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Abstract— Multi-interval or dynamic economic dispatch (D-ED) is 

the core of various power system management functions. This 

optimization problem contains many constraints, a small subset of 

which is sufficient to enclose the D-ED feasible region. This paper 

presents a topology-aware learning-aided iterative constraint 

screening algorithm to identify a feasibility outlining subset of 

network and generating units ramp up/down constraints and 

create a truncated D-ED problem. We create a colorful image 

from nodal demand, thermal unit generation cost, and network 

topology information. Convolutional neural networks are trained 

for constraint status identification using colorful images 

corresponding to system operating conditions and transfer 

learning. Filtering inactive line flow and ramp up/down 

constraints reduces the optimization problem’s size and 

computational burden, resulting in a reduction in solution time 

and memory usage. Dropping all inactive branch and ramp 

constraints may activate some of these originally inactive 

constraints upon solving the truncated D-ED. A loop is added to 

form a constraints coefficient matrix iteratively during training 

dataset preparation and algorithm utilization. This iterative loop 

guarantees truncated D-ED results feasibility and optimality. 

Numerical results show the proposed algorithm’s effectiveness in 

constraint status prediction and reducing D-ED size and solution 

time.  

 

Keywords—Dynamic economic dispatch, branch and ramp 

constraints, topology change, machine learning, constraint 

classification. 

I. INTRODUCTION 

ULTI-TIME interval economic dispatch, also known as 

dynamic economic dispatch (D-ED), is solved daily and 

hourly for many energy management functions in power 

systems. D-ED has many constraints, including transmission 

network constraints and generating unit ramp limitations [1]. 

The curse of dimensionality and computational cost increase 

with the system size and scheduling time intervals. Despite 

improvements in solvers’ performance, processing technology, 

and computing memory, D-ED’s solution time and resource 

prerequisites continue to be crucial factors.  

A. Background 

Various approaches have been developed to reduce D-ED 

computational resource and time requirements and other energy 

management functions, such as optimal power flow and unit 

commitment [2]. For instance, decomposition approaches are 

proposed to decompose economic dispatch into small, low 

computational subproblems and coordinate them using iterative 

approaches [3]. Another promising strategy is to identify and 

remove inactive and redundant constraints. Experimental and 

mathematical analyses show that most D-ED constraints are 

inactive or redundant, and only a small subset of constraints is 

needed to create the feasible region. Omitting inactive and 

redundant constraints relieves D-ED computational burden 

significantly.  

Several studies are conducted for active and inactive 

constraints identification (inequality constraints that are 

satisfied with equality are called active or binding constraints). 

These studies focus only on thermal capacity limits of 

transmission lines, i.e., branch constraints. Reference [4] shows 

that more than 85% of branch constraints are inactive in unit 

commitment. The concept of umbrella constraints is presented 

in [5] to determine redundant constraints and provide the 

necessary and sufficient conditions to enclose the optimal 

power flow feasible space. Reference [6] presents an 

optimization-based bound tightening approach that solves 

multiple linear subproblems in parallel to identify redundant 

constraints. This study shows that roughly 99% of constraints 

are redundant for real-world systems. Reference [7] presents an 

iterative algorithm for unit commitment. All branch constraints 

are omitted at the first iteration and violated constraints are 

added in the optimization iteratively. It is reported that it is 

unnecessary to add all violated branch constraints to the 

original relaxed problem. 

B. Motivation 

Current mathematical model-based approaches either solve 

a series of optimization subproblems to find inactive constraints 

or perform a form of iterative constraint generation (ICG) 

where in each iteration, active line flow constraints identified 

in previous iterations are added to models [8]. These two 

approaches lead to computational time-saving. However, as the 

system size grows, this time-saving may fade away as i) solving 

subproblems to find inactive constraints might take more time, 

and ii) the number of ICG iterations increases. Moreover, the 

existing constraint screening methods only consider branch 

constraints. Intertemporal constraints, such as generators ramp 

up and down rates limiting power produced by thermal units in 

successive time intervals, increase D-ED memory usage and 

computational cost and constitute a considerable portion of 

Topology-aware Learning Assisted Branch and Ramp 

Constraints Screening for Dynamic Economic Dispatch  
Fouad Hasan, Student Member, IEEE, Amin Kargarian, Senior Member, IEEE 

 

M 

This work was supported by the National Science Foundation under Grant 

ECCS-1944752.  
The authors are with the Electrical and Computer Engineering 

Department, Louisiana State University, Baton Rouge, LA 70803, (e-mail: 

fhasan1@lsu.edu, kargarian@lsu.edu). 



 2 

inactive constraints. A simple solution may be relaxing ramp 

and branch constraints and applying the ICG technique. 

However, our observation shows that iteratively adding ramp 

constraints increases the number of ICG iterations 

considerably.  

C. Contribution 

      This paper presents a topology-aware learning-aided 

iterative algorithm to predict the necessary and sufficient 

branch and ramp up/down constraints information needed for 

forming the D-ED problem’s feasible design space under 

topology alteration. The goal is to formulate a truncated D-ED 

with less computational cost than the original optimization 

problem in terms of solution time and memory usage. Demand, 

thermal unit generation cost, and network topology information 

are three inputs to the proposed algorithm. The system 

admittance matrix is used as an input feature to account for 

topology alterations. Using these three features, each operating 

condition scenario is transformed into a colorful image whose 

red, green, and blues channels include, respectively, demand, 

thermal unit generation cost, and admittance matrix 

information. Pre-trained convolutional neural networks are 

adopted, and transfer learning is used to adjust them for power 

system constraints classification. The input to these 

classification learners is colorful images corresponding to 

system operating conditions, and the learners predict active and 

pseudo-active branch and ramp constraints. Pseudo-active 

constraints are inequalities that are not active at the optimal 

point but are required to ensure the truncated D-ED results 

optimality and feasibility. An iterative loop is added to the 

proposed algorithm to find pseudo-active constraints for the 

learners’ training phase and ensure the feasibility of truncated 

D-ED results if misclassifications are observed in predicting 

active and pseudo-active branch and ramp constraints. 

Numerical results show the proposed algorithm’s effectiveness 

in reducing the size and solution time of D-ED. We have posted 

our code on GitHub [9]. 

The main contributions of this paper are summarized as 

follows: 

• A combined learning and model-based algorithm is 

developed to identify the status of branch and thermal unit 

ramp up/down constraints and formulate a reduced-size 

dynamic economic dispatch problem with respect to 

network topology, demand, and thermal unit generation 

cost information. 

• Power system operating conditions are transformed into 

colorful images enabling users to take advantage of well-

advanced computer vision learning techniques, such as 

EfficientNet-B7, with the help of transfer learning. 

• An iterative loop is embedded to capture active (necessary 

information) and pseudo-active (sufficient information) 

constraints for training classifiers and ensuring the 

feasibility of truncated economic dispatch results. 

D. Paper organization 

The remainder of the paper is organized as follows. 

Relevant papers are reviewed in Section II. The problem 

formulation is given in Section III. The proposed algorithm is 

presented in Section IV. Results are discussed in Section V, and 

concluding remarks are provided in Section VI. 

