

To be published in Optica:

Title: Unveiling the relative timing jitter in counter-propagating all-normal dispersion (CANDi) dual-comb fiber laser

Authors: Shu-Wei Huang, Neeraj Prakash, Bowen Li

Accepted: 03 June 22

Posted 06 June 22

DOI: <https://doi.org/10.1364/OPTICA.458339>

© 2022 Optica Publishing Group under the terms of the [Optica Open Access Publishing Agreement](#)

OPTICA
PUBLISHING GROUP
Formerly OSA

1 **Unveiling the relative timing jitter in counter-
2 propagating all-normal dispersion (CANDi)
3 dual-comb fiber laser**

4 **NEERAJ PRAKASH,¹ SHU-WEI HUANG,² AND BOWEN LI^{1,3}**

5 *Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder,
6 Colorado 80309, USA*

7 *¹These authors contribute equally*

8 *²ShuWei.Huang@colorado.edu*

9 *³Bowen.Li@colorado.edu*

10 **Abstract:** Counter-propagating all-normal dispersion (CANDi) fiber laser is an emerging high-
11 energy single-cavity dual-comb laser source. Its relative timing jitter (RTJ), a critical parameter
12 for dual-comb timing precision and spectral resolution, has not been comprehensively
13 investigated. In this paper, we enhance the state-of-the-art CANDi fiber laser pulse energy from
14 1 nJ to 8 nJ. We then introduce a reference-free RTJ characterization technique that provides
15 shot-to-shot measurement capability at femtosecond precision for the first time. The
16 measurement noise floor reaches 1.6×10^{-7} fs²/Hz, and the corresponding integrated
17 measurement precision is only 1.8 fs [1 kHz, 20 MHz]. With this new characterization tool, we
18 are able to study the physical origin of CANDi laser's RTJ in detail. We first verify that the
19 cavity length fluctuation does not contribute to the RTJ. Then we measure the integrated RTJ
20 to be 39 fs [1 kHz, 20 MHz] and identify the pump relative intensity noise (RIN) to be the
21 dominant factor responsible for it. In particular, pump RIN is coupled to the RTJ through the
22 Gordon-Haus effect. Finally, solutions to reduce the free-running CANDi laser's RTJ are
23 discussed. This work provides a general guideline to improve the performance of compact
24 single-cavity dual-comb systems like CANDi laser benefitting various dual-comb applications.

25 © 2022 Optica Publishing Group under the terms of the [Optica Publishing Group Open Access Publishing
26 Agreement](#)

27 **1. Introduction**

28 Dual-comb systems, which comprise of a pair of optical frequency combs (OFC) with slightly
29 different repetition rates, are attracting much research attention due to their applications in
30 diverse fields including ranging [1], rotation sensing [2], spectroscopy [3] and asynchronous
31 sampling [4]. One of the most important features required to implement a high-performance
32 dual-comb system is the relative stability, such as relative timing jitter between the two
33 frequency combs, which directly impacts the precision and resolution in all dual-comb
34 applications. Even though actively stabilized dual-comb systems can exhibit outstanding low-
35 noise performances [5], [6], their inevitably high cost and complexity have pushed the interest
36 towards other alternatives. An emerging trend to passively maintain the relative stability
37 focuses on generating the OFC pair in a single laser cavity [4], [7]–[14]. In such
38 implementations, since the two pulses share the same cavity, there is inherent common-mode
39 noise rejection (CMNR), which eliminates the requirement for sophisticated phase lock loops
40 (PLLs) [15].

41 So far, single-cavity dual-comb systems have been realized in various laser architectures
42 including solid state lasers [7], [9], fiber lasers [4], [10], [12]–[14] and on-chip waveguide [11]
43 lasers. The single-cavity dual-comb fiber lasers are of particular interest due to its compact and
44 robust nature. Therein, a promising approach to multiplex two OFCs in one fiber laser is
45 bidirectional operation which simultaneously provides overlapping optical spectra and
46 minimized crosstalk between the two OFCs [12]–[15]. In particular, we have demonstrated the

47 first counter-propagating all-normal dispersion (CANDi) mode-locked fiber laser that broke
 48 through the energy limit of existing dual-comb fiber lasers by two orders of magnitude using
 49 all-normal dispersion cavity and nonlinear polarization rotation (NPR) mode-locking [14].
 50 Energetic pulses with more than 1-nJ energy and flat broadband spectra were generated from
 51 both directions simultaneously, with a repetition-rate difference tunable from 0.1 Hz to 100 Hz.
 52 Pulse energies in nJ regime are critical for various nonlinear dual-comb applications such as
 53 dual-comb Raman spectroscopy and THz spectroscopy [4], [16]–[18]. For instance, 4-nJ pulses
 54 was required to realize coherent Raman spectro-imaging with a titanium-sapphire dual-comb
 55 system and 2 nJ was utilized to realize self-triggered asynchronous optical sampling THz
 56 spectroscopy with a single fiber dual comb laser [4], [16]. Few nJ dual-comb lasers have also
 57 been used as pumping sources in mid IR dual-comb OPO systems for dual comb spectroscopy
 58 [19], [20].

