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Abstract—This paper presents a hybrid column-and-
constraint-generation augmented-Lagrangian algorithm to
efficiently solve the robust security-constrained dynamic
transmission expansion planning (TEP) problem. The
column-and-constraint generation algorithm separates the
TEP problem into a master problem and a set of sub-
problems decomposable by time period. Additionally, the
computationally expensive master problem is decomposed
into three computationally efficient sub-master problems:
an upper-master quadratic problem, a middle-master
quadratic unconstrained binary problem, and a lower-
master quadratic unconstrained problem. A set of auxil-
iary variables are used to relax as real ones the binary vari-
ables corresponding to the status of candidate transmission
lines enabling the master problem decomposition. The
solutions of the three sub-master problems are coordinated
using a three-block alternating direction method of multi-
pliers algorithm to enforce binary variables to be binary.
An initialization strategy based on load shedding is used
to enhance the performance of the proposed algorithm.
Simulation results on the IEEE 118-bus test system show
the efficient performance of the proposed algorithm for
solving security-constrained dynamic TEP problems.

Index Terms—Robust optimization, transmission ex-
pansion planning, three-block decomposition, distributed
optimization.

I. INTRODUCTION

HE transmission expansion planning (TEP)
problem aims to identify how to expand or
reinforce existing transmission networks to supply
the demand in a reliable and cost-effective man-
ner [1]. Uncertainties associated with generation
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availability, demand growth, and equipment failures
make TEP a challenging decision-making problem.
Robust optimization is a suitable approach to deal
with the uncertainties in TEP problems [2]-[9].
A state-of-the-art robust TEP model is presented
in [4], [10], [11]. This model, which is based on
adaptive robust optimization (ARQO), is cast as a
three-level optimization problem [4]. The first-level
problem seeks to minimize investment cost. The
worst realization of the uncertainties that maximizes
operating cost is identified in the second-level prob-
lem for given investment decisions. The third-level
problem represents the system operator’s optimal
response seeking to minimize operating cost, an-
ticipating investment decisions and the worst-case
realization of uncertainties.

Recent approaches for solving robust TEP are re-
ported in [3], [4], [10], [12]-[14]. These approaches
convert the original three-level problem into a two-
level problem and then solve it using decomposition
methods such as Benders’ or column-and-constrain
generation (CCG) [15]. In [3], the dual problem of
the third-level problem is merged with the second-
level problem to form a single-level bilinear maxi-
mization problem. The resulting two-level problem
is solved using Benders’ decomposition. The dual
information of the subproblem is used to add new
Benders’ cut to the master problem. The main
disadvantage of this method is its slow convergence
[10]. In [4], a primal Benders (i.e., column-and-
constrain generation) approach is used to coordinate
the master problem and the subproblem. However,
the subproblem is computationally challenging since
the number of binary variables and constraints is
high.

The solution methods of [3] and [4] are compared
in [10]. Moreover, the method presented in [3] is
used to derive a two-level problem, and primal
Benders is then applied. The bilinear terms of the
subproblem are linearized using a simplified poly-



nomial uncertainty set to improve computational
performance. The method proposed in [10] is used
in [11] to solve a robust dynamic TEP problem. Ad-
ditionally, [11] discussed the advantages of a robust
dynamic model for TEP over static and sequential
methods. The bilinear subproblem is solved in [12],
taking advantage of Konno’s mountain climbing
algorithm [16], which is a heuristic technique pre-
viously used in [17] to solve a robust security-
constraint unit commitment problem. A CCG algo-
rithm is used in [13] to solve a dynamic, robust
security-constrained TEP. In [14], a heuristic block
coordinate descent method is used to avoid bilinear
terms in a robust TEP. Linear decision rules are used
in [18] to reformulate a dynamic robust TEP as a
tractable problem, solvable by commercial solvers.
A robust TEP problem considering contingencies
and uncertainty on load and renewable generation
is investigated in [19]. In [20], a disjunctive model
is proposed to solve a dynamic security-constrained
TEP. In [21], the potential of a continuously variable
series reactor, a flexible AC transmission system
device, is studied within the framework of a dy-
namic security-constrained TEP. A multi-objective
method is presented in [22] to solve a dynamic TEP
considering scenario-based uncertainties.

