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Manifold Approximating Graph Interpolation
of Cardiac Local Activation Time

Jennifer Hellar'“, Romain Cosentino, Mathews M. John, Allison Post, Skylar Buchan
and Behnaam Aazhang

Absiraci—Objective: Local activation time (LAT) map-
ping of cardiac chambers is vital for targeted treatment of
cardiac arrhythmias in catheter ablation procedures. Cur-
rent methods require too many LAT observations for an
accurate interpolation of the necessarily sparse LAT signal
extracted from intracardiac electrograms (EGMs). Addition-
ally, conventional performance metrics for LAT interpola-
tion algorithms do not accurately measure the quality of in-
terpolated maps. We propose, first, a novel method for spa-
tial interpolation of the LAT signal which requires relatively
few observations; second, a realistic sub-sampling proto-
col for LAT interpolation testing; and third, a new color-
based metric for evaluation of interpolation quality that
quantifies perceived differences in LAT maps. Methods: We
utilize a graph signal processing framework to reformu-
late the irregular spatial interpolation problem into a semi-
supervised learning problem on the manifold with a closed-
form solution. The metric proposed uses a color difference
equation and color theory to quantify visual differences in
generated LAT maps. Resulis: We evaluate our approach on
a dataset consisting of seven LAT maps from four patients
obtained by the CARTO electroanatomic mapping system
during premature ventricular complex (PVC) ablation pro-
cedures. Random sub-sampling and re-interpolation of the
LAT observations show excellent accuracy for relatively few
observations, achieving on average 6% lower error than
state-of-the-art techniques for only 100 observations. Con-
clusion: Our study suggests that graph signal processing
methods can improve LAT mapping for cardiac ablation pro-
cedures. Significance: The proposed method can reduce
patient time in surgery by decreasing the number of LAT
observations needed for an accurate LAT map.
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|. INTRODUCTION

OCAL activation time (LAT) maps visually characterize

the electrical activation propagation which triggers cardiac
tissue depolarization and muscle contractions to pump blood
throughout the body. A detailed LAT map as in Fig. 1 allows
cardiac surgeons to accurately diagnose and treat cardiac ar-
rhythmias with targeted ablation of tissues exhibiting abnormal
activation [1]. Between 2000 and 2013, more than 500,000
such ablation procedures were performed [2]. Recent work in
automated analysis of LAT maps shows promising results that
could improve clinical outcomes even beyond what is possible
now [3], [4]. The benefits of these developments, however, re-
quires accurate LAT maps which are currently slow and difficult
to obtain.

During an ablation procedure, the LAT map is generated
prior to and after each ablation to analyze the original arrhyth-
mia circuit and effect of each intervention. LAT samples are
extracted from local unipolar or bipolar electrogram (EGM)
signals recorded from the cardiac surface at multiple locations
using an electroanatomic mapping (EAM) system [5], [6]. For a
given EGM recording, the cycle window corresponding to one
beat is selected, and a particular signal feature e.g. the most
negative slope is identified and annotated. The difference in
time between that feature (¢;) and the same feature appearance
at a reference location EGM (tg) is the local activation time
LAT; = t; — to. Despite improved catheter designs that allow
simultaneous multi-point recording, the overall LAT mapping
process remains slow, taking several minutes to obtain sufficient
observations to interpolate and construct a useful map.

One proposed solution to this problem hinges on the fact that
the most important LAT map feature for ablation treatment is
the point of earliest activation. In [7], the authors propose an
automated algorithm to identify ideal LAT recording locations
to minimize error in predicting specifically the site of earliest
activation. This approach, however, devalues the benefits of
diagnosis and treatment based on a complete and accurate LAT
map of the whole circuit. Significant work has also been done
to develop automated LAT annotation methods [6], [8], [9] to
replace manual EGM annotations, which would speed up the
process some but not reduce the overall number of observations
required. Methods for estimating LAT maps and performing
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Fig. 1. A typical LAT map (3D rendering of the LAT signal) where small
dots represent LAT sample points and color encodes the LAT value, with
red being earliest activation and purple being latest.

diagnosis from non-invasive electrocardiographic imaging vests
have been proposed [4], [10] but with prohibitively low accuracy
for clinical use [11].

A more general and direct solution to reduce LAT mapping
time is to improve the interpolation of the LAT observations such
that an accurate map can be generated with fewer observations.
The need for re-examination of interpolation methods for LAT
mapping has already been noted in the literature [12], [13],
but presently only a few groups have attempted to address it.
Current interpolation methods include cubic spline interpola-
tion [14], radial basis functions [15], Gaussian processes [16],
[17], physics-informed neural networks [18], [19], and graph
convolutional neural networks [20]. Of these, [14] and [15] do
not interpolate on the manifold surface, while [16] and [17]
assume a smooth Gaussian prior on a transformation of the data.

A few works seek to incorporate physical equations governing
activation propagation with promising initial results on simu-
lated patient data [18], [19]. These, however, as well as [20],
rely on neural network solutions that are fairly computationally
intensive and require large amounts of training data, making
clinical implementation potentially more challenging. The au-
thors therefore incorporate mostly synthetic data for training and
validate on only very small clinical datasets. In addition, neural
networks generally provide very little insight about the solution
learned during training, and their interpretation and theoretical
guarantees are still an active area of research.

Two recent works [21], [22] also integrate an underlying phys-
ical model to address the closely related problem of estimating
conduction velocity and tissue fiber direction, but they primarily
use high-density LAT maps as an input, therefore it remains

unclear how applicable these approaches would be to the LAT
interpolation problem.

