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Abstract— Multi-interval or dynamic economic dispatch (D-ED) is
the core of various power system management functions. This
optimization problem contains many constraints, a small subset of
which is sufficient to enclose the D-ED feasible region. This paper
presents a topology-aware learning-aided iterative constraint
screening algorithm to identify a feasibility outlining subset of
network and generating units ramp up/down constraints and
create a truncated D-ED problem. We create a colorful image
from nodal demand, thermal unit generation cost, and network
topology information. Convolutional neural networks are trained
for constraint status identification using colorful images
corresponding to system operating conditions and transfer
learning. Filtering inactive line flow and ramp up/down
constraints reduces the optimization problem’s size and
computational burden, resulting in a reduction in solution time
and memory usage. Dropping all inactive branch and ramp
constraints may activate some of these originally inactive
constraints upon solving the truncated D-ED. A loop is added to
form a constraints coefficient matrix iteratively during training
dataset preparation and algorithm utilization. This iterative loop
guarantees truncated D-ED results feasibility and optimality.
Numerical results show the proposed algorithm’s effectiveness in
constraint status prediction and reducing D-ED size and solution
time.

Keywords—Dynamic economic dispatch, branch and ramp
constraints, topology change, machine learning, constraint
classification.

I. INTRODUCTION

ULTI-TIME interval economic dispatch, also known as

dynamic economic dispatch (D-ED), is solved daily and

hourly for many energy management functions in power
systems. D-ED has many constraints, including transmission
network constraints and generating unit ramp limitations [1].
The curse of dimensionality and computational cost increase
with the system size and scheduling time intervals. Despite
improvements in solvers’ performance, processing technology,
and computing memory, D-ED’s solution time and resource
prerequisites continue to be crucial factors.

A. Background

Various approaches have been developed to reduce D-ED
computational resource and time requirements and other energy
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management functions, such as optimal power flow and unit
commitment [2]. For instance, decomposition approaches are
proposed to decompose economic dispatch into small, low
computational subproblems and coordinate them using iterative
approaches [3]. Another promising strategy is to identify and
remove inactive and redundant constraints. Experimental and
mathematical analyses show that most D-ED constraints are
inactive or redundant, and only a small subset of constraints is
needed to create the feasible region. Omitting inactive and
redundant constraints relieves D-ED computational burden
significantly.

Several studies are conducted for active and inactive
constraints identification (inequality constraints that are
satisfied with equality are called active or binding constraints).
These studies focus only on thermal capacity limits of
transmission lines, i.e., branch constraints. Reference [4] shows
that more than 85% of branch constraints are inactive in unit
commitment. The concept of umbrella constraints is presented
in [5] to determine redundant constraints and provide the
necessary and sufficient conditions to enclose the optimal
power flow feasible space. Reference [6] presents an
optimization-based bound tightening approach that solves
multiple linear subproblems in parallel to identify redundant
constraints. This study shows that roughly 99% of constraints
are redundant for real-world systems. Reference [7] presents an
iterative algorithm for unit commitment. All branch constraints
are omitted at the first iteration and violated constraints are
added in the optimization iteratively. It is reported that it is
unnecessary to add all violated branch constraints to the
original relaxed problem.

B.  Motivation

Current mathematical model-based approaches either solve
a series of optimization subproblems to find inactive constraints
or perform a form of iterative constraint generation (ICG)
where in each iteration, active line flow constraints identified
in previous iterations are added to models [8]. These two
approaches lead to computational time-saving. However, as the
system size grows, this time-saving may fade away as i) solving
subproblems to find inactive constraints might take more time,
and ii) the number of ICG iterations increases. Moreover, the
existing constraint screening methods only consider branch
constraints. Intertemporal constraints, such as generators ramp
up and down rates limiting power produced by thermal units in
successive time intervals, increase D-ED memory usage and
computational cost and constitute a considerable portion of



inactive constraints. A simple solution may be relaxing ramp
and branch constraints and applying the ICG technique.
However, our observation shows that iteratively adding ramp
constraints increases the number of ICG iterations
considerably.

C. Contribution

This paper presents a topology-aware learning-aided
iterative algorithm to predict the necessary and sufficient
branch and ramp up/down constraints information needed for
forming the D-ED problem’s feasible design space under
topology alteration. The goal is to formulate a truncated D-ED
with less computational cost than the original optimization
problem in terms of solution time and memory usage. Demand,
thermal unit generation cost, and network topology information
are three inputs to the proposed algorithm. The system
admittance matrix is used as an input feature to account for
topology alterations. Using these three features, each operating
condition scenario is transformed into a colorful image whose
red, green, and blues channels include, respectively, demand,
thermal unit generation cost, and admittance matrix
information. Pre-trained convolutional neural networks are
adopted, and transfer learning is used to adjust them for power
system constraints classification. The input to these
classification learners is colorful images corresponding to
system operating conditions, and the learners predict active and
pseudo-active branch and ramp constraints. Pseudo-active
constraints are inequalities that are not active at the optimal
point but are required to ensure the truncated D-ED results
optimality and feasibility. An iterative loop is added to the
proposed algorithm to find pseudo-active constraints for the
learners’ training phase and ensure the feasibility of truncated
D-ED results if misclassifications are observed in predicting
active and pseudo-active branch and ramp constraints.
Numerical results show the proposed algorithm’s effectiveness
in reducing the size and solution time of D-ED. We have posted
our code on GitHub [9].

