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Abstract 
Free energy functionals of Ginzburg-Landau type lie at the heart of a broad class of continuum dynamical 

models, such as the Cahn-Hilliard and Swift-Hohenberg equations. Despite the wide use of such models, 

the assumptions embodied in the free energy functionals are frequently either poorly justified or lead to 

physically opaque parameters. Here, we introduce a mathematically rigorous pathway for constructing free 

energy functionals that generalizes beyond the constraints of Ginzburg-Landau gradient expansions. We 

show that the new formalism unifies existing free energetic descriptions under a single umbrella by 

establishing the criteria under which the generalized free energy reduces to gradient-based representations. 

Consequently, we derive a precise physical interpretation of the gradient energy parameter in the Cahn-

Hilliard model as the product of an interaction length scale and the free energy curvature. The practical 

impact of our approach is demonstrated using both a model free energy function and the silicon-germanium 

alloy system.    

 

Significance Statement 
The free energy functional is a central component of continuum dynamical models used to 

describe phase transitions, microstructural evolution, and pattern formation. However, despite the success 

of these models in many areas of physics, chemistry, and biology, the standard free energy frameworks are 

frequently characterized by physically opaque parameters and incorporate assumptions that are difficult to 

assess. Here, we introduce a mathematical formalism that provides a unifying umbrella for constructing 

free energy functionals. We show that Ginzburg-Landau framework is a special case of this umbrella and 

derive a generalization of the widely employed Cahn-Hilliard equation. More broadly, we expect that the 

new framework will also be useful for generalizing higher-order theories, establishing formal connections 

to microscopic physics, and coarse-graining.  
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Main Text 
Introduction 

The principal goal of classical field theories, such as Ginzburg-Landau (GL) type1 and classical 

density functional theory (DFT)2, is to mathematically describe a system’s free energy in terms of some 

order parameter(s) and consequently drive a continuum dynamical model (e.g., Cahn-Hilliard (CH) 

equation, phase field3–5). These continuum models play a central role in our understanding and 

mathematical modeling of the natural world in a vast range of applications spanning nucleation6, dendritic 

growth7, self-assembly8, intracellular organization9,10, and brain cortex dynamics11; see Fig. 1. Moreover, 

they have become objects studied in their own right as distinct classes of stochastic PDEs12. Even in 

situations where the underlying microscopic physics may be described explicitly at the atomistic scale (e.g., 

molecular dynamics13, Langevin dynamics14, or Glauber dynamics15 driven by interatomic potentials), the 

hydrodynamic/probabilistic limits of these descriptions are often described in terms of free energy gradient 

flows16. Consequently, constructing a free energetic description within a unified and physically 

comprehensive framework is a centrally important task for the continuum modeling of dynamical systems.  

The broad success of GL modeling notwithstanding, physical interpretations of GL free energy 

parameters are variably ambiguous except in a few idealized cases17,18. This difficulty arises principally 

from the phenomenological supposition that the free energy is expressible in terms of a sequence of 

gradients of one or more order parameters19. Some insightful attempts have been made to derive GL free 

energies with a more explicit physical basis, most notably classical DFT20, which relies on a liquid 

reference state21. One example is the Giacomin-Lebowitz model of phase segregation15, which has gained 

much attention in recent years as a non-local GL type theory that is physically interpretable. In another 

instance, a simplified classical DFT formulation, which leads to Swift-Hohenberg free energies, has given 

rise to the popular phase-field crystal (PFC) approach21,22. The PFC framework has been proposed as a 

bridge23 between classical dynamical DFT and phase-field models, although the numerous simplifications 

embodied within it have been observed to lead to various unphysical predictions21. 

Here, we propose a generalization of GL type theory that addresses the challenges discussed 

above. We show that the new formalism relaxes the locality assumption in GL theory by removing the 

constraint that the free energy be strictly defined in terms of gradients. We also demonstrate, using specific 

examples, how the generalization reduces to widely employed models, such as the Cahn-Hilliard free 

energy, and in so doing obtain explicit criteria for their validity. Perhaps most practically, we also show 

that the generalized approach naturally leads to physically interpretable parameters while at the same time 

retaining the inherent multiresolution nature of the GL type framework. In this paper, we limit our analysis 

to species diffusion (i.e., conserved gradient flow) to demonstrate these features but emphasize that the free 

energy construction itself is entirely general.  
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Continuum Modeling of Diffusion 

The standard continuum diffusion equation for species 𝑖𝑖 is given by 

𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕

= �𝛁𝛁 ⋅ �𝐌𝐌𝑖𝑖𝑖𝑖 ⋅ 𝛁𝛁𝛽𝛽𝜇𝜇𝑗𝑗�
𝑗𝑗

+ 𝜖𝜖 = �𝛁𝛁 ⋅ �𝐌𝐌𝑖𝑖𝑖𝑖 ⋅ 𝛁𝛁𝛽𝛽
𝛿𝛿𝛿𝛿
𝛿𝛿𝑐𝑐𝑗𝑗

�
𝑗𝑗

+ 𝜖𝜖, (1) 

where 𝑐𝑐𝑖𝑖 is the concentration, 𝐌𝐌𝑖𝑖𝑖𝑖  is the mobility matrix24,25, 𝛁𝛁𝜇𝜇𝑗𝑗 is the driving force due to a generalized 

chemical potential 𝜇𝜇𝑖𝑖, and 𝜖𝜖 is a thermal noise term that satisfies the fluctuation-dissipation theorem26. The 

generalized chemical potential, 𝜇𝜇𝑖𝑖 ≡
𝛿𝛿𝛿𝛿
𝛿𝛿𝑐𝑐𝑖𝑖

, is defined as the variational derivative of the free energy of the 

system, 𝐹𝐹. In the present analysis, we neglect the noise term and focus on the deterministic evolution for 

single and binary component cases and drop the indices 𝑖𝑖 and 𝑗𝑗. However, an extension to multicomponent 

cases27 is straightforward. 

The free energy1, 𝐹𝐹[𝑐𝑐] ≡ ∫ 𝑓𝑓([𝑐𝑐], 𝐫𝐫)𝑑𝑑𝑑𝑑, is most generally assumed to be a functional of the 

composition/density profile [𝑐𝑐], where 𝑓𝑓([𝑐𝑐], 𝐫𝐫) is the position-dependent free energy density functional. 