We note that previous studies have primarily ad-
dressed the advantages of robust optimization when
faced with uncertainties. The computational chal-
lenges have not been sufficiently investigated when
considering a robust dynamic decision-making and
enforcing security constraints. As discussed in [4]
and [11], the master problem of a robust static TEP
model does not entail a considerable computational
burden. However, this is not the case for a robust
dynamic TEP problem with security constraints.
Although Konno’s algorithm reduces the compu-
tational requirement of the CCG subproblem [12],
[17], the CCG master problem is still computation-
ally expensive. This degrades the scalability and
tractability of robust security-constrained dynamic
TEP models.

This paper presents a nested CCG-augmented
Lagrangian decomposition algorithm to reduce the
computational burden of robust security-constrained
dynamic TEP and enhance its tractability and scal-
ability. Specifically, a three-level robust security-
constrained dynamic TEP problem is converted
into a two-level problem, with a master problem
and a subproblem. The subproblem is decompos-

able by time period, and an approximate convex-
ification algorithm is used to solve it. The key
contribution of this paper is to decompose the
computationally demanding master problem into
three equivalent computationally inexpensive sub-
master problems, namely, an upper-master quadratic
problem, a middle-master unconstrained quadratic
pure binary problem, and a lower-master uncon-
strained quadratic problem. Binary variables cor-
responding to candidate lines and auxiliary vari-
ables couple these three sub-master problems. A
three-block alternating direction method of multi-
pliers (ADMM) algorithm coordinates the solution
of the decomposed sub-master problems. Although
the ADMM was originally developed for solving
convex problems, recent studies [23]-[27] have
developed heuristic ADMM algorithms that can
be applied to a variety of non-convex problems.
Additionally, we propose a strategy to initialize
binary variables corresponding to candidate lines
based on a load shedding minimization heuristic
rule. This strategy enhances the performance of the
master problem. On the other hand, CCG is used to
coordinate the master problem and the subproblem
and obtain the optimal solution. Simulation studies
show the efficient performance of the proposed
algorithm for reducing the computational cost of the
CCG master problem.

The rest of this paper is organized as follows.
Section II provides a compact formulation. Section
III presents the proposed decomposition approach.
Numerical results are presented and discussed in
Section IV. Concluding remarks are provided in
Section V.

II. DYNAMIC ROBUST TEP: ARO COMPACT
FORMULATION

A compact formulation of the three-level robust
security-constrained dynamic TEP is presented in
(1) below. In the first level, the system operator
pursues the best expansion decisions to minimize
the investment cost over the planning horizon. In
the second level, the worst-case realization of un-
certainties is derived. Generation levels and demand
uncertainties are modeled using polyhedral uncer-
tainty sets [1]. In the third level, given transmission
expansion decisions and the worst-case uncertainty
realization, operation cost is minimized endorsing
a N — 1 security criterion. More details about the



three-level robust TEP model are provided in [1],
[11], [12].

min (CT:U 4+ max min bTy) (1a)
x deD yeQ(x,d)
S.t.
e <II (1b)
x € {0,1} (Ic)

The sequential structure of the three-level dynamic
robust model is reflected in objective function (1a),
which is to minimize investment cost ¢’z and
operation cost b’y over the planning horizon. Vec-
tor v = {wy,...,x,,} contains transmission ex-
pansion variables. Vector d = {d,,,...,d;, } refers
to variables associated with demand and genera-
tion. D defines the uncertainty set. The contin-
uous operation variables are gathered in vector
Y = Y, Ui Yoo Ytus Yir s Yoy -+ i denotes
variables pertaining to operation under contingency
c1 at planning time period ¢,,. Parameter II is the
maximum investment budget. To ensure operation
feasibility of variables y for each = and d, constraint
set 2(z,d) is defined as:

Q(z,d) = {

Constraints (1d) is derived using a DC power flow
representation. Equality constraints include trans-
mission line flows, nodal power balances, and en-
forcing the reference node voltage angle. Line flow
and voltage angle limits are inequality constraints.
Corrective N — 1 security constraints are also in-
cluded in (1d). Coefficient matrices A, B, F, and
G, and vectors E' and K are constant. Dual vari-
able vectors associated with equality and inequality
constraints are A and u, respectively.

=Fd:\
< Kd: u.

Az +By

Fz +Gy (1d)

III. PROPOSED HYBRID CCG-ADMM
SOLUTION APPROACH

The second- and third-level problems are com-
bined to convert (1) into a two-level problem. The
first-level problem, the master problem, is to find
the optimal investment decisions z. The second-
level problem determines the worst-case uncertainty
realization under fixed investment decisions. Since
simulation results reveal that CCG generally per-
forms computationally better than Benders [10], we
use CCG to develop the proposed solution approach.