LAT interpolation remains an open and challenging research
problem for a number of reasons. The patient-specific nature
of the data means that each patient has both a unique cardiac
anatomical structure and a distinct electrical activation pattern
that must be taken into account to obtain an accurate LAT map.
The underlying structure, the surface of the heart, is an irregular
domain that is hard to represent mathematically and leverage for
interpolation. And the LAT signal itself is sparse and irregularly
sampled with respect to the surface. Our task is therefore to
interpolate a sparse and irregular signal on an irregular domain
where both the signal and domain are patient-specific.

To address these issues, we use graph signal processing to
perform LAT interpolation on the surface of the heart, formally
represented as a manifold. Graph signal processing allows us to
apply the traditional signal processing toolbox to an irregular do-
main, namely, the surface of the heart. Similar graph frameworks
utilizing the underlying manifold governing the data have been
successfully used in a variety of other applications [23]-[28].
We test and validate our method on a clinical patient dataset
of seven LAT maps from four patients undergoing ablations
for premature ventricular contractions (PVCs), a type of car-
diac arrhythmia. This method, Manifold Approximating Graph
Interpolation of Cardiac LAT (MAGIC-LAT), follows directly
from an intuitive re-formulation of the interpolation problem
into a semi-supervised learning framework which incorporates
key results in the fields of graph signal processing [29], [30] and
geometric manifold learning [31]-[35]. A preliminary version
of this work has been reported [36].

We will show that our method has an insightful interpretation
as a graph filter with respect to the manifold surface. This
interpretation, coupled with the knowledge that activation is
governed by the physics of electrical depolarization waves in
tissue, suggests that extensions of our framework to incorporate
new filter-based signal processing methods may generate inter-
esting insight into the complex patterns of electrical activation
propagation.

We also address the problem of properly sub-sampling the
recorded LAT signal to perform a re-interpolation that is close
to the real clinical scenario. To the best of our knowledge, we
propose the first non-uniform sampling distribution designed
to mimic the typical distribution of LAT observations obtained
during ablation procedures. In particular, our distribution results
in a sub-sampled signal with a high concentration of mid- to
early-activation points, since mapping technicians more densely
sample those regions as they search for the point of earliest
activation.

Finally, while investigating and comparing the accuracy of
various LAT interpolations, we found that conventional metrics
(mean squared error, mean absolute error, etc.) do not intuitively
and correctly quantify the true perceived accuracy of a given
LAT map. We therefore propose and implement a new metric
for this application, named Mean Delta-E (MDE) and inspired
by the powerful color distance measure AE* [37]. MDE lever-
ages the fact that LAT values are represented as colors on the
LAT map and directly quantifies the perceptual difference in
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TABLE |
DATASET SUMMARY

Map Index | Patient | PYC n m
(Y/N) | (mesh vertices) (LAT observations)
S - N 11352 11352
0 A Y 2616 307
1 Y 2616 293
2 B Y 6103 197
3 Y 6103 240
4 N 6103 406
5 C N 4232 326
6 D N 6376 737
TABLE Il
SUMMARY OF KEY NOTATIONS
Notation Definition
a, a A Scalar, vector, matrix
R™ n-dimensional Euclidean space
V,E,F  Vertices and edges of a graph, faces of a mesh
VCRLECVXV,FCVxVxV
wij, W Adjacency matrix of a graph
L Cotan-based graph Laplacian
f LAT function/signal on vertices of a graph
f Fourier transform of f
Vs Set of sampled graph vertices
Vs CV
fs Partially sampled LAT signal
n Number of vertices, |V|
Number of LAT samples, |Vs|

estimated versus true LAT values by measuring the correspond-
ing color difference in the uniform Commission Internationale
de l’Eclairage L*a*b* (CIELAB) colorspace.

The paper is organized as follows. Section II describes the
dataset used for testing and analysis of this method. Section III
outlines our methods and contributions: Section III-A details
our data pre-processing protocols, Sections III-B and III-C
describe the mathematical framework of our graph-based ap-
proach, Section III-D details our perception-based performance
metric, and Section III-E defines our sub-sampling protocol.
Section IV describes key aspects of our experimental setup.
Section V evaluates the performance of our method on the patient
dataset. Sections VI and VII discuss the results and the filtering
interpretation.

Il. DATASET

Our dataset consists of seven LAT maps from four patients ob-
tained by the CARTO electroanatomic mapping system during
PVC ablation procedures. All data was collected retrospectively
from patients that underwent PVC ablation under a protocol
approved by the IRB at Baylor St. Luke’s Medical Center
(BSLMC). A summary of the dataset is provided in Table I.
Of the seven maps, four characterize patients exhibiting a PVC

arrhythmia, and the remaining three sinus rhythm. Each map is
comprised of

1) A triangular mesh approximating the anatomy of the
cardiac chamber, provided in Biosense Webster Trian-
gulated Mesh file format. The triangular mesh {V, F}
approximates the geometry of the surface with

a) V, an ordered set of vertices v; € R3 for i =
1,2,...,n which are locations on the cardiac sur-
face, and

b) F CV xVxV, a set of triangular faces where
a face (v, vy, vx) € F defines edges between the
three vertices v;, v, and v € V.

2) Asetof LAT sample values sy, . . ., s;,, and corresponding
locations in R3. Note that the sample locations do not
always coincide with a vertex of the mesh.

In addition, we validate our method on the left atrium case
simulated in [18], in which a monodomain model for tissue and
the Fenton Karma model for cells was used with homogeneous
conductivity at 0.1 mm?/ms in the entire domain. We refer to
this simulated case as “Map S”.

