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Abstract
Free energy functionals of Ginzburg-Landau type lie at the heart of a broad class of continuum dynamical

models, such as the Cahn-Hilliard and Swift-Hohenberg equations. Despite the wide use of such models,
the assumptions embodied in the free energy functionals are frequently either poorly justified or lead to
physically opaque parameters. Here, we introduce a mathematically rigorous pathway for constructing free
energy functionals that generalizes beyond the constraints of Ginzburg-Landau gradient expansions. We
show that the new formalism unifies existing free energetic descriptions under a single umbrella by
establishing the criteria under which the generalized free energy reduces to gradient-based representations.
Consequently, we derive a precise physical interpretation of the gradient energy parameter in the Cahn-
Hilliard model as the product of an interaction length scale and the free energy curvature. The practical
impact of our approach is demonstrated using both a model free energy function and the silicon-germanium

alloy system.

Significance Statement
The free energy functional is a central component of continuum dynamical models used to

describe phase transitions, microstructural evolution, and pattern formation. However, despite the success
of these models in many areas of physics, chemistry, and biology, the standard free energy frameworks are
frequently characterized by physically opaque parameters and incorporate assumptions that are difficult to
assess. Here, we introduce a mathematical formalism that provides a unifying umbrella for constructing
free energy functionals. We show that Ginzburg-Landau framework is a special case of this umbrella and
derive a generalization of the widely employed Cahn-Hilliard equation. More broadly, we expect that the
new framework will also be useful for generalizing higher-order theories, establishing formal connections

to microscopic physics, and coarse-graining.



Main Text
Introduction

The principal goal of classical field theories, such as Ginzburg-Landau (GL) type' and classical
density functional theory (DFT)?, is to mathematically describe a system’s free energy in terms of some
order parameter(s) and consequently drive a continuum dynamical model (e.g., Cahn-Hilliard (CH)
equation, phase field>). These continuum models play a central role in our understanding and
mathematical modeling of the natural world in a vast range of applications spanning nucleation®, dendritic
growth’, self-assembly?®, intracellular organization®!?, and brain cortex dynamics''; see Fig. 1. Moreover,
they have become objects studied in their own right as distinct classes of stochastic PDEs!'?. Even in
situations where the underlying microscopic physics may be described explicitly at the atomistic scale (e.g.,
molecular dynamics'?, Langevin dynamics'4, or Glauber dynamics'’ driven by interatomic potentials), the
hydrodynamic/probabilistic limits of these descriptions are often described in terms of free energy gradient
flows'®. Consequently, constructing a free energetic description within a unified and physically

comprehensive framework is a centrally important task for the continuum modeling of dynamical systems.

The broad success of GL modeling notwithstanding, physical interpretations of GL free energy
parameters are variably ambiguous except in a few idealized cases!”!8, This difficulty arises principally
from the phenomenological supposition that the free energy is expressible in terms of a sequence of
gradients of one or more order parameters'®. Some insightful attempts have been made to derive GL free
energies with a more explicit physical basis, most notably classical DFT?, which relies on a liquid
reference state?'. One example is the Giacomin-Lebowitz model of phase segregation'>, which has gained
much attention in recent years as a non-local GL type theory that is physically interpretable. In another
instance, a simplified classical DFT formulation, which leads to Swift-Hohenberg free energies, has given
rise to the popular phase-field crystal (PFC) approach?!-?2, The PFC framework has been proposed as a
bridge? between classical dynamical DFT and phase-field models, although the numerous simplifications

embodied within it have been observed to lead to various unphysical predictions?!.

Here, we propose a generalization of GL type theory that addresses the challenges discussed
above. We show that the new formalism relaxes the locality assumption in GL theory by removing the
constraint that the free energy be strictly defined in terms of gradients. We also demonstrate, using specific
examples, how the generalization reduces to widely employed models, such as the Cahn-Hilliard free
energy, and in so doing obtain explicit criteria for their validity. Perhaps most practically, we also show
that the generalized approach naturally leads to physically interpretable parameters while at the same time
retaining the inherent multiresolution nature of the GL type framework. In this paper, we limit our analysis
to species diffusion (i.e., conserved gradient flow) to demonstrate these features but emphasize that the free

energy construction itself is entirely general.



Continuum Modeling of Diffusion

The standard continuum diffusion equation for species i is given by
aCl' oF
—=Zv-(Mij-V/3uj)+e=Zv- M;;-VB—|+e¢ 1
j j

where ¢; is the concentration, M;; is the mobility matrix****, Vy; is the driving force due to a generalized

chemical potential 4;, and € is a thermal noise term that satisfies the fluctuation-dissipation theorem?®. The

. . . 5F . . L
generalized chemical potential, y; = 6—5, is defined as the variational derivative of the free energy of the
12

system, F. In the present analysis, we neglect the noise term and focus on the deterministic evolution for
single and binary component cases and drop the indices i and j. However, an extension to multicomponent

cases?’ is straightforward.