Without loss of generality, 𝐹𝐹 can be decomposed into ideal and excess contributions, i.e., 

𝐹𝐹 = 𝐹𝐹𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑒𝑒𝑒𝑒 = �𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 + �𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 , (2) 

where 𝑓𝑓𝑖𝑖𝑖𝑖 and 𝑓𝑓𝑒𝑒𝑒𝑒 are the corresponding free energy densities. We do not consider external fields explicitly 

as they contribute one-body terms that, along with 𝑓𝑓𝑖𝑖𝑖𝑖, do not modify the theory. Note that the separation 

of 𝐹𝐹 into ideal and excess components is natural as they arise from different aspects of the Brownian 

motion that generates the diffusion equation. For example, classical DFT relates 𝑓𝑓𝑒𝑒𝑒𝑒 to the Ornstein-

Zernike relation/direct correlation28 function using the liquid/homogeneous state as a reference. GL type 

theories do not usually consider this separation explicitly and assume 𝐹𝐹 can be expanded directly with 

respect to gradient terms29. Below we present an alternative framework for constructing the functional 𝑓𝑓𝑒𝑒𝑒𝑒 

in terms of a sequence of convolution kernels that are directly linkable to the microscopic physics. 

Importantly, this framework requires no inherent assumptions or constraints be placed on 𝐹𝐹[𝑐𝑐] and can be 

linked formally to both GL type and classical DFT theories.  

 

Results 
 
General Free Energy Functional 

Consider a discretized compositional profile where 𝑓𝑓𝑒𝑒𝑒𝑒 is to be evaluated with respect to a 

reference position 𝐫𝐫0 and {𝑐𝑐𝑛𝑛} ≡ {𝑐𝑐(𝐫𝐫0 + Δ𝐫𝐫𝑛𝑛)} is the set of compositions that are {Δ𝐫𝐫𝑛𝑛} away from 𝐫𝐫0 with 

𝑐𝑐0 ≡ 𝑐𝑐(𝐫𝐫0). For the special case where the discretization corresponds to a crystal lattice, 𝑐𝑐𝑛𝑛 denotes the 
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probability of site n being occupied by an atom. Assuming that 𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛}, 𝐫𝐫0) is analytical with respect to 

variations in {𝑐𝑐𝑛𝑛}, it is possible to carry out a Taylor expansion with respect to any reference compositional 

profile. Specifically, we seek an expression that relates 𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛}, 𝐫𝐫0) to the function 𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐)—the evaluation 

of 𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛}, 𝐫𝐫0) at constant composition 𝑐𝑐—whose information can be obtained from equilibrium 

thermodynamic state variables and phase diagrams. 

First, we note that 𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛}, 𝐫𝐫0) at constant composition may be expressed in two ways, i.e., 

𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐0) ≡ 𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛}, 𝐫𝐫0)|{𝑐𝑐𝑛𝑛=𝑐𝑐0}, (3) 

where the l.h.s. is a single-variable function, and the r.h.s. is a multivariate function evaluated at {𝑐𝑐𝑛𝑛} = 𝑐𝑐0. 

A Taylor expansion of the l.h.s. of eq. (3) with respect to some uniform concentration perturbation 𝛿𝛿 gives 

𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐0 + 𝛿𝛿) − 𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐0) = �
1
𝑚𝑚!

𝛿𝛿𝑚𝑚
𝜕𝜕𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑚𝑚
�

𝑚𝑚 𝑐𝑐0

, (4) 

where 𝑚𝑚 ∈ ℕ+. Correspondingly, Taylor expansion of the r.h.s. of eq. (3) gives 

𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛 = 𝑐𝑐0 + 𝛿𝛿}, 𝐫𝐫0) − 𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛 = 𝑐𝑐0}, 𝐫𝐫0) = �
1
𝑚𝑚!

𝛿𝛿𝑚𝑚
𝜕𝜕𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑚𝑚
�

𝑚𝑚 {𝑐𝑐𝑛𝑛=𝑐𝑐0}

. (5) 

The equivalence of eqs. (4) and (5) implies that 

𝜕𝜕
𝜕𝜕𝜕𝜕

= �
𝜕𝜕
𝜕𝜕𝑐𝑐𝑛𝑛𝑛𝑛

, (6) 

and therefore 

𝜕𝜕𝑚𝑚

𝜕𝜕𝑐𝑐𝑚𝑚
=

𝜕𝜕𝑚𝑚−1

𝜕𝜕𝑐𝑐𝑚𝑚−1
𝜕𝜕
𝜕𝜕𝜕𝜕

= ��
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐦𝐦

𝐦𝐦

≡�…���
𝜕𝜕
𝜕𝜕𝑐𝑐𝑛𝑛𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�
𝑛𝑛𝑚𝑚𝑛𝑛1

, (7) 

where the multi-index notation 𝐦𝐦 = (𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑚𝑚) has been introduced. The application of eq. (7) to eq. 

(5) then gives 

𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛 = 𝑐𝑐0 + 𝛿𝛿}, 𝐫𝐫0) − 𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛 = 𝑐𝑐0}, 𝐫𝐫0) = �
1
𝑚𝑚!

𝛿𝛿𝑚𝑚��
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐦𝐦

𝑓𝑓𝑒𝑒𝑒𝑒�
{𝑐𝑐𝑛𝑛=𝑐𝑐0}𝐦𝐦𝑚𝑚

 

= 𝛿𝛿�
𝜕𝜕𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑛𝑛1
�
�𝑐𝑐𝑛𝑛1=𝑐𝑐0�𝑛𝑛1

+
1
2
𝛿𝛿2��

𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑛𝑛1𝜕𝜕𝑐𝑐𝑛𝑛2
�
�𝑐𝑐𝑛𝑛1=𝑐𝑐𝑛𝑛2=𝑐𝑐0�𝑛𝑛2𝑛𝑛1

+ ⋯ . (8) 

Next, combining eqs. (5) and (8) gives 
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𝜕𝜕𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑚𝑚
�
𝑐𝑐0

= ��
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐦𝐦

𝑓𝑓𝑒𝑒𝑒𝑒�
{𝑐𝑐𝑛𝑛=𝑐𝑐0}𝐦𝐦

= �𝜌𝜌𝐦𝐦(𝑐𝑐0)
𝐦𝐦

, (9) 

where 𝜌𝜌𝐦𝐦(𝑐𝑐0) ≡ � 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐦𝐦
𝑓𝑓𝑒𝑒𝑒𝑒�

{𝑐𝑐𝑛𝑛=𝑐𝑐0}
 is the m-site contribution to 𝜕𝜕

𝑚𝑚𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑚𝑚
�
𝑐𝑐0

 at combination of sites 𝐦𝐦. Finally, 

generalizing the preceding analysis to non-uniform perturbations, i.e., {𝑐𝑐𝑛𝑛 = 𝑐𝑐0 + 𝛿𝛿𝑛𝑛}, Taylor expansion of 

𝑓𝑓𝑒𝑒𝑒𝑒 gives  

𝑓𝑓𝑒𝑒𝑒𝑒({𝑐𝑐𝑛𝑛 = 𝑐𝑐0 + 𝛿𝛿𝑛𝑛}, 𝐫𝐫0) = 𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐0) + �
1
𝑚𝑚!