II. REVIEW OF MACHINE LEARNING APPLICATIONS TO 

POWER SYSTEM OPTIMIZATION 

Machine learning is a promising tool to provide a cost-

effective solution to power system optimization problems and 

reduce solvers’ computational burden. We review learning-

based approaches to reduce the computational burden of power 

system optimization problems, e.g., optimal power flow (OPF), 

economic dispatch, and unit commitment. The existing 

approaches can be categorized into i) warm start prediction, ii) 

generator setpoint prediction (or black-boxing), and iii) hybrid 

learning-model-based approaches.  

The benefit of a learning-based warm start to solve AC OPF 

is discussed in [10]. A learner’s prediction is a warm start for 

the optimization solver. However, this approach does not 

reduce the OPF size as the complete set of constraints is still 

used, which may not yield considerable speed improvement.   

Feasibility enforced deep learning is presented in [11-13] to 

predict generator voltage and power setpoints from demand. 

Lagrangian duals are combined with deep learning to enforce 

constraint satisfaction. In [14], deep neural networks are used 

to predict active power and bus voltages.  A penalty function is 

used to ensure the feasibility of operational constraints. 

References [15-17] use black-box strategies to predict 

generation setpoints directly. However, learning a continuous-

valued multi-dimensional variable (e.g., generation setpoints) 

is a demanding machine learning task. Moreover, a slight 

mismatch between predicted and actual generation setpoints 

may yield suboptimality or power balance equations 

infeasibility. This makes system operators reluctant to deploy 

black-boxing learning-based approaches. Recent studies 

combine learning and power system models to develop hybrid 

learning and physics-based approaches [18]. One of these 

approaches uses machine learning to predict inactive/redundant 

optimization constraints instead of directly predicting the 

optimal output. Reference [19] presents experimentation on 

predicting transmission constraints, warm start, and affine 

subspace to improve mixed-integer solvers’ computational 

performance for unit commitment.  A data-driven method is 

developed in [20] to identify inactive and redundant constraints 

for single period unit commitment. A statistical learning-based 

ensemble control policy is presented in  [21] to track real-time 

DC OPF. In [22], a simple neural network classifier is trained 

to predict DC OPF active line flow constraints. In [23], an 

umbrella constraint prediction algorithm is developed instead 

of predicting binding constraints. A constraint is an umbrella 

constraint if its removal changes feasible solutions of the 

original optimization problem. A learning-based approach is 

presented in [24] to classify zero probability events, which are 

inactive constraints, and reduce joint chance constraints’ 

computational burden for solving OPF. In [25], a two-step 

prescreening approach is presented to identify and remove non-

dominating constraints.  

These hybrid constraint classification approaches do not 

consider thermal unit generation cost and power network 
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topology alterations. Also, only spatial line flow constraints are 

considered, not intertemporal generating unit ramp constraints 

whose contribution to computational burden cannot be ignored. 

We aim to address these knowledge gaps in this paper. 

III. DYNAMIC ECONOMIC DISPATCH  

The considered problem is a multi-interval economic 

dispatch with generating unit ramp up and down constraints. 

The objective function is to minimize generation costs subject 

to power balance (1b), generation limits (1c), generating units 

ramp up and down limitations (1d) and (1e) denoted by 𝒽ℛ𝒰(𝑥) 

and 𝒽ℛ𝒟(𝑥), and transmission line flow limits (1f) denoted by 

𝒽ℒ(𝑥). 

 

min
𝑝

∑ ∑ 𝛾𝑢𝑡𝑝𝑢𝑡

𝑢𝑡

                                       (1𝑎) 

s.t. 

∑ 𝑝𝑢𝑡

𝑢

= ∑ 𝒹𝑛𝑡

𝑛

                     ∀𝑡                (1𝑏) 

𝑃𝑢
𝑚𝑖𝑛 ≤ 𝑝𝑢𝑡  ≤ 𝑃𝑢

𝑚𝑎𝑥               ∀𝑢 , ∀𝑡        (1𝑐) 

𝒽ℛ𝒰(𝑥): 𝑝𝑢𝑡 − 𝑝𝑢𝑡−1  ≤ ℛ𝒰𝑢             ∀𝑢 , ∀𝑡        (1𝑑) 

𝒽ℛ𝒟(𝑥): 𝑝𝑢𝑡−1 − 𝑝𝑢𝑡  ≤ ℛ𝒟𝑢               ∀𝑢 , ∀𝑡        (1𝑒) 

𝒽ℒ(𝑥):−𝑃𝑙
𝑚𝑎𝑥 ≤ 𝑺𝑭𝑙(𝒑𝒕

𝒊𝒏𝒋
− 𝑫𝒕) ≤ 𝑃𝑙

𝑚𝑎𝑥     ∀𝑙, ∀𝑡    (1𝑓) 

 

where 𝑡, 𝑢, 𝑛, and 𝑙 are indices for time, units, buses, and lines, 

respectively. Variable 𝑝𝑢𝑡 is power produced by unit 𝑢 at time 

𝑡. Parameter 𝛾𝑢𝑡 denotes generation cost. Parameters ℛ𝒰𝑢 and 

ℛ𝒟𝑢 are ramp up and down limits of generating unit 𝑢. SF is 

the generation shift factor matrix. Parameter 𝒹𝑛𝑡 is demand at 

bus 𝑛 at time 𝑡. Bus injection and demand matrices are 𝒑𝑡
𝑖𝑛𝑗

 and 

𝑫𝑡. 

 

Power demand curve Network 

topology 
G

Generation cost function

Operating conditions known before 

solving D-ED

 
Fig. 1. Operating conditions known before solving the D-ED problem. 

 

IV. PROPOSED LEARNING AIDED ITERATIVE APPROACH 

The proposed learning-aided truncated economic dispatch 

approach is presented in this section. 

A. Truncated D-ED 

Branch flow and generating unit ramp up and down 

constraints constitute a large portion of the D-ED constraint set. 

Branch flows make constraints geographically dependent, and 

ramp up/down limitations introduce intertemporal dependency. 

These constraints, particularly branch constraints, contribute 

significantly to computational burden and memory usage, yet 

most have no impact on the optimization feasible design space. 

The status of these constraints depends on system operating 

conditions shown in Fig. 1, including power demand, thermal 

unit generation cost, and network topology that are known 

before solving D-ED. The demand varies more significantly 

than the other two features. However, depending on thermal 

unit generation costs and network topology, active constraints 

may differ for a given demand value. Also, while demand and 

electricity market prices are correlated, demand might not be 

correlated to generation costs. Thus, these three features are 

selected to identify the status constraints.  

Figures 2a and 2b show, respectively, an overview of the 

proposed constraint classification training algorithm and its 

utilization. The objective of the proposed algorithm is to 

reformulate (1) by the following truncated D-ED. 
 

min
𝑝

∑ ∑ 𝛾𝑢𝑡𝑝𝑢𝑡

𝑢𝑡

                              (2𝑎) 

s.t. 