The free energy', F[c] = | f([c],r)dV, is most generally assumed to be a functional of the
composition/density profile [c], where f([c], r) is the position-dependent free energy density functional.

Without loss of generality, F can be decomposed into ideal and excess contributions, i.e.,
F =Fd 4 Fex = ff"ddV + ffede, @)

where fi4 and f°* are the corresponding free energy densities. We do not consider external fields explicitly
as they contribute one-body terms that, along with £, do not modify the theory. Note that the separation
of F into ideal and excess components is natural as they arise from different aspects of the Brownian
motion that generates the diffusion equation. For example, classical DFT relates f¢* to the Ornstein-
Zernike relation/direct correlation?® function using the liquid/homogeneous state as a reference. GL type
theories do not usually consider this separation explicitly and assume F can be expanded directly with
respect to gradient terms?. Below we present an alternative framework for constructing the functional f®*
in terms of a sequence of convolution kernels that are directly linkable to the microscopic physics.
Importantly, this framework requires no inherent assumptions or constraints be placed on F[c] and can be

linked formally to both GL type and classical DFT theories.

Results

General Free Energy Functional

Consider a discretized compositional profile where f¢* is to be evaluated with respect to a
reference position 1y and {c,} = {c(r, + Ar,)} is the set of compositions that are {Ar,, } away from r, with

¢o = c(ry). For the special case where the discretization corresponds to a crystal lattice, ¢, denotes the



probability of site n being occupied by an atom. Assuming that f*({c,,}, ro) is analytical with respect to
variations in {c,}, it is possible to carry out a Taylor expansion with respect to any reference compositional
profile. Specifically, we seek an expression that relates f°*({c,,}, 1) to the function f°*(c)—the evaluation
of f¥*({c,}, 1) at constant composition c—whose information can be obtained from equilibrium

thermodynamic state variables and phase diagrams.
First, we note that f¢*({c, }, I'g) at constant composition may be expressed in two ways, i.e.,

Fe*(co) = F({end Yol iep=cop 3)

where the Lh.s. is a single-variable function, and the r.h.s. is a multivariate function evaluated at {c,,} = c,.

A Taylor expansion of the L.h.s. of eq. (3) with respect to some uniform concentration perturbation § gives

R R 1 amfex
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where m € N*. Correspondingly, Taylor expansion of the r.h.s. of eq. (3) gives
1Y gly, lay p q g
1 amfex
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The equivalence of egs. (4) and (5) implies that
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where the multi-index notation m = (n,,n,, ..., n,,) has been introduced. The application of eq. (7) to eq.

(5) then gives

m
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Next, combining egs. (5) and (8) gives
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is the m-site contribution to
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where pp, (co) = (%)mfex

at combination of sites m. Finally,
Co

generalizing the preceding analysis to non-uniform perturbations, i.e., {c,, = ¢, + 8,}, Taylor expansion of

fe* gives

. 1 -
F({en = o+ a1 1) = [%(co) + ZW@ pm(eo) [ [(en = co)). (10)

Note that eq. (10) holds for any number of spatial dimensions; in d-dimensions it is convenient to replace

the sum over m = {n;} by one over {n;}, where each n has d components.

The continuum limit of eq. (10) is now readily obtained as

. 1 -
el = 4@ + Y — [ [ ot or i) [ [ - 2an, (11
m i=1

where ¢; — ¢ = ¢(r;) — c¢(r) and the discrete site indices {n,, ..., n,,} become continuous coordinates
{ry, ..., }. Note also that the “0” subscripts denoting the reference position/composition have been
dropped in eq. (11) for notational brevity—we will employ this contraction in the remainder of the paper.

The continuum analog of eq. (9) is now given by

amf"ex
dc™

= f ...J-pm(c, {Ary, ...,Arm})ﬁdVi, (12)

where each [ dV; is an integration over the entire system volume. The total free energy of the system is

then given by
R 1 “
Flc] = f [f(c) +mepm(c,{Arl,...,Arm})l_[(ci—c) av,|av, (13)

Equation (13), along with the constraints in eq. (12), is a key result of the present work and a

powerful basis for unifying and assessing the validity of a broad range of existing free energetic
descriptions. For example, as we show below, this construct provides a mathematically explicit
interpretation of the locality assumption inherent in gradient expansion-based GL at any order.
Consequently, we find that using eq. (13) as a starting point and then imposing the locality assumption
leads to more generalized versions of commonly employed functionals. Moreover, as we show below, the

imposition of locality reduces the information regarding {p,,} that must be specified. While, in principle, it
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is possible to specify a complete description of {p,, } directly from measurements without invoking the
locality assumption, this is generally impractical except in special cases (e.g., p, is closely connected to the
direct correlation function used in classical DFT). We defer further discussion of this possibility to future
work. Finally, although not a focus of the present work, other formalisms may also be derived as special
cases of eq. (13). For example, as shown in Supplementary A, the Giacomin-Lebowitz model of phase
separation'®, an example of a so-called ‘non-local’ GL theory that has recently gained much attention in the
PDE community®’, can also be recovered as a special case of eq. (13). More generally, all non-local free

energy formulations, such as those proposed in Refs.’!32, must also satisfy eq. (13).