[ll. METHODS

Let M be the smooth manifold that is the surface of the heart.
In general, we want an interpolant function f : M — R which
maps any location on the manifold to its LAT value such that the
function generalizes to the whole manifold. In our dataset, the
triangular mesh {V, F} approximates the manifold M so we
instead pursue a discrete interpolant function f : VV — R which
outputs the LAT value for any vertex v; € V.

A. Pre-Processing

Due to measurement imprecision, LAT sample coordinates
do not exactly coincide with vertex coordinates in V. To process
the signal on the surface, we assign each LAT value sq,...,sm
to the nearest surface vertex in }. Moreover, during the ablation
procedure, the mapping technician manually selects and discards
LAT observations that are inconsistent with nearby observations,
due to measurement noise or annotation error. To replicate this
process, we visually inspect the LAT observations and remove
locally anomalous samples prior to any computation. In the case
of LAT Map 6, which contains a prohibitively large number of
observations for manual examination (see Table I), we automate
the process and remove any LAT observation which differs from
the average of its 5 nearest neighbors within 5 mm by more than
30 ms. This gives us a subset of sampled vertices Vs.

B. Graph Construction

We first transform the mesh into an undirected graph G =
{V,E, W} such that the set of vertices V with |V|=n is
unchanged. An edge (v;,v;) is included in the set of edges £ if
and only if v; and v; form two corners of a face in F.

Note that this graph G is purely mesh-based and does not
contain any information about the possible causes for high-
frequency LAT signal variation (scar tissue blocking electrical
activation, opposite edges of a re-entrant cycle meeting, etc.).
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Therefore, we update G and remove functional connections
(edges) that are not physiologically present for one of those
reasons. To do this, we compute a quantization of the manifold
using Nearest Neighbors (NN) applied onto the input LAT
observations. From this quantization, we are able to remove any
graph edges (v;,v;) € € with a ALAT;; > 50 ms, resulting in
a sparsified graph that is a more descriptive representation of the
physiological manifold.

Our interpolant function f : V — R is a graph signal defined
on the vertices of the graph and represented as a vector f € R"
where the ith component of vector f represents the function
value at the ith vertex in V. Our partially sampled LAT graph
signal f; € R™ then has non-zero values only for vertices in the

sampled set,
0
f 8 (Ui) = { Ot

The graph Laplacian L forms a real symmetric matrix that en-
capsulates the connectivity of G [30]. To construct it, we consider
the desired properties of a discrete Laplacian operator, including
symmetry, locality, positive weights, and convergence [38]. For
triangular mesh operations in computer graphics, the ubiquitous
cotangent weights and associated Laplacian fulfill most require-
ments, with the exception of positive edge weights [39]. We
therefore use the recent implementation of a robust contangent-
based Laplacian with guaranteed positive edge weights for our
application [40].

v € VS
otherwise.

C. Re-Formulation of the Interpolation Problem

Our graph construction defines a sampling of the manifold
M at the graph vertices V, with a corresponding discrete spatial
sampling f = [sq,..., s,]T of the underlying continuous LAT
signal. Since we do not have a complete signal f, we want to
estimate it with f*, a smooth interpolation of the partially sam-
pled signal f;. To do this, we solve the following optimization
problem,

£ = arg min |[Mi(f — £)][3 + ol Muf|[} + BE7LE. (1)

Here, the first term is signal assignment loss with M, a diag-
onal binary matrix corresponding to labelled (known) samples
§1,...,Sm. The second term is a standard Tikhonov regulariza-
tion, controlling the sum of magnitudes squared of the unknown
samples selected by the diagonal binary matrix M,,. Note that
M,; + M, =1, the n x n identity matrix. The third term, a
Dirichlet regularization, controls signal smoothness; it is the
weighted sum of adjacent signal differences squared,
1 n
g - = > wy(fi — 15)*.
i,j=1

This manifold regularization approach has been developed
and studied in graph signal processing literature for some time
(see [31], [32], [35]), but not in the context of this application.
The solution to (1), for which the proof can be found in our
Supplementary Document, is

f* = (M; + aM, + BL) 'fs. 2)

| . =
(a)
B
(b)
Fig. 2. (a) The gist rainbow colormap is non-sequential and non-

uniform. (b) The viridis colormap is sequential and uniform.

For our application, optimal regularization coefficients oo =
10~5 and 3 = 102 were obtained during cross-validation over
values

=110 3,107 109 10 %, 107, 1,10,

J—Ti0 &, 10 = 109,10 2,004 1 11,

In particular, further increasing j3, the coefficient of smoothing,
did not significantly change the interpolation performance, but
reducing it resulted in consistently higher error. Intuitively, we
expect a certain level of smoothness in the signal which this
parameter captures.

Interestingly, the expression in (2) which gives us our semi-
supervised learning solution may also be viewed from a filtering
perspective which we discuss in Section VI. The solution in (2)
is hereafter referred to as MAGIC-LAT.

D. Performance Metric

The key factor in choosing or designing a method evaluation
metric is the target application. In this case, we know that a
cardiac surgeon visually inspects the LAT map and identifies
features based on relative color differences. Therefore, we want
a metric that will accurately quantify the perceived color differ-
ences for generated maps versus the ground truth.

Two problems arise when trying to quantify perceived differ-
ences. First, LAT values are assigned colors according to the cho-
sen colormap, typically the gist_rainbow colormap in Fig. 2(a),
which contains several “kinks” where the color changes drasti-
cally over a small range of values. These ranges are therefore far
more sensitive to small changes in the LAT value and far more
prone to large perceptual error. Rainbow colormaps have been
heavily criticized in the literature as poor visual representations
of sequential data because of this issue of non-uniformity and
because of the lack of intuitive color ordering (it’s not obvious
that green should be lower than purple). Generally, it is rec-
ommended to replace them with a more perceptually uniform
and sequential colormap like viridis in Fig. 2(b) [41], [42]. As
an example, consider the LAT map in Fig. 3 where the same
underlying signal values which vary smoothly over the surface
are represented by the gist_rainbow and viridis colormaps.
The gist_rainbow map introduces a false perception of rapid
signal transition from red to green while the viridis map clearly
represents the true smooth signal.