The main contributions of this paper are summarized as
follows:

e A combined learning and model-based algorithm is
developed to identify the status of branch and thermal unit
ramp up/down constraints and formulate a reduced-size
dynamic economic dispatch problem with respect to
network topology, demand, and thermal unit generation
cost information.

e Power system operating conditions are transformed into
colorful images enabling users to take advantage of well-
advanced computer vision learning techniques, such as
EfficientNet-B7, with the help of transfer learning.

e Aniterative loop is embedded to capture active (necessary
information) and pseudo-active (sufficient information)
constraints for training classifiers and ensuring the
feasibility of truncated economic dispatch results.

D. Paper organization

The remainder of the paper is organized as follows.
Relevant papers are reviewed in Section II. The problem
formulation is given in Section III. The proposed algorithm is
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presented in Section I'V. Results are discussed in Section V, and
concluding remarks are provided in Section VI.

II.  REVIEW OF MACHINE LEARNING APPLICATIONS TO
POWER SYSTEM OPTIMIZATION

Machine learning is a promising tool to provide a cost-
effective solution to power system optimization problems and
reduce solvers’ computational burden. We review learning-
based approaches to reduce the computational burden of power
system optimization problems, e.g., optimal power flow (OPF),
economic dispatch, and unit commitment. The existing
approaches can be categorized into i) warm start prediction, ii)
generator setpoint prediction (or black-boxing), and iii) hybrid
learning-model-based approaches.

The benefit of a learning-based warm start to solve AC OPF
is discussed in [10]. A learner’s prediction is a warm start for
the optimization solver. However, this approach does not
reduce the OPF size as the complete set of constraints is still
used, which may not yield considerable speed improvement.

Feasibility enforced deep learning is presented in [11-13] to
predict generator voltage and power setpoints from demand.
Lagrangian duals are combined with deep learning to enforce
constraint satisfaction. In [14], deep neural networks are used
to predict active power and bus voltages. A penalty function is
used to ensure the feasibility of operational constraints.
References [15-17] use black-box strategies to predict
generation setpoints directly. However, learning a continuous-
valued multi-dimensional variable (e.g., generation setpoints)
is a demanding machine learning task. Moreover, a slight
mismatch between predicted and actual generation setpoints
may yield suboptimality or power balance equations
infeasibility. This makes system operators reluctant to deploy
black-boxing learning-based approaches. Recent studies
combine learning and power system models to develop hybrid
learning and physics-based approaches [18]. One of these
approaches uses machine learning to predict inactive/redundant
optimization constraints instead of directly predicting the
optimal output. Reference [19] presents experimentation on
predicting transmission constraints, warm start, and affine
subspace to improve mixed-integer solvers’ computational
performance for unit commitment. A data-driven method is
developed in [20] to identify inactive and redundant constraints
for single period unit commitment. A statistical learning-based
ensemble control policy is presented in [21] to track real-time
DC OPF. In [22], a simple neural network classifier is trained
to predict DC OPF active line flow constraints. In [23], an
umbrella constraint prediction algorithm is developed instead
of predicting binding constraints. A constraint is an umbrella
constraint if its removal changes feasible solutions of the
original optimization problem. A learning-based approach is
presented in [24] to classify zero probability events, which are
inactive constraints, and reduce joint chance constraints’
computational burden for solving OPF. In [25], a two-step
prescreening approach is presented to identify and remove non-
dominating constraints.

These hybrid constraint classification approaches do not
consider thermal unit generation cost and power network



topology alterations. Also, only spatial line flow constraints are
considered, not intertemporal generating unit ramp constraints
whose contribution to computational burden cannot be ignored.
We aim to address these knowledge gaps in this paper.

III. DyNAMIC ECONOMIC DISPATCH

The considered problem is a multi-interval economic
dispatch with generating unit ramp up and down constraints.
The objective function is to minimize generation costs subject
to power balance (1b), generation limits (1c), generating units
ramp up and down limitations (1d) and (1e) denoted by £y, (x)
and Aipp(x), and transmission line flow limits (1f) denoted by
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where t, u, n, and [ are indices for time, units, buses, and lines,
respectively. Variable p,,; is power produced by unit u at time
t. Parameter y,,; denotes generation cost. Parameters RU,, and
RD,, are ramp up and down limits of generating unit u. SF is
the generation shift factor matrix. Parameter d,,; is demand at
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1V. PROPOSED LEARNING AIDED ITERATIVE APPROACH

The proposed learning-aided truncated economic dispatch
approach is presented in this section.

A.  Truncated D-ED

Branch flow and generating unit ramp up and down
constraints constitute a large portion of the D-ED constraint set.
Branch flows make constraints geographically dependent, and
ramp up/down limitations introduce intertemporal dependency.
These constraints, particularly branch constraints, contribute
significantly to computational burden and memory usage, yet
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most have no impact on the optimization feasible design space.
The status of these constraints depends on system operating
conditions shown in Fig. 1, including power demand, thermal
unit generation cost, and network topology that are known
before solving D-ED. The demand varies more significantly
than the other two features. However, depending on thermal
unit generation costs and network topology, active constraints
may differ for a given demand value. Also, while demand and
electricity market prices are correlated, demand might not be
correlated to generation costs. Thus, these three features are
selected to identify the status constraints.

Figures 2a and 2b show, respectively, an overview of the
proposed constraint classification training algorithm and its
utilization. The objective of the proposed algorithm is to
reformulate (1) by the following truncated D-ED.

mzr}n Z 2 YutPut (2a)
S.t.
(1b) & (1¢) (2b)
A(figu(x)) <0 (2¢)
A(fzp(x)) <0 (2d)
A (x) <0 (2e)

where A(Azry (%)), A(figp(x)), and A(#,(x)) denote sets of
ramp up, ramp down, and line flow constraints required to
ensure that the truncated optimization problem (2) is equivalent
to (1). The proposed learning-aided algorithm is designed based
on the following two remarks.