��𝜌𝜌𝐦𝐦(𝑐𝑐0)��𝑐𝑐𝑛𝑛𝑖𝑖 − 𝑐𝑐0�
𝑚𝑚

𝑖𝑖=1𝐦𝐦

�
𝑚𝑚

, (10) 

Note that eq. (10) holds for any number of spatial dimensions; in d-dimensions it is convenient to replace 

the sum over 𝐦𝐦 = {𝑛𝑛𝑖𝑖} by one over {𝐧𝐧𝑖𝑖}, where each 𝐧𝐧 has d components.  

The continuum limit of eq. (10) is now readily obtained as 

𝑓𝑓𝑒𝑒𝑒𝑒([𝑐𝑐], 𝐫𝐫) = 𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐) + �
1
𝑚𝑚!

�…�𝜌𝜌𝑚𝑚(𝑐𝑐, {Δ𝐫𝐫1, … ,Δ𝐫𝐫𝑚𝑚})�(𝑐𝑐𝑖𝑖 − 𝑐𝑐)𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1𝑚𝑚

, (11) 

where 𝑐𝑐𝑖𝑖 − 𝑐𝑐 ≡ 𝑐𝑐(𝐫𝐫𝑖𝑖) − 𝑐𝑐(𝐫𝐫) and the discrete site indices {𝐧𝐧1, … ,𝐧𝐧𝑚𝑚} become continuous coordinates 

{𝐫𝐫1, … , 𝐫𝐫𝑚𝑚}. Note also that the “0” subscripts denoting the reference position/composition have been 

dropped in eq. (11) for notational brevity—we will employ this contraction in the remainder of the paper. 

The continuum analog of eq. (9) is now given by 

𝜕𝜕𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑚𝑚
�
𝑐𝑐

= �…�𝜌𝜌𝑚𝑚(𝑐𝑐, {Δ𝐫𝐫1, … ,Δ𝐫𝐫𝑚𝑚})�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, (12) 

where each ∫𝑑𝑑𝑉𝑉𝑖𝑖 is an integration over the entire system volume. The total free energy of the system is 

then given by 

𝐹𝐹[𝑐𝑐] = � �𝑓𝑓(𝑐𝑐) + �
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚(𝑐𝑐, {Δ𝐫𝐫1, … ,Δ𝐫𝐫𝑚𝑚})�(𝑐𝑐𝑖𝑖 − 𝑐𝑐)
𝑚𝑚

𝑖𝑖=1

𝑑𝑑𝑉𝑉𝑖𝑖
𝑚𝑚

� 𝑑𝑑𝑑𝑑 , (13) 

Equation (13), along with the constraints in eq. (12), is a key result of the present work and a 

powerful basis for unifying and assessing the validity of a broad range of existing free energetic 

descriptions. For example, as we show below, this construct provides a mathematically explicit 

interpretation of the locality assumption inherent in gradient expansion-based GL at any order. 

Consequently, we find that using eq. (13) as a starting point and then imposing the locality assumption 

leads to more generalized versions of commonly employed functionals. Moreover, as we show below, the 

imposition of locality reduces the information regarding {𝜌𝜌𝑚𝑚} that must be specified. While, in principle, it 
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is possible to specify a complete description of {𝜌𝜌𝑚𝑚} directly from measurements without invoking the 

locality assumption, this is generally impractical except in special cases (e.g., 𝜌𝜌2 is closely connected to the 

direct correlation function used in classical DFT). We defer further discussion of this possibility to future 

work. Finally, although not a focus of the present work, other formalisms may also be derived as special 

cases of eq. (13). For example, as shown in Supplementary A, the Giacomin-Lebowitz model of phase 

separation15, an example of a so-called ‘non-local’ GL theory that has recently gained much attention in the 

PDE community30, can also be recovered as a special case of eq. (13). More generally, all non-local free 

energy formulations, such as those proposed in Refs.31,32, must also satisfy eq. (13).  

 

Relation to the Ginzburg-Landau Formalism 

In the GL formalism, the free energy density is assumed to be analytical with respect to gradient 

terms8,17, i.e., 

𝐹𝐹[𝑐𝑐] = ��𝑓𝑓(𝑐𝑐) + 𝛁𝛁𝑐𝑐 ⋅ 𝛋𝛋(𝑐𝑐) ⋅ 𝛁𝛁𝑐𝑐 + ⋯�𝑑𝑑𝑑𝑑 , (14) 

where 𝛋𝛋(𝑐𝑐) is a symmetric matrix. The task at hand, therefore, is to determine the conditions under which 

eq. (13) may be stated in the form of eq. (14). Consider a Taylor expansion of each site composition, 𝑐𝑐𝑖𝑖, 

with respect to a reference 𝑐𝑐 = 𝑐𝑐(𝐫𝐫), i.e., 𝑐𝑐𝑖𝑖 − 𝑐𝑐 = ∑ 1
𝑗𝑗!

[Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁]𝑗𝑗𝑐𝑐�
𝐫𝐫𝑗𝑗 , which gives 

𝐹𝐹[𝑐𝑐] = ��𝑓𝑓(𝑐𝑐) + �
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚(𝑐𝑐, {Δ𝐫𝐫1, … ,Δ𝐫𝐫𝑚𝑚})�
1
𝐣𝐣!