59 In this work, we enhance the state-of-the-art CANDi fiber laser pulse energy from 1 nJ to 8
 60 nJ and introduce a reference-free relative timing jitter characterization technique that enables
 61 studies to gain deeper insights into the relative timing jitter characteristics of CANDi fiber laser.
 62 The technique combines the principles of dispersive Fourier transform (DFT) and spectral
 63 interferometry (SI) to measure the shot-to-shot relative timing jitter at femtosecond precision,
 64 enabling the comprehensive characterization of relative timing jitter up to the Nyquist
 65 frequency, or half the repetition rate. Currently, our technique achieves an ultra-low noise floor
 66 of 1.6×10^{-7} fs²/Hz and the corresponding integrated measurement precision is only 1.8 fs [1
 67 kHz, 20 MHz]. Compared to the state-of-the-art relative timing jitter characterization technique
 68 using optical heterodyne detection [21], our measurement noise floor is 5 times better and no
 69 narrow-linewidth reference laser is required. We first verify that the cavity length fluctuation
 70 does not contribute to the relative timing jitter as its effect is fully suppressed by the CANDi's
 71 single-cavity design. Then we measure the integrated relative timing jitter to be 39 fs [1 kHz,
 72 20 MHz] and we identify the pump relative intensity noise (RIN) to be the dominant factor
 73 responsible for CANDi fiber laser's relative timing jitter. In particular, pump RIN is coupled
 74 to the relative timing jitter through the Gordon-Haus effect. Finally, solutions to further reduce
 75 the free-running CANDi fiber laser's relative timing jitter have been discussed.

76 2. CANDi Laser with Enhanced Pulse Energy

77 Firstly, a new CANDi laser with further enhanced pulse energies is constructed. The laser
 78 structure is similar to the first demonstration [14]. However, the HI1060 fibers have been
 79 replaced with 10- μ m core large mode area fibers. This simple modification has helped
 80 effectively in lowering the nonlinearity and thus pushing the highest obtainable pulse energy to
 81 8 nJ in both laser directions. The fundamental repetition rate (f_{rep}) is 40 MHz and the repetition
 82 rate difference (Δf_{rep}) is tunable from 0.1 to 100 Hz. The laser schematics is shown in Fig. 1(a)

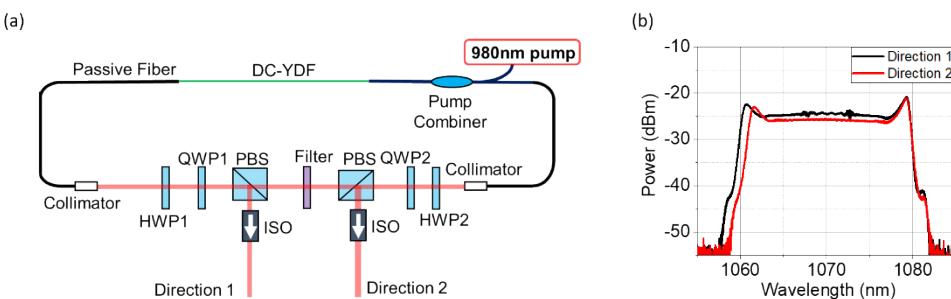


Fig. 1. (a) Experimental setup of the 8nJ CANDi laser. The gain fiber is 2 m of 6 μ m core double-cladding ytterbium-doped fiber (DC-YDF) and the passive fiber is 10 μ m core large mode area (LMA) fiber. The pump combiner has double cladding LMA structure. The length of LMA fiber is 1.5 m on each side of DC-YDF. (b) Optical spectra of the mode-locked pulse in both directions. HWP: Half-wave plate, QWP: Quarter-wave plate, PBS: Polarizing beam splitter, ISO: Isolator

83 and the optical spectra is shown in Fig. 1(b).

84 3. Impact of Free-space Cavity Length Fluctuation

85 The impact of cavity length fluctuation on the relative timing jitter is then studied. In general,
86 cavity length fluctuation is a major noise source of timing jitter in conventional OFCs and an
87 effective way to suppress it is to actively control a movable mirror in the free-space section of
88 the laser to compensate the optical path length variation of the laser cavity [22]. Here we study
89 whether cavity length stabilization can suppress the relative timing jitter noise as well.

90 To study the impact of cavity length stabilization, we stabilize the f_{rep} of one direction of
91 the CANDi laser using a PLL and a slow piezo stage mounted under one of the fiber collimators.
92 Since the locking bandwidth is ~ 25 Hz, we use frequency counters to measure the effect of
93 locking in the low frequency regime. Fig. 2(a) shows the power spectral density (PSD) of the
94 f_{rep} of the individual laser directions in the free running configuration and when the f_{rep} of
95 direction 2 is locked to an RF source. When the laser is free running, the PSD of both the
96 directions (black and red curve in Fig. 2 (a)) are overlapping. As shown in Fig. 2(a), locking
97 one of the laser directions provides visible noise suppression in both directions. This is different
98 from work by Link et al, where the authors observed a complete decoupling of f_{rep} noise
99 between the two OFCs caused by the semiconductor saturable absorber mirror [23]. In the
100 CANDi laser, cavity length stabilization is a viable technique to improve timing jitter noise of
101 both directions simultaneously. Meanwhile it is also obvious that the stabilization induces
102 different level of noise suppression in two directions. The higher residual noise level in
103 direction 1 compared to the locked direction are attributed to the uncommon mode noise, i.e.,
104 the relative timing jitter.

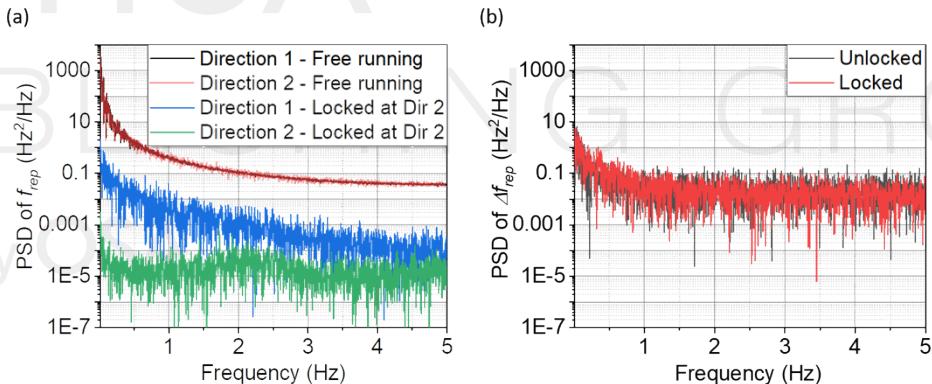


Fig. 2. (a) PSD of f_{rep} of the individual directions of the CANDi laser for both free running case and when f_{rep} of direction 2 is phase locked to a RF reference. (b) PSD of relative frequency measured by beating the 24th harmonics of both directions (scaled to fundamental repetition rate difference) for free running case and when f_{rep} of direction 2 is phase locked to a RF reference. All the measurements are done using frequency counter.