Relation to the Ginzburg-Landau Formalism

In the GL formalism, the free energy density is assumed to be analytical with respect to gradient

terms®!’, i.e.,
Flc] = f(f(c) +Vc-k(c)-Vc+-)dV, (14)

where k(c) is a symmetric matrix. The task at hand, therefore, is to determine the conditions under which

eq. (13) may be stated in the form of eq. (14). Consider a Taylor expansion of each site composition, c;,

. . 1 ; L
with respect to a reference ¢ = c(r), i.e., c; —c = Z]F [Ar; - V]fc|r, which gives

Flc] = f f(c)+Z% f o (c, (Ary, ...,Arm})zil!(Ar-Vc)i ﬁdVi av, (15)
™ j L=t

where j = (jy, ... j) and j; € N* (see Methods A). To establish a connection between eq. (15) and the GL
formalism in eq. (14) we note that the latter is written explicitly in terms of gradients of composition at

various orders. Consequently, the terms in eq. (15) must be rewritten as

Flc] = f f(c)+zz Ay (;)] av, (16a)
m ]

where the coefficients y,, y are

. =%(]1)] f o (c, {Arl,...,Arm})(Ar)lﬁdm, (16b)



and ] = {jm}, Jie = 1is a multi-index that runs over all possible gradient terms where i € {1, ..., m} and
represents the contribution along the o coordinate. This rearrangement is necessary to obtain distinct
coefficients for each gradient term such as k in eq. (14). Critically, such rearrangements are only
guaranteed to converge for absolutely convergent series (Fubini’s Theorem). Therefore, equating eqgs. (14)
and (16) implies that the representation of a GL free energy through gradient expansions requires this
nontrivial assumption to hold. A similar concern was raised in an attempt to derive a GL free energy from

classical DFT%,

J
Equation (16) contains all possible combinations of (%) that are allowed by symmetry, and it is

therefore formally equivalent to eq. (14). But it also lays bare a known limitation of the GL
framework?*3!—not all function moments of p,,, are well defined (see Methods A). In other words,
assumption of a gradient expansion, or equivalently the transformation of eq. (13) into eq. (16), places
strong constraints, often referred to as locality®®, on the class of p,, that are allowable. Consequently,

continuum models based on gradient expansions, such as those proposed in Refs. 23

, only include a subset
of the most general free energies that can be proposed. Perhaps equally importantly, the equivalence
between eqs. (14) and (16) provides a pathway for determining how the parameters of GL free energies are
related to function moments of p,,,, enabling the interpretation of GL parameters in terms of interatomic
potentials, coarse-grained interaction models, or experimental phase diagram data. This point is

demonstrated in the following section for the specific case of the Cahn-Hilliard free energy.

Square-Gradient Theories and the Cahn-Hilliard Equation

We now consider in detail the specific case of second-order gradient expansion, which is often
referred to as a square-gradient/GL/CH free energy and is a common basis of continuum and phase-field
modeling of critical phenomena', where k is usually assumed to be constant (but not necessarily isotropic).

The most general k is given by eq. (16) and only depends on the },j; , = 2 terms (see Methods B), i.e.,

9x1(a, B)
Kap = |X2(a, B) — |’ 17)
where a and g are direction indices and y; (@, B) = [ p1A7y ATy pdV; and x, (@, B) =
[ p2(Ary oA, g)dV, AV, are the second moments of p; and p,, respectively. Equation (17) may be
rewritten as
92 fex
Kk = —¢? f (18)

dc? ’



where k and ¢ are the matrix forms of k, g and g, g, respectively, aj‘ﬁ =[[[6(r —7) —

2 fex
119, (ArlyaArzﬁ)dVlde, and p, = pz/% (see Methods B).

Equation (18) is an illuminating result in several regards. First, it shows that the square-gradient
GL formalism is most generally expressed in terms of the gradient of the excess chemical potential and
only the second moments of p; and p,. In other words, the square-gradient approximation does not (and
cannot) include a complete description of these kernels; higher-order gradient terms would be required to
specify higher-order moments of p,,. Conversely, assuming that the conditions are met for the square-
gradient picture to be valid, only the second moments need to be estimated from data. This is a significant
simplification because o represents a physically interpretable quantity—an effective interaction range
between sites—that is generally straightforward to estimate. Moreover, while 6 may be composition-
dependent, in practice, it is likely to be only weakly so because of the explicit separation of the

62f8){

dc?

thermodynamic contribution, . Equation (18) also provides the necessary and sufficient conditions for

the commonly-employed constant k approximation'” in the Cahn-Hilliard picture. While Cahn and Hilliard
proved in their original papers that the constant k approximation is valid for a regular solution, there has
been no rigorous proof of how it arises as the limit of general microscopic models!>*°, But perhaps more
significantly, eq. (18) also proves that the forms of k obtained previously for special cases of regular

solution models!’-'8

may be rigorously extended to any solution thermodynamics at any length scale.
Although we do not presently consider elasticity and coherency strain contributions*~2, the decomposition
of Kk into an interaction distance and a thermodynamic contribution may also suggest a more self-consistent

route for incorporating these effects.