(1𝑏) & (1𝑐)                                      (2𝑏) 

𝒜̃(𝒽ℛ𝒰(𝑥)) ≤ 0                                (2𝑐) 

𝒜̃(𝒽ℛ𝒟(𝑥)) ≤ 0                                (2𝑑) 

𝒜̃(𝒽ℒ(𝑥)) ≤ 0                                    (2𝑒) 
 

 

where 𝒜̃(𝒽ℛ𝒰(𝑥)), 𝒜̃(𝒽ℛ𝒟(𝑥)), and 𝒜̃(𝒽ℒ(𝑥)) denote sets of 

ramp up, ramp down, and line flow constraints required to 

ensure that the truncated optimization problem (2) is equivalent 

to (1). The proposed learning-aided algorithm is designed based 

on the following two remarks. 

Remark 1: For a given network topology, demand, and 

generation cost scenario, if constraints (1d) – (1f) are satisfied 

with equality, they must be included in the optimization 

problem.  

𝑝𝑢,𝑡 − 𝑝𝑢,𝑡−1 = ℛ𝒰𝑢            ∀𝑢, 𝑡 ∈ Ωℛ𝒰
𝑡              (3) 

𝑝𝑢,𝑡−1 − 𝑝𝑢,𝑡 = ℛ𝒟𝑢            ∀𝑢, 𝑡 ∈ Ωℛ𝒟
𝑡              (4) 

|𝑺𝑭𝑙(𝒑𝑡
𝑖𝑛𝑗

− 𝑫𝑡)| = 𝑃𝑙
𝑚𝑎𝑥        ∀𝑙, 𝑡 ∈ Ωℒ

𝑡                  (5) 

 

where Ωℛ𝒰
𝑡  denote the set of generators with active ramp up 

limits at time 𝑡, Ωℛ𝒟
𝑡  indicates the set of generators with active 

ramp down at time 𝑡, and Ωℒ
𝑡  is the set of active line constraints 

at time 𝑡. 

Remark 2: If generation cost coefficients of several thermal 

units are the same, multiple non-unique optimal solutions with 

different generation schedules but the same objective value 

might exist. Thus, dropping all inactive line flow, ramp up, and 

ramp down constraints and keeping only active constraints 

obtained at an optimal solution and resolving the truncated 

problem may trigger several originally inactive constraints to 

be activated. Removing these particular non-binding 

constraints, named pseudo-active constraints in this paper, may 

move the optimal solution to a point with the same objective 

value as the original problem but with a different generation 

schedule that is infeasible from the original problem’s 

perspective. Thus, (3)–(5) are necessary but not sufficient to 

form 𝒜̃(𝒽ℛ𝒰(𝑥)), 𝒜̃(𝒽ℛ𝒟(𝑥)), and 𝒜̃(𝒽ℒ(𝑥)). 
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(b) 

Fig. 2. Block diagram of proposed classifier a) training phase and b) utilization 

with an embedded loop. 

 

Remark 2 is a critical observation. It indicates that for a 

constraint filtering algorithm to be effective, not only active line 

flow and ramp up/down constraints must be identified but also 

several other inactive constraints may need to be included in the 

D-ED problem. If only active constraints are used to formulate 

a truncated optimization problem, the resultant optimal 

generation schedule may differ from the original optimal 

schedule. Although the objective function value does not 

change as generation exchange occurs among generators with 

the same cost coefficient, the new generation setting may 

activate several pseudo-active constraints and thus yields 

infeasibility from the original D-ED’s perspective even if there 

are a few pseudo-active constraints. Active constraints are 

sufficient to formulate a truncated problem if no generators 

have identical cost coefficients. 

Quasi-active constraints, which appear due to integer 

variables, are introduced in [20]. Although the concept of quasi-

active constraints (i.e., not active in the optimal point but if 

removed change the optimal point) is similar to what we call 

pseudo-active constraints, pseudo-active constraints appear 

mainly because of non-uniqueness of thermal unit generation 

cost functions. Thus, we have used the term pseudo-active to 

avoid confusion with the term quasi-active constraints in [20]. 

B. Illustrative Examples 

Example 1: Consider a simple economic dispatch problem 

(6) with three generators and a 2-hour horizon. The objective is 

to minimize generation costs with respect to power balance, 

generator limits, and ramp up/down constraints (branch flow 

constraints are ignored for simplicity).  

 

min
𝑝𝑢,𝑡

10𝑝1,1 + 10𝑝2,1 + 15𝑝3,1  + 10𝑝1,2 + 10𝑝2,2   + 15𝑝3,2 

                                             (6𝑎) 

s.t. 

0 ≤ 𝑝1,1, 𝑝1,2, 𝑝2,1, 𝑝2,2, 𝑝3,1, 𝑝3,2 ≤ 200              (6𝑏) 

𝑝1,1 + 𝑝2,1 + 𝑝3,1 = 100               (6𝑐) 

𝑝1,2 + 𝑝2,2 + 𝑝3,2 = 200              (6𝑑) 

𝑝1,2 − 𝑝1,1 ≤ 50              (6𝑒) 

𝑝1,1 − 𝑝1,2 ≤ 50              (6𝑓) 

𝑝2,2 − 𝑝2,1 ≤ 60              (6𝑔) 

𝑝2,1 − 𝑝2,2 ≤ 60              (6ℎ) 

𝑝3,2 − 𝑝3,1 ≤ 100               (6𝑖) 

𝑝3,1 − 𝑝3,2 ≤ 100               (6𝑗) 

 

This problem has multiple solutions as two generators have 

the same cost. An optimal solution is 𝑝1,1 = 100, 𝑝2,1 = 0, 

𝑝3,1 = 0  for hour 1 and 𝑝1,2 = 150, 𝑝2,2 = 50, 𝑝3,2 = 0  for 

hour 2 with an objective value of $3,000. The only active 

inequality constraint is (6𝑒). If we remove all inactive 

inequality constraints (6𝑓) − (6𝑗), the solver may provide 

𝑝1,1 = 0, 𝑝2,1 = 100, 𝑝3,1 = 0, 𝑝1,2 = 0, 𝑝2,2 = 200, and 

𝑝3,2 = 0  with the objective value of $3,000 as a solution of 

truncated problem (6𝑎) − (6𝑒). This solution is not feasible 

from the original problem perspective as constraint (6𝑔), called 

pseudo-active constraint, is violated. This mathematical 

example shows the necessity of pseudo-active constraints to 

recover the optimal solution if generator cost functions are not 

unique.  

 

Example 2: A system with ten interconnected areas 

representing the IEEE 118-bus system is used to illustrate 

remark 2. The original D-ED is solved with all branch and ramp 

constraints. The number of active line flow, ramp up, and ramp 

down constraints are 279, 365, and 330, respectively. A 

truncated D-ED is formed using these active constraints and 

dropping other inactive constraints. The truncated D-ED is 

solved, and the number of newly activated line and ramp 

up/down constraints is 63, 155, and 134. Three hundred fifty-

two newly activated (pseudo-active) constraints should also be 

included in D-ED. We carry out this iterative procedure. The 

iterative loop converges after 33 iterations. Figure 3 shows the 

number of accumulated constraints (active plus pseudo-active) 

over iterations. The number of newly activated constraints 

usually reduces as more iterations are carried out. Also, 

multiple pseudo-active constraints are identified at each 

iteration. The total number of active (necessary) and pseudo-

active (sufficient) line flow, ramp up, and ramp down 

constraints required to enclose the feasible set of D-ED is 518, 

1024, and 941 obtained upon the loop convergence.  
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Fig. 3. Number of accumulated active constraints over iterations. 