3B-ADMM inner
CCG outer loop to loop to solve master
coordinate master _ _plolilﬂ_m_
problem and
subproblem
______ > Approximate

convexification inner
loop to solve subproblem

Fig. 1. Scheme of proposed three-loop approach.

As shown in Fig. 1, three loops are considered: an
inner loop to solve the subproblem, an ADMM inner
loop to solve the master problem, and a CCG outer
loop for coordinating the master problem and the
subproblem.

A. Master Problem

The master problem is a mixed-integer linear
programming (MIP) problem:

311/1% M = Ty 4+ o (2a)
s.t. (1b), (1¢), and
a >bly; Vi<k (2b)
Ax+ By, =FEd; Vi<k (2¢)
Fr+ Gy, < Kd;; Vi<k, (2d)

where k£ is the CCG iteration counter and ¢ =
1,--- k. Auxiliary variable « reconstructs the ob-
jective function (la) gradually with increasing ac-
curacy. Variable d, which represents the uncertainty,
is obtained from the subproblem solution. A new
set of equations (2c)-(2d) is added to the master
problem at each iteration. It is relevant to note that
the master problem represents the complete three-
level problem.

B. Subproblem

Combining the dual problem of the third-level
problem of (1) and the second-level problem results
in the following maximization problem, which is
decomposable per time period [12], [17]:

max, 7% = (BEd — Ax*)' X\ + (Kd — Fz*)" i (3a)
9 HLL’
S.t.

—BIAN-GTu=0 (3b)



>0\ free,d € D. (3¢)

The objective function (3a) is the dual of the third-
level problem. Dual constraints (3b) are obtained
from differentiating the Lagrangian of (1d). Given
the investment decisions, the solution of model (3)
provides values for the variables that represent the
uncertainty to be meant to the master problem at
each iteration.

C. Proposed Solution Approach

1) Algorithm To Solve the Master Problem: The
master problem is not computational challenging for
static TEP problems [4]. However, the number of
primal cuts and binary variables in the master prob-
lem is multiplied by the number of time periods in
dynamic TEP. Moreover, the number of operational
constraints is multiplied by the number of N — 1
security constraints. Therefore, the dimension of the
master problem dramatically increases in terms of
variables and constraints over the course of the CCG
iterations.

We rewrite the master problem (2) in the follow-
ing compact form.

min f(z, ) (4a)
{zyi,0}
S.t.
where set y is:
X = {(@, y;, @) |(1b)(1c)(2b)(20)(2d)}.  (4o)

We next decompose this computationally expensive
master problem into three sub-master problems that
can be solved efficiently. To this end, we refor-
mulate (4) into: a scalable and computationally
efficient quadratic problem, a computationally cheap
quadratic unconstrained binary optimization, and
a computationally cheap unconstrained quadratic
problem.

a) Key Reformulations: We relax (lc) and
allow binary variables x to be real, 0 < x < 1. Then,
we define a set of auxiliary binary variables z and
a set of continuous variables r. We also formulate
three sets of new constraints (5b), (5d), and (5e) to
enforce the binary nature of . We then reformulate
4) as (5):

min
{z,y;,a,2,1}

f(z, ) (5a)

. Aoz + Az + Agr =0 : 5 (5b)
{z,y:,a} € x\(lc) (5¢)

2 e {0,1} (5d)

r=0. (5¢)

where Ag, Ay, and A, are identity matrices related
as Ag = —A; = —Ay = [,,+. Auxiliary continuous
variables 7 need to be zero at the optimal solution
so that x become binary. We note that problem (5)
is still an MIP. We move implicit constraint (5¢) and
(5d) to the objective function using indicator func-
tions ¢y (x,y;, ) and tq913(2), the latter enforcing
the binary nature of z.

min  F(z,y;, a, 2) = f(z, )
{zyi0,2,m} (6a)
+ [’X<$7 Yi, Oé) + L{O,l}(z)
S.t.
A0$+A12+A2T:O Ly (6b)
r=0. (6¢)

We then split the optimization variables into three
sets, namely, A = {z, y;, a}, z, and r. The problem
now has a separable structure with respect to these
sets except for constraint (6b). We dualize this
constraint using an augmented Lagrangian.