With the preceding considerations in mind, it is natural to introduce the simplest generalization of
the constant-k Cahn-Hilliard picture in which only 6 is assumed to be constant, while retaining the
compositionally dependent thermodynamic contribution in eq. (18). The corresponding diffusion equation,
which we refer to as the Generalized Square-Gradient (GSG) model, is given by (see Methods C)

Hex

aC—V{DV [“+1(v 2. gpx 4 2y 2\7)]} (19)
P Blataz\V 0" VAT + 5=V 0m-Ve)|,

where i = pp — u, and 4 = ug* — u§* are given by the differences of the two atomic species chemical
potentials and excess chemical potentials respectively. Equation (19) shows explicitly how the chemical
potential is modified by both compositional and chemical potential gradients. We note that a generalized
GL theory by Gurtin**, which has received considerable attention, is consistent with this picture. Finally,
the Cahn-Hilliard equation may then be obtained from eq. (19) by assuming [i®* = —n.yc + b, where n¢y

and b are constants, giving



%: V-{DVB[A—V k- Vc]}, (20)

where k = 21,5062,

Model Binary System Near a Tricritical Point

In this section, we use an analytical free energy model of a binary system to demonstrate how the
generalizations embedded in the GSG model modify dynamical evolution relative to that predicted by the
constant-k Cahn-Hilliard model. For all comparisons, both the isotropic diffusion coefficient, D, and the
isotropic interaction distance, o, are chosen to be constant and the same across the two models, allowing us
to precisely identify how the additional physics embodied in the GSG model modifies pattern evolution as

a function of initial conditions and solution thermodynamics. The free energy model is given by
A a R (c — 0.5)?
f=f+f*=[clogc+(1—c)log(1—c)]+|ac(1—c)—eexp —T , (21)

where the second term in the square brackets, modulated by the adjustable parameter €, reflects deviations
from regular solution behavior and results in a tricritical point. Note that in eq. (21), the concentration is
normalized to represent the atomic fraction. Below the tricritical point, the free energy model in eq. (21)
exhibits two stable ‘phases’: §; and &5, where ¢(&;) = 0.07 and c(&3) = 0.93. Past the tricritical point, a
third stable phase (£,) emerges at ¢(&,) = 0.5; see Supplementary C. We consider two distinct situations:
(1) spinodal decomposition in initially homogeneous, subcritical systems (e < 0.03), and (2) pattern
evolution in various supercritical settings (€ > 0.03). The other parameters in the free energy model are
fixed at @ = 3.0 and y = 0.03. Connection to a ‘best-fit’ Cahn-Hilliard model for each value of € is made
by finding the value of the (constant) gradient energy parameter, 7.y, that minimizes the difference

between £€%(c) in eq. (21) and that of a regular solution, i.e., ¢y = Argmin [[ £¢*(c) — neyc(1 — ¢)]dx.
ncH

All simulations are conducted using a finite difference scheme (central difference) and periodic boundary
condition on a 100 X 100 square grid, with uniform grid spacing fixed at l; = 5a,, where a,, is the

underlying lengthscale.

Spinodal Decomposition: Shown in Fig. 2 are three cases in which a noisy uniform initial compositional
distribution (¢ = 0.5 + N (0, 0.01)) undergoes spinodal decomposition. For each combination of € and 1y,
the top row corresponds to the Cahn-Hilliard (CH) model prediction with k = 21502, while the bottom
row is the generalized square-gradient (GSG) prediction with 0 = 2a,. As expected, the CH and GSG
models predict identical spinodal decomposition evolution for € = 0 (regular solution), Fig. 2(a). However,
as the excess free energy becomes increasingly non-quadratic (i.e., increasing |€]), the onset of spinodal

10



decomposition predicted by the CH model is slowed considerably relative to the GSG model, Fig. 2(b,c).
Moreover, there is an apparent difference in the dominant wavelength, with the CH model exhibiting a

slightly finer pattern.

These observations may be quantitatively predicted in the context of a linear stability analysis (see

Methods D). Specifically, the analysis shows that the dominant Fourier modes for the CH and GSG models

a%fex a%f . .
— >
5/ e as the critical point is

diverge from each other as A& — AT9% o \/r where r =

approached. The corresponding difference in spinodal decomposition timescale, g5 — Ty 72, also

diverges as the tricritical point is approached, as seen in Fig. 2.