 

Example 3: Consider the 118-bus system with the baseload 

and base topology. Generators 4, 5, 10, 29, 36, 43, 44, and 45 

have the same production cost coefficient. The D-ED 

subproblem is formed using only active constraints, with no 

iterative loop. Table I shows power generation values. While 

the summation of power produced by these units and 

operational costs are the same for the original and truncated D-

ED models, their generation schedules are different. This 

generation difference results in the violation of some originally 

inactive constraints that are not included in the truncated D-ED 

and makes its solution infeasible. For instance, the ramp-up 

constraint of unit 5 for the transition from interval 1 to interval 

2, which is inactive in the original SCED, is activated in the 

truncated D-ED. 

 
TABLE I 

POWER GENERATION VALUES IN MW 

Gen. no. 4 5 10 29 36 40 43 44 45 

original 

D-ED 
150 300 300 256 150 50 100 100 100 

Truncated 

D-ED 
226 100 100 80 300 20 100 300 100 

C. Proposed Training Dataset Generation Algorithm  

We present the iterative algorithm shown in the following 

pseudocode to capture necessary (active constraints) and 

sufficient (pseudo-active constraints) information of 

𝒜 (𝒽ℛ𝒰(𝑥)), 𝒜 (𝒽ℛ𝒟(𝑥)), and 𝒜 (𝒽ℒ(𝑥)) for forming the 

truncated D-ED. Our experimental results on many cases show 

that when merely active constraints from the original D-ED 

solution are used to form the truncated problem, multiple 

iterations are required to find pseudo-active constraints. Our 

goal is to minimize the number of iterations using machine 

learning. We use information in the last iteration of Algorithm 

I to train constraint classifiers.  

 
Algorithm I Pseudocode to capture necessary and sufficient information  

1. For each operating condition scenario, set iteration index 𝑘 =

1 and 𝑓𝑙𝑎𝑔𝑘 = ∅ 

2. Set 𝒜𝑘(ℎℒ(𝑥)) = 𝒜𝑘(ℎℛ𝒰(𝑥)) = 𝒜𝑘(ℎℛ𝒟(𝑥)) = ∅ 

3. Solve D-ED problem (1) 

4. Identify active constraints 𝒜𝑘(𝒽ℒ(𝑥)), 𝒜𝑘(𝒽ℛ𝒰(𝑥)) and 

𝒜𝑘(𝒽ℛ𝒟(𝑥)) 

5. if 𝒜𝑘(𝒽ℒ(𝑥)) = 𝒜𝑘(𝒽ℛ𝒰(𝑥)) = 𝒜𝑘(𝒽ℛ𝒟(𝑥)) = ∅ 

6. 𝑓𝑙𝑎𝑔𝑘 ← ∅ 

7. else 

8. 𝑓𝑙𝑎𝑔𝑘 ← 1 

9. end if 

10. Drop (1d) – (1f) from (1) and form a D-ED subproblem 

11. while 𝑓𝑙𝑎𝑔𝑘 ≠ ∅ 

12. 𝒜 𝑘(𝒽ℒ(𝑥)) = ⋃ 𝒜𝑘(𝒽ℒ(𝑥))𝑘
1  

13. 𝒜 𝑘(𝒽ℛ𝒰(𝑥)) = ⋃ 𝒜k(𝒽ℛ𝒰(𝑥)) 𝑘
1   

14. 𝒜 𝑘(𝒽ℛ𝒟(𝑥)) = ⋃ 𝒜k(𝒽ℛ𝒟(𝑥)) 𝑘
1  

15. Add 𝒜 𝑘(𝒽ℒ(𝑥)), 𝒜 𝑘(𝒽ℛ𝒰(𝑥)), and 𝒜 𝑘(𝒽ℛ𝒟(𝑥)) to 

the D-ED subproblem and solve it 

16. 𝑘 = 𝑘 + 1 

17. Identify pseudo-active constraints 𝒜𝑘(𝒽ℒ(𝑥)), 

𝒜𝑘(𝒽ℛ𝒰(𝑥)) and 𝒜𝑘(𝒽ℛ𝒟(𝑥)) 

18. If 𝒜𝑘(ℎℒ(𝑥)) = 𝒜𝑘(ℎℛ𝒰(𝑥)) = 𝒜𝑘(ℎℛ𝒟(𝑥)) = ∅ 

19. 𝑓𝑙𝑎𝑔𝑘 ← ∅ 

20. else 

21. 𝑓𝑙𝑎𝑔𝑘 ← 1 

22. end if 

23. end while 

24. Store 𝒜 𝑘(𝒽ℒ(𝑥)), 𝒜 𝑘(𝒽ℛ𝒰(𝑥)), and 𝒜 𝑘(𝒽ℛ𝒟(𝑥)) 

 

Algorithm I is carried out for every operating condition 

scenario and accumulated active plus pseudo-active constraints 

obtained from iteration one to the last iteration are labeled. For 

a given network topology, demand and generation cost 

scenarios are generated using the following equations. 

 

𝒹𝑛𝑡
𝑚

= 𝜔 × [𝒹𝑏𝑎𝑠𝑒,𝑛(1 − Δ𝑑
L ) + 𝜂𝑝,𝑛 × (Δ𝑑

U − Δ𝑑
L )]         (7) 

𝛾𝑛𝑡 = [𝛾𝑏𝑎𝑠𝑒,𝑛(1 − Δ𝛾
L) + 𝜂𝑎,𝑛 × (Δ𝛾

U − Δ𝛾
L)]         (8) 

 

Parameters Δ𝑑
L  and Δ𝑑

U are the upper and lower bounds of 

demand variation for each load curve, and Δ𝑎
U and Δ𝑎

L  are upper 

and lower bounds of generation cost variation. Random 

parameter 𝜂𝑎,𝑛 follows a uniform distribution between 0 and 1. 

It adds randomness to the base case generation cost 𝛾𝑏𝑎𝑠𝑒 at bus 

𝑛. Two randomness factors are introduced for demand to 

capture various plausible operating conditions. Random 

parameter 𝜔 shifts the load curve to model its daily and 

seasonal variation. It can be varied in a range using historical 

data and load growth predictions or such that any further 

increment/decrement makes economic dispatch infeasible. 

Random parameter 𝜂𝑝,𝑛, which follows a uniform distribution 

between 0 and 1, models the uncertain geographic load 

distribution. Parameter 𝜂𝑝,𝑛 is generated for every load point, 

allowing load at different buses to fluctuate independently. 

Consider the base case load curve on the left side of Fig. 4. It 

would become similar to right side curves after adding load 

curve shifting randomness 𝜔 and nodal load distribution 

randomness 𝜂𝑝,𝑛. 