The second issue with quantifying color differences is that
human perception is in general non-uniform, so standard metrics
like mean squared error (MSE) or mean absolute error (MAE)
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(a) (b)

Fig. 3. For the same LAT signal, the gist rainbow colormap (a) sug-
gests bands of rapid LAT value change (yellow and cyan regions) while
the viridis colormap (b) reflects the smooth transitions of the underlying
data.

(a) (b)

Fig. 4. Fortwo possible interpolations of the same LAT signal, with the
interpolation coloring the surface under the ground truth points, the map
in (a) is perceptually more accurate but has a higher normalized mean
squared error than the map in (b).

applied to either the LAT values or the red-green-blue (RGB)
color channels often don’t correctly measure perceived accu-
racy [43]-[48]. The same LAT mapping rescaled or shifted by
a small bias would result in a very large MSE while potentially
being perfectly reasonable in a visual representation. On the flip
side, large visual color differences can correspond to very small
shifts in RGB space, resulting in a low MSE. For a practical
example of this, consider the interpolated LAT map in Fig. 4(a)
which visually matches the overall ground truth much better than
the map in Fig. 4(b) but has a higher normalized mean square
error (NMSE) of 0.21 compared to 0.18.

To solve these problems, we propose a new metric, Mean
Delta-E (MDE), based on the standard AFE* color distance
metric (CIEDE2000) [37]. Given an estimated LAT value s;,
its ground truth value s;, and an LAT map scale [Simin, Smaz)»
we must first represent the LAT values as colors appropriate for
visualization on an insightful LAT map. We therefore assign col-
ors ¢ = (74, gi, bi) and ¢; = (14, g:, bi) to §; and s; respectively
according to the colormap viridis with minimum and maximum
values corresponding to [smin, Smaz)-

Now, to measure the difference between ¢; and c;, we could
naively take the distance between the RGB channels, but as
mentioned previously, the non-uniformity of human perception
makes this a poor color distance measure. Instead, we translate
the colors into the colorspace CIELAB, which mimics human
perception and encodes color in terms of L* (lightness), a*

(red-green opponents), and b* (blue-yellow opponents). Even
this colorspace, however, is not fully perceptually uniform, so
to accommodate the remaining non-linearities, we take the dif-
ference of ¢; = (L}, a},b}) and ¢; = (L}, af, b}) with the AE*

color distance equation (CIEDE2000"),

agr — (AL 2+_ AC’ 2+_ AH \?
00 A\ kLSt kcSe ki Su

AC'\ ( AH' V2
= (chC) (kHSH)} o

where AL’, AC’, and AH' correspond to differences in light-
ness, chroma, and hue respectively, with weighting factors kr,,
k¢, ku, compensation factors Sy, Sc, S, and a hue rotation
term Ry [37]. This equation is the current standard measure for
small to medium color differences and is therefore well suited
to measure small errors in LAT values with respect to the viridis
colormap. For our application, we use the default recommended
hyperparameters [49].

Once we have computed the individual color differences for
all interpolated points relative to the ground truth, we take
the mean of the result as our overall evaluation metric MDE.
Returning to the example in Fig. 4, we find that the more accurate
map in 4(a) correctly has a lower MDE of 4.76 compared to 4(b)
with 5.70.

MDE provides an objective similarity measure for LAT map
interpolation that leverages established color theory to accu-
rately quantify visual differences in LAT maps. These visual
differences directly determine the usability of a given interpola-
tion for ablation treatment. A more visually accurate map will
result in a better ablation and can indeed be more “physically”
accurate relative to the true tissue activation patterns than another
less visually accurate map that exhibits a lower MSE.

Additionally, this metric is easily adaptable to focus on error
in particular LAT value ranges. During ablation procedures, the
colormap range is often adjusted to show greater detail for low
activation times and assign all high LAT values the same color.
See Fig. 1 where all values greater than -1 ms are assigned the
same pink color. By simply setting the viridis colormap range to
the value range of interest, the MDE metric will automatically
assign zero error to any points with estimated and true values
outside of that range and provide better error granularity for
the remaining range since the new color assignments will be
more differentiated. This allows researchers to easily investigate
perceptual error at various scales depending on the specific LAT
map application (focal point localization, arrhythmia classifica-
tion, ablation target prediction, etc.).

E. Realistic Sub-Sampling for Testing

To select a representative subset of LAT observations for
interpolation testing, we should mimic the typical distribution
of points that would be obtained during the mapping process.
Without a larger dataset spanning many patients, multiple types

'The AE* symbol with no subscript often refers to the 1976 definition of the
AFE* distance measure. We instead use the most recent definition published in
2000, denoted by the name CIEDE2000 and the subscript “00.”
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Histogram of LAT observation values
(sub-sampled with a uniform distribution)
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Fig. 5. An example result (transparent red distribution) of sub-
sampling LAT Map 1 (grey) with a uniform distribution. There is a much
more even distribution of points across the whole range than we would
expect in a clinical scenario.

of arrhythmias and ordered LAT observations, it is difficult
to directly measure what would be the typical distribution of
LAT observations during an incomplete mapping process. We
therefore instead construct a non-uniform distribution that is
easy to implement and adheres to a few simple principles defined
by the mapping process itself:

1) The mapping process starts blindly and occasionally
jumps to a new area, so all LAT values should have
non-zero and non-trivial sampling probability i.e. no
probability should be vanishingly small.