105 To directly study the effect of cavity length fluctuation on the relative timing jitter noise,
106 we measure it by mixing the 24th harmonics of the repetition rate of both the directions in a
107 frequency mixer and measuring the beat note (i.e., 24th harmonics of repetition-rate difference
108 Δf_{rep}) using a frequency counter. Fig. 2(b) shows the PSD of the beat note scaled to fundamental
109 repetition rate difference with (red trace) and without (black trace) locking the f_{rep} of direction
110 2. As observed, locking f_{rep} of one direction have no effect on the relative timing jitter noise.
111 This proves that the cavity length fluctuation impacts the two OFCs with exact same manner
112 and therefore only affects the common mode noise and has negligible effect on the uncommon
113 mode noise. Thus, free-space cavity length is a parameter that can be used to fine tune the

114 average repetition rate without changing the repetition rate difference or relative timing jitter
115 of CANDi.

116 **4. Relative Timing Jitter Measurement using Real-time Interferometry**

117 In order to identify the noise source of relative timing jitter of CANDi laser or any other dual-
118 comb systems and realize effective noise suppression accordingly, it is important to develop a
119 technique for comprehensive relative timing jitter characterization up to the Nyquist frequency.
120 However, it is extremely challenging since the single-cavity dual-comb fiber lasers typically
121 exhibit only femtosecond (fs)-level relative timing jitter even under free-running conditions
122 thanks to the inherent CMNR and the jitter noise is distributed in frequency domain up to tens
123 of MHz. Hence, innovative measurement techniques that simultaneously achieve high timing
124 resolution and high speed are the need of the hour to characterize the relative timing jitter of
125 free running dual-combs. Conventional comb timing jitter measurement methods like balanced
126 optical cross-correlation [24] and optical heterodyne [25] cannot be applied to dual-comb
127 systems, where pulses temporally walk off from each other in only a few roundtrips. Recently,
128 Shi et al., demonstrated a relative timing jitter characterization technique for dual-comb
129 systems using asynchronous optical sampling (ASOPS). Sub-femtosecond measurement
130 precision has been achieved, but only random-walk noise can be measured and the noise PSD
131 is not available for analysis [26]. Another technique to measure relative timing jitter of dual-
132 combs is using an indirect phase comparison between two fast photodetectors. However, the
133 noise floor is relatively high (10^{-5} fs²/Hz) [27], which is too high for characterizing the fs level
134 relative timing jitter in dual-comb fiber lasers. Recently, Sandro et al., demonstrated a high-
135 resolution relative timing jitter characterization technique using optical heterodyne detection.
136 Even though lower noise floor (8×10^{-7} fs²/Hz) was realized, the implementation is more
137 complex requiring additional narrow-linewidth single frequency lasers [21]. **Here, we introduce**
138 **a reference-free technique that do not require narrow-linewidth reference lasers and achieves 5**
139 **times lower noise floor to effectively study the relative timing jitter of dual-comb lasers using**
140 **the DFT based real-time spectral interferometry [28]. The noise floor of our technique can be**
141 **further enhanced through methods discussed in the following section.**

142 The principle of the technique is shown in Fig. 3(a). It is well known that two mutually
143 coherent pulses that are temporally close to each other exhibit spectral interference, whose
144 period Δv is determined by pulse separation τ as $\Delta v = 1/\tau$. Using DFT technique, the spectral
145 interferogram can be mapped to time domain waveforms with a mapping ratio of $2\pi\beta L$, where
146 βL is the group delay dispersion (GDD) of the system. Therefore, real-time interferometry can
147 be realized by measuring the DFT waveform with fast photodetectors and real-time
148 oscilloscopes [28]. By extracting the pulse-separation evolution at each round trip through
149 Fourier transforming the interferogram, we can estimate the relative timing jitter of a dual-
150 comb system through digital signal processing.

151 The maximum Fourier frequency of the relative timing jitter PSD is limited to half of the
152 f_{rep} due to the Nyquist condition. This frequency is 20 MHz in our system since the repetition
153 rate of the CANDi laser is 40 MHz. The minimum Fourier frequency (f_{min}) is related to f_{rep} , Δf_{rep}
154 and the maximum resolvable pulse separation (τ_{max}) of the technique through,

$$155 \quad f_{min} = \frac{\Delta f_{rep}}{f_{rep} \times \tau_{max}} \quad (1)$$

156 τ_{max} depends on the dispersion (GDD) and detection bandwidth (BW) of the system according
157 to,

$$158 \quad \tau_{max} = 2\pi \times GDD \times BW \quad (2)$$

159 From Eq. (1), f_{min} can be reduced by increasing τ_{max} , increasing f_{rep} and reducing Δf_{rep} . This
160 implies that, for a fixed τ_{max} , the required Δf_{rep} is smaller in fiber lasers (f_{rep} typically in MHz)

161 compared to microresonators (f_{rep} typically in GHz) for obtaining similar f_{min} , From Eq. (2),
 162 increasing τ_{max} requires a large bandwidth photodetector or larger dispersion. In this work, f_{min}
 163 of 1 kHz is realized with a Δf_{rep} of 0.72 Hz, a GDD of 230 ps² and a photodetector bandwidth
 164 of 12.5 GHz.