(Δ𝐫𝐫 ⋅ 𝛁𝛁𝑐𝑐)𝐣𝐣
𝐣𝐣

�

𝐫𝐫

�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1𝑚𝑚

� 𝑑𝑑𝑑𝑑 , (15) 

where 𝐣𝐣 = (𝑗𝑗1, … 𝑗𝑗𝑚𝑚) and 𝑗𝑗𝑖𝑖 ∈ 𝑁𝑁+ (see Methods A). To establish a connection between eq. (15) and the GL 

formalism in eq. (14) we note that the latter is written explicitly in terms of gradients of composition at 

various orders. Consequently, the terms in eq. (15) must be rewritten as 

𝐹𝐹[𝑐𝑐] = ��𝑓𝑓(𝑐𝑐) + ��𝜒𝜒𝑚𝑚,𝐉𝐉 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐉𝐉

𝐉𝐉𝑚𝑚

� 𝑑𝑑𝑑𝑑 , (16𝑎𝑎) 

where the coefficients 𝜒𝜒𝑚𝑚,𝐉𝐉 are 

𝜒𝜒𝑚𝑚,𝐉𝐉 =
1
𝑚𝑚!

�
1
𝑗𝑗
�
𝐉𝐉

�𝜌𝜌𝑚𝑚(𝑐𝑐, {Δ𝐫𝐫1, … ,Δ𝐫𝐫𝑚𝑚})(Δ𝐫𝐫)𝐉𝐉�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, (16b) 
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and 𝐉𝐉 = �𝑗𝑗𝑖𝑖,𝛼𝛼�, 𝑗𝑗𝑖𝑖,𝛼𝛼 ≥ 1 is a multi-index that runs over all possible gradient terms where 𝑖𝑖 ∈ {1, … ,𝑚𝑚} and 𝛼𝛼 

represents the contribution along the 𝛼𝛼 coordinate. This rearrangement is necessary to obtain distinct 

coefficients for each gradient term such as 𝛋𝛋 in eq. (14). Critically, such rearrangements are only 

guaranteed to converge for absolutely convergent series (Fubini’s Theorem). Therefore, equating eqs. (14) 

and (16) implies that the representation of a GL free energy through gradient expansions requires this 

nontrivial assumption to hold. A similar concern was raised in an attempt to derive a GL free energy from 

classical DFT20.   

Equation (16) contains all possible combinations of �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐉𝐉
 that are allowed by symmetry, and it is 

therefore formally equivalent to eq. (14). But it also lays bare a known limitation of the GL 

framework20,31—not all function moments of 𝜌𝜌𝑚𝑚 are well defined (see Methods A). In other words, 

assumption of a gradient expansion, or equivalently the transformation of eq. (13) into eq. (16), places 

strong constraints, often referred to as locality33, on the class of 𝜌𝜌𝑚𝑚 that are allowable. Consequently, 

continuum models based on gradient expansions, such as those proposed in Refs. 29,34, only include a subset 

of the most general free energies that can be proposed. Perhaps equally importantly, the equivalence 

between eqs. (14) and (16) provides a pathway for determining how the parameters of GL free energies are 

related to function moments of 𝜌𝜌𝑚𝑚, enabling the interpretation of GL parameters in terms of interatomic 

potentials, coarse-grained interaction models, or experimental phase diagram data. This point is 

demonstrated in the following section for the specific case of the Cahn-Hilliard free energy. 

 

Square-Gradient Theories and the Cahn-Hilliard Equation 

We now consider in detail the specific case of second-order gradient expansion, which is often 

referred to as a square-gradient/GL/CH free energy and is a common basis of continuum and phase-field 

modeling of critical phenomena1, where 𝛋𝛋 is usually assumed to be constant (but not necessarily isotropic). 

The most general 𝛋𝛋 is given by eq. (16) and only depends on the ∑𝑗𝑗𝑖𝑖,𝛼𝛼 = 2 terms (see Methods B), i.e., 

𝜅𝜅𝛼𝛼,𝛽𝛽 = �𝜒𝜒2(𝛼𝛼,𝛽𝛽) −
𝜕𝜕𝜒𝜒1(𝛼𝛼,𝛽𝛽)

𝜕𝜕𝜕𝜕
� , (17) 

where 𝛼𝛼 and 𝛽𝛽 are direction indices and 𝜒𝜒1(𝛼𝛼,𝛽𝛽) ≡ ∫𝜌𝜌1Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟1,𝛽𝛽𝑑𝑑𝑉𝑉1 and 𝜒𝜒2(𝛼𝛼,𝛽𝛽) ≡

∫∫𝜌𝜌2�Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟2,𝛽𝛽�𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 are the second moments of 𝜌𝜌1 and 𝜌𝜌2, respectively. Equation (17) may be 

rewritten as 

𝛋𝛋 ≡ −𝛔𝛔2
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
, (18) 
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where 𝛋𝛋 and 𝛔𝛔 are the matrix forms of 𝜅𝜅𝛼𝛼,𝛽𝛽 and 𝜎𝜎𝛼𝛼,𝛽𝛽, respectively, 𝜎𝜎𝛼𝛼,𝛽𝛽
2 = ∫∫[𝛿𝛿(𝑟𝑟1 − 𝑟𝑟2) −

1]𝜌𝜌�2�Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟2,𝛽𝛽�𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2, and 𝜌𝜌�2 ≡ 𝜌𝜌2/ 𝜕𝜕2𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
 (see Methods B).  

Equation (18) is an illuminating result in several regards. First, it shows that the square-gradient 

GL formalism is most generally expressed in terms of the gradient of the excess chemical potential and 

only the second moments of 𝜌𝜌1 and 𝜌𝜌2. In other words, the square-gradient approximation does not (and 

cannot) include a complete description of these kernels; higher-order gradient terms would be required to 

specify higher-order moments of 𝜌𝜌𝑚𝑚. Conversely, assuming that the conditions are met for the square-

gradient picture to be valid, only the second moments need to be estimated from data. This is a significant 

simplification because 𝛔𝛔 represents a physically interpretable quantity—an effective interaction range 

between sites—that is generally straightforward to estimate. Moreover, while 𝛔𝛔 may be composition-

dependent, in practice, it is likely to be only weakly so because of the explicit separation of the 

thermodynamic contribution, 𝜕𝜕
2𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
. Equation (18) also provides the necessary and sufficient conditions for 

the commonly-employed constant 𝛋𝛋 approximation17 in the Cahn-Hilliard picture. While Cahn and Hilliard 

proved in their original papers that the constant 𝛋𝛋 approximation is valid for a regular solution, there has 

been no rigorous proof of how it arises as the limit of general microscopic models15,30. But perhaps more 

significantly, eq. (18) also proves that the forms of 𝛋𝛋 obtained previously for special cases of regular 

solution models17,18  may be rigorously extended to any solution thermodynamics at any length scale. 