B
‘Cp(xayi>@>z7ra ’7) = F(l’,yi,Oé, Z) + EHng

+ v(Aoz + A1z + Aor) + g||Aoa¢ + Az + Agr||2.

(N
We then use the ADMM (3B-ADMM) shared in
Algorithm 1 to solve (7) by decomposition in
three separate blocks. The first block, called upper-
master problem, is a quadratic problem with respect
to (x,y;, ) given z and r. If this upper-master
problem, which is computationally much cheaper
than the original master problem, is infeasible, then
so is the original TEP master problem (2), and
Algorithm 1 terminates. The second block, called
middle-master problem, is a quadratic unconstrained
binary optimization problem with respect to aux-
iliary binary variables z given (z,y;,«) and 7.
The third block, called lower-master problem, is
a computationally cheap quadratic unconstrained
optimization with respect to auxiliary continuous
variables r given (z,y;, @) and z. Since the second



block problem is non-convex, 3B-ADMM is, in gen-
eral, a heuristic. However, the sequence generated
by ADMM converges under some conditions for
sufficiently large p > f.
b) Convergence of the Mixed-Binary ADMM:
The assumptions for which Algorithm 1 is proven
to converge to a stationary point of the augmented
Lagrangian L, are as follows [23], [27]:
1) (Coercivity). The objective function F' is co-
ercive over the constraints.
2) (Feasibility). Im(A7) C Im(A,), where Ay =
[Ap, Aq].
3) (Lipschitz subminimization paths). It is pos-
sible to find a positive constant M at any
iteration such that

||:13m_1 —z™] < M||onm_1 — Apz™|| (8a)
Hzm’l 2" < JMHAlzm’1 — Az™|| (8b)
||7‘m_1 —r"|| < MHAgrm_l — Axr™|| (8c)

4) (Objective regularity). F' is a lower semi-
continuous function.

Moreover, if £, is a Kurdyka—Lojasiewicz (KL)
function [28], [29], Algorithm 1 converges globally.
We below show that the above conditions are valid
for (7).

1) (Coercivity). Coercivity holds for x and =z,
since they are bounded. Term gHng is
quadratic, then it is coercive.

2) (Feasibility). Direct computing of Im(A7) and
Im(Ay), where Ay = [Ap, A;], shows that
Im(Ar) C Im(A,), so feasibility holds.

3) (Lipschitz subminimization paths). This con-
dition holds for every set of variables with
M =1 trivially.

4) (Objective F-regularity). since f(z,a) +
(2, Yi, @) + t013(2) is the sum of a con-
vex function and the indicator function of a
convex set, it is restricted prox-regular [23].
Term §||r||§ is Lipschitz differentiable with a
constant [3.

Also, since function (7) is a semi-algebraic function,
it is a KL function. Thus, Algorithm 1 converges to
a stationary point of the augmented Lagrangian £,
which is a soft-constrained version of the dynamic
TEP mixed-binary master problem (4). Starting
from any initial point, this algorithm converges
subsequently for any sufficiently large p > f.
However, a good initialization leads to fewer 3B-
ADMM iterations.

Algorithm 1 3B-ADMM algorithm
1: Initialize: m = 1,79, p > 8> 0, 20 7O ¢ >
0.
2: form=1,2,..., do
: First block update:
4 A« argminl (A, 2(m=D p(m=1) o m=1))

x?yl 7a

: Second block update:
6: 2™ argminﬁp(Am,z,r(mfl),v(mfl)).

: Third block update:
g: (M « argminl,(A™, 2™, r,ym=Y).

9: Dual variable update:

10: ™) g(on(m) + A2 4 Agr(m)) 4 ~(m=1)

1 if [|Apx™ + A2 4 Ayr(™)|| < ¢ then
Stop.

12: else

13: m <+ m+ 1.

14: end if

15: end for

16: Return (z,y;, a, 2, 7).

c) Discussions on the Number of Blocks: We
note that a two-block implementation fixing » = 0
and skipping the third block update is possible.
However, incorporating variable r has two advan-
tages. First, linear constraint (5b) requires a three-
block structure, and the last block is an identity
matrix, whose image is the entire space. This feature
is required to ensure feasibility; that is, for any fixed
x and z, there always exists r such that (5b) is
satisfied. Second, constraint (5e) can be processed
independently of (5b) so that it can penalized and
incorporated in the objective function as §||r||§
This term is not only convex but also Lipschitz
differentiable. The multiplier updating in step 10
of Algorithm 1 proceed smoothly as a result of
the convexification effect that the penalty term of
the augmented Lagrangian confers to the actual
Lagrangian [30].

d) Convergence Improvement: Careful param-
eter selection and variable initialization strategies
generally enhance the convergence speed of Algo-
rithm 1. We use two rules.