2) The mapping process generally stops when the points of
earliest activation are definitely found, so these should
not be selected with the highest probability.

3) The technician, while searching for the region of earliest
activation, more densely samples mid- to early-activation
points rather than later activation regions.

To see why this is necessary, consider in Fig. 5 the distribution
inred of aresult of naively randomly sampling the LAT signal for
Map 1 (grey) with a uniform distribution. In this case, there are
relatively more low-value points selected than we would expect
to see in a clinical scenario.

To avoid this, our distribution is therefore defined as follows.
First, for ease of notation, we assume the LAT values are
non-negative; if this does not hold, simply shift the LAT values
to be all positive with z; = s; + |smin|. Then we compute the
intended highest probability observation as

“4)

Here, A; controls how much we favor the earliest activation
points for sampling. A; = 0corresponds to the earliest activation
points being the most probable, which is not realistic, since
usually those few are found last during the clinical mapping.
A1 = 1 corresponds to the average-value activation points being
the most probable, also unlikely since technicians would more
densely sample around any earlier observations that they find.

!
T = Tmin + }\lfsavg-

Sampling probability versus LAT observation value
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Fig. 6. An example of the non-uniform sampling distribution used in
sub-sampling for testing LAT Map 1 to mimic a probable distribution of
observations in an ablation procedure.

We therefore choose A; = 0.5, estimating that the highest per-
centage of observations during the mapping would be between
the two extremes.

Next, intuitively, we realize that LAT observations that are
further from this most densely sampled value should have lower
selection probability. For simplicity, we therefore choose the
relative sampling probability of each observation z; to be di-
rectly and negatively proportional to its difference from z’. We
calculate the absolute distance from each z; to =’ and construct
a function r such that the output r; is positive and negatively
proportional to that distance,

d; = |z; — /|,
r(d;) = A2(dmaz — di) + 1. (3

Here, dinaz = maX;c(o,... m] di, 80 the minimum value of r is
always 1, and A; is the proportionality constant that controls
the slope of the resulting distribution. We choose the slowly
decreasing slope of Ay = 0.25 so that all observations have a
non-trivial probability of selection.

To simplify implementation of this sampling protocol, we
additionally cast each value to an integer,

fi = intfr]. (6)

This allows us to directly add each observation to a list with
integer repetition f; and uniformly sample the result to obtain
our test signal. The final sampling probability is given by

_ i

pi S I

For LAT Map 1, we show this sampling distribution in Fig. 6
and an example of the distribution of the sub-sampled signal
randomly selected based on that distribution in Fig. 7. The most
probable observations selected for the test signal (s; = —110
ms) are those halfway between the earliest and average activa-
tion times. The sampling probability decreases linearly away
from that value in both directions, so that the point of earliest

(7
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Histogram of LAT observation values
(sub-sampled with our non-uniform distribution)
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Fig. 7. An example result (transparent red distribution) of sub-
sampling LAT Map 1 (grey) with our proposed non-uniform distribution in
Fig. 6. It correctly results in a distribution favoring mid- to early-activation
times.

activation has the same probability of being selected as the
point of mean activation time. All later activation points have
a lower but nonzero sampling probability. The resulting subset
in Fig. 7 mostly has points in the early- to mid-activation range,
as desired, with some later values also.

Overall, this non-uniform distribution allows us to generate
random subsets of LAT observations that are similar in distribu-
tion to those found during LAT mapping in ablation procedures.
More involved sub-sampling distributions based on the spatial
density of samples available as well as the LAT values of those
samples are certainly possible, and we discuss this more in Sec-
tion VI. For this work, the proposed protocol was hand-crafted
based on the suggestions of our medical colleagues and proved
sufficiently realistic to be useful in evaluation.

[V. EXPERIMENTAL SETUP

To thoroughly test our proposed method, we implement al-
ternative interpolation methods as described in Section IV-A,
cross-validate with random selection and repetition as detailed in
Section I'V-B, and post-process and visualize the interpolations
as outlined in Section IV-C.

A. Implementing Prior Interpolation Algorithms

To compare performance versus other interpolation algo-
rithms, we implement and test in parallel two alternative meth-
ods, Gaussian Process Regression (GPR) and Gaussian Process
Manifold Interpolation (GPMI) [17]. GPR is a standard out-
of-the-box interpolation method for data in higher dimensions;
for this, we use a kernel sum of three radial basis functions
with length scales of 0.01, 0.1, and 1. GPMI is state-of-the-art
in the literature for LAT interpolation and defines a Gaussian
process model on the manifold instead of simple Euclidean
space.

B. Cross-Validating With Random Selection and
Repetition

For all maps and before processing by any interpolation
algorithm, we perform the pre-processing of the LAT samples as
described in Section III-A to obtain the usable set of observations
Vs.

Then for random selection of m LAT observations, we use the
non-uniform sub-sampling distribution and protocol described
in Section III-E to obtain a subset Virqin C Vs of LAT obser-
vations where |Vipqin| = m. The same subset Vipqin is used
as input where relevant for MAGIC-LAT, GPMI, and GPR
interpolation. The complementary subset Vi C Vs is then
compared to the interpolation results for each method, and the
respective MDE errors are computed for that test iteration.

For cross-validation by repetition, we repeat the above pro-
cess, generating a new random Virqin for each test iteration. The
respective MDE’s for each method are recorded, and the mean
and standard deviations across all iterations are reported.