165 The experimental setup for relative timing jitter measurement is shown in Fig. 3(b). A small
 166 portion of the combs are monitored using an optical spectrum analyzer (OSA) while the rest of
 167 the laser energy are combined using a 50:50 coupler. A polarization controller is installed in
 168 one of the arms to align the polarization of two pulses. The combined pulses travel through a
 169 10 km long spool of HI1060 fiber, providing a GDD of 230 ps², followed by an Ytterbium-
 170 doped fiber amplifier (YDFA) stage for amplification. The amplified interferogram signal is
 171 detected using a fast photodetector (12.5 GHz bandwidth) and a high-speed real-time
 172 oscilloscope (20 GHz bandwidth). It should be noted that the actual energy launched into the
 173 DFT fiber is only \sim 25 pJ (\sim 1 mW average power) to avoid any nonlinearity, which is even
 174 lower than many low-energy dual-comb lasers. Hence, this technique is suitable for dual-comb
 175 lasers with broad range of pulse energies.

176 The data processing of the recorded time domain waveform includes a series of steps
 177 including selection of a wavelength range containing the high-contrast interferogram,
 178 calibration of the interferogram envelope, application of Hanning window and removing
 179 nonlinear fringe phase resulting from higher order dispersion during DFT using Hilbert
 180 transformation [29], [30]. Finally, a fast Fourier transform (FFT) is applied on this data where
 181 the peak position of the FFT result reveals the pulse separation. Repeating these steps for each
 182 round trip reveals the evolution of pulse separation. Fig. 3(c) shows a sample interferogram
 183 evolution during 80000 laser roundtrips. Fig. 3(d) shows the evolution of pulse separation after
 184 processing the interferogram in Fig. 3(c). The deviation from a linear fitting on the pulse
 185 separation evolution gives us the relative timing jitter noise. More details can be found in
 186 supplementary information (section 1). The effect of nonlinearity on the measurement is further
 187 discussed in the supplementary information (section 2).

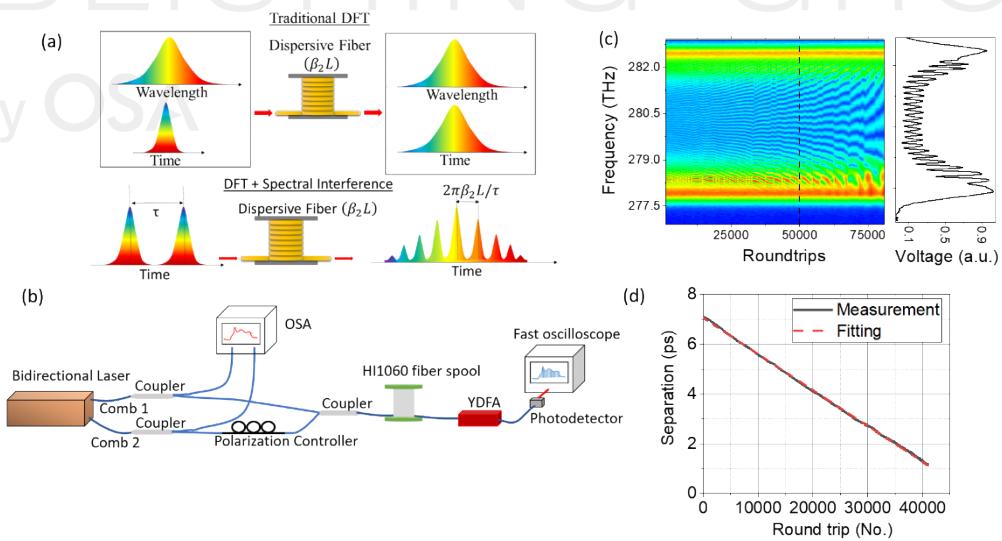


Fig. 3. (a) Principle of traditional DFT and combining DFT and spectral interference. (b) Experimental setup for measuring relative timing jitter in dual-comb lasers using DFT based real-time spectral interferometry. (c) A sample interferogram evolution during 80000 laser roundtrips with each step in the plot corresponding to 1000 roundtrips and a sample interference fringes recorded by the fast oscilloscope. (d) Evolution of pulse separation with roundtrip.

189 Before using the real-time interferometry to measure the relative timing jitter of the CANDi
 190 laser, we use a Mach-Zehnder interferometer (MZI) setup to estimate the resolution of our
 191 measurement system. One comb from the laser goes through the MZI setup creates a delayed
 192 copy of itself and the two pulses then propagate through the rest of the DFT setup. Fig. 4(a)
 193 shows the PSD of the system noise (red). The noise floor is about 1.6×10^{-7} fs 2 /Hz, 5 times lower
 194 than the current state of the art by Sandro et al., (8×10^{-7} fs 2 /Hz) [21]. The corresponding noise
 195 integrated from 1 kHz to 20 MHz is 1.8 fs, which represents the precision of our DFT system
 196 (Fig. 4(b)). The white noise floor is attributed to the 8-bit oscilloscope digitization noise. By
 197 replacing the high-loss (~15 dB) dispersive fiber with chirped fiber Bragg grating to enhance
 198 the SNR of the detected interferogram and using data acquisition card with larger bit depth, the
 199 noise floor can be further reduced, and sub-fs resolution is practically achievable. In addition
 200 to the precision, we also measure the accuracy of the technique using time-domain
 201 interferometry and the error is only 0.1%. The details of this experiment are explained in the
 202 supplementary information (section 3). We also find that the estimated noise floor does not
 203 change with pulse separation. The dependence of pulse separation in estimating the noise floor
 204 using MZI setup is also discussed in supplementary information (section 4).

205 The black trace in Fig. 4(a) depicts the measured PSD of the relative timing jitter noise of
 206 CANDi laser. The integrated relative jitter noise from 1 kHz to 20 MHz (Nyquist frequency) is
 207 approximately 39 fs (Fig. 4(b)).