Pattern Evolution: Motivated by the potential impact of thermal annealing on nanoscale devices, we next
consider several supercritical systems with various initial compositional heterogeneities and several
different parameter combinations. Shown in Fig. 3 is a situation in which a square region with area 100a3
and composition ¢ = 0.3 is placed in the center of an otherwise homogeneous field at ¢ = 0.5. In this set of
simulations, we consider a supercritical system (¢ = 0.075 corresponding to n¢y =2.7 for the best-fit CH
model) with three different interaction ranges: (a) o = 2ay, (b) 2.3a,, and (c) 3.3a,. The GSG model
results show a clear dependence on the interaction range parameter, . For a small interaction range, the
gradient energy penalty is small, and the square region grows over time while maintaining a composition
that corresponds to phase &;. As the interaction distance is increased to o = 2.3a,, the growing patch
exhibits a more rounded shape. Beyond this point, further increases to the interaction range destabilize the
patch and lead to dissolution due to the gradient energy penalty becoming dominant. The CH model,
however, predicts qualitatively different behavior. At the lowest interaction energy, the patch is observed to
remain static over the simulation timescale. The patch does begin to grow and become more rounded as the

interaction range increases, but the final trend towards dissolution is missed entirely in the CH picture.

Finally, we consider a strongly supercritical situation (¢ = 0.1, -y =2.6 for the best-fit CH
model) where the excess free energy curvature turns slightly positive near ¢ = 0.5, and with an interaction
range o = 3a,. As shown in Fig. 4, we investigate three initial configurations with different compositional
heterogeneity geometries. The first two cases exhibit spinodal decompositions within the compositional
heterogeneities in both GSG and CH models. However, in both instances, the spatiotemporal evolution
predicted by the GSG model appears to be qualitatively more ‘organized’ and appears to produce higher
symmetry configurations by the end of the simulations. This observation may be explained by the stronger
gradient energy effects in the GSG description, which effectively delay a complete spinodal decomposition
at early times. The delay allows the patterns in the GSG simulation to evolve more easily at earlier times,
leading to the ‘cleaner’ final configurations. The last case, shown in Fig. 4(c), highlights yet another
potential failure mode of the CH model. Here, two adjacent heterogeneities with compositions near c(&;) =
0.07 and c(&3) = 0.93 are, in principle, able to grow without altering the composition of the surroundings,

11



which are initialized at c(&,) = 0.5. The driving force for the growth of the heterogeneities is provided by
the lower free energy of the &; and &; phases relative to &,. This is indeed observed in the GSG model

while the CH model predicts an essentially static situation.

Compound Semiconductor (SiGe) Interdiffusion

Finally, we consider interdiffusion in SiGe, a highly studied phenomenon with broad

technological importance® 8

. Our choice of this system as an additional case study is motivated by two
characteristics. First, remarkably and somewhat uniquely, a large body of work**>%° has established
reasonable estimates for both the equilibrium thermodynamic and diffusion properties relevant to SiGe
interdiffusion, enabling quantitative and predictive modeling. Second, we use the very simple phase
behavior of the Si-Ge solid solution to demonstrate that gradient energy contributions may be significant in
unexpected situations—notably, most diffusion modeling in semiconductor systems assumes Fickian

physics in which gradient energy contributions are neglected*’.

4344 is used to fully parametrize the GSG model, including the chemical potential

Literature data
function, the self-diffusivity, and the coherency strain contribution!”** (see Supplementary B). The only
remaining parameter is the effective interaction range, o, which we fix to be twice the lattice parameter,
i.e., 2a, = 11.08A (see Supplementary C for additional results with ¢ = a,/2 and ¢ = a,). Interdiffusion
is simulated in two QW-type configurations (denoted as ‘well’ and ‘anti-well’), Fig. 5. The time evolution
of the ‘well” concentration profile predicted by the Fickian and GSG models is similar, showing a gradual
spreading of the initial Gaussian configuration. On the other hand, the ‘anti-well” configuration leads to
qualitatively different evolution across the two models. Here, the Fickian model predicts slow diffusion in
the center (low Ge fraction), which results in persistently sharp concentration peaks. The inclusion of the
gradient term in the GSG model leads to much faster evolution and broadening. The differences between
the two cases arise from the self-diffusivity's strong concentration dependence, which increases rapidly
with increasing Ge fraction (see Supplementary B). In the ‘well’ configuration, diffusion is rapid in the
center but becomes slower at the edges, effectively blocking the spread of Ge and reducing the impact of
the gradient energy term. In contrast, the ‘anti-well’ configuration shifts the diffusion bottleneck to the
center where the Ge fraction is lowest, and Fickian diffusion becomes very slow, resulting in the persistent
peak. The addition of the gradient energy term, which enhances diffusion in the presence of large gradients,
compensates for this effect in the GSG model. Given the ever-shrinking length scale (and potentially
increasing sensitivity to interdiffusion-related degradation) of optoelectronic devices, we conclude that
gradient energy effects may be necessary for modeling in these systems, even in the absence of apparent

features such as phase separation.