Although we do not presently consider elasticity and coherency strain contributions35–42, the decomposition 

of 𝛋𝛋 into an interaction distance and a thermodynamic contribution may also suggest a more self-consistent 

route for incorporating these effects. 

With the preceding considerations in mind, it is natural to introduce the simplest generalization of 

the constant-𝛋𝛋 Cahn-Hilliard picture in which only 𝛔𝛔2 is assumed to be constant, while retaining the 

compositionally dependent thermodynamic contribution in eq. (18). The corresponding diffusion equation, 

which we refer to as the Generalized Square-Gradient (GSG) model, is given by (see Methods C) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛁𝛁 ⋅ �𝐷𝐷𝛁𝛁𝛽𝛽 �𝜇̂𝜇 +
1
2
�𝛁𝛁 ⋅ 𝛔𝛔2 ⋅ 𝛁𝛁𝜇̂𝜇𝑒𝑒𝑒𝑒 +

𝜕𝜕𝜇̂𝜇𝑒𝑒𝑒𝑒

𝜕𝜕𝜕𝜕
𝛁𝛁 ⋅ 𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐��� , (19) 

where 𝜇̂𝜇 ≡ 𝜇𝜇𝐵𝐵 − 𝜇𝜇𝐴𝐴 and 𝜇̂𝜇𝑒𝑒𝑒𝑒 ≡ 𝜇𝜇𝐵𝐵𝑒𝑒𝑒𝑒 − 𝜇𝜇𝐴𝐴𝑒𝑒𝑒𝑒 are given by the differences of the two atomic species chemical 

potentials and excess chemical potentials respectively. Equation (19) shows explicitly how the chemical 

potential is modified by both compositional and chemical potential gradients. We note that a generalized 

GL theory by Gurtin34, which has received considerable attention, is consistent with this picture. Finally, 

the Cahn-Hilliard equation may then be obtained from eq. (19) by assuming 𝜇̂𝜇𝑒𝑒𝑒𝑒 = −𝜂𝜂𝐶𝐶𝐶𝐶𝑐𝑐 + 𝑏𝑏, where 𝜂𝜂𝐶𝐶𝐶𝐶 

and 𝑏𝑏 are constants, giving  
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛁𝛁 ⋅ {𝐷𝐷𝛁𝛁𝛽𝛽[𝜇̂𝜇 − 𝛁𝛁 ⋅ 𝛋𝛋 ⋅ 𝛁𝛁𝑐𝑐]}, (20) 

where 𝛋𝛋 = 2𝜂𝜂𝐶𝐶𝐶𝐶𝛔𝛔2. 

 

Model Binary System Near a Tricritical Point 

In this section, we use an analytical free energy model of a binary system to demonstrate how the 

generalizations embedded in the GSG model modify dynamical evolution relative to that predicted by the 

constant-𝛋𝛋 Cahn-Hilliard model. For all comparisons, both the isotropic diffusion coefficient, 𝐷𝐷, and the 

isotropic interaction distance, 𝜎𝜎, are chosen to be constant and the same across the two models, allowing us 

to precisely identify how the additional physics embodied in the GSG model modifies pattern evolution as 

a function of initial conditions and solution thermodynamics. The free energy model is given by  

𝑓𝑓 = 𝑓𝑓𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑒𝑒𝑒𝑒 = [𝑐𝑐 log 𝑐𝑐 + (1 − 𝑐𝑐) log(1 − 𝑐𝑐)] + �𝛼𝛼𝛼𝛼(1 − 𝑐𝑐) − 𝜖𝜖 exp �−
(𝑐𝑐 − 0.5)2

𝛾𝛾
�� , (21) 

where the second term in the square brackets, modulated by the adjustable parameter 𝜖𝜖, reflects deviations 

from regular solution behavior and results in a tricritical point. Note that in eq. (21), the concentration is 

normalized to represent the atomic fraction. Below the tricritical point, the free energy model in eq. (21) 

exhibits two stable ‘phases’: 𝜉𝜉1 and 𝜉𝜉3, where 𝑐𝑐(𝜉𝜉1) = 0.07 and 𝑐𝑐(𝜉𝜉3) = 0.93. Past the tricritical point, a 

third stable phase (𝜉𝜉2) emerges at 𝑐𝑐(𝜉𝜉2) = 0.5; see Supplementary C. We consider two distinct situations: 

(1) spinodal decomposition in initially homogeneous, subcritical systems (𝜖𝜖 < 0.03), and (2) pattern 

evolution in various supercritical settings (𝜖𝜖 > 0.03). The other parameters in the free energy model are 

fixed at 𝛼𝛼 = 3.0 and 𝛾𝛾 = 0.03. Connection to a ‘best-fit’ Cahn-Hilliard model for each value of 𝜖𝜖 is made 

by finding the value of the (constant) gradient energy parameter, 𝜂𝜂𝐶𝐶𝐶𝐶, that minimizes the difference 

between 𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐) in eq. (21) and that of a regular solution, i.e., 𝜂𝜂𝐶𝐶𝐶𝐶 = Argmin
𝜂𝜂𝐶𝐶𝐶𝐶

∫� 𝑓𝑓𝑒𝑒𝑒𝑒(𝑐𝑐) − 𝜂𝜂𝐶𝐶𝐶𝐶𝑐𝑐(1 − 𝑐𝑐)�𝑑𝑑𝑑𝑑. 

All simulations are conducted using a finite difference scheme (central difference) and periodic boundary 

condition on a 100 × 100 square grid, with uniform grid spacing fixed at 𝑙𝑙𝐺𝐺 = 5𝑎𝑎0, where 𝑎𝑎0 is the 

underlying lengthscale.   

Spinodal Decomposition: Shown in Fig. 2 are three cases in which a noisy uniform initial compositional 

distribution (𝑐𝑐 = 0.5 + 𝑁𝑁(0, 0.01)) undergoes spinodal decomposition. For each combination of 𝜖𝜖 and 𝜂𝜂𝐶𝐶𝐶𝐶, 

the top row corresponds to the Cahn-Hilliard (CH) model prediction with 𝜅𝜅 = 2𝜂𝜂𝐶𝐶𝐶𝐶𝜎𝜎2, while the bottom 

row is the generalized square-gradient (GSG) prediction with 𝜎𝜎 = 2𝑎𝑎0. As expected, the CH and GSG 

models predict identical spinodal decomposition evolution for 𝜖𝜖 = 0 (regular solution), Fig. 2(a). However, 

as the excess free energy becomes increasingly non-quadratic (i.e., increasing |𝜖𝜖|), the onset of spinodal 



 

 

11 

 

decomposition predicted by the CH model is slowed considerably relative to the GSG model, Fig. 2(b,c). 

