose of parameter tuning is to balance mitigating
aliasing artifacts with maintaining image resolution. For this
purpose, we quantify the amplitude of aliasing artifacts and
image resolution for different choices of parameters. In a
numerical phantom, we identify regions with zero initial
pressure in the ground-truth image as background. For each
reconstructed image, we use the STD of the background pixel
values to quantify the amplitude of aliasing artifacts. As for
image resolution, we use values along lines of interest in the
reconstructed image for comparison. Location-dependent
spatiotemporal antialiasing is affected by parameters used in the
source points selection (Igp, @, J), the image-domain division
(Ipp, €pp), and the temporal filtering T,. Here, by tuning these
parameters for image reconstruction of the simple numerical
phantom, we analyze the proposed method’s sensitivity to these
parameters. This analysis is then used to guide the parameter
tuning for the complex numerical phantom and the in vivo
experiments.
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Fig. 10. Parameter sensitivity analysis. (al)-(a2), (b1)-(b2), (c1)-(c2), (d1)-(d2),
(el)-(e2), and (f1)-(f2) Normalized STDs of the background pixel values and
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values along the line L1 in Fig. 5(c2) for different choices of a parameter (Isp,
a, ], lpp, &pp, or T, respectively), while others are kept as constants.

Exploring all combinations of the six parameters is
computationally intensive. We use alternating-direction
optimization for more efficient tuning, meaning we tune one
parameter each time without changing others. We start the
tuning process by letting (Isp, @, J, lpp, épp, Tp) = (1 mm, 0.01,
10, 10 mm, 1 mm, 1 ps), which is an order-of-magnitude
empirical estimation. After multiple iterations, we obtain the
best choice (Isp, &, J, Ipp, épp, Tp) = (0.6 mm, 0.02, 36, 18 mm,
1.8 mm, 1.2 ps) for the numerical phantom with simple blood
vessel structures.

To justify the choice, we first tune lsp while keeping
(], lpps épp, Tp) = (0.02, 36, 18 mm, 1.8 mm, 1.2 ps). For
aliasing artifacts, we obtain the STDs of the background pixel
values for different values of lgp and normalize them by
dividing the average STD, as shown in Fig. 10(al). For image
resolution, we compare the values along the line L in Fig. 5(b2)
for lgp 0f 0.3 mm, 0.6 mm, and 1.2 mm, respectively, as shown
in Fig. 10(a2). As we see in Fig. 10(al), for lsp > 0.6 mm, the
STD increases as lsp increases. In fact, a greater value of lgp
means fewer source points for spatiotemporal antialiasing,
which results in a greater amplitude of aliasing artifacts and less
blurring of the image, as shown in Fig. 10(al) and (a2),
respectively. As a balance, we choose Igp = 0.6 mm. Then we
tune a while letting (Isp, /, Ipp, épp, Tp) = (0.6 mm, 36, 18 mm,
1.8 mm, 1.2 ps). For mitigating aliasing artifacts, & = 0.02 is
the best choice, as shown in Fig. 10(b1). For a <0.02, a smaller
a means fewer source points for spatiotemporal antialiasing,
which results in a higher amplitude of aliasing artifacts. For a
> 0.02, a greater @« means more source point candidates
including low-amplitude ones. However, in the random-
selection step, having more low-amplitude source points means
that the dominant source points are less likely to be selected. As
aresult, the spatiotemporal antialiasing is less effective, leading
to a higher amplitude of aliasing artifacts. For maintaining
image resolution, @ = 0.02 still turns out to be the best choice,
as shown in Fig. 10(b2). Thus, we choose a = 0.02. The tuning
of J is simpler. As shown in Fig. 10(c1) and (c2), the increase
of ] reduces the STD but has minor effects on image resolution.
Considering that the computational time has linear dependency
on J, we choose | = 36 for a balance between antialiasing
performance and computational efficiency. Further, we tune
lpp while keeping (Isp, @, ], épp, Tp) = (0.6 mm, 0.02, 36, 1.8
mm, 1.2 ps). As we see in Fig. 10(d1), the STD is relatively
small for I <20 mm. For [ > 20 mm, the STD increases as
Ipp increases, which is explained by the fact that the advantage
of the location dependency in our proposed method is mitigated
as the subdomain size increases. In Fig. 10(d2), we see that [pp
= 18 mm is the best choice for maintaining image resolution.
Combining the observations in Fig. 10(d1) and (d2), we choose
Ipp = 18 mm. Next, we tune épp while letting (Isp, @, ], Ipp, To)
= (0.6 mm, 0.02, 36, 18 mm, 1.2 ps). As we see in Fig. 10(el)
and (e2), changing the value of épp has minor effects on both
aliasing artifacts and image resolution. We let £pp be one-tenth
of lpp: 1.8 mm. Finally, the tuning of T, for the simple
numerical phantom is simple. As shown in Fig. 10(f1) and (f2),
the increase of T, reduces the STD but has minor effects on
image resolution. We choose T, to be 1.2 ps. Further increasing
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T, has minor benefits in mitigating aliasing artifacts and may
blur other regions of the image.