1) Candidate transmission lines that facilitate
supplying loads with low investment cost are
more likely to be installed. To select a starting



solution wisely, ratio ¢ is defined.

Aload
Cl - I[ 5

where Aload is the difference of total sup-
plied load before and after installing candidate
line [ in the target year. Parameter [; is the
annualized investment cost of candidate line /.
We rank ratios (; in descent order; then, assign
z = 1 to candidate lines with high (;. In this
step, the summation of investment costs is not
bounded.

2) We update penalty factor 5 according to the
strategy described in [24]. Specifically, for
given parameters 0 < p < 1 and w >
1, g™ = wpm™tif [r™ > plr™Y, and
p™ = ™! otherwise. The ADMM penalty
increases if residual |r| does not decrease
adequately. Also, we assign 2.58™ to p™.

We note that the second rule affects ADMM’s iter-
ation number and penalizes the auxiliary variable r,
whereas the first one only affects ADMM’s iteration
number.

2) Algorithm to Solve the Subproblem: Because
of bilinear terms d” \ and d” 1 in the dual objective
function (3a), the subproblem is generally difficult
to solve. We use an approximate convexification
method to solve this subproblem [31], [32]. We
write the term d - A in the following algebraic form:

€))

d-\= i(cum)? (d— N2 (10)

1

4
The right-hand side of (10), which is the subtraction
of two convex functions, is non-convex. However,
we exploit the fact that the subtraction of a convex
function and a linear one is convex, and thus lin-
earize the second term in (10) around (d), A7),
using a first-order Taylor series approximation [33].

(d—\)? =~ (a(j))2 + a(j)(d _ d(j)) — a(j)()\ _ )\(j))

(11)
where aV) = 1(dU) — X9)). We then replace d - A
in (3a) with (10) and (11). The same method is
used to linearize d - u. The approximately convexi-
fied subproblem (3) is then solved iteratively using
Algorithm 2.
Three variable vectors, d, A, and p, need to
be properly initialized. We have reasonable initial
estimates for uncertain variables of demand and

generation, i.e., d°). The dual variables are unlikely

1
4

to be known in advance. We obtain an estimate of
A9 and (9 by substituting d®) into subproblem
(3). Then, the original non-convex problem (3) is
approximated by a sequence of convex problems
iteratively solved until convergence is achieved. The
accuracy of the approximation iteratively increases
as variables d), AY) and pU) get closer to their
optimal values d*, A\* and p*. The performance of
this approximation method is investigated in [31],
[32].

Algorithm 2 Proposed Solution Algorithm

1: Initialize: j = 1, €, d9 € D, x = x, set
(A 1)) to the solution of problem (3) with
fixed d € D.

2: for j=1,2,..., do

: Solve (3) with (dW AW ;0)) and set
(U1 \U+D 0D to the solution.

4: if |dUFY) —@U+D |4 \OHD NG| 4| U+ —

19| < ¢ then Stop

end if
j<—J+1

end for

: Return (d, \, p).

e A

The merit of convexification (11) as compared
to methods using big-M constants and binary vari-
ables to model bilinear terms (e.g., [3], [10]) is its
computational efficiency. Particularly, if the number
of N — 1 security constraints in the lower level
increases, the number of binary variables in big-
M methods significantly increases, resulting in po-
tential intractability. Konno’s algorithm [12], [16]
is also another approach to tackle the subproblem
bilinear terms. However, this algorithm is prone to
stick to local minima and should be re-started with
various initial points to obtain a reliable result. Also,
block coordinate descent is a heuristic approach
to tackle bilinear terms that does not guarantee
convergence to the global optimum [14].