Moreover, there is an apparent difference in the dominant wavelength, with the CH model exhibiting a 

slightly finer pattern. 

These observations may be quantitatively predicted in the context of a linear stability analysis (see 

Methods D). Specifically, the analysis shows that the dominant Fourier modes for the CH and GSG models 

diverge from each other as  𝜆𝜆𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜆𝜆𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ∝ √𝑟𝑟 where 𝑟𝑟 ≡ 𝜕𝜕2𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
/ 𝜕𝜕2𝑓̂𝑓
𝜕𝜕𝑐𝑐2

→ ∞ as the critical point is 

approached. The corresponding difference in spinodal decomposition timescale, 𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺 − 𝜏𝜏𝐶𝐶𝐶𝐶 ∝ 𝑟𝑟2, also 

diverges as the tricritical point is approached, as seen in Fig. 2.  

Pattern Evolution: Motivated by the potential impact of thermal annealing on nanoscale devices, we next 

consider several supercritical systems with various initial compositional heterogeneities and several 

different parameter combinations. Shown in Fig. 3 is a situation in which a square region with area 100𝑎𝑎02 

and composition 𝑐𝑐 = 0.3 is placed in the center of an otherwise homogeneous field at 𝑐𝑐 = 0.5. In this set of 

simulations, we consider a supercritical system (𝜖𝜖 = 0.075 corresponding to 𝜂𝜂𝐶𝐶𝐶𝐶 =2.7 for the best-fit CH 

model) with three different interaction ranges: (a) 𝜎𝜎 = 2𝑎𝑎0, (b) 2.3𝑎𝑎0, and (c) 3.3𝑎𝑎0. The GSG model 

results show a clear dependence on the interaction range parameter, 𝜎𝜎. For a small interaction range, the 

gradient energy penalty is small, and the square region grows over time while maintaining a composition 

that corresponds to phase 𝜉𝜉1. As the interaction distance is increased to 𝜎𝜎 = 2.3𝑎𝑎0, the growing patch 

exhibits a more rounded shape. Beyond this point, further increases to the interaction range destabilize the 

patch and lead to dissolution due to the gradient energy penalty becoming dominant. The CH model, 

however, predicts qualitatively different behavior. At the lowest interaction energy, the patch is observed to 

remain static over the simulation timescale. The patch does begin to grow and become more rounded as the 

interaction range increases, but the final trend towards dissolution is missed entirely in the CH picture. 

Finally, we consider a strongly supercritical situation (𝜖𝜖 = 0.1, 𝜂𝜂𝐶𝐶𝐶𝐶 =2.6 for the best-fit CH 

model) where the excess free energy curvature turns slightly positive near 𝑐𝑐 = 0.5, and with an interaction 

range 𝜎𝜎 = 3𝑎𝑎0. As shown in Fig. 4, we investigate three initial configurations with different compositional 

heterogeneity geometries. The first two cases exhibit spinodal decompositions within the compositional 

heterogeneities in both GSG and CH models. However, in both instances, the spatiotemporal evolution 

predicted by the GSG model appears to be qualitatively more ‘organized’ and appears to produce higher 

symmetry configurations by the end of the simulations. This observation may be explained by the stronger 

gradient energy effects in the GSG description, which effectively delay a complete spinodal decomposition 

at early times. The delay allows the patterns in the GSG simulation to evolve more easily at earlier times, 

leading to the ‘cleaner’ final configurations. The last case, shown in Fig. 4(c), highlights yet another 

potential failure mode of the CH model. Here, two adjacent heterogeneities with compositions near 𝑐𝑐(𝜉𝜉1) =

0.07 and 𝑐𝑐(𝜉𝜉3) = 0.93 are, in principle, able to grow without altering the composition of the surroundings, 
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which are initialized at 𝑐𝑐(𝜉𝜉2) = 0.5. The driving force for the growth of the heterogeneities is provided by 

the lower free energy of the 𝜉𝜉1 and 𝜉𝜉3 phases relative to 𝜉𝜉2. This is indeed observed in the GSG model 

while the CH model predicts an essentially static situation. 

 

Compound Semiconductor (SiGe) Interdiffusion 

Finally, we consider interdiffusion in SiGe, a highly studied phenomenon with broad 

technological importance43–48. Our choice of this system as an additional case study is motivated by two 

characteristics. First, remarkably and somewhat uniquely, a large body of work44,45,49 has established 

reasonable estimates for both the equilibrium thermodynamic and diffusion properties relevant to SiGe 

interdiffusion, enabling quantitative and predictive modeling. Second, we use the very simple phase 

behavior of the Si-Ge solid solution to demonstrate that gradient energy contributions may be significant in 

unexpected situations—notably, most diffusion modeling in semiconductor systems assumes Fickian 

physics in which gradient energy contributions are neglected43. 

Literature data43,44 is used to fully parametrize the GSG model, including the chemical potential 

function, the self-diffusivity, and the coherency strain contribution17,43 (see Supplementary B). The only 

remaining parameter is the effective interaction range, 𝜎𝜎, which we fix to be twice the lattice parameter, 

i.e., 2𝑎𝑎0 = 11.08Å (see Supplementary C for additional results with 𝜎𝜎 = 𝑎𝑎0/2 and 𝜎𝜎 = 𝑎𝑎0). Interdiffusion 

is simulated in two QW-type configurations (denoted as ‘well’ and ‘anti-well’), Fig. 5. The time evolution 

of the ‘well’ concentration profile predicted by the Fickian and GSG models is similar, showing a gradual 

spreading of the initial Gaussian configuration. On the other hand, the ‘anti-well’ configuration leads to 

qualitatively different evolution across the two models. Here, the Fickian model predicts slow diffusion in 

the center (low Ge fraction), which results in persistently sharp concentration peaks. The inclusion of the 

gradient term in the GSG model leads to much faster evolution and broadening. The differences between 

the two cases arise from the self-diffusivity's strong concentration dependence, which increases rapidly 

with increasing Ge fraction (see Supplementary B). In the ‘well’ configuration, diffusion is rapid in the 

center but becomes slower at the edges, effectively blocking the spread of Ge and reducing the impact of 

the gradient energy term. In contrast, the ‘anti-well’ configuration shifts the diffusion bottleneck to the 

center where the Ge fraction is lowest, and Fickian diffusion becomes very slow, resulting in the persistent 

peak. The addition of the gradient energy term, which enhances diffusion in the presence of large gradients, 

compensates for this effect in the GSG model. Given the ever-shrinking length scale (and potentially 

increasing sensitivity to interdiffusion-related degradation) of optoelectronic devices, we conclude that 

gradient energy effects may be necessary for modeling in these systems, even in the absence of apparent 

features such as phase separation.  
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Discussion  
 