12



Discussion

The phenomenological nature of the GL free energy formalism has long been recognized as an
important limitation of continuum dynamical models. As a result, it has often been difficult to make direct
connections between key model parameters and microscopic physical properties, establish the bounds of
model validity, or generalize models across material systems or even operating conditions. In this paper, we
have presented a mathematically rigorous framework that leads to the most general hierarchy of free energy
functionals in terms of a sequence of convolution kernels. These kernels are only weakly constrained by
derivatives of the excess free energy of the system and therefore require additional inputs either from
experimental measurements of compositional evolution or from microscopic (e.g., atomistic) simulations.
Importantly, we demonstrate that the general hierarchy developed here can be explicitly matched to the
gradient-expansion framework of the GL formalism. This matching provides precise mathematical insight
into the nature of the approximations embodied within the GL construct while also demonstrating one

possible pathway for approximating the convolutional kernels in the hierarchy developed here.

Looking ahead, several potential avenues for future study are apparent. Most obviously, the
present hierarchy also may be used to analyze higher-order gradient expansions, such as the 4"-order Swift-
Hohenberg free energy™’, for which an analogous set of validity conditions may be obtained. The formalism
developed here is also useful for establishing a rigorous connection to microscopic physics, most notably
those represented by interatomic potential models>'=3. One possible pathway for accomplishing this
connection is to proceed via the classical DFT framework, where the equilibrium liquid-state direct
correlation function may be used to infer the relevant convolution kernels. More broadly, the hierarchy
developed here provides a formal mechanism for constructing a dictionary between thermodynamic
properties of the system at equilibrium, e.g., interface shapes between different phases, and the free energy

functional.
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Methods
Methods A: Connection to Ginzburg-Landau Type Theories

To establish a connection between eq. (13),

Flel = | [f(e) £y — [ b ﬁ(ci —oay

v, (A.1)

and the GL formalism,
F = f(f(c) +Vc-k(c)-Vc+-)dV, (A.2)

note first that the composition on each site, ¢;, can also be related to a reference site r with composition c,

via an additional Taylor expansion, as

1 .
ci—c=zj—![Ari~V]fc|r, (A.3)

J

where Ar; = r; — r. Substituting eq. (A.3) into the integral terms on the R.H.S. of eq. (A.1) gives

m m
1 1 1 )
Zﬁfpm I_l(Ci —o)dV; = ZEII)’” |_| ZE(AH -Wic| _|av,
m =1 m i=1 Ji

:Z%fpmzjll(m.v(:)i dv. (A.4)
™ j .

where j = (jy, ... j,) and
m
1 . 1 )
~(Ar - Vo) = 1_[ [_— (Ar, - V)ic| ] (A.5)
j! L LU r

Consequently eq. (A.1) becomes

F=f f(c)+2%fpmzil!(Ar-Vc)i ﬁdVi av. (A.6)
m j L=l

In order to establish a connection between eq. (A.6) and the GL formalism in eq. (A.2), we note that the
latter is written explicitly in terms of gradients of composition at various orders. Consequently, the terms in

eq. (A.6) must be reordered according to
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F=f f(c)+Zzil!%fpm(Ar-Vc)i|rﬁdVi av. (A7)
m o i=1

This rearrangement is necessary to obtain distinct coefficients for each gradient term such as k in eq. (14).
Critically, such rearrangements are only guaranteed to converge for absolutely convergent series (Fubini’s
Theorem). Therefore, equating eqgs. (A.2) and (A.7) implies that the representation of a GL free energy
through gradient expansions requires this nontrivial assumption to hold. A similar concern was raised in an

attempt to derive a GL free energy from classical DFT?.

We illustrate the problem described above by considering the m = 1 case for eq. (A.7), i.e.,

dv,|av . (A.8)
r

F; = f f(C) +Zjl!f.01 (Arl,a)j%
> a

. ae| . . .
Since P j is independent of r;, eq. (A.8) can be written as
T,

a'y

o 1 )i dlc
F, =f fo +Z,—|fp1(ArM) av;—| |dv. (A.9)
—J: g 1.

However, eq. (A.9) is only valid if all [ p, (Arlla)jdVl are bounded, or equivalently that all j* function

moments of p; are finite. This necessarily fails if p; « # asymptotically, i.e., decays algebraically,

because (Arlya)j « |r|/, and the integral term in eq. (A.9) becomes

j 1
fpl(ArLa) dv, « flrledVl’ (A.10)

which will diverge for k — j < (d — 1). Similar arguments hold for all p,,, and higher-order gradient terms
can only be included if the p,,, have finite moments at corresponding orders. Note that for most stable
distributions the variance is not well-defined, and for most Pareto distributions even the mean is not well-
defined. Such distributions are of broad interest in physical and economic models based on Brownian
motion, and diffusion on networks or general metric spaces may also readily have such dependencies in the

form of heavy-tailed distributions.