C. Post-Processing and Visualizing Results

Each interpolation algorithm estimates the signal value at the
vertices of the 3 d mesh. To color the mesh faces and visualize
the final maps as in the following figures, we use the vedo Python
module [50]. The included interpolation function colors the
faces based on simple Shepard interpolation (inverse distance
weighting) of the nearest vertex values. Note that our visual
results are still be presented with the gist_rainbow colormap for
the convenience of medical experts who are only accustomed
to that representation. The same figures represented with the
viridis colormap may be found in the attached Supplementary
Document.

V. REsuLTS

Our results are organized as follows. Section V-A validates
MAGIC-LAT on the simulated left atrium case. Section V-B
visually demonstrates for a few clinical patients the capability
of MAGIC-LAT to interpolate only 100 observations into an ac-
curate map. Section V-C provides cross-validated results for 100
input observations and compares MAGIC-LAT performance to
that of the prior methods. Section V-D addresses cross-validated
performance for varied numbers of input observations. And
Section V-E examines the algorithm execution time.

A. Cross-Validation Interpolation Results on Simulated
Patient

To validate the functionality of MAGIC-LAT on a map with
a complete, known ground truth, we first interpolate a varied
number of input LAT observations on the simulated Map S in
Fig. 8(b), with a total of 25 repetitions per test. The resulting av-
erage errors across iterations are shown in Fig. 8(a). As expected,
the interpolation error initially decreases rapidly with increasing
number of observations but quickly exhibits diminishing returns.

We therefore find that MAGIC-LAT is able to quite accurately
estimate the key region of earliest activation (red) with only
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Fig. 9. Patient A, Map 1 interpolation by MAGIC-LAT (a) and GPMI
(b) for m = 100 input LAT observations. The interpolations color the
manifold surface underneath the known LAT observations. MAGIC-LAT
correctly estimates a small region of early activation (red) that GPMI
does not, and has a lower MDE of 7.93 versus 8.25 for GPMI.
(b)
Fig. 8. Cross-validated Mean Delta-E (MDE) results (a) for interpola-

tion of m = 50-275 input LAT observations with 25 random repetitions
on the simulated Map S indicate excellent map estimation for only 100
observations as compared to the complete ground truth (b).

100 input samples, and further increasing the number of input
samples only improves on the finer details of the map.

B. Visual Interpolation Results for 100 LAT Observations

First, we select only m = 100 LAT observations as input and
interpolate them across the manifold surface with the results
shown in Fig. 9 for Patient A, Map 1. In Fig. 9(a), the MAGIC-
LAT interpolation result closely approximates the ground truth
values overlayed as points on the surface, achieving an MDE
of 7.93 using only 34% of the available points. It correctly
estimates a small region of early activation (red) that GPMI in
Fig. 9(b) does not, making it a better map for choosing ablation
targets. Indeed, this early activation region aligns well with the
ultimate ablation targets as shown in Fig. 1 of the Supplementary
Document.

For the same experiment on Map 3 for Patient B, we see
similar results in Fig. 10 where the MAGIC-LAT interpolation
achieves a lower MDE compared to GPMI (7.99 versus 8.75)
for 100 points, only 42% of all available samples. In this case,
however, GPMI estimates a very large region of early activation
that would probably not be useful for choosing ablation targets.
MAGIC-LAT instead estimates a relatively small region that

LAT {ms}
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(a)
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Fig. 10. Patient B, Map 3 interpolation by MAGIC-LAT (a) and GPMI
(b) for m = 100 input LAT observations. The interpolations color the
manifold surface underneath the known LAT observations. MAGIC-LAT
estimates a smaller region of early activation (red) and extrapolates the
signal out to lower values (purple) than GPMI, resulting in a lower MDE
of 7.99 versus 8.75 for GPMI.
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Fig. 11. LAT Map 6 exhibits an “early-meets-late” region of high fre-
quency variation which is challenging to accurately interpolate.

matches up well with the final ablation targets that success-
fully halted the patient’s arrhythmia, shown in Fig. 2 of the
Supplementary Document. In addition, MAGIC-LAT correctly
extrapolates the signal out to lower values (purple) than GPMI
on the bottom part of the map.

Note that both of these maps (1 and 3) correspond to patients
experiencing a PVC, which is a type of focal arrhythmia. Focal
arrhythmias originate in a single location with a centrifugally
expanding wavefront. In these cases, identification of a discrete
focus and not a broader swath of early activation is of paramount
importance. This allows for pinpoint targeting of the culprit
region and narrows the ablation target, minimizing the amount
of unnecessary ablation energy delivery and by extension tissue
damage. For both patients, MAGIC-LAT captures the tight focal
area of early activation where GPMI fails to do so.

Among the patients, the LAT map for patient D holds an
interesting and distinctive feature, a sizable spatial region of
drastic signal variation which is visible in Fig. 11, where vertices
with very low LAT values (e.g. —200ms) are adjacent to vertices
with high LAT values (e.g. +50ms). This “early-meets-late”
phenomenon can occur in patients with macro re-entrant circuits
overriding the natural sinus rhythm and causing arrhythmia. In
these types of circuitous (i.e. non-focal) arrhythmias where there
is no discrete early activation region, regions identified as “early-
meets-late” may represent isthmuses of delayed conduction that
provide the substrate for arrhythmia. These regions are therefore
targeted for ablation. The “early-meets-late” phenomenon can
also occur when the reference for measuring local activation
time is changed or disturbed, so that some LAT samples are
measured relative to a different reference. It can even occur, as
it did in this case, when the chosen cycle window is too narrow,
so that very late activation regions are incorrectly tagged as
early activation under the assumption that a second heartbeat has
occurred. Regardless, this local high-frequency content breaks
the typical smoothness assumption of our signal, making the
interpolation quite difficult.
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Fig. 12. Patient D, Map 6 interpolation by MAGIC-LAT (a) and GPMI
(b) for m = 100 input LAT observations. The interpolations color the
manifold surface underneath the known LAT observations. MAGIC-LAT
very closely approximates the sharp early-meets-late transition region,
while GPMI erroneously smooths it out with a wide blue to yellow transi-
tion band.