In summary, for the simple numerical phantom, the tuning of
every parameter is a robust process without abrupt changes. The
performance of the location-dependent spatiotemporal
antialiasing is sensitive to lgp and « but insensitive to {pp. The
sensitivity is low for J > 36, Ipp < 20 mm, and T, > 1.2 ps.
These observations serve as guidance for parameter tuning of
the complex numerical phantom and in vivo experiments. In
fact, we use the same (J, lpp, &épp, T,,) for these reconstructions
and only tune (lgp, @). For another imaging system, we can
update (J,lpp,épp,T,) accordingly through numerical
simulations and only tune (Igp, @) for different datasets.

APPENDIX E
THE ADVANTAGE OF USING THE LOCATION-DEPENDENT

PARAMETER T}, (D;) OVER USING A CONSTANT T, FOR
TEMPORAL FILTERING

We choose to use the location-dependent parameter Ty, (D;)
for temporal filtering in this research. Here, based on numerical
simulations of the complex numerical phantom, we
demonstrate the choice’s advantage over using the same
parameter T, for all subdomains. We use parameter values
(Isp, o, ], Ipp, €pp, To) = (3.6 mm, 0.08, 36, 18 mm, 1.8 mm, 1.2
us) in these simulations.

L Normalized PA amplitude —
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Fig. 11. Comparison of using the location-dependent range Ty, (D;) and using a
constant T, for temporal filtering. (al) Reconstructed image of the complex
numerical phantom through UBP. (a2) and (a3) Reconstructed images through
UBP with LDTF and spatial interpolation (SI), using the location-dependent
parameter Ty, (D;) and a constant parameter T, respectively. Two subdomains
in a red-dashed box and a yellow-dashed box, respectively, are picked for
comparisons. (bl)-(cl), (b2)-(c2), and (b3)-(c3) Closeup images of the two
subdomains for the three methods, respectively. (d) and (e) Comparisons of
values along lines L1 and L2, respectively, for the three methods.

The reconstructed image of the complex numerical phantom
using the UBP method without spatiotemporal antialiasing is
shown in Fig. 11(al). Using the location-dependent parameter
T,(D;) for temporal filtering in the proposed spatiotemporal
antialiasing, we obtain the image shown in Fig. 11(a2). Using
the same parameter T, across all subdomains for temporal
filtering, we obtain the image shown in Fig. 11(a3). We pick
two subdomains, marked by a red-dashed box and a yellow-
dashed box, respectively, in the three images for comparisons.
Closeup images of the subdomains are shown in Fig. 11(bl)-
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(cl), (b2)-(c2), and (b3)-(c3), respectively. Comparing Fig.
11(b1)—(b3), we see that the image resolution is maintained in
the central region by using the location-dependent parameter
Ty, (D;); whereas the image is blurred by using a constant T,
across subdomains. Comparing Fig. 11(cl)—(c3), we notice
similar performances of using the location-dependent
parameter Ty, (D;) and using a constant T, in mitigating aliasing
artifacts in the peripheral region. Quantitatively, we pick two
lines, L1 and L2, in the two subdomains (shown in Fig. 11(b1)
and (c1), respectively) and compare the values on them for the
three methods in Fig. 11(d) and (e), respectively. As we see in
Fig. 11(d), the image resolution in the central region is not
affected by using the location-dependent parameter Ty, (D;) but
compromised by using a constant T,. For the peripheral region,
we see similar performances of the two choices in Fig. 11(e).

In summary, to achieve similar performances in mitigating
aliasing artifacts (most abundant in the peripheral region), using
the location-dependent parameter Ty, (D;) is better than using a
constant T, in maintaining image resolution (most obvious in
the central region).
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