For completeness, we also demonstrate explicitly how eq. (A.2) can be obtained from eq. (A.1)
when the rearrangement from (A.6) to (A.7) is valid. To do so, recall that Ar; = {Ari,a}, where a €

{1, ...,d}, and d is the spatial dimension of the system. Ar; - V can therefore be written as

15



Using eq. (A.5),

so that

J

Z(Ar Vo) = Z(Ar—),

where the multi-index notation ] = { ji‘a} is introduced such that

G5 =il )

Substituting eq. (A.14) into eq. (A.7) then gives

ff(c)+z fpmz Ar—) HdV av,

which may be written compactly as

o TS pu e
m ]

where the coefficients ¢, j are

11y =
) [ omtary ] Jav,
i=1

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

and the integrals are the function moments of p,,,. Note that because the free energy is a scalar, all odd

function moments of p,,, must be zero. As such, eq (A.17) shows that the GL framework is equivalent to

requiring that the function moments of p,, do not diverge at all orders or a truncation of higher-order terms,

which is equivalent to neglecting or setting higher-order moments of p,,, to be zero.
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Methods B: Interpretation of the Square-Gradient Coefficient

By inversion symmetry, eq. (A.7) can be written as

o 1 1
~ f [f(c) +§fp1(Ar1 V)2cdv, +Effp2(Ar1 -Ve)dV, (Ar, -Vc)de]dV-i----, (B.1)
or
R 1 d%c dc dc
— [[f@+3D. > (a@p 5+ @)y a || av + -, (.2)
= B aV’p a¥’p
where
xi(a,p) = J-PlAr1,aAr1,BdV1 (B.3)
and
x2(a, B) EffpzAﬁ,aArz,ﬁdVlde (B.4)

are the 2"-order function moments of p; and p, respectively. By the divergence theorem, eq. (B.2) can be

rewritten as

f f(CHZZZ[XZ( ﬂ)_axl(a ﬁ)]::a:; av 4+ . (B.5)
Defining
Kap = [Xz (@p) - axgia)] (B.6)
gives
F=f{f(c)+%Vc-n-Vc}dV+---, (B.7)

recovering eq. (14) in the main text.
A more physically transparent expression for k is derived below. Differentiating eq. (B.3) gives

03:(@) _ [9ps
dc dc

AT‘l aAT'l BdVI (B. 8)

Using the recursive property of the convolutional kernels (eq. (12) in the main text)

17



amfex m
| = [on] v (8.9)
i=1
eq. (B.3) can be rewritten as
dx,(a,
# = f (f pdez) ATlraATLBdVI . (B. 10)
Rearranging terms in eq. (B.10) gives
0x:(a, B)
16—C f f 5(7‘1 - rz)pz (AT‘l aArz B)dVIdVZ . (B. 11)
Substituting eq. (B.11) into eq. (B.6) gives
Ka”B = f f[l - 6(r1 - rz)]pz (Arl'aArz'B)dVIdVZ . (B. 12)
Next, applying eq. (B.9) form = 2, i.e.,
az ex
32 f f p,dVidV,, (B.13)

. 62 fex
and since !
dc?

is independent of r; and 1, we obtain

ffpzdvldvz ff( 2fex> podVydV, = 1. (B.14)

2 pex\~1
where g, = [(i) pz] is a convolution in the V; X V, space. Using eq. (B.14), eq. (B.12) can now be

dc?

written as

aZfex
Ka‘ﬁ = - J‘ f 5(7”1 - rz) - 1 pz (AT‘l aAT'Z B)dvldVZ (B. 15)

Note that the negative sign and reordering in eq. (B.15) is introduced because the contribution from
x1(a, B) is usually larger than y,(a, 8) (in the original CH derivation'’, y, = 0). The integral term in eq.

(B.15) is a linear combination of the 2" moments of 3, and has units of length squared, and we define it as

Oap = ff[(?(rl —1y) — 115, (Ary o ATy g ) AV, AV, (B.16)
leading to the final result
azfex
Ka”g = —0'5”8 F (B 17)
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or in matrix form

azf‘ex
= —o? B.18
K 0" — 2 ( )
Methods C: Derivation of Generalized Square-Gradient (GSG) Model
Consider the GL formalism
= f(f(c) +Vc-k(c)-Vc+-)dV, (C.1D
with the gradient energy parameter derived in eq. (C.18) subject to constant ¢. The corresponding
variational derivative is then given by
SF X 163fex ) azf‘ex )
Ez/,t—i-i 363 Vc-06“-Vc—-V- 3¢z c°-Vc
X 1a3fex a3f‘ex Zfex
=0+ PRETE Vc - o2 Vc—63Vc(0 -Ve) — V. (0?-V0)
1 a3fex Zfex
=A-555 Vc-o6%-Vc— 502 V- (0% Vo). (C.2)
In the case of 62 = g2, eq. (C.2) reduces to
SF 2 ex 2 ex
— =~ 0- f o%(Vc)? — f o?V?c, (C.3)
c 2
or
O6F 10924 aﬁ
— ~f—-02]|= Ve)? + . C.4
5c”"[zac2() I €4
Finally noting that
aﬁex aZMex a'aex
Vz“e":V-( V>= Vc)? + — V. C.5
K ac ¢ acz(c)+6c ¢ €5
allows us to rewrite eq. (C.4) as
O6F 1 apex
e A~ ff——g2 2 nex 2 . .
éc K ZU(V# +6cvc) €6

Substituting eq. (C.6) into the diffusion equation finally gives
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E=v-{pvpla+i(v-o® vp + %v -a?-ve)|}. €.7)

Methods D: Linear Stability Analysis within the Square-Gradient Theory

Here we present linear stability analyses of CH and GSG free energy functionals,

Fey = f [f + %K(Vc)z] av, (D.1)
And
N aZf"ex
Figp = f [f—az - (vC)Z] av, (D.2)
respectively, where both 2 and k are assumed to be constant. Note that egs. (D.1) and (D.2) are equivalent
when a;]:x = —k/202. Consider a system at an initial composition c(r) = ¢, + € cos(q - r), where € < 1.