For this map, we show the interpolation results for MAGIC-
LAT and GPMI in Fig. 12 using 100 sample points, only 14% of
all available. GPMI assumes a sort of smooth Gaussian prior
on the data, and as a result, filters out the underlying sharp
transition in the data. It loses the distinct “early-meets-late™
region, a critical piece of information, and therefore could lead
to an improper treatment, possibly even a misplaced ablation.
Our method, however, accommodates the local signal jump by
updating the graph structure based on given observations and
generates a better LAT map with a correspondingly lower MDE
of 4.67 compared to 6.62 for GPMI.

In general, a more distinct interpolation feature (either a dis-
crete focal area of early activation or a clear “early-meets-late”
boundary) provides a more precise ablation target, minimizing
excess ablation and any risk of collateral damage to the patient.
From an application perspective, these examples demonstrate
the capability of MAGIC-LAT to estimate from relatively few
observations the key LAT features for arrhythmia diagnosis and
ablation treatment. From a signal processing perspective, they
demonstrate the flexibility of MAGIC-LAT to accurately inter-
polate both smooth and locally discontinuous LAT observations.

C. Cross-Validation Interpolation Results for 100 LAT
Observations

We repeat the same experiment 50x on all patient maps for all
methods and record the average MDE and standard deviations in



3262

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 10, OCTOBER 2022

TABLE IlI
MEAN AND STANDARD DEVIATION MDE AND NMSE RESULTS FOR INTERPOLATION WITH m = 100 INPUT LAT OBSERVATIONS AND 50 RANDOM
REPETITIONS. MAGIC-LAT CONSISTENTLY OUTPERFORMS PRIOR METHODS ACROSS THE WHOLE PATIENT DATASET

MDE
Map 0 Map 1 Map 2 Map 3 Map 4 Map 5 Map 6
GPR 12.94+1.18 11.4 +0.994 11.14+1.04 12.2 4+ 0.901 12.8 +0.649 6.76 £+ 0.361 128+1.11
GPMI [17] 9.66 +1.02 8.56 = 0.976 8.62 £ 0.777 8.92 £ 0.470 11.7 £ 0.656 5.59 £+ 0.537 6.36 £ 0.708
MAGIC-LAT (our) | 9.34 +0.668 804+0559 806+0616 88610492 11240575 542+0319 5.21+0.860
NMSE
Map 0 Map 1 Map 2 Map 3 Map 4 Map 5 Map 6
GPR 0.40 £ 0.07 0.39 £ 0.06 0.41 +0.07 0.24 +0.03 0.48 +£0.04 0.43 +0.04 0.40 + 0.05
GPMI [17] 0.25 £ 0.08 0.24 £0.07 0.34 £0.10 0.16 £+ 0.02 0.43 £0.04 0.39+£0.15 0.22 +0.06
MAGIC-LAT (our) | 0.22 + 0.05 0.21 £+ 0.04 0.23 £ 0.03 0.15 + 0.02 0.42+0.03 0.34+0.034 0.23 +£0.07

Table III, including the corresponding NMSE of LAT values for
further validation. Our method consistently outperforms GPR
and GPMI in all cases, and in particular performs significantly
better on Map 6, where it accurately interpolates the difficult
early-meets-late signal feature. In the case of Map 4, for which
MBDE across all methods is noticeably higher, we found that the
LAT observations were unusually noisy with patchy discontinu-
ities even though the patient was in normal sinus rhythm, making
the interpolation task more difficult.

D. Cross-Validation Interpolation Results for Varied
Sizes of Input LAT Observations

For our final experiment, we vary the number of input LAT
observations and repeat the previous cross-validation, reducing
the number of runs to 25 for each value. Results are sum-
marized graphically for all methods on all maps in Fig. 3 of
the Supplementary Document. Note that values for m = 100
observations may differ slightly from those listed in Table III due
to the higher variance of fewer iterations. GPR, the out-of-the-
box benchmark, shows poor performance overall. MAGIC-LAT
consistently outperforms GPR and GPMI in almost all cases
with the exception of very low numbers of input observations
(50-100) for Maps 2 and 3, where GPMI achieves lower MDE.
MAGIC-LAT is also significantly better for Map 6, as expected.

E. Complexity and Optimization Considerations

The complexity and speed of MAGIC-LAT is primarily lim-
ited by the matrix inversion operation which is O(n?), where
n = |V, the number of graph vertices. The timing results for
executing MAGIC-LAT over 50 iterations on an Intel i5 CPU
with 8 GB RAM with many background processes are summa-
rized in Table 1 of the Supplementary Document along with the
corresponding graph size. Even with no specific optimization
and average workstation specs, the method executes in at most
10 seconds for the larger maps and less than 2 seconds for the
smaller. Therefore, on a dedicated machine with more RAM,
this implementation could likely be used as-is for all but the
largest meshes.

Moreover, many software packages exist to accelerate linear
algebra operations [51], and numerous groups have implemented
matrix inversion hardware accelerators in various contexts [52],
[53]. Since MAGIC-LAT is based on such fundamental and

popular operations, a dedicated machine running a hardware-
and software-optimized version of the method would very rea-
sonably achieve near real-time performance for use in ablation
procedures.