208 In [14], it has been shown that the timing jitter of the CANDi laser is RIN limited. Here we
 209 further show that the relative timing jitter is also pump RIN limited. In order to understand the
 210 nature of relative timing jitter in the CANDi laser, we modulate the power of the pump laser of
 211 the CANDi laser at different frequencies and the single sideband (SSB) phase noise of
 212 individual laser and the relative timing jitter PSD are measured. Fig. 4(c) shows an example
 213 measurement with the pump modulation frequency of 4 kHz. The strong CMNR in CANDi
 214 laser is evident from the ~12dB difference in noise levels in Fig. 4(c). Apart from the expected
 215 peak at the modulation frequency on the phase noise spectrum, we also observe a peak on the

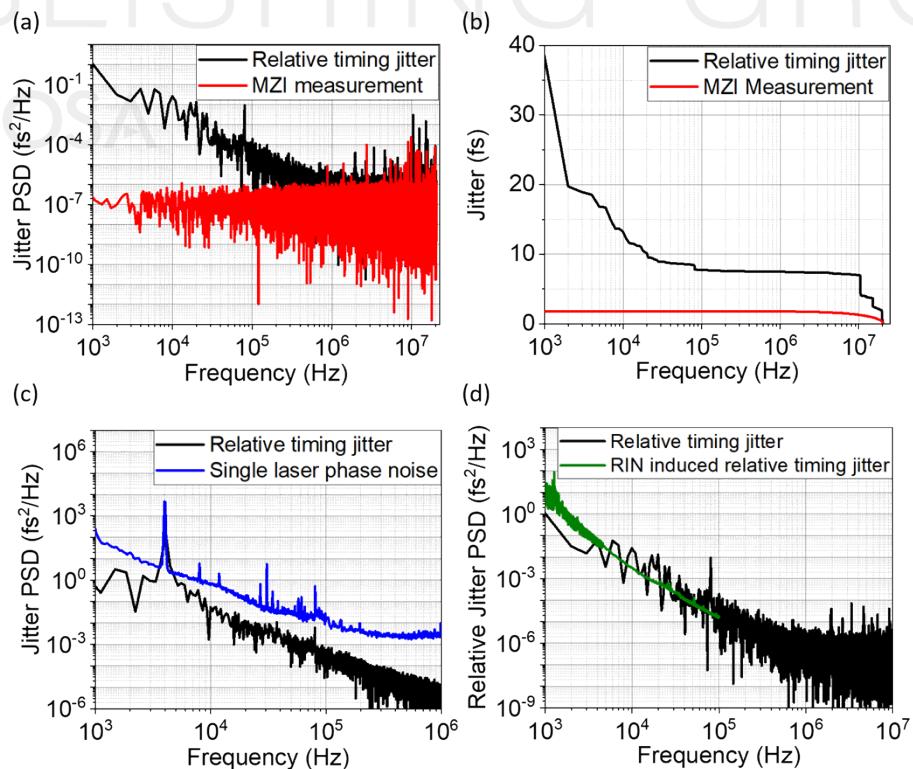


Fig. 4. (a) Measured relative timing jitter results of CANDi laser (black) and MZI experiment (red). (b) Corresponding integrated jitter noise. (c) Measured single direction laser phase noise (blue) and relative timing jitter PSD (black) with pump modulation at 4 kHz. (d) Comparison of the RIN induced relative timing jitter (green) and the measured relative timing jitter (black).

216 relative timing jitter PSD at the modulating frequency. This indicates that the RIN-induced
 217 relative timing jitter cannot be suppressed by the CMNR of the CANDi laser and is an
 218 uncommon mode noise. Hence, pump RIN could be the major contributor towards the relative
 219 timing jitter of the dual-comb CANDi system. To confirm this, the RIN induced relative timing
 220 jitter is calculated (supplementary information section 5). The comparison of RIN induced
 221 relative timing jitter (green) with the measured relative timing jitter (black) is shown in Fig.
 222 4(d). The reasonable match between the two curves confirms that pump RIN is the dominating
 223 factor in the relative timing jitter of CANDi.

224 6. Coupling Mechanism between RIN and Relative Timing Jitter

225 In order to minimize the RIN-induced relative timing jitter, it is important to understand the
 226 mechanisms contributing to the coupling between pump power change and Δf_{rep} . For this
 227 purpose, we first investigate the coupling mechanisms between pump power change and f_{rep} of
 228 both directions. The major coupling mechanisms in a fiber OFC include intensity induced:
 229 center frequency shift, change of spectral bandwidth, change of resonant gain and change of
 230 self-steepening [31]. Depending on the cavity design, different effects can dominate over the
 231 others. The intensity-induced change in the repetition frequency in the case of a true soliton
 232 [31] and dispersion-managed solitons [32] have been studied in detail. Here we experimentally
 233 identify the major contributors to the intensity-induced repetition rate change in the CANDi
 234 laser. Considering all four coupling mechanisms mentioned above, the normalized repetition
 235 rate can be written as [31],

$$236 \frac{1}{f_{rep}} = \beta_1 + \omega_\Delta \beta_2 + \frac{1}{2} \omega_{RMS}^2 \beta_3 + \frac{g}{\Omega_g} + \frac{\mu A^2 \delta}{\omega_0} \quad (3)$$

237 where β_n are the frequency derivatives of lumped linear fiber propagation constant at gain peak.
 238 The terms in the order are group velocity round trip time, spectral shift, TOD, resonant
 239 contribution from Yb gain and self-steepening term respectively. $\omega_\Delta = \omega_c - \omega_0$, is the spectral
 240 shift of the carrier from gain peak frequency, ω_0 and ω_{RMS} is the root-mean-square spectral
 241 width of the pulse. g and Ω_g is the gain and gain bandwidth respectively. μ is the correction
 242 term due to modal shape and δ and A are the nonlinear coefficient multiplied by propagation
 243 length and peak electric field of the pulse respectively where $A^2 \delta$ is the nonlinear phase change
 244 accumulated in the fiber laser. Considering the large pulse width in all-normal dispersion
 245 (ANDi) lasers, the self-steepening term can be neglected. Therefore, the rate of change of
 246 repetition rate with pump power can be written as,

$$247 \frac{df_{rep}}{dP} = -f_{rep}^2 \times \left\{ \beta_2 \frac{d\omega_\Delta}{dP} + \frac{\beta_3}{2} \frac{d\omega_{RMS}^2}{dP} + \frac{1}{\Omega_g} \frac{dg}{dP} \right\} \quad (4)$$