Remark 1: For a given network topology, demand, and
generation cost scenario, if constraints (1d) — (1f) are satisfied
with equality, they must be included in the optimization
problem.

Put — Put-1 = RU, Vu,t € ng (3)
Put-1 = Put = RD, vu,t € O%p ©))
|SF,(p” = D,)| = P™* Vi teq} (5)

where Qb denote the set of generators with active ramp up
limits at time t, Q%y, indicates the set of generators with active
ramp down at time t, and Q. is the set of active line constraints
at time t.

Remark 2: If generation cost coefficients of several thermal
units are the same, multiple non-unique optimal solutions with
different generation schedules but the same objective value
might exist. Thus, dropping all inactive line flow, ramp up, and
ramp down constraints and keeping only active constraints
obtained at an optimal solution and resolving the truncated
problem may trigger several originally inactive constraints to
be activated. Removing these particular non-binding
constraints, named pseudo-active constraints in this paper, may
move the optimal solution to a point with the same objective
value as the original problem but with a different generation
schedule that is infeasible from the original problem’s
perspective. Thus, (3)—(5) are necessary but not sufficient to
form A(Azy (x)), A(Azp (x)), and A(f,(x)).
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Fig. 2. Block diagram of proposed classifier a) training phase and b) utilization
with an embedded loop.

Remark 2 is a critical observation. It indicates that for a
constraint filtering algorithm to be effective, not only active line
flow and ramp up/down constraints must be identified but also
several other inactive constraints may need to be included in the
D-ED problem. If only active constraints are used to formulate
a truncated optimization problem, the resultant optimal
generation schedule may differ from the original optimal
schedule. Although the objective function value does not
change as generation exchange occurs among generators with
the same cost coefficient, the new generation setting may
activate several pseudo-active constraints and thus yields
infeasibility from the original D-ED’s perspective even if there
are a few pseudo-active constraints. Active constraints are
sufficient to formulate a truncated problem if no generators
have identical cost coefficients.

Quasi-active constraints, which appear due to integer
variables, are introduced in [20]. Although the concept of quasi-
active constraints (i.e., not active in the optimal point but if
removed change the optimal point) is similar to what we call
pseudo-active constraints, pseudo-active constraints appear
mainly because of non-uniqueness of thermal unit generation
cost functions. Thus, we have used the term pseudo-active to
avoid confusion with the term quasi-active constraints in [20].

B. Illustrative Examples

Example I: Consider a simple economic dispatch problem
(6) with three generators and a 2-hour horizon. The objective is
to minimize generation costs with respect to power balance,
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generator limits, and ramp up/down constraints (branch flow
constraints are ignored for simplicity).

min 10p, ; + 10p,; + 15p3; + 10p;, + 10p,, + 15p;,

Put

(6a)
s.t.
0 < P11, P12, P21, P2,2, P31, P32 < 200 (6b)
P11+ D21 + 31 =100 (6¢)
P12 t P22 + 032 = 200 (6d)
P12 — P11 <50 (6e)
P11~ P12 <50 6f)
D22 — P21 < 60 (69)
P21 — P22 <60 (6h)
P32 — P31 < 100 (60)
P31 — P32 < 100 (6))

This problem has multiple solutions as two generators have
the same cost. An optimal solution is p;; = 100, p,; =0,
ps1 =0 for hour 1 and p,, = 150, p,, =50, p3, =0 for
hour 2 with an objective value of $3,000. The only active
inequality constraint is (6e). If we remove all inactive
inequality constraints (6f) — (65), the solver may provide
P11 =0, p;y =100, p35; =0, p1, =0, p, =200, and
P32 = 0 with the objective value of $3,000 as a solution of
truncated problem (6a) — (6¢e). This solution is not feasible
from the original problem perspective as constraint (6g), called
pseudo-active constraint, is violated. This mathematical
example shows the necessity of pseudo-active constraints to
recover the optimal solution if generator cost functions are not
unique.

Example 2: A system with ten interconnected areas
representing the IEEE 118-bus system is used to illustrate
remark 2. The original D-ED is solved with all branch and ramp
constraints. The number of active line flow, ramp up, and ramp
down constraints are 279, 365, and 330, respectively. A
truncated D-ED is formed using these active constraints and
dropping other inactive constraints. The truncated D-ED is
solved, and the number of newly activated line and ramp
up/down constraints is 63, 155, and 134. Three hundred fifty-
two newly activated (pseudo-active) constraints should also be
included in D-ED. We carry out this iterative procedure. The
iterative loop converges after 33 iterations. Figure 3 shows the
number of accumulated constraints (active plus pseudo-active)
over iterations. The number of newly activated constraints
usually reduces as more iterations are carried out. Also,
multiple pseudo-active constraints are identified at each
iteration. The total number of active (necessary) and pseudo-
active (sufficient) line flow, ramp up, and ramp down
constraints required to enclose the feasible set of D-ED is 518,
1024, and 941 obtained upon the loop convergence.
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Fig. 3. Number of accumulated active constraints over iterations.

Example 3: Consider the 118-bus system with the baseload
and base topology. Generators 4, 5, 10, 29, 36, 43, 44, and 45
have the same production cost coefficient. The D-ED
subproblem is formed using only active constraints, with no
iterative loop. Table I shows power generation values. While
the summation of power produced by these units and
operational costs are the same for the original and truncated D-
ED models, their generation schedules are different. This
generation difference results in the violation of some originally
inactive constraints that are not included in the truncated D-ED
and makes its solution infeasible. For instance, the ramp-up
constraint of unit 5 for the transition from interval 1 to interval
2, which is inactive in the original SCED, is activated in the
truncated D-ED.