 

 

Adding randomness 

according to (6)

Time 

M
W

Base demand curve

Time

M
W

Shifted curve according to ω
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Shifted and perturbated with 

respect to ω and η  
Fig 4: Demand scenario generation. 
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A major bottleneck of existing learning-based constraint 

classification approaches is that learners are trained for a fixed 

topology. But in real-word, the network topology changes 

frequently. A new learner would be required every time the 

network topology alters. We use the admittance matrix 

information to address this problem. A topology alteration 

changes some buses’ self-impedance that can be detected by 

observing diagonal elements of the admittance matrix. We use 

(7) and (8) to generate a set of demand and generation cost 

scenarios for every topology configuration. This leads to the 

following operating condition matrix (𝒪𝒞𝑡) at time period 𝑡. 

The first and second columns of 𝒪𝒞𝑡 contain nodal demand and 

generation costs, and its third column is the admittance matrix 

diagonal elements. 

𝒪𝒞𝑡 = [

𝒹1𝑡

𝒹2𝑡

⋮
𝒹𝑛𝑡

𝛾1𝑡

𝛾2𝑡

⋮
𝛾𝑛𝑡

𝑌11,𝑡

𝑌22,𝑡

⋮
𝑌𝑛𝑛,𝑡

]                                   (9) 

 

where 𝑛 is the number of buses. An operating condition 

scenario is formed by combining 𝒪𝒞𝑡  for all scheduling periods 

𝑡 = 1, … , 𝑇. The D-ED problem (1) is solved for each operating 

condition scenario. Inequalities (1d)–(1f) are dropped from (1), 

and a D-ED subproblem is formed using active generator 

ramping limitations and line flow constraints (3)–(5). This D-

ED subproblem is solved. If new active ramp up/down or line 

flow constraints are observed, 𝑓𝑙𝑎𝑔𝑘 ← 1, and an iterative loop 

is started. At each iteration 𝑘, all active and pseudo-active 

constraints from iteration 1 to 𝑘 − 1 are added to the D-ED 

subproblem. The loop is carried out, and active and pseudo-

active constraints are accumulated. If no newly activated 

constraint is detected and 𝑓𝑙𝑎𝑔𝑘 = ∅, the accumulated 

constraints 𝒜 𝑘(𝒽ℒ(𝑥)), 𝒜 𝑘(𝒽ℛ𝒰(𝑥)), and 𝒜 𝑘(𝒽ℛ𝒟(𝑥)) are 

stored for training classification learners.  

D. Operating Condition Conversion into DCT Colorful Image 

Knowing that i) a node/line in a power system interacts 

with its neighboring nodes and transmission lines and is loosely 

coupled with distant nodes and lines [26] and ii) a pixel of an 

image is highly correlated to its neighboring pixels, we obtain 

the intuition to convert the constraint screening classification 

into a computer vision type problem. We use a 3-D tensor to 

convert a power system operating condition scenario into a 

colorful image. The matrices of this tensor corresponding to 

red, green, and blue color channels contain, respectively, 

demand, thermal units’ generation cost, and network topology 

information. We call this image a DCT image (D: demand, C: 

cost, and T: topology).  

Demand and generation cost terms are extended to every 

bus to have the same sized matrices. The demand/generation 

cost input for every time period is a vector with 𝑛 elements that 

are set to zero for buses with no generators or no load. Hence, 

demand matrix 𝒟 and cost coefficient matrix 𝛤 are 𝑛 × 𝑇, 

where 𝑇 is the considered scheduling horizon. 

𝒟 = [
𝒹11 ⋯ 𝒹1𝑇

⋮ ⋱ ⋮
𝒹𝑛1 ⋯ 𝒹𝑛𝑇

]                                           (10) 

𝛤 = [

𝛾11 ⋯ 𝛾1𝑇

⋮ ⋱ ⋮
𝛾𝑛1 ⋯ 𝛾𝑛𝑇

]                                         (11) 

We use diagonal elements of the admittance matrix at every 

time period and form the following 𝑛 × 𝑇 matrix.  

𝒴 = [

𝑌11,1 ⋯ 𝑌11,𝑇

⋮ ⋱ ⋮
𝑌𝑛𝑛,1 ⋯ 𝑌𝑛𝑛,𝑇

]                                       (12) 

Consider an operating condition for the IEEE 118-bus 

system with a scheduling horizon of 24 periods. The red channel 

of the DCT image, i.e., 𝒟, is a 118 × 24 matrix with each 

column having 91 nonzero elements and 27 zeros. The green 

channel matrix 𝛤 has 54 nonzero elements and 64 zeros in each 

column. As all diagonal elements of the Y-bus matrix are 

nonzero, all elements of blue channel 𝒴, whose size is 

118 × 24, are nonzero. A DCT image for an operating 

condition scenario is shown in Fig. 5. 

The locations of zeros added to 𝒟 and 𝛤 matrices are fixed.   

This zero padding does not affect the training time and learners’ 

performance. As explained in the next section, the output after 

convolution and pooling operations of the zero-padded pixels 

is zero. As a result, neuron weights corresponding to zero pixels 

are not updated after backpropagation.  

Any alteration in one or a combination of demand, cost, and 

topology related tensors changes the DCT image. A well-

trained convolutional neural network (CNN) can capture even 

slight pattern changes in an image. Furthermore, system 

features and active constraints do not vary drastically after, for 

instance, a topology alteration. Thus, features learned by CNN 

before and after outage of a line 𝑙 can help the learner predict 

constraints status if a line near line 𝑙 is out.  

 

  
Fig. 5. Red, green, and blue channels of DCT image corresponding to an 

operating condition scenario for the 118-bus system. 

 

E. Learning Strategy 

CNN has shown promising performance in image analysis 

and computer vision problems. It consistently performs better 
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and has become the state-of-the-art image classification, object 

detection, and segmentation technique. We have tailored the 

considered constraint classification problem as a computer 

vision problem and have selected CNN to tackle it. 

CNN Classifier: CNN extracts meaningful local features 

through repeated convolution/pooling operations. CNN 

exploits the shift invariance, local connectivity, and 

compositionality. By carefully organizing the input shape of 

CNN, it is possible to exploit the power system temporal and 

geographical dependency information. The weights of 

learnable neurons are updated by interacting with three 

dimensions (i.e., demand, cost, and admittance) of a DCT 

image. Every neuron in a layer is correlated to a small region of 

the preceding layer instead of all neurons. Batches of images of 

a particular shape are feed to CNN to extract feature vectors 

through convolution. After every convolution, the number of 

extracted features depends on the number of filters. The 

trainable layer parameters are optimized using a loss function. 

Learner Architecture: Instead of training a CNN learner 

from scratch, we have selected EfficientNet-B7, a CNN-based 

pre-trained model developed by the Google Brain Team. 

EfficientNet-B7 is one of the latest state-of-the-art 

developments in the image classification domain [27]. 

EfficientNet-B7 attains 84.3% top-1 and 97.1% top-5 accuracy 

with 66M parameters and 37B FLOPS (floating point 

operations per second), whereas the earlier best GPipe achieves 

similar performance with 557M parameters while being 8.4 

times larger than EfficientNet-B7 [27]. 