248 To directly measure the magnitude of df_{rep}/dP , we apply a triangle wave modulation to the
 249 pump power and measure the modulated repetition frequency using frequency counter.
 250 Identifying the contributions of different terms on the right side of Eq. (4) to this measured
 251 df_{rep}/dP requires estimating several physical quantities. This estimation is detailed in the
 252 supplementary information (section 6). The calculated contribution of each of these terms along

253 direction 1 and direction 2 are shown in Fig. 5(a) and Fig. 5(b) respectively. In the CANDi
 254 laser, spectral shift term is the largest contributor to the pump power induced timing jitter and
 255 spectral bandwidth change is the least contributing term. The difference in spectral shift term
 256 along the two directions is due to the asymmetry of the cavity laser structure which results in
 257 an asymmetric gain distribution. This gives rise to different gain center frequency shift for a
 258 given pump power change which eventually leads to different spectral shift in the two
 259 directions. The comparison between the combination of these individual terms and the direct
 260 measurement of df_{rep}/dP are shown in Fig. 5(c) and a reasonable match is obtained, which
 261 confirms the calculated contribution of each term in Fig. 5(a) and Fig. 5(b). It should be noted
 262 that the spectrum evolves considerably inside the ANDi cavity thereby changing the spectral
 263 shift and the gain bandwidth terms at different points inside the cavity. The small mismatch in
 264 the Fig. 5(c) could be due to the fact that we are measuring the terms only at a single point
 265 rather than the average effect. From this, the magnitude of pump power induced relative timing
 266 jitter ($d\Delta f_{rep}/dP$) is determined from the difference between the calculated df_{rep}/dP along the
 267 two directions. Similar to the pump power induced timing jitter, spectral shift term is the largest

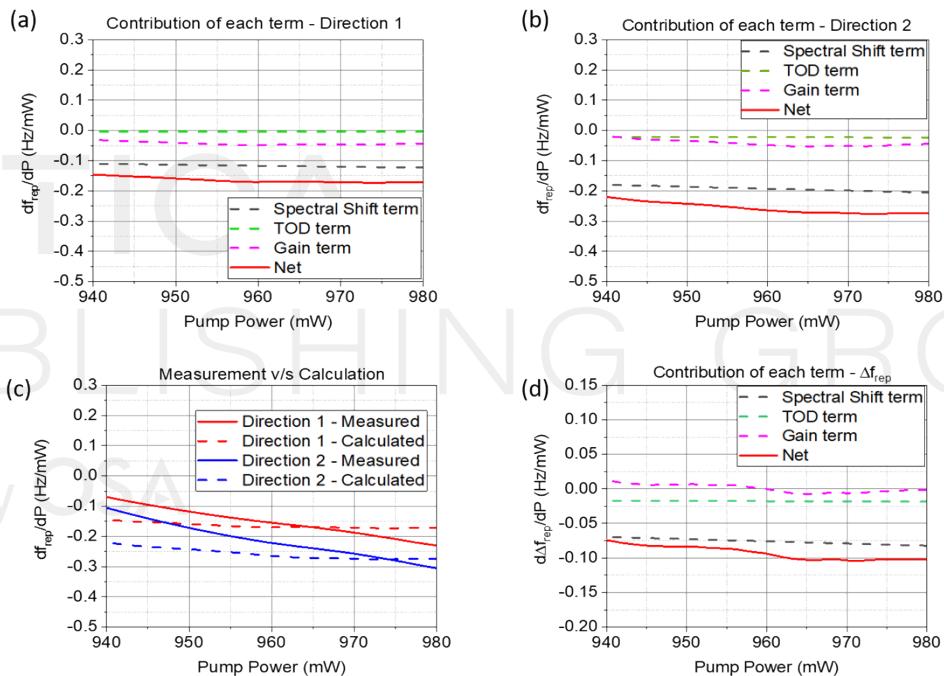


Fig. 5. (a) Individual contribution of each of the three terms in Eq. (4) and the net effect to the dependence of f_{rep} on pump power for direction 1 and (b) direction 2. (c) Comparing the measured dependence of f_{rep} on pump power with calculated value from Eq. (4). (d) Individual contribution of each of the three terms in Eq. (4) and the net effect to the dependence of Δf_{rep} on pump power.

268 contributor to the $d\Delta f_{rep}/dP$ which is followed by the resonant gain term and spectral bandwidth
 269 change. This is shown in Fig. 5(d).
 270

271 Based on these results, we can conclude that the RIN-induced relative timing jitter noise
 272 through spectral shift coupled with GDD, i.e., Gordon-Haus effect should be dominant noise
 273 source of relative timing jitter in the CANDi laser.

273 7. Discussion

274 Based on the discussions in the previous sections, it can be deduced that the best way to
 275 suppress the relative timing jitter and the individual direction timing error is by reducing RIN-

276 induced timing jitter noise of the laser. From the last section, the most straightforward way to
277 weaken it is reducing the Gordon-Haus effect by lowering the GDD in the laser cavity.
278 However, this will reduce the pulse energy in CANDi laser and negatively impact its
279 application in nonlinear dual-comb systems.

280 An alternative approach is to reduce the intensity-dependent spectral shift. Therein, such
281 spectral shift can arise from nonlinear effects including self-steepening (SS), Raman self-
282 frequency shift and combined effect of self-phase modulation (SPM) and TOD, as well as from
283 gain filtering effect [32]. Detailed analysis and simulation are performed to evaluate the
284 contribution of each term (supplementary information section 7) and the results are shown in
285 Table 1 along with the experimentally measured center frequency shift. The Raman self-
286 frequency shift is not considered in the simulation due to the opposite sign of its spectral shift
287 compared to the measurement.