TABLE [
POWER GENERATION VALUES IN MW
Gen. no. 4 5 10 29 36 40 43 44 45
original

D-ED 150 300 300 256 150 50 100 100 100
Truncated
D-ED 226 100 100 80 300 20 100 300 100

C. Proposed Training Dataset Generation Algorithm

We present the iterative algorithm shown in the following
pseudocode to capture necessary (active constraints) and
sufficient  (pseudo-active constraints) information of
APy (%)), A(fzp(x)), and A(A (x)) for forming the
truncated D-ED. Our experimental results on many cases show
that when merely active constraints from the original D-ED
solution are used to form the truncated problem, multiple
iterations are required to find pseudo-active constraints. Our
goal is to minimize the number of iterations using machine
learning. We use information in the last iteration of Algorithm
I to train constraint classifiers.

Algorithm I Pseudocode to capture necessary and sufficient information
1. For each operating condition scenario, set iteration index k =
1and flagk =@

2. Set A*(hp(x)) = A*(hgy(x)) = A*(hgp(x)) = @
3. Solve D-ED problem (1)

4. Identify active constraints A*(f.(x)), A*(fgy(x)) and
A* (Agp (%))

5. A (A (1) = A*(Agy (1) = A (Agp(x)) = @

flagh < @

o

7. else
8.

9. endif
10.  Drop (1d) — (1f) from (1) and form a D-ED subproblem
11. while flag* = @

flagh <1

12, A4 (A () = Uk A (A, ()

13. A (A () = Uk A (A (1))

14. c/zk(haw(x)) = U’fcﬂk(hﬁn(x))

15. Add A* (A (%)), A* (g (%)), and A (fizp(x)) to
the D-ED subproblem and solve it

16. k=k+1

17. Identify pseudo-active constraints A* (/LL (x)),
qu(ﬁml(x)) and A* (Agp (x))

18. If A*(hy (x)) = A*(hgy(x)) = A*(hgpp(x)) = @

19. flagh < ¢

20. else

21. flagh <1

22. end if

23. end while
24, Store AX (A (%)), A*(Agy (X)), and A* (Azp(x))

Algorithm I is carried out for every operating condition
scenario and accumulated active plus pseudo-active constraints
obtained from iteration one to the last iteration are labeled. For
a given network topology, demand and generation cost
scenarios are generated using the following equations.

dpe = 0 X [dpgsen(1 = D) + My X (A5 —AD] (D)

Yt = [Vbase,n(1 - A%) + Nan X (Ag - A%)] ®

Parameters AL and AY are the upper and lower bounds of
demand variation for each load curve, and A and AL are upper
and lower bounds of generation cost variation. Random
parameter 7], ,, follows a uniform distribution between 0 and 1.
It adds randomness to the base case generation cost ¥p4se at bus
n. Two randomness factors are introduced for demand to
capture various plausible operating conditions. Random
parameter w shifts the load curve to model its daily and
seasonal variation. It can be varied in a range using historical
data and load growth predictions or such that any further
increment/decrement makes economic dispatch infeasible.
Random parameter 7y, ,, which follows a uniform distribution
between 0 and 1, models the uncertain geographic load
distribution. Parameter 7, is generated for every load point,
allowing load at different buses to fluctuate independently.
Consider the base case load curve on the left side of Fig. 4. It
would become similar to right side curves after adding load
curve shifting randomness w and nodal load distribution

randomness 7y, .
z Adding randomness
i E ’\_/\ '—\\/\L
Time Time

Time
Shifted and perturbated with
respect to  and n

Base demand curve Shifted curve according to ®

Fig 4: Demand scenario generation.



A major bottleneck of existing learning-based constraint
classification approaches is that learners are trained for a fixed
topology. But in real-word, the network topology changes
frequently. A new learner would be required every time the
network topology alters. We use the admittance matrix
information to address this problem. A topology alteration
changes some buses’ self-impedance that can be detected by
observing diagonal elements of the admittance matrix. We use
(7) and (8) to generate a set of demand and generation cost
scenarios for every topology configuration. This leads to the
following operating condition matrix (OC;) at time period t.
The first and second columns of OC; contain nodal demand and
generation costs, and its third column is the admittance matrix
diagonal elements.

die Ve Vit

dy Ve Yoot

0c¢, = €)

dnt Ynt Ynn,t

where n is the number of buses. An operating condition
scenario is formed by combining OC, for all scheduling periods
t=1,..,T. The D-ED problem (1) is solved for each operating
condition scenario. Inequalities (1d)—(1f) are dropped from (1),
and a D-ED subproblem is formed using active generator
ramping limitations and line flow constraints (3)—(5). This D-
ED subproblem is solved. If new active ramp up/down or line
flow constraints are observed, flag® « 1, and an iterative loop
is started. At each iteration k, all active and pseudo-active
constraints from iteration 1 to k — 1 are added to the D-ED
subproblem. The loop is carried out, and active and pseudo-
active constraints are accumulated. If no newly activated
constraint is detected and flag® = @, the accumulated
constraints AX (A(x)), A*(Azy(x)), and A*(Agp(x)) are
stored for training classification learners.

D. Operating Condition Conversion into DCT Colorful Image

Knowing that i) a node/line in a power system interacts
with its neighboring nodes and transmission lines and is loosely
coupled with distant nodes and lines [26] and ii) a pixel of an
image is highly correlated to its neighboring pixels, we obtain
the intuition to convert the constraint screening classification
into a computer vision type problem. We use a 3-D tensor to
convert a power system operating condition scenario into a
colorful image. The matrices of this tensor corresponding to
red, green, and blue color channels contain, respectively,
demand, thermal units’ generation cost, and network topology
information. We call this image a DCT image (D: demand, C:
cost, and T: topology).