 The phenomenological nature of the GL free energy formalism has long been recognized as an 

important limitation of continuum dynamical models. As a result, it has often been difficult to make direct 

connections between key model parameters and microscopic physical properties, establish the bounds of 

model validity, or generalize models across material systems or even operating conditions. In this paper, we 

have presented a mathematically rigorous framework that leads to the most general hierarchy of free energy 

functionals in terms of a sequence of convolution kernels. These kernels are only weakly constrained by 

derivatives of the excess free energy of the system and therefore require additional inputs either from 

experimental measurements of compositional evolution or from microscopic (e.g., atomistic) simulations. 

Importantly, we demonstrate that the general hierarchy developed here can be explicitly matched to the 

gradient-expansion framework of the GL formalism. This matching provides precise mathematical insight 

into the nature of the approximations embodied within the GL construct while also demonstrating one 

possible pathway for approximating the convolutional kernels in the hierarchy developed here. 

 Looking ahead, several potential avenues for future study are apparent. Most obviously, the 

present hierarchy also may be used to analyze higher-order gradient expansions, such as the 4th-order Swift-

Hohenberg free energy50, for which an analogous set of validity conditions may be obtained. The formalism 

developed here is also useful for establishing a rigorous connection to microscopic physics, most notably 

those represented by interatomic potential models51–53. One possible pathway for accomplishing this 

connection is to proceed via the classical DFT framework, where the equilibrium liquid-state direct 

correlation function may be used to infer the relevant convolution kernels. More broadly, the hierarchy 

developed here provides a formal mechanism for constructing a dictionary between thermodynamic 

properties of the system at equilibrium, e.g., interface shapes between different phases, and the free energy 

functional. 
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Methods 
 
Methods A: Connection to Ginzburg-Landau Type Theories 

To establish a connection between eq. (13),  

𝐹𝐹[𝑐𝑐] = ��𝑓𝑓(𝑐𝑐) + �
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚�(𝑐𝑐𝑖𝑖 − 𝑐𝑐)
𝑚𝑚

𝑖𝑖=1

𝑑𝑑𝑉𝑉𝑖𝑖
𝑚𝑚

� 𝑑𝑑𝑑𝑑 , (A. 1) 

and the GL formalism, 

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) + 𝛁𝛁𝑐𝑐 ⋅ 𝛋𝛋(𝑐𝑐) ⋅ 𝛁𝛁𝑐𝑐 + ⋯�𝑑𝑑𝑑𝑑 , (A. 2) 

note first that the composition on each site, 𝑐𝑐𝑖𝑖, can also be related to a reference site r with composition 𝑐𝑐, 

via an additional Taylor expansion, as 

𝑐𝑐𝑖𝑖 − 𝑐𝑐 = �
1
𝑗𝑗!

[Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁]𝑗𝑗𝑐𝑐�
𝐫𝐫

𝑗𝑗

, (A. 3) 

where Δ𝐫𝐫𝑖𝑖 ≡ 𝐫𝐫𝑖𝑖 − 𝐫𝐫. Substituting eq. (A.3) into the integral terms on the R.H.S. of eq. (A.1) gives 

�
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚�(𝑐𝑐𝑖𝑖 − 𝑐𝑐)
𝑚𝑚

𝑖𝑖=1

𝑑𝑑𝑉𝑉𝑖𝑖
𝑚𝑚

= �
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚���
1
𝑗𝑗𝑖𝑖!

(Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁)𝑗𝑗𝑖𝑖𝑐𝑐�
𝐫𝐫

𝑗𝑗𝑖𝑖

�
𝑚𝑚

𝑖𝑖=1

𝑑𝑑𝑉𝑉𝑖𝑖
𝑚𝑚

 

= �
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚�
1
𝐣𝐣!

(Δ𝐫𝐫 ⋅ 𝛁𝛁𝑐𝑐)𝐣𝐣
𝐣𝐣

�

𝐫𝐫

𝑑𝑑𝑉𝑉𝑖𝑖
𝑚𝑚

. (A. 4) 

where 𝐣𝐣 = (𝑗𝑗1, … 𝑗𝑗𝑚𝑚) and 

1
𝐣𝐣!

(Δ𝐫𝐫 ⋅ 𝛁𝛁𝑐𝑐)𝐣𝐣 ≡��
1
𝑗𝑗𝑖𝑖!

(Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁)𝑗𝑗𝑖𝑖𝑐𝑐�
𝐫𝐫
�

𝑚𝑚

𝑖𝑖=1

. (A. 5) 

Consequently eq. (A.1) becomes  

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) + �
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚�
1
𝐣𝐣!

(Δ𝐫𝐫 ⋅ 𝛁𝛁𝑐𝑐)𝐣𝐣
𝐣𝐣

�

𝐫𝐫

�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1𝑚𝑚

� 𝑑𝑑𝑑𝑑 . (A. 6) 

In order to establish a connection between eq. (A.6) and the GL formalism in eq. (A.2), we note that the 

latter is written explicitly in terms of gradients of composition at various orders. Consequently, the terms in 

eq. (A.6) must be reordered according to 
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𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) + ��
1
𝐣𝐣!

𝐣𝐣

1
𝑚𝑚!

�𝜌𝜌𝑚𝑚(Δ𝐫𝐫 ⋅ 𝛁𝛁𝑐𝑐)𝐣𝐣�
𝐫𝐫
�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1𝑚𝑚

� 𝑑𝑑𝑑𝑑 . (A. 7) 

This rearrangement is necessary to obtain distinct coefficients for each gradient term such as 𝛋𝛋 in eq. (14). 

Critically, such rearrangements are only guaranteed to converge for absolutely convergent series (Fubini’s 

Theorem). Therefore, equating eqs. (A.2) and (A.7) implies that the representation of a GL free energy 

through gradient expansions requires this nontrivial assumption to hold. A similar concern was raised in an 

attempt to derive a GL free energy from classical DFT20.  