288

NONLINEAR EFFECTS CONSIDERED	CENTER FREQUENCY SHIFT (THz/W)
SS	0.007
SPM+TOD	-1.1e-9
SS+SPM+TOD	0.01
EXPERIMENTALLY MEASURED	0.18

289
290

Table 1. Simulated magnitude of center frequency shift from different nonlinear effects along with
experimentally measured overall shift.

291 These results shows that the contribution from the SPM + TOD term is negligible and thus
292 cavity GDD linearization is not an effective solution in minimizing the intensity-dependent
293 spectral shift. Since the net spectral shift from the nonlinear effects (SS + SPM + TOD) is still
294 an order of magnitude lower than the experimentally measured spectral shift, it suggests that
295 the gain filtering effect could be the major source of intensity-dependent spectral shift. A
296 possible way to control the gain filtering effect would be to tune the center frequency by tuning
297 the filter wavelength to operate at a flat region of the gain curve. As discussed in section 6,
298 pump power induced relative timing jitter in CANDi laser is mainly due to the difference in
299 spectral shift along the two directions. This is due to asymmetric gain distribution caused by
300 the asymmetry of the cavity laser structure. Hence, another possible way to suppress the relative
301 timing jitter would be by making the cavity structure and gain distribution more symmetric.
302 Another technique is adopting narrower spectral filters to minimize intensity-dependent
303 spectral shift. However, filter bandwidth needs to be carefully optimized since narrower
304 bandwidth can result in unfavorably higher ASE induced timing jitter due to longer pulse
305 duration [8]. Last but not least, RIN-induced relative timing jitter noise can be reduced by using
306 a pump with better RIN properties or suppressing the RIN of the existing pump using a PLL
307 system.

308

8. Conclusion

309
310
311
312
313
314
315
316

In summary, we enhance the state-of-the-art CANDi fiber laser pulse energy from 1 nJ to 8 nJ
and introduce a reference-free relative timing jitter characterization technique that enables an
in-depth analysis on CANDi fiber laser's relative timing jitter characteristics. The measurement
noise floor reaches an unprecedentedly low level of 1.6×10^{-7} fs²/Hz, and the corresponding
measurement precision integrated from 1 kHz to the Nyquist frequency of 20 MHz is only 1.8
fs, currently limited by the 8-bit oscilloscope digitization noise. We show that the cavity length
is a parameter that can be used to fine tune the average repetition rate without changing the
repetition rate difference or relative timing jitter of CANDi for dual-comb applications. We

317 measure the CANDi's integrated relative timing jitter to be 39 fs [1 kHz, 20 MHz], which is
318 mainly limited by the Gordon-Haus effect induced by the pump RIN. Therefore, improving the
319 pump RIN and minimizing the intensity-dependent spectral shift will further lower CANDi's
320 relative timing jitter. Our study has provided a general guideline for further improving the
321 performance of CANDi fiber laser as well as other single-cavity dual-comb lasers under free-
322 running condition, which will facilitate the development of high-performance compact dual-
323 comb systems and benefit various important fields such as remote sensing, health care and
324 environmental monitoring.

325 **Funding.** This research was funded by the Office of Naval Research (N00014-19-1-2251) and the National Science
326 Foundation (ECCS 2048202).

327 **Acknowledgments.** This research was funded by the Office of Naval Research (N00014-19-1-2251) and the
328 National Science Foundation (ECCS 2048202).

329 **Disclosures.** The authors declare no conflicts of interest.

330 **Data availability.** Data underlying the results presented in this paper are not publicly available at this time but may
331 be obtained from the authors upon reasonable request

332 **Supplemental document.** See Supplement 1 for supporting content.
333

334 **Reference**

- 335 [1] I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, "Rapid and precise
336 absolute distance measurements at long range," *Nat. Photonics*, vol. 3, no. 6, pp. 351–
337 356, 2009.
- 338 [2] M. Chernysheva, S. Sugavanam, and S. Turitsyn, "Real-time observation of the
339 optical Sagnac effect in ultrafast bidirectional fibre lasers," *APL Photonics*, vol. 5, no.
340 1, p. 16104, 2020.
- 341 [3] I. Coddington, N. Newbury, and W. Swann, "Dual-comb spectroscopy," *Optica*, vol.
342 3, no. 4, pp. 414–426, 2016.
- 343 [4] R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, "Self-triggered
344 asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-
345 locked fiber laser," *Sci. Rep.*, vol. 8, no. 1, pp. 1–8, 2018.
- 346 [5] I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent multiheterodyne
347 spectroscopy using stabilized optical frequency combs," *Phys. Rev. Lett.*, vol. 100, no.
348 1, p. 13902, 2008.
- 349 [6] J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R.
350 J. Jones, "Dual-comb spectroscopy of laser-induced plasmas," *Nat. Commun.*, vol. 9,
351 no. 1, pp. 1–6, 2018.
- 352 [7] T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, "Kerr-lens mode-locked
353 bidirectional dual-comb ring laser for broadband dual-comb spectroscopy," *Optica*,
354 vol. 3, no. 7, pp. 748–753, 2016.
- 355 [8] H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, "Review
356 of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute
357 distance measurement," *Nanotechnol. Precis. Eng.*, vol. 1, no. 4, pp. 205–217, 2018,
358 doi: <https://doi.org/10.1016/j.npe.2018.12.002>.
- 359 [9] G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H.
360 Jiang, and L. J. Qian, "Dual-wavelength synchronously mode-locked Nd: CNGG
361 laser," *Opt. Lett.*, vol. 33, no. 16, pp. 1872–1874, 2008.

362 [10] X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-
363 resolution dual-comb spectroscopy with a free-running fiber laser,” *Opt. Express*, vol.
364 24, no. 19, pp. 21833–21845, 2016.