Demand and generation cost terms are extended to every
bus to have the same sized matrices. The demand/generation
cost input for every time period is a vector with n elements that
are set to zero for buses with no generators or no load. Hence,
demand matrix D and cost coefficient matrix I' are n X T,
where T is the considered scheduling horizon.

diq lel

D=]: : (10)
dnl dnT
Y11 Yir

r=|: : ] (11)
Yn1 Ynr

We use diagonal elements of the admittance matrix at every
time period and form the following n X T matrix.

Y11,1 Y11,T

Y= (12)

Ynn, 1 Ynn,T

Consider an operating condition for the IEEE 118-bus
system with a scheduling horizon of 24 periods. The red channel
of the DCT image, i.e., D, is a 118 X 24 matrix with each
column having 91 nonzero elements and 27 zeros. The green
channel matrix I" has 54 nonzero elements and 64 zeros in each
column. As all diagonal elements of the Y-bus matrix are
nonzero, all elements of blue channel Y, whose size is
118 x 24, are nonzero. A DCT image for an operating
condition scenario is shown in Fig. 5.

The locations of zeros added to D and I" matrices are fixed.
This zero padding does not affect the training time and learners’
performance. As explained in the next section, the output after
convolution and pooling operations of the zero-padded pixels
is zero. As a result, neuron weights corresponding to zero pixels
are not updated after backpropagation.

Any alteration in one or a combination of demand, cost, and
topology related tensors changes the DCT image. A well-
trained convolutional neural network (CNN) can capture even
slight pattern changes in an image. Furthermore, system
features and active constraints do not vary drastically after, for
instance, a topology alteration. Thus, features learned by CNN
before and after outage of a line [ can help the learner predict
constraints status if a line near line [ is out.

Cost Channel

Demand Channel Admittance Channel RGB image

Nodes

Horizon Horizon Horizon Horizon

Fig. 5. Red, green, and blue channels of DCT image corresponding to an
operating condition scenario for the 118-bus system.

E. Learning Strategy

CNN has shown promising performance in image analysis
and computer vision problems. It consistently performs better



and has become the state-of-the-art image classification, object
detection, and segmentation technique. We have tailored the
considered constraint classification problem as a computer
vision problem and have selected CNN to tackle it.

CNN Classifier: CNN extracts meaningful local features
through repeated convolution/pooling operations. CNN
exploits the shift invariance, local connectivity, and
compositionality. By carefully organizing the input shape of
CNN, it is possible to exploit the power system temporal and
geographical dependency information. The weights of
learnable neurons are updated by interacting with three
dimensions (i.e., demand, cost, and admittance) of a DCT
image. Every neuron in a layer is correlated to a small region of
the preceding layer instead of all neurons. Batches of images of
a particular shape are feed to CNN to extract feature vectors
through convolution. After every convolution, the number of
extracted features depends on the number of filters. The
trainable layer parameters are optimized using a loss function.

Learner Architecture: Instead of training a CNN learner
from scratch, we have selected EfficientNet-B7, a CNN-based
pre-trained model developed by the Google Brain Team.
EfficientNet-B7 is one of the latest state-of-the-art
developments in the image -classification domain [27].
EfficientNet-B7 attains 84.3% top-1 and 97.1% top-5 accuracy
with 66M parameters and 37B FLOPS (floating point
operations per second), whereas the earlier best GPipe achieves
similar performance with 557M parameters while being 8.4
times larger than EfficientNet-B7 [27].

Hyperparameters play a significant role in CNN efficiency
and accuracy. Effective scaling/hyperparameter tuning is still
an open question [27]. EfficientNet-B7 tuning follows a
compound scaling method. It provides a compound coefficient
to uniformly scale network width (number of channels), depth
(number of layers), and image resolution together instead of
independently scaling each parameter. EffcientNet-B7
developers have already set these parameters through extensive
experimentation. This pre-trained model reduces the need for
setting many hyperparameters. Also, features learned by this
pre-trained model can help enhance the accuracy and efficiency
of the branch and ramp constraint classification problem. This
architecture can serve as a foundation for power system
optimization problems that can be converted into computer
vision problems.

Transfer Learning: Transfer learning refers to utilizing
features learned from a problem and leveraging them for a new
problem to improve learning performance and accuracy. We
propose exploiting pre-trained EfficientNet-B7 and using
transfer learning to adapt it with the considered constraint
classification problem. Such pre-trained models contain
important features preserved in a feature space and transferable
to other tasks. Three alternatives exist: 1) reusing the trained
weights of one or more layers of a pre-trained network. 2) Fine-
tuning all layers entirely for a new dataset (a weight
initialization scheme using pre-trained weights). 3) Keeping
pre-trained weights fixed and adding new layers on top of the
pre-trained network.

7

Figure 6 shows the concept of transfer learning that follows
several steps, as shown in Algorithm II. We remove the output
layer of EfficientNet-B7 and add a customized output layer
whose size depends on the number of branch and ramp
constraints. We also add a hidden layer before the output layer.
The added hidden and output layers will transform the old
features into predictions on a new dataset. We fine-tune the
weights of the last few pre-trained layers (i.e., layers before the
added new layers) of EfficientNet-B7, as these final layers
capture more data specific features. One can unfreeze some
(e.g., three) last hidden layers before the output layer or
unfreeze the last hidden layer and increase the number of
unfrozen last hidden layers until a desirable accuracy is
obtained. These layers are fine-tuned at a low learning rate with
the new DCT images representing power system operating
conditions.