VI. DiscussioN

These experiments are limited by the number of available
ground truth measured LAT observations, as all but two maps
contain less than 350 measurements. Nevertheless, we see that
our method generates accurate interpolated LAT maps using
only 100 observations. Implementation of this method would
undoubtedly speed up the majority of cardiac ablation proce-
dures, thereby reducing medical costs and resulting in better
patient outcomes.

Beyond its functionality, however, MAGIC-LAT also pro-
vides nice intuition as to its underlying operation. To interpret
our method, we consider the case where o = 3 = 1 and substi-
tute the spectral decomposition of the Laplacian L = UAUT
to re-write (2) as

f* = U(I+ A)"1UTE,. (8)

To analyze (8), we recall that in Euclidean space, the Laplace
operator denoted as V2, is defined as the divergence of the
gradient and is given by the sum of all unmixed second partial
derivatives, V2f =", g—i{-, for Cartesian coordinates ;. The
Laplacian appears in differential equations describing heat diffu-
sion, wave propagation, and other physical phenomena governed
by second-order mechanics. We see that eigenfunctions of the
Laplacian form a Fourier basis since we have

VZBZﬁiwt _ _(gﬂw)‘ZBZﬂzwt‘

The generalization of the Laplacian to functions defined on
Riemannian manifolds is the Laplace-Beltrami operator. Inter-
estingly, the graph Laplacian converges to the Laplace-Beltrami
operator under certain conditions (see [33], [34]), and Laplacian
eigenvectors therefore form a good approximation of a Fourier
basis on the manifold. This gives us the notion of a Fourier
transform of a graph signal given by f = UTf with inverse
transform f = Uf. By extension, a general filtration of f with
filter h is

h(f) = Uh(A)UT, 9)
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where h(A) = diag(ﬁ(Al), R ﬁ(An)) is the spectral represen-
tation of the filter [29].

Comparing (8) with (9), we immediately observe that our
interpolation solution is the output of a filter on our input signal
f, with the particular filter h(A) = (I+ A)~! determined by
our optimization formulation. This interpolation via filtering is
anovel perspective and motivates further investigation into other
filter constructions. In the field of graph signal processing, there
are a number of interesting works around the idea of localized
graph filters [54], diffusion wavelets [55], wavelet-based semi-
supervised learning [56], and wavelet neural networks [57],
[58] as well as the possibility of learning the underlying graph
structure [59] for problems similar to that of LAT interpolation.
Extensions of our framework to incorporate these concepts
could give better performance and new insight into patterns of
electrical activation propagation in tissue.

One additional possible improvement on our method is sug-
gested by our new metric MDE. The optimization formulation
in (1) that gives us our solution defines signal assignment loss
(the first term) as the MSE of the LAT values. As discussed
previously, MSE can sometimes give poor estimations of LAT
accuracy. A similar formulation that incorporates MDE instead
and still allows for a closed-form solution would therefore likely
result in a better interpolation.

In a similar vein, direct interpolation of the LAT colors [60] on
the manifold rather than the LAT values also presents interesting
possibilities. Estimating a 3-dimensional color signal on the
graph would increase the complexity of the method but could
potentially improve performance.

The manual removal of locally anomalous samples described
in Section III-A should in the future be replaced by a robust
automated process, as this is a critical pre-processing step for
accurate LAT interpolation. Excluding these points essentially
removes noisy data from the training subset, improving the final
interpolation, and lowers the measured error on the test subset
since un-physical samples are extremely difficult to estimate.

Additionally, as mentioned previously, identification of the
region of earliest activation is typically most important for
correct ablation treatment. As defined, our MDE metric evenly
weights the error of all test points regardless of LAT value. One
interesting alternative to this would be to define a weighted MDE
that penalizes error in early activation test points more than late.
Visually, we’ve found that our MAGIC-LAT interpolation is
quite accurate in estimating this region of interest, so it is likely
that the current MDE actually underestimates its performance
and a weighted MDE metric would properly capture that aspect.

Finally, the sampling protocol defined in Section III-E can
also be improved upon. Clinical LAT maps vary widely in the
distribution of LAT values and in the spatial distribution of LAT
samples on a given map. Currently, our sub-sampling method
defines a distribution based only on the former because they
are raw values easily manipulated into a reasonable distribution.
The latter spatial density information, although more difficult to
define and derive, also characterizes a realistic map, so develop-
ment of a protocol that incorporates the local spatial density of
samples would further improve sub-sampled LAT maps.

VIl. CONCLUSION

We have proposed and validated a novel method for spatial
interpolation of the local activation time (LAT) signal derived
during cardiac ablation procedures. We leverage the capabilities
of graph signal processing to take into account the manifold
surface structure underlying the LAT signal and update our
representation of that structure by learning from the given LAT
observations. A reformulation of the interpolation problem into
a semi-supervised learning framework gives us a well-defined
and insightful solution that motivates further investigation into
the use of graph filtering techniques to better characterize elec-
trical activation propagation and spatial localization in cardiac
tissue. We also defined a useful sub-sampling protocol for LAT
interpolation testing. For quantifying LAT map similarity i.e.
interpolation error, we motivated and proposed a new metric,
MDE, which incorporates established color representation and
color difference theory to accurately measure the perceived
differences between two LAT maps. We demonstrated that our
method, MAGIC-LAT, accurately reconstructs a smooth LAT
map from only 100 LAT observations and consistently outper-
forms existing interpolation techniques. This approach therefore
shows excellent potential to reduce the average patient time in
ablation surgery by decreasing the number of LAT observations
needed to construct an accurate LAT map and by improving the
choice of ablation targets with a more useful map.
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