365 [11] C. Bao, P. Liao, A. Kordts, L. Zhang, A. Matsko, M. Karpov, M. H. P. Pfeiffer, G.
366 Xie, Y. Cao, and A. Almaiman, “Orthogonally polarized frequency comb generation
367 from a Kerr comb via cross-phase modulation,” *Opt. Lett.*, vol. 44, no. 6, pp. 1472–
368 1475, 2019.

369 [12] S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb
370 spectroscopy with a free-running bidirectionally mode-locked fiber laser,” *Appl.
371 Phys. Lett.*, vol. 108, no. 23, p. 231104, 2016.

372 [13] C. Zeng, X. Liu, and L. Yun, “Bidirectional fiber soliton laser mode-locked by single-
373 wall carbon nanotubes,” *Opt. Express*, vol. 21, no. 16, pp. 18937–18942, 2013.

374 [14] B. Li, J. Xing, D. Kwon, Y. Xie, N. Prakash, J. Kim, and S.-W. Huang, “Bidirectional
375 mode-locked all-normal dispersion fiber laser,” *Optica*, vol. 7, no. 8, pp. 961–964,
376 2020.

377 [15] R. Liao, H. Tian, W. Liu, R. Li, Y. Song, and M. Hu, “Dual-comb generation from a
378 single laser source: principles and spectroscopic applications towards mid-IR—A
379 review,” *J. Phys. Photonics*, vol. 2, no. 4, p. 42006, 2020.

380 [16] T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch,
381 “Coherent Raman spectro-imaging with laser frequency combs,” *Nature*, vol. 502, no.
382 7471, pp. 355–358, 2013.

383 [17] R. Kameyama, S. Takizawa, K. Hiramatsu, and K. Goda, “Dual-comb coherent
384 Raman spectroscopy with near 100% duty cycle,” *ACS Photonics*, vol. 8, no. 4, pp.
385 975–981, 2020.

386 [18] G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and
387 T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,”
388 *Sci. Rep.*, vol. 8, no. 1, pp. 1–9, 2018.

389 [19] Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical
390 parametric oscillators toward real-time dual-comb spectroscopy,” *Appl. Phys. B*, vol.
391 119, no. 1, pp. 65–74, 2015.

392 [20] C. R. Phillips, C. P. Bauer, J. Pupeikis, B. Willenberg, S. Camenzind, and U. Keller,
393 “Dual-comb optical parametric oscillator with low noise pumped by free-running
394 dual-comb laser,” *Proc. SPIE PC11985, Nonlinear Freq. Gener. Convers. Mater.
395 Devices XXI*, 2022, doi: 10.1117/12.2609525.

396 [21] S. L. Camenzind, D. Koenen, B. Willenberg, J. Pupeikis, C. R. Phillips, and U.
397 Keller, “Timing jitter characterization of free-running dual-comb laser with sub-
398 attosecond resolution using optical heterodyne detection,” *Opt. Express*, vol. 30, no.
399 4, pp. 5075–5094, 2022.

400 [22] J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete
401 characterization of quantum-limited timing jitter in passively mode-locked fiber
402 lasers,” *Opt. Lett.*, vol. 35, no. 20, pp. 3522–3524, 2010.

403 [23] S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers:
404 semiconductor saturable absorber mirror decouples noise stabilization,” *Opt. Express*,
405 vol. 24, no. 3, pp. 1889–1902, 2016.

406 [24] J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter

407 characterization of free-running mode-locked lasers," *Opt. Lett.*, vol. 32, no. 24, pp.
408 3519–3521, 2007.

409 [25] D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim,
410 "Reference-free, high-resolution measurement method of timing jitter spectra of
411 optical frequency combs," *Sci. Rep.*, vol. 7, no. 1, pp. 1–9, 2017.

412 [26] H. Shi, Y. Song, T. Li, C. Wang, X. Zhao, Z. Zheng, and M. Hu, "Timing Jitter of the
413 Dual-Comb Mode-Locked Laser: A Quantum Origin and the Ultimate Effect on
414 High-Speed Time- and Frequency-Domain Metrology," *IEEE J. Sel. Top. Quantum
415 Electron.*, vol. 24, no. 5, pp. 1–10, 2018, doi: 10.1109/JSTQE.2018.2810381.

416 [27] R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N.
417 Haverkamp, H. R. Telle, and U. Keller, "Relative timing jitter measurements with an
418 indirect phase comparison method," *Appl. Phys. B*, vol. 80, no. 2, pp. 185–192, 2005.

419 [28] G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, "Real-time spectral
420 interferometry probes the internal dynamics of femtosecond soliton molecules,"
421 *Science (80-)*, vol. 356, no. 6333, pp. 50 LP – 54, Apr. 2017, doi:
422 10.1126/science.aal5326.

423 [29] A. Liu, L. Gao, W. Zou, J. Huang, Q. Wu, Y. Cao, Z. Chang, C. Peng, and T. Zhu,
424 "High speed surface defects detection of mirrors based on ultrafast single-pixel
425 imaging," *Opt. Express*, vol. 30, no. 9, pp. 15037–15048, 2022.

426 [30] B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E.
427 Bouma, G. J. Tearney, and J. F. De Boer, "Ultrahigh-resolution high-speed retinal
428 imaging using spectral-domain optical coherence tomography," *Opt. Express*, vol. 12,
429 no. 11, pp. 2435–2447, 2004.

430 [31] N. R. Newbury and B. R. Washburn, "Theory of the frequency comb output from a
431 femtosecond fiber laser," *IEEE J. Quantum Electron.*, vol. 41, no. 11, pp. 1388–1402,
432 2005.

433 [32] B. R. Washburn, W. C. Swann, and N. R. Newbury, "Response dynamics of the
434 frequency comb output from a femtosecond fiber laser," *Opt. Express*, vol. 13, no. 26,
435 pp. 10622–10633, 2005.