3) Outer Level Column-and-constraint-
generation: The outer loop CCG of Fig. 1 is
described in Fig. 2. The master problem passes
to the subproblem investment decisions =z, and
the subproblem provides the master problem with
uncertain variable values d representing uncertainty
parameters. The algorithm proceeds as follows:

Step 0: Set k = 0 as the CCG outer loop iteration
counter. Set the outer loop bounds to LB®) = —oco
and UB(® = oo. Solve the master problem (2a)



Initialization

| Solve (2a) s.t. (Ib)(Ic) |——

Solve problem (3) using
Algorithm (2)

e
a® D

Compute LB

40 y®
Compute UB®

UB® — LB® < ¢

Solve problem (2) using
Algorithm (1)

209 x®)
Compute LB

Fig. 2. Flowchart of outer level algorithm to solve the two-level
problem.

subject to (1b)-(1c) to obtain M and oW, then let
LBW = ZzM,1)

Step 1: For k£ > 1, solve master problem (2)
using Algorithm 1 to obtain z(*) and a*), then let
LBk — zM(k)

Step 2: Fix investment decision variables z(*) to
the values obtained in Step 1, solve subproblem (3)
using Algorithm 2 to obtain uncertain variables d*
and let UB®) = Z5(®),

Step 3: If UB%) — L B%®) < ¢, then stop and return
2®) as optimal investment decisions. Otherwise, set
k < k+1 and go to Step 1.

The computational efficiency of this column-and-
constraint generation is discussed in [10].

D. Computational Complexity Analysis

We focus below on the computational complexity
of the master problem since our main contribu-
tion pertains to efficiently solve this problem. We
compare the complexity of a conventional non-
decomposable algorithm and the proposed three-
block distributed algorithm. The size of each for-
mulation is characterized with respect to the number
of buses (n;), loads (ng), generators (n,), lines (n;),
years (n;), security-constrains (n.), and the number
of iterations (ny).

1) Non-decomposable master solution:
numbers of variables and constraints are:

The

e n+ X n,; binary variables. Note that here n;+ is
the number of candidate lines.

o (myx(m+1))+(ng+ng+ni+ny)(ne+1)ng xn,
continuous variables.

o {((2ny—1)+3n;+nq)(1+n.)+ny,(1+2n.)} x
ng X ng + (ng+ 1)ng + (2n, + 1)ny+ constraints.
2) Proposed master solution: The master prob-
lem is decomposed in three blocks. The first block
includes no binary variables, the second block has
neither continuous variables nor constraints, and the
third block contains neither binary variables nor
constraints. The numbers of continuous variables
and constraints in the first block problem are:
o (myxny)+(ng+ng+n+mn)(ne+1)n,+1+
2(ny+ x ny) continuous variables.
o {((2ny—1)+3n;+nq)(1+n.)+n,(1+2n.)} x
ng X ng + (ng+ 1)ng + (3n, + 1)ny+ constraints.
The number of binary/continuous variables for both
the second and third blocks is:
e ny+ X ny binary variables.
The non-decomposable master problem is a large-
scale MIP and suffers from the curse of dimen-
sionality. However, in our approach, we solve a
quadratic optimization problem, a quadratic uncon-
strained binary optimization, and a quadratic uncon-
strained optimization problem that are scalable, and
can be solved efficiently.

IV. NUMERICAL RESULTS

The proposed approach is tested on the Garver
system [34] and the IEEE 118-bus system. Simula-
tions are carried out on a personal computer with
an Intel(R) Core(TM) i7-10850H CPU clocking at
2.7 GHz and 16 GB of RAM. GAMS 28.2.0 and
CPLEX solver are used to solve the optimization
problems. The converging tolerance for all simu-
lations is set to 107%. TEP is solved using the
following strategies:

S1: Classical Approach: column-and-constraint-
generation using Algorithm 2 to solve the subprob-
lem (i.e., Fig. 1 without 3B-ADMM inner loop).

S2: Proposed Approach: column-and-constraint-
generation using Algorithm 1 to solve the master
problem and Algorithm 2 to solve the subproblem.

A. Garver System

This system includes six buses, six existing lines,
45 candidate lines (three lines between each pair
of buses), three generating units, and five demands.
The maximum investment budget is $48 million.
Candidate line data and bus data are given in [35]
and [36], respectively. The peak demand and gener-
ation capacity in the first year are 760 MW and 1110



Residual

10757

10- — .
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Fig. 3. 3B-ADMM residual for solving the master problem at the
last CCG outer iteration (Garver system).