Hyperparameters play a significant role in CNN efficiency 

and accuracy. Effective scaling/hyperparameter tuning is still 

an open question [27]. EfficientNet-B7 tuning follows a 

compound scaling method. It provides a compound coefficient 

to uniformly scale network width (number of channels), depth 

(number of layers), and image resolution together instead of 

independently scaling each parameter. EffcientNet-B7 

developers have already set these parameters through extensive 

experimentation. This pre-trained model reduces the need for 

setting many hyperparameters. Also, features learned by this 

pre-trained model can help enhance the accuracy and efficiency 

of the branch and ramp constraint classification problem. This 

architecture can serve as a foundation for power system 

optimization problems that can be converted into computer 

vision problems.  

Transfer Learning: Transfer learning refers to utilizing 

features learned from a problem and leveraging them for a new 

problem to improve learning performance and accuracy. We 

propose exploiting pre-trained EfficientNet-B7 and using 

transfer learning to adapt it with the considered constraint 

classification problem. Such pre-trained models contain 

important features preserved in a feature space and transferable 

to other tasks. Three alternatives exist: 1) reusing the trained 

weights of one or more layers of a pre-trained network. 2) Fine-

tuning all layers entirely for a new dataset (a weight 

initialization scheme using pre-trained weights). 3) Keeping 

pre-trained weights fixed and adding new layers on top of the 

pre-trained network. 

Figure 6 shows the concept of transfer learning that follows 

several steps, as shown in Algorithm II. We remove the output 

layer of EfficientNet-B7 and add a customized output layer 

whose size depends on the number of branch and ramp 

constraints. We also add a hidden layer before the output layer. 

The added hidden and output layers will transform the old 

features into predictions on a new dataset. We fine-tune the 

weights of the last few pre-trained layers (i.e., layers before the 

added new layers) of EfficientNet-B7, as these final layers 

capture more data specific features. One can unfreeze some 

(e.g., three) last hidden layers before the output layer or 

unfreeze the last hidden layer and increase the number of 

unfrozen last hidden layers until a desirable accuracy is 

obtained. These layers are fine-tuned at a low learning rate with 

the new DCT images representing power system operating 

conditions.  

 

Pre-trained EfficientNetB-7 model 

DCT images

Unfreeze EfficientNetB-7 

hidden layers n (last layer), 

n-1, n-2   until a desirable 

accuracy is obtained

Knowledge transfer

(e.g., weights)

Tune hyperparameter beta 

and add a hidden layer 

before output layer

Customize new model 

by adding problem 

specific input/output 

layers

 
Fig. 6. Block diagram of the proposed transfer learning procedure.  

 

 

Algorithm II Pseudocode to transfer learning 
1. Import weights of a pre-trained EfficientNet-B7 model 

2. Remove the top output layer 

3. Freeze layers to avoid destroying learned features  

4. Add a new trainable output layer on top of frozen layers 

5. Add a new trainable hidden layer before the output layer 

6. Train only new layers on using DCT image datasets 

representing power system operating conditions (a few 

epochs)   

7. Unfreeze the last hidden layer and train the model at a very low 

learning rate (several epochs) 

8. Repeat Step 7 by unfreezing the last hidden layers one by one 

until desirable accuracy is obtained 

Loss Function: The considered constraints screening 

problem is a binary classification. A common loss function for 

binary classification problems is binary cross-entropy. 

However, this function may not be suitable for the line and 

ramp constraints classification problem as the dataset is 

unbalanced. The numbers of active and inactive constraints are 

not in the same order. Most constraints are inactive for the 

power system to comply with North American Electric 

Reliability Corporation (NERC) standards. On the other hand, 

the conventional accuracy metric is interpretable but not robust 

against uneven data and can yield misleading evaluation. 

We have used the 𝐹𝛽𝑠𝑐𝑜𝑟𝑒 loss function with a customized 

𝛽 to reduce the impact of unbalanced data. A loss function 

should be continuous and differentiable for learning 

optimization problems. 𝐹𝛽𝑠𝑐𝑜𝑟𝑒, which is a discrete value, is 

modified to make it differentiable. 

 

𝐹𝛽𝑠𝑐𝑜𝑟𝑒 = (1 + 𝛽2)
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
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=
(1 + 𝛽2) ∗ 𝑇𝑃

(1 + 𝛽2) ∗ 𝑇𝑃 + 𝐹𝑃 + 𝛽2 ∗ 𝐹𝑁)
              (13) 

 

where precision, recall, TP, TN, FP, and FN metrics are: 
• True positives (TP):  Actual and predicted status is ACTIVE 

• True negatives (TN): Actual and predicted status is 

INACTIVE. 

• False positives (FP): Actual status is INACTIVE, and 

predicted status is ACTIVE (type I error). 

• False negatives (FN): Actual status is ACTIVE and 

predicted status is INACTIVE (type II error).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
                         (14) 

𝑅𝑒𝑐𝑎𝑙𝑙  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                             (15) 

Hyperparameter Tuning: Many important hyperparameters 

are set by EffcientNet-B7 developers. We only need to set 𝛽, 

the number of neurons in the newly added hidden layer before 

the output layer, and the number of EffcientNet’s hidden layers 

that should be unfrozen. Hyperparameter 𝛽 in (13) controls the 

importance of precision and recall and is usually tuned through 

experiment. 𝛽 < 1 (e.g., 0.5) assigns more weight to precision 

and less weight to recall. 𝛽 = 1 assigns the same weight to both 

precision and recall. 𝛽 > 1 (e.g., 2) gives less weight to 

precision and more weight to recall. This approach is suitable 

when both precision and recall carry similar significance, but 

more attention is needed on false negatives. The number of 

neurons in the newly added hidden layer can be set as a 2𝑛 

number closest to the number of neurons in the output layer.  

F. Line flow, Ramp Up, and Ramp Down Classifiers  

We train three classifiers, one for each constraint type, 

instead of training a single classifier for all constraints. The first 

classifier is dedicated to line flow constraint status 

identification. The second classifier is devoted to generating unit 

ramp up limitations, and the third classifier is dedicated to ramp 

down constraints. This strategy can enhance the constraint 

classification accuracy and speed up the training process by 

parallel training.  

V. NUMERICAL SIMULATION AND RESULTS ANALYSIS 

The proposed algorithm is tested on the EEE 24-bus system, 

the IEEE 118-bus system, and the 6515-bus French system. The 

considered scheduling horizon has 24 time periods. The 

YALMIP toolbox and IBM-ILOG-CPLEX are used to model 

and solve D-ED [28, 29]. The Python-based Keras framework 

is used for machine learning. Simulations are carried out on a 

computer with Intel(R) Xeon(R) 2.10 GHz CPU and 512 GB of 

RAM. We have posted our code on GitHub [9]. 