{ Pre-trained EfficientNetB-7 model }

Knowledge trans fer
(e.g., weights)

Y
Customize new model
. Tune hyperparameter beta
DCT images H by adding problem H and add a hidden layer

Unfreeze EfficientNetB-7
hidden layers  (last layer),

n-1,n-2 ... until a desirable

SPeCilc B ouput before output layer accuracy is obtained

layers

Fig. 6. Block diagram of the proposed transfer learning procedure.

Algorithm II Pseudocode to transfer learning
1. Import weights of a pre-trained EfficientNet-B7 model
Remove the top output layer
Freeze layers to avoid destroying learned features
Add a new trainable output layer on top of frozen layers
Add a new trainable hidden layer before the output layer
Train only new layers on using DCT image datasets
representing power system operating conditions (a few
epochs)
7. Unfreeze the last hidden layer and train the model at a very low
learning rate (several epochs)
8. Repeat Step 7 by unfreezing the last hidden layers one by one
until desirable accuracy is obtained

A

Loss Function: The considered constraints screening
problem is a binary classification. A common loss function for
binary classification problems is binary cross-entropy.
However, this function may not be suitable for the line and
ramp constraints classification problem as the dataset is
unbalanced. The numbers of active and inactive constraints are
not in the same order. Most constraints are inactive for the
power system to comply with North American Electric
Reliability Corporation (NERC) standards. On the other hand,
the conventional accuracy metric is interpretable but not robust
against uneven data and can yield misleading evaluation.

We have used the FSscore loss function with a customized
B to reduce the impact of unbalanced data. A loss function
should be continuous and differentiable for learning
optimization problems. Ffscore, which is a discrete value, is
modified to make it differentiable.

Precision * Recall

F =(1+p?
pscore = (1 +f );;2 * Precision + Recall



3 (1+pB*)*TP
" (14 B2)*TP +FP + B2 = FN)

(13)

where precision, recall, TP, TN, FP, and FN metrics are:

e Truepositives (TP): Actual and predicted status is ACTIVE

o True negatives (TN): Actual and predicted status is
INACTIVE.

e False positives (FP): Actual status is INACTIVE, and
predicted status is ACTIVE (type I error).

o False negatives (FN): Actual status is ACTIVE and
predicted status is INACTIVE (type II error).

o TP
Precision =FPLTP (14)
TP
Recall = TP+ FN (15)

Hyperparameter Tuning: Many important hyperparameters
are set by EffcientNet-B7 developers. We only need to set 3,
the number of neurons in the newly added hidden layer before
the output layer, and the number of EffcientNet’s hidden layers
that should be unfrozen. Hyperparameter f in (13) controls the
importance of precision and recall and is usually tuned through
experiment. § < 1 (e.g., 0.5) assigns more weight to precision
and less weight to recall. § = 1 assigns the same weight to both
precision and recall. §>1 (e.g., 2) gives less weight to
precision and more weight to recall. This approach is suitable
when both precision and recall carry similar significance, but
more attention is needed on false negatives. The number of
neurons in the newly added hidden layer can be set as a 2"
number closest to the number of neurons in the output layer.

F.  Line flow, Ramp Up, and Ramp Down Classifiers

We train three classifiers, one for each constraint type,
instead of training a single classifier for all constraints. The first
classifier is dedicated to line flow constraint status
identification. The second classifier is devoted to generating unit
ramp up limitations, and the third classifier is dedicated to ramp
down constraints. This strategy can enhance the constraint
classification accuracy and speed up the training process by
parallel training.

V. NUMERICAL SIMULATION AND RESULTS ANALYSIS

The proposed algorithm is tested on the EEE 24-bus system,
the IEEE 118-bus system, and the 6515-bus French system. The
considered scheduling horizon has 24 time periods. The
YALMIP toolbox and IBM-ILOG-CPLEX are used to model
and solve D-ED [28, 29]. The Python-based Keras framework
is used for machine learning. Simulations are carried out on a
computer with Intel(R) Xeon(R) 2.10 GHz CPU and 512 GB of
RAM. We have posted our code on GitHub [9].

A. Active and Pseudo-active Constraint Statistics

Many operating condition scenarios are generated for each
test system. The average percentage of active and pseudo-active
constraints required to form the D-ED feasible region is
reported in Table II. For instance, for the 118-bus system, the
original D-ED problem has 186 X 24 = 4463 branch
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constraints, 54 X 23 = 1242 ramp up constraints, and 1242
ramp down constraints. On average, the number of active
branch, ramp up, and ramp down constraints are 4, 47, and 45,
respectively.  Sets  AX(A.(x)), AX(Azu(x)), and
A*(#gp(x)) include 10, 76, and 71 active and pseudo-active
constraints. Pseudo-active constraints form a large percentage
of AX(h.(x)), A*(Agy(x)), and A*(Aigp(x)), without
which the feasible design region of the truncated D-ED is not
the same as that of the original D-ED. Table II shows that a
larger percentage of generating unit ramp constraints is required
than branch constraints to formulate the truncated D-ED. A
similar trend is observed for the 6515-bus French system, where
19 generating units do not have a unique generation cost
function.

TABLE II
AVERAGE PERCENTAGE OF ACTIVE AND PSEUDO-ACTIVE CONSTRAINTS

. . Active + pseudo-active
Active constraints P

System constraints
Branch RU RD Branch RU RD
Case24 0.47 3.5 2.9 0.53 3.6 3.0
Casel18 0.12 3.9 3.75 0.26 6.4 5.9
Case 6515 0.3 18.3 9.7 0.06 20.7 10.7

B. Dataset Preparation and Learners Architecture

Algorithm I is implemented to generate training datasets.
Nodal demand and cost are varied within a range to generate
scenarios for each plausible network topology. Table III shows
the perturbation range for each system as compared to the base
case values. D-ED is solved for each scenario. Active and
pseudo-active constraints are labeled as 1, and the rest are
labeled as 0. The operating condition scenarios are converted
into the DCT image format. We assign a branch label set, a
ramping up label set, and a ramping down label set for each DCT
image. Three classifiers are trained whose input is DCT images.
The target of classifiers 1, 2, and 3 are the branch label set, the
ramping up label set, and the ramping down label set. Classifier
parameters are given in Table IV. To form each classifier, the
EfficientNet-B7 architecture is imported along with its weights,
excluding the top layer. This truncated architecture becomes the
base model. A new model is created using transfer learning by
adding a customized hidden layer and output layer to the base
model to comply with the new learning tasks (e.g., learning
branch classification).