TABLE I
¢ INDEX FOR CANDIDATE LINES OF GARVER TEST SYSTEM

corridor 2-6 4-6 5-6 1-6  Rest
¢ 1438 1438 551 4.44 0

MW, respectively. The time horizon includes ten
one-year time periods. The yearly demand growth
is 5%. N — 1 security constraints are considered.
The maximum level of demand d can deviate up to
20% of its expected value at each year. The installed
generation capacity can deviate up to 20% below
its expected value at each year. Uncertainty budgets
are 'Y = 0.2 and I'P = 0.5. We have initialized
3 = 10% with 10® as its upper bound. Initial points
for z are selected based on the list of (; ratios given
in Table I. Auxiliary variables r are initialized to O.
The built candidate lines are 2-3, 2-6, 3-5, 4-6, and
4-6 in year one, 3-5 in year three, 2-3 in year six,
and 4-6 in year eight. Strategies S/ and S2 provide
the same investment results. The total investment
cost for constructing new lines is $46.33 million.

The outer loop of the CCG algorithm in S/
and S2 converges after five iterations. The average
number of 3B-ADMM iterations over the four CCG
iterations is 17.75. Fig. 3 illustrates the convergence
residual of Algorithm 1 at the last iteration of the
CCG outer loop. At every CCG iteration, the 3B-
ADMM residual, defined as ' = |[|Aox + A1z +
Ayr||, goes to zero upon convergence. Fig. 4 shows
the computational time of the master problem at
every outer iteration. Total master problem solution
time for S7 and S2 is 19.7 and 29.9 seconds, respec-
tively. Since the Garver system is small, solving the
master problem using S/ is more efficient.

Avg. Computation Time (Sec.)
o - v w s Lo 9 x o

2 3 4 5
CCG Tterations

Fig. 4. Computational time of the master problem in S/ and S2 at
every CCG outer iteration (Garver system).

TABLE II
NUMBER OF VARIABLES AND CONSTRAINTS FOR IEEE 118-BUS
SYSTEM
#cont. var.  #bin. var. #const.
Master problem  543290mn 300 1199780n4
(last iteration) + 1870 + 2500
Subproblem 1125880 - 645320

B. IEEE 118-Bus System

This is a relatively large test system for TEP
studies. The system information for existing com-
ponents and candidate lines is given in [37]. The
peak demand and generation capacity in the first
year are 5567 MW and 7470 MW, respectively. The
maximum annual investment budget is $150 million.
The time horizon is ten years, with ten one-year-
long time periods. One hundred and twenty line con-
tingencies are considered. Demand and generation
uncertainties are similar to those in Garver’s case.
Load-shedding is allowed up to 3% of the maximum
demand.

We select initial values for z based on the list of
¢ ratios calculated using (9). We initialize 3 = 103
with 10® as its upper bound and set r = 0. Table
IT shows the number of variables and constraints
at the ni" CCG outer loop iteration. Strategies S/
and S2 obtain the same result with an investment
cost of $381.97 million. Candidate line sets {1, 5,
7, 15,24}, {3, 13, 17, 29}, {6}, and {14} are to be
installed, respectively, in years one, two, three, and
seven.

The outer loop of the algorithm converges in
12 iterations. The average number of 3B-ADMM
iterations per CCG iteration is 54.3. Fig. 5 shows
the computation time for the master problem at
every outer iteration. Cumulative solution times are
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Fig. 5. Computational time of master problem in S/ and S2 at every
CCG outer iteration (118-bus system).

® Master problem ™ Subproblems ™ Total
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Fig. 6. Total time consumed by each algorithm at each strategy (118-
bus system).

reported in Fig. 6. The proposed approach S2 takes
1.91 hours to solve the master problem while the
conventional approach S/ takes 10.14 hours. The
solution time for the whole TEP problem in S/ is
14.04 hours, meaning that the master problem takes
almost 72% of the total solution time. In S2 the
total solution time is 5.85 hours, with the master
problem taking 32.62% of it. The master problem
and the total TEP solution times reduce by 81%
and 58% in S2 as compared to S1. Fig. 7 represents
the convergence residual of Algorithm 1 at the last
iteration of the CCG outer loop.

Impact of Initialization Strategy: We repeat S2
without the proposed initialization strategy. Fig. 6
shows the solution times. The total solution time is
8.74 hours, with the master problem taking 54.9%
of it. Still, the master problem and the total TEP
solution times are reduced by 52.2% and 37.7% as
compared to S/. The 3B-ADMM converges after
210 iterations in the last iteration of the CCG
outer loop, while it converges after 43 iterations
if using S2 with the initialization strategy. Results
illustrated on Fig. 6 shows that the suggested load
shedding-based initialization strategy reduces the

100

Residual

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43
3B-ADMM lteration

Fig. 7. 3B-ADMM residual for solving the master problem at the
last CCG outer iteration (118-bus system).
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Fig. 8. Average computation time of Algorithm 1 and 2 per CCG
outer iterations.

computational time of S2 by 60.2% to solve the
master problem.