A.   Active and Pseudo-active Constraint Statistics 

Many operating condition scenarios are generated for each 

test system. The average percentage of active and pseudo-active 

constraints required to form the D-ED feasible region is 

reported in Table II. For instance, for the 118-bus system, the 

original D-ED problem has 186 × 24 = 4463 branch 

constraints, 54 × 23 = 1242 ramp up constraints, and 1242 

ramp down constraints. On average, the number of active 

branch, ramp up, and ramp down constraints are 4, 47, and 45, 

respectively. Sets 𝒜 𝑘(𝒽ℒ(𝑥)), 𝒜 𝑘(𝒽ℛ𝒰(𝑥)), and 

𝒜 𝑘(𝒽ℛ𝒟(𝑥)) include 10, 76, and 71 active and pseudo-active 

constraints. Pseudo-active constraints form a large percentage 

of 𝒜 𝑘(𝒽ℒ(𝑥)), 𝒜 𝑘(𝒽ℛ𝒰(𝑥)), and 𝒜 𝑘(𝒽ℛ𝒟(𝑥)),  without 

which the feasible design region of the truncated D-ED is not 

the same as that of the original D-ED. Table II shows that a 

larger percentage of generating unit ramp constraints is required 

than branch constraints to formulate the truncated D-ED. A 

similar trend is observed for the 6515-bus French system, where 

19 generating units do not have a unique generation cost 

function. 

 
TABLE II 

AVERAGE PERCENTAGE OF ACTIVE AND PSEUDO-ACTIVE CONSTRAINTS 

System 
Active constraints 

Active + pseudo-active 

constraints 

Branch RU RD Branch RU RD 

Case24 0.47 3.5 2.9 0.53 3.6 3.0 

Case118 0.12 3.9 3.75 0.26 6.4 5.9 

Case 6515 0.3 18.3 9.7 0.06 20.7 10.7 

 

B.  Dataset Preparation and Learners Architecture  

Algorithm I is implemented to generate training datasets. 

Nodal demand and cost are varied within a range to generate 

scenarios for each plausible network topology. Table III shows 

the perturbation range for each system as compared to the base 

case values. D-ED is solved for each scenario. Active and 

pseudo-active constraints are labeled as 1, and the rest are 

labeled as 0. The operating condition scenarios are converted 

into the DCT image format. We assign a branch label set, a 

ramping up label set, and a ramping down label set for each DCT 

image. Three classifiers are trained whose input is DCT images. 

The target of classifiers 1, 2, and 3 are the branch label set, the 

ramping up label set, and the ramping down label set. Classifier 

parameters are given in Table IV. To form each classifier, the 

EfficientNet-B7 architecture is imported along with its weights, 

excluding the top layer. This truncated architecture becomes the 

base model. A new model is created using transfer learning by 

adding a customized hidden layer and output layer to the base 

model to comply with the new learning tasks (e.g., learning 

branch classification).  

Historical data should be collected to utilize the proposed 

algorithm for large real-world systems. Redundant unique 

samples should be dropped. If the dataset is large, various 

scenario clustering and reduction techniques (e.g., K-means) 

can be implemented. Similar scenarios can be grouped in the 

same cluster, and one or multiple representatives from each 

class can be selected. Although the training might take time for 

large systems, it is an offline procedure carried out once. 
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TABLE III 

VARIATION RANGE  

System 
Load 

Cost 

coefficient 
No. of scenario 

ω Δ𝑑
L  to Δ𝑑

U Δ𝑏
U , Δ𝑏

L  Train Test 

Case24 70% -130% 97%-103% ± 15% 4000 1000 

Case118 90%-119% 97%-103% ± 15% 4000 1000 

Case6515 80%-119% 97%-103% ± 15% 3010 700 

 
TABLE IV 

HYPERPARAMETERS OF MODIFIED EFFICIENTNET-B7 ARCHITECTURE: ADDED 

LAYERS AFTER FLATTENING 

 Final FC layers and Training parameters 

Classifiers 

(Branch, 

RU, RD) 

Added hidden layer=1,  

Batch size=500, 

Validation split=10%, 

Early stopping with 

Patience 10 (min. no. of 

epochs) 

Activation =ReLU & 

Sigmoid 

Loss & metric= F2 

Optimizer= Adam 

C.  Prediction Analysis 

The size of test datasets is given in Table III. The constraint 

statuses predicted by classifiers are compared with ground truth 

data obtained by solving D-ED. As the power system is safety-

critical, we analyze false negatives and false positives 

performance statistics. The classification accuracy depends on 

hyperparameter values, such as 𝛽 and the number of training 

epochs. The percentage of FPs and FNs can be controlled by 

tuning hyperparameters. Since having constraints that are active 

but classified as inactive is undesirable, we set 𝛽 = 2, meaning 

that recall is twice as important as precision. This reduces the 

number of FNs. Table V shows the average FP and FN 

percentages. In general, more ramping constraints are 

misclassified in the FP category than line constraints. This might 

be because intertemporal connectivity makes classifying ramp 

constraints more complex than line flow constraints. Some 

unnecessary constraints are added to the truncated D-ED due to 

FPs. This increases the size of the truncated D-ED. Having 

fewer FNs is more crucial as they include the necessary 

information to form a feasible design space. A few FNs are 

observed that will be added to the optimization constraints using 

the iterative loop. The prediction error is inevitable, and thus 

removing this loop would make the truncated economic dispatch 

solution infeasible for test scenarios with nonzero FNs. 
 

TABLE V 

AVERAGE FPS AND FNS PER SCENARIO 

System 
False negative (FN) False positive (FP) 

branch RU RD branch RU RD 

Case24 (Eff) 0.31 7.0 2.9 17.5 4.4 40 

Case24 (NN) 1.1 6.1 6.3 1.4 10.3 9.0 

Case24 (CNN) 0.2 6.4 6.6 22.7 20.0 3.2 

Case118 (Eff) 1.3 2.3 5.6 151 370 278 

Case118 (NN) 0 0 0 12.4 78.3 72.3 

Case118 (CNN) 1.7 60 54 278 841 405 

Case6515 (Eff) 2.8 8.4 4.5 133 4156 4399 

Case6515 (NN) 0.2 0.03 0.03 256 7636 7524 

 

One can select a smaller 𝛽 to reduce FPs. But it would 

increase FNs, and thus the number of iterations and overall 

solution time. In the worst-case scenario, the number of 

iterations would be equal to the number of branch and ramp 

constraints minus FNs. However, it would not happen as not all 

branch and ramp constraints are active. Also, our observations 

(see Table VI) show that several pseudo-active constraints are 

added to optimization after carrying out each iteration. 

We have also trained a CNN and a neural network (NN). 

Generally speaking, these two learners have more FP 

misclassifications. Although we have used the pre-trained 

EffcientNet-B7, one can use NN and CNN. One of the 

advantages of EffcientNet-B7 is its pre-trained known 

structure. A user does not need to make significant changes in 

the learner structure, such as the number of hidden layers and 

neurons. Unlike CNN and NN, for which the best learner 

structure should be found based on many trials, a user needs 

only to change the size of output and input layers of the pre-

trained EffcientNet-B7 based on the considered power system 

size. 