Taylor expanding f about x, up to 2"-order gives

a 92 1
Fou = [ [t + 2L c— e+ 355 e~ e + ey v, (0.3)
and,
R 10%f 1
8Fey = Foy — J-f(co)dV ~ f [Ea—cjzc(e cos(q-1))? + Ek(eqz sin(q - r))z] dav, (D.4)

where q = |q|. For small perturbations the saddle-point approximation gives

6FCH E 9 [—+Kq ] (D.5)

where all quantities are evaluated at x,. Applying the standard linear stability analysis for the GSG model,

the critical wavelengths are then given by

a2f\
en =21 |—K 3ez) (D.6)
and
2se = 2moV2r. (D.7)
_ azfex azf
where r = ——-/——.
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To obtain the fastest-growing Fourier modes among all the modes that do not decay, we consider

the diffusion equation for each free energy (eqs. (D.1) and (D.2)). For F¢y,

dc OF af
 ~ 2~ — V2, — 4
6t~DV 6C~D[6C2Vc KV C], (D.8)

where D is assumed to be constant for small fluctuations. Applying a time-varying perturbation of the form

S6x = e cos(q - r) exp(wt) into eq. (D.8) gives

D 10%f
— 2= 2
®=—_Kq [K—acz+q ] (D.9)

Solving for the g that maximizes w gives the fastest growing Fourier mode wavelength as

azf -1 azf‘ex -1
Z}_‘;x =21 _<W) 2K =21 —<W> ZKT, (D].O)

for the CH free energy and

maxr — Amoqr. (D.11)

The dominant Fourier modes for the CH and GSG models diverge from each other as the tricritical point is

approached (r — o0) according to

(D.12)

azfex -1
dc? )

max — Am* = 2mr | 20 — —2rc<
The corresponding growth rates, w7 and wise’, which scale as g* as the tricritical point is approached

(see eq. (D.9)), tend to zero as

D 0 Zfex
max max max\4 max

Wgs¢ —Wern” = g [2‘72 Bc2 (qésé)* — r(qly )4] o, (D.13)

Therefore, the spinodal decomposition timescales, T/ = 1/wii™ and tl5¢° = 1/wise, both tend

towards infinity as

1 1
max max ~ 14
TGSG - TCH (o8 wmax - wmax =T, (D. 14)
GSG CH
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Figure 1. Representative pattern structures predicted by various free energy functional-based
continuum models. a Fickian diffusion®*, b Cahn-Hilliard equation®®, ¢ Phase-field crystal®®, and d Swift-
Hohenberg equation®’.
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Figure 2. Spinodal decomposition behavior in an initially homogeneous, subcritical mixture
predicted by CH (top) and GSG (bottom) models for three mixture free energies. a ¢ = 0 and .y =
3.0,be =0.022 and ¢y = 2.91, and ¢ € = 0.026 and ¢y = 2.90. In all cases a, b, ¢: ¢ = 2a, and time

is scaled by the grid diffusion timescale, T, = 0.01(l;)?/D.
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Figure 3. Growth behavior of a square compositional heterogeneity predicted by CH (top) and GSG

(bottom) models as a function of interaction range for a supercritical mixture. a ¢ = 2aqy,b o =
2.3ay, ¢ 0 = 3.3a,. For all cases a, b, ¢: € = 0.075, ¢y = 2.70, and time is scaled by the grid diffusion

timescale, T, = 0.01(l;)?/D.
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Figure 4. Pattern evolution due to different initial compositional heterogeneities predicted by CH
(top) and GSG (bottom) models in a supercritical mixture. For all cases, a, b, ¢: € = 0.1, 0 = 3a,, and

time is scaled by the grid diffusion timescale, 7, = 0.01(l;)?/D
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Figure 5. One-dimensional interdiffusion as a function of time around a Gaussian well in SiGe. Top
row —Fickian, bottom row — GSG. ‘Well’ compositional profile (left) is given by X, = Cge/Ctor = 0.1 +
5.26 - N(25, \/§), and ‘anti-well” compositional profile (right) is X5, = Cge/Ctor = 0.9 — 5.26 -

N (2 5, \/§) The quantity c;,, is the concentration of atomic sites. Position is scaled by a,. Time is scaled
by the well variance diffusion timescale, T = t/tp, with 7, = 0.3/Dp,4, and Dy = D(x = 1). In all
cases, 0 = 2day.
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