Historical data should be collected to utilize the proposed
algorithm for large real-world systems. Redundant unique
samples should be dropped. If the dataset is large, various
scenario clustering and reduction techniques (e.g., K-means)
can be implemented. Similar scenarios can be grouped in the
same cluster, and one or multiple representatives from each
class can be selected. Although the training might take time for
large systems, it is an offline procedure carried out once.



TABLE III
VARIATION RANGE
Load COSF No. of scenario
System coefficient
w AL to AY AY AL Train  Test
Case24 70% -130%  97%-103% +15% 4000 1000
Casel18 90%-119%  97%-103% +15% 4000 1000
Case6515  80%-119%  97%-103% +15% 3010 700
TABLE IV
HYPERPARAMETERS OF MODIFIED EFFICIENTNET-B7 ARCHITECTURE: ADDED
LAYERS AFTER FLATTENING
Final FC layers and Training parameters
Added hidden layer=1,
Classifiers Batch size=500, Activation =ReLU &
Validation split=10%, Sigmoid
(Branch, . . .
RU, RD) Early stoppm.g with Losg & metric= F2
’ Patience 10 (min. no. of Optimizer= Adam
epochs)

C. Prediction Analysis

The size of test datasets is given in Table III. The constraint
statuses predicted by classifiers are compared with ground truth
data obtained by solving D-ED. As the power system is safety-
critical, we analyze false negatives and false positives
performance statistics. The classification accuracy depends on
hyperparameter values, such as  and the number of training
epochs. The percentage of FPs and FNs can be controlled by
tuning hyperparameters. Since having constraints that are active
but classified as inactive is undesirable, we set § = 2, meaning
that recall is twice as important as precision. This reduces the
number of FNs. Table V shows the average FP and FN
percentages. In general, more ramping constraints are
misclassified in the FP category than line constraints. This might
be because intertemporal connectivity makes classifying ramp
constraints more complex than line flow constraints. Some
unnecessary constraints are added to the truncated D-ED due to
FPs. This increases the size of the truncated D-ED. Having
fewer FNs is more crucial as they include the necessary
information to form a feasible design space. A few FNs are
observed that will be added to the optimization constraints using
the iterative loop. The prediction error is inevitable, and thus
removing this loop would make the truncated economic dispatch
solution infeasible for test scenarios with nonzero FNs.

TABLE V
AVERAGE FPS AND FNS PER SCENARIO
False negative (FN) False positive (FP)

System

branch RU RD branch RU RD

Case24 (Eff) 0.31 7.0 2.9 17.5 4.4 40
Case24 (NN) 1.1 6.1 6.3 1.4 10.3 9.0
Case24 (CNN) 0.2 6.4 6.6 22.7 20.0 32
Casel 18 (Eff) 1.3 2.3 5.6 151 370 278
Casel 18 (NN) 0 0 0 12.4 78.3 72.3
Casel 18 (CNN) 1.7 60 54 278 841 405
Case6515 (Eff) 2.8 8.4 4.5 133 4156 4399
Case6515 (NN) 0.2 0.03 0.03 256 7636 7524

One can select a smaller § to reduce FPs. But it would
increase FNs, and thus the number of iterations and overall
solution time. In the worst-case scenario, the number of
iterations would be equal to the number of branch and ramp
constraints minus FNs. However, it would not happen as not all
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branch and ramp constraints are active. Also, our observations
(see Table VI) show that several pseudo-active constraints are
added to optimization after carrying out each iteration.

We have also trained a CNN and a neural network (NN).
Generally speaking, these two learners have more FP
misclassifications. Although we have used the pre-trained
EffcientNet-B7, one can use NN and CNN. One of the
advantages of EffcientNet-B7 1is its pre-trained known
structure. A user does not need to make significant changes in
the learner structure, such as the number of hidden layers and
neurons. Unlike CNN and NN, for which the best learner
structure should be found based on many trials, a user needs
only to change the size of output and input layers of the pre-
trained EffcientNet-B7 based on the considered power system
size.

D. Truncated D-ED Runtime Analysis and Solution Quality

We use an integrality gap index to show how close are the
solutions of the truncated and original D-EDs [8]. fT~PEP and
fP=ED are, respectively, objective values obtained from the
proposed algorithm and the original D-ED problem.

T—DED _ £D-ED
lf f | % 100

Integrality Gap% = (16)

fD-ED
The average integrality gap for all test scenarios is negligible
(less than 1077) for all three test systems, showing that the
proposed truncated D-ED algorithm provides the same solution
as the original D-ED.

The computation time saving obtained by the proposed D-
ED algorithm is reported in Table VI. The average number of
iterations and time over test scenarios are reported. For the 118-
bus system, for instance, the iterative loop converges after 2.07
iterations on average. This is due to the FN misclassifications.
Without the iterative loop, the truncated D-ED solution may
become infeasible as a few necessary active or pseudo-active
constraints are missed in the truncated constraint set. The time
saving becomes promising as the system size increases. While
no time saving is observed for the 24-bus system, the
optimization solution time is reduced by 99% for the 6515-bus
system.