Impact of Uncertainty Budgets: As depicted in
Fig. 8, Algorithm 1 is not affected by uncertainty
budgets. These parameters mainly affect the sub-
problem solution time and the number of CCG
iterations. Regarding Fig. 8 the numbers of CCG
outer loops in simulations one to four are 12, 17,
18, and 12, respectively.

C. N — c Security-Constrained Analysis

The analysis below shows how the proposed
approach alleviates the solution time and memory
requirement under different N — ¢ security condi-
tions with ¢ € {0,1,2,3,4}. The IEEE 118-bus
system is used. Table III summarizes the solution
time and the system cost. Table IV provides the size
of the master problem. As the number of security
constraints increases, the problem size, the solution
time, and the cost increase. The numbers of lines
built for ¢ equal to 0, 1, and 2 are, respectively,
nine, 11, and 24. This increasing trend changes
for ¢ > 3, becoming the load shedding cost the
dominant part of the objective function. Nine new



TABLE III
RUN-TIME AND SYSTEM COST OF IEEE 118-BUS SYSTEM
CONSIDERING N — ¢ SECURITY CRITERION

S1 S2

¢ "Time(h) Cosi(3) Time(h) _ Cosi($)

0 0.8 8.80 x10™° 1.2 8.80 x10™
1 14.04 8.97x10'° 5.85 8.97x10'°

2 24* 2.87x10M* 9.9 2.80x 10!

3 Outof Memory Outof Memory 12.1 1.07x 10

4 Out of Memory Out of Memory  23.5 1.81x10™

*xUnfinished (Optimality gap ~ 1%)

TABLE 1V
SIZE OF THE MASTER PROBLEM CONSIDERING AN N — ¢
SECURITY CRITERION FOR THE IEEE 118-BUS SYSTEM

c #cont. var. #bin. var. #constraints

0 4490n4,+1870 300 9380n,+2500

1 543290n,+1870 300 1199780n4+2500

2 22454490n,+1870 300 49609380n4,+2500
3 67354490n,+1870 300 148809380m,+2500
4 112254490n,+1870 300 2480093807m+2500

lines are built for ¢ = 3 and seven for ¢ = 4.
Moreover, for c equal to 3 and 4, the value of
the objective function dramatically increases due to
the high load shedding cost. As c increases, the
solution time of strategy S/ increases drastically,
which is not the case for strategy S2. Changing
from ¢ = 0 to ¢ = 1, the solution time increases
from 0.8 hours to 14.04 hours for strategy S/ and
from 1.2 hours to 5.58 hours for strategy S2. For
N — 2 instances, we stopped strategy S/ after 24
hours. The considered optimality gap was 1%, and
the total cost 2.87x10". Strategy S2 converges to
the optimal solution with a 0% gap after 9.9 hours.
The total cost provided by strategy S2 is 7x10°
smaller than that provided by strategy S/. Due to
the large size of the problem representing either
the N — 3 or N — 4 security criterion, given the
available computer, strategy S/ could not solve these
instances. However, S2 provides optimal solutions
for these cases after 12.1 and 23.5 hours.

V. CONCLUSIONS

Including security constraints in the dynamic TEP
problem drastically increases its computational bur-
den, particularly for adaptive robust formulations.
This paper presents a hybrid CCG augmented-
Lagrangian approach to efficiently solve this prob-
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lem. The master problem, which is computation-
ally expensive, is reformulated as a combination
of a quadratic optimization sub-master problem, a
quadratic unconstrained binary sub-master problem,
and a quadratic unconstrained optimization sub-
master problem. A three-block ADMM algorithm is
used to coordinate the solution of these sub-master
problems and find the master problem optimal solu-
tion at each CCG iteration. A load shedding-based
initialization strategy is suggested.

Simulation results show that the proposed ap-
proach outperforms significantly the classical CCG
approach. For instance, for the IEEE 118-bus sys-
tem, the proposed hybrid decomposition approach
reduces the solution time by roughly 58% (8.19
hours). Also, for the N — 2 security condition, the
proposed approach provides optimal TEP results
after 9.9 hours while the classical approach reaches
an optimality gap of 1% after 24 hours. The clas-
sical approach does not solve N — 3 and N — 4
instances due to memory requirements. However,
the proposed approach finds optimal results in less
than a day.
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