D.  Truncated D-ED Runtime Analysis and Solution Quality 

We use an integrality gap index to show how close are the 

solutions of the truncated and original D-EDs [8]. 𝑓𝑇−𝐷𝐸𝐷 and 

𝑓𝐷−𝐸𝐷  are, respectively, objective values obtained from the 

proposed algorithm and the original D-ED problem. 

Integrality Gap% =
|𝑓𝑇−𝐷𝐸𝐷 − 𝑓𝐷−𝐸𝐷|

𝑓𝐷−𝐸𝐷
× 100         (16) 

The average integrality gap for all test scenarios is negligible 

(less than 10−7) for all three test systems, showing that the 

proposed truncated D-ED algorithm provides the same solution 

as the original D-ED. 

The computation time saving obtained by the proposed D-

ED algorithm is reported in Table VI. The average number of 

iterations and time over test scenarios are reported. For the 118-

bus system, for instance, the iterative loop converges after 2.07 

iterations on average. This is due to the FN misclassifications. 

Without the iterative loop, the truncated D-ED solution may 

become infeasible as a few necessary active or pseudo-active 

constraints are missed in the truncated constraint set. The time 

saving becomes promising as the system size increases. While 

no time saving is observed for the 24-bus system, the 

optimization solution time is reduced by 99% for the 6515-bus 

system.  

 

TABLE VI 

PERFORMANCE ANALYSIS:  AVERAGE ITERATION NUMBERS AND TIME-

SAVING  

Systems 
Original D-

ED time  

Truncated D-ED Time 

saving 
No. iter Total time  

Case24 11 ms 1.82 14 ms No save 

Case118 220 ms 2.07 140 ms 32% 

Case6515 238 sec 1.69 < 1 sec 99% 

E.  Comparison with ICG 

We compare the proposed approach with ICG using the 

6515-bus system. ICG is a popular method in which constraints 

are relaxed, a master problem is formulated and solved, and 

violated constraints are added to the master problem iteratively. 

Simulations are run for all test operating condition scenarios, 

and average values are reported in Table VII.  
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TABLE VII 

COMPARISON WITH ICG 

Test system 
Average solver time 

(sec.) 

Average number 

of iterations 

Original D-ED (benchmark) 238 - 

ICG 64 50.4 

Proposed approach < 1 1.69 

 

The original D-ED problem with all constraints is solved to 

obtain benchmark results. It takes 238 seconds. The proposed 

approach takes much fewer iterations and less time than ICG to 

find the optimal D-ED solution. The proposed approach is 98% 

faster than ICG. 

F.  Memory Usage Analysis and Runtime Comparison for 

Combined Branch and Ramp Constraints Screening  

The average memory requirement in megabytes (MB) for 

building the constraint set and solving time are reported in 

Table VIII for only branch constraints screening and branch and 

ramp constraints screening. The least memory usage is 

observed after screening both branch and ramp constraints and 

dropping inactive constraints from the model. For instance, for 

the 6515-bus system, the original D-ED problem occupies 5489 

MB of memory. It reduces almost 37 times by dropping inactive 

branch constraints and 211 times if both inactive branch and 

ramp constraints are dropped. While screening only branch 

constraints leads to better time saving for smaller systems, 

screening both branch and ramp constraints saves more time for 

larger systems. For the 6515-bus system, branch and ramp 

constraints screening achieve 30% more time-saving. Since 

screening only branch constraints would lead to a good time 

saving even for large systems, one may ignore ramp constraints 

screening. However, we suggest branch and ramp constraints 

screening for larger systems to reduce memory usage 

significantly. For instance, for the 6515-bus system, screening 

both branch and ramp constraints results in a better time saving 

and a significant RAM requirement reduction. It thus makes 

solving large systems possible even without the need for 

supercomputers with large memory. 

 
TABLE VIII  

AVERAGE MEMORY REQUIREMENT (MB) TO BUILD CONSTRAINTS AND 

SOLVER TIME FOR TWO CONSTRAINT SCREENING SCHEMES 

System 

Original 

problem 

Screening branch 

constraints 

Screening branch 

& ramp 

constraints 

RAM RAM Time RAM Time 

Case24 7 2.5 10 ms 0.35 14 ms 

Case118 44 12.4 20 ms 1.2 140 ms 

Case6515 5489 145 1 sec 26 0.7 sec 

G.  Demand vs. DCT as Learner Input  

Under a given demand value, thermal units' generation cost 

coefficients and grid topology may differ, resulting in different 

active/inactive constraint sets. If demand is used as the only 

input feature, the learner may face difficulty predicting the 

status of constraints. More misclassifications may increase the 

problem size and number of loop iterations and thus the solver 

time. Table IX shows the number of loop iterations and solver 

time. We suggest using DCT as the learner input to reduce the 

solver time and required memory usage. However, one can use 

only demand since the embedded iterative loop can eventually 

capture all required constraints to form a truncated D-ED.  
 

TABLE IX 

TIME GAIN ANALYSIS USING DEMAND AND DCT AS LEARNER INPUT  

Systems 

Truncated D-ED 

 (only demand) 

Truncated D-ED  

(DCT image) 

No. iter Total time  No. iter Total time  

Case24 1.8 14 ms 1.82 14 ms 

Case118 3.8 192 ms 2.07 140 ms 

Case6515 1.71 < 1 sec 1.69 < 1 sec 

E. Hamming Distance Analysis 

Hamming distance measures the difference between two 

binary strings. It is an indicator of output feature sensitivity to 

input features and the robustness of the proposed algorithm. We 

have perturbed the demand, identified active constraints for two 

consecutive demand scenarios, and calculated Hamming 

distance between the active constraint status indicators, which 

are 0/1strings. Table X shows the average Hamming distance 

for branch and ramp constraints. The sensitivity of output 

features to input features is not high. Hamming distances 

corresponding to branch constraints are lower than those of 

ramp constraints. As shown in Table V, this could justify 

observing more ramp constraints misclassifications than branch 

constraints. 

 
TABLE X 

HAMMING DISTANCE ANALYSIS 

System Branch Ramp up Ramp down 

Case24 0.34% 5.19% 4.8% 

Case118 0.21% 6.21% 5.64% 

Case6515 0.013% 2.02% 1.69% 

VI. CONCLUSION 

A small subset of inequality constraints contains enough 

information to form the dynamic economic dispatch feasible 

region. This paper presents a learning-aided iterative algorithm 

to identify active and pseudo-active branch flow and thermal 

unit ramp up/down constraints required to form the D-ED 

feasible space for each operating condition scenario. Three 

classifiers are trained, one for each type of constraints, taking 

into consideration network topology. Using these classifiers’ 

predictions, a truncated D-ED is formed that is smaller and less 

computationally expensive than the original D-ED problem.  

The number of iterations of the learning-aided approach is 

much less than the classical ICG. Also, filtering active and 

pseudo-active constraints reduces iterations much more than 

filtering only active constraints. The benefit of constraint 

filtering is more significant for larger systems. The average 

runtime saving for the 6515-bus system is 99%. We have 

observed that filtering both branch and ramp constraints would 

lead to better time saving and memory usage than filtering only 

branch constraints. However, the learning-aided approach can 

filter out only branch constraints. This would result in a good 

enough time and memory usage saving for large systems. 
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