TABLE VI
PERFORMANCE ANALYSIS: AVERAGE ITERATION NUMBERS AND TIME-
SAVING

Systems Original D- Truncated D-ED Tirpe

ED time No. iter | Total time saving

Case24 11 ms 1.82 14 ms No save
Casel18 220 ms 2.07 140 ms 32%
Case6515 238 sec 1.69 <1 sec 99%

E. Comparison with ICG

We compare the proposed approach with ICG using the
6515-bus system. ICG is a popular method in which constraints
are relaxed, a master problem is formulated and solved, and
violated constraints are added to the master problem iteratively.
Simulations are run for all test operating condition scenarios,
and average values are reported in Table VII.



TABLE VII
COMPARISON WITH ICG

Average solver time  Average number

Test system

(sec.) of iterations
Original D-ED (benchmark) 238 -
ICG 64 50.4
Proposed approach <1 1.69

The original D-ED problem with all constraints is solved to
obtain benchmark results. It takes 238 seconds. The proposed
approach takes much fewer iterations and less time than ICG to
find the optimal D-ED solution. The proposed approach is 98%
faster than ICG.

F. Memory Usage Analysis and Runtime Comparison for
Combined Branch and Ramp Constraints Screening

The average memory requirement in megabytes (MB) for
building the constraint set and solving time are reported in
Table VIII for only branch constraints screening and branch and
ramp constraints screening. The least memory usage is
observed after screening both branch and ramp constraints and
dropping inactive constraints from the model. For instance, for
the 6515-bus system, the original D-ED problem occupies 5489
MB of memory. It reduces almost 37 times by dropping inactive
branch constraints and 211 times if both inactive branch and
ramp constraints are dropped. While screening only branch
constraints leads to better time saving for smaller systems,
screening both branch and ramp constraints saves more time for
larger systems. For the 6515-bus system, branch and ramp
constraints screening achieve 30% more time-saving. Since
screening only branch constraints would lead to a good time
saving even for large systems, one may ignore ramp constraints
screening. However, we suggest branch and ramp constraints
screening for larger systems to reduce memory usage
significantly. For instance, for the 6515-bus system, screening
both branch and ramp constraints results in a better time saving
and a significant RAM requirement reduction. It thus makes
solving large systems possible even without the need for
supercomputers with large memory.

TABLE VIII
AVERAGE MEMORY REQUIREMENT (MB) TO BUILD CONSTRAINTS AND
SOLVER TIME FOR TWO CONSTRAINT SCREENING SCHEMES
Screening branch

Original Screening branch
. & ramp
System problem constraints .
constraints
RAM RAM Time RAM Time

Case24 7 2.5 10 ms 0.35 14 ms
Casel 18 44 12.4 20 ms 1.2 140 ms
Case6515 5489 145 1 sec 26 0.7 sec

G. Demand vs. DCT as Learner Input

Under a given demand value, thermal units' generation cost
coefficients and grid topology may differ, resulting in different
active/inactive constraint sets. If demand is used as the only
input feature, the learner may face difficulty predicting the
status of constraints. More misclassifications may increase the
problem size and number of loop iterations and thus the solver
time. Table IX shows the number of loop iterations and solver
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time. We suggest using DCT as the learner input to reduce the
solver time and required memory usage. However, one can use
only demand since the embedded iterative loop can eventually
capture all required constraints to form a truncated D-ED.

TABLE IX
TIME GAIN ANALYSIS USING DEMAND AND DCT AS LEARNER INPUT

Truncated D-ED Truncated D-ED
Systems (only demand) (DCT image)
No. iter Total time No. iter Total time
Case24 1.8 14 ms 1.82 14 ms
Casel18 3.8 192 ms 2.07 140 ms
Case6515 1.71 <1 sec 1.69 <1 sec

E.  Hamming Distance Analysis

Hamming distance measures the difference between two
binary strings. It is an indicator of output feature sensitivity to
input features and the robustness of the proposed algorithm. We
have perturbed the demand, identified active constraints for two
consecutive demand scenarios, and calculated Hamming
distance between the active constraint status indicators, which
are 0/1strings. Table X shows the average Hamming distance
for branch and ramp constraints. The sensitivity of output
features to input features is not high. Hamming distances
corresponding to branch constraints are lower than those of
ramp constraints. As shown in Table V, this could justify
observing more ramp constraints misclassifications than branch
constraints.

TABLE X
HAMMING DISTANCE ANALYSIS
System Branch Ramp up Ramp down
Case24 0.34% 5.19% 4.8%
Casel18 0.21% 6.21% 5.64%
Case6515 0.013% 2.02% 1.69%

VI CONCLUSION

A small subset of inequality constraints contains enough
information to form the dynamic economic dispatch feasible
region. This paper presents a learning-aided iterative algorithm
to identify active and pseudo-active branch flow and thermal
unit ramp up/down constraints required to form the D-ED
feasible space for each operating condition scenario. Three
classifiers are trained, one for each type of constraints, taking
into consideration network topology. Using these classifiers’
predictions, a truncated D-ED is formed that is smaller and less
computationally expensive than the original D-ED problem.

The number of iterations of the learning-aided approach is
much less than the classical ICG. Also, filtering active and
pseudo-active constraints reduces iterations much more than
filtering only active constraints. The benefit of constraint
filtering is more significant for larger systems. The average
runtime saving for the 6515-bus system is 99%. We have
observed that filtering both branch and ramp constraints would
lead to better time saving and memory usage than filtering only
branch constraints. However, the learning-aided approach can
filter out only branch constraints. This would result in a good
enough time and memory usage saving for large systems.
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