We illustrate the problem described above by considering the 𝑚𝑚 = 1 case for eq. (A.7), i.e.,  

𝐹𝐹1 = ��𝑓𝑓(𝑐𝑐) + �
1
𝑗𝑗!
�𝜌𝜌1 �Δ𝑟𝑟1,𝛼𝛼�

𝑗𝑗 𝜕𝜕𝑗𝑗𝑐𝑐
𝜕𝜕𝑟𝑟𝛼𝛼

𝑗𝑗�
𝐫𝐫

𝑑𝑑𝑉𝑉1
𝑗𝑗

� 𝑑𝑑𝑑𝑑 . (A. 8) 

Since 𝜕𝜕
𝑗𝑗𝑐𝑐

𝜕𝜕𝑟𝑟𝛼𝛼
𝑗𝑗�
𝐫𝐫
 is independent of 𝐫𝐫1, eq. (A.8) can be written as 

𝐹𝐹1 = ��𝑓𝑓(𝑐𝑐) + �
1
𝑗𝑗!
�𝜌𝜌1�Δ𝑟𝑟1,𝛼𝛼�

𝑗𝑗𝑑𝑑𝑉𝑉1
𝑗𝑗

𝜕𝜕𝑗𝑗𝑐𝑐
𝜕𝜕𝑟𝑟𝛼𝛼

𝑗𝑗�
𝐫𝐫

� 𝑑𝑑𝑑𝑑 . (A. 9) 

However, eq. (A.9) is only valid if all ∫ 𝜌𝜌1�Δ𝑟𝑟1,𝛼𝛼�
𝑗𝑗𝑑𝑑𝑉𝑉1 are bounded, or equivalently that all 𝑗𝑗𝑡𝑡ℎ function 

moments of 𝜌𝜌1 are finite. This necessarily fails if 𝜌𝜌1 ∝
1

|𝐫𝐫|𝑘𝑘
 asymptotically, i.e., decays algebraically, 

because �Δ𝑟𝑟1,𝛼𝛼�
𝑗𝑗 ∝ |𝐫𝐫|𝑗𝑗 , and the integral term in eq. (A.9) becomes 

�𝜌𝜌1�Δ𝑟𝑟1,𝛼𝛼�
𝑗𝑗𝑑𝑑𝑉𝑉1 ∝ �

1
|𝐫𝐫|𝑘𝑘−𝑗𝑗 𝑑𝑑𝑉𝑉1 , (A. 10) 

which will diverge for 𝑘𝑘 − 𝑗𝑗 ≤ (𝑑𝑑 − 1). Similar arguments hold for all 𝜌𝜌𝑚𝑚 and higher-order gradient terms 

can only be included if the 𝜌𝜌𝑚𝑚 have finite moments at corresponding orders. Note that for most stable 

distributions the variance is not well-defined, and for most Pareto distributions even the mean is not well-

defined. Such distributions are of broad interest in physical and economic models based on Brownian 

motion, and diffusion on networks or general metric spaces may also readily have such dependencies in the 

form of heavy-tailed distributions.  

 For completeness, we also demonstrate explicitly how eq. (A.2) can be obtained from eq. (A.1) 

when the rearrangement from (A.6) to (A.7) is valid. To do so, recall that Δ𝐫𝐫𝑖𝑖 = �Δ𝑟𝑟𝑖𝑖,𝛼𝛼�, where 𝛼𝛼 ∈

{1, … ,𝑑𝑑}, and 𝑑𝑑 is the spatial dimension of the system. Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁 can therefore be written as 



 

 

16 

 

Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁 = �Δ𝑟𝑟𝑖𝑖,𝛼𝛼
𝜕𝜕
𝜕𝜕𝑟𝑟𝛼𝛼𝛼𝛼

. (A. 11) 

Using eq. (A.5), 

1
𝐣𝐣!

(Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁𝑐𝑐)𝐣𝐣 = ��
1
𝑗𝑗𝑖𝑖!
��Δ𝑟𝑟𝑖𝑖,𝛼𝛼

𝜕𝜕
𝜕𝜕𝑟𝑟𝛼𝛼𝛼𝛼

�
𝑗𝑗𝑖𝑖

𝑐𝑐�
𝑚𝑚

𝑖𝑖=1

, (A. 12) 

so that 

�(Δ𝐫𝐫𝑖𝑖 ⋅ 𝛁𝛁𝑐𝑐)𝐣𝐣
𝐣𝐣

= ��Δ𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐉𝐉

𝐉𝐉

, (A. 13) 

where the multi-index notation 𝐉𝐉 ≡ �𝑗𝑗𝑖𝑖,𝛼𝛼� is introduced such that 

�
1
𝑗𝑗
Δ𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐉𝐉

≡�
1

�∑ 𝑗𝑗𝑖𝑖,𝛼𝛼𝛼𝛼 �!
���Δ𝑟𝑟𝑖𝑖,𝛼𝛼

𝜕𝜕
𝜕𝜕𝑟𝑟𝛼𝛼

�
𝑗𝑗𝑖𝑖,𝛼𝛼

𝑐𝑐�
𝑑𝑑

𝛼𝛼=1

𝑚𝑚

𝑖𝑖=1

. (A. 14) 

Substituting eq. (A.14) into eq. (A.7) then gives 

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) + �
1
𝑚𝑚!

�𝜌𝜌𝑚𝑚��
1
𝑗𝑗
Δ𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐉𝐉

𝐉𝐉

�

𝐫𝐫

�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1𝑚𝑚

� 𝑑𝑑𝑑𝑑 , (A. 15) 

which may be written compactly as 

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) + ��𝜒𝜒𝑚𝑚,𝐉𝐉 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐉𝐉

𝐉𝐉𝑚𝑚

� 𝑑𝑑𝑑𝑑 , (A. 16) 

where the coefficients 𝑐𝑐𝑚𝑚,𝐉𝐉 are 

𝜒𝜒𝑚𝑚,𝐉𝐉 =
1
𝑚𝑚!

�
1
𝑗𝑗
�
𝐉𝐉

�𝜌𝜌𝑚𝑚(Δ𝑟𝑟)𝐉𝐉�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, (A. 17) 

and the integrals are the function moments of 𝜌𝜌𝑚𝑚. Note that because the free energy is a scalar, all odd 

function moments of 𝜌𝜌𝑚𝑚 must be zero. As such, eq (A.17) shows that the GL framework is equivalent to 

requiring that the function moments of 𝜌𝜌𝑚𝑚 do not diverge at all orders or a truncation of higher-order terms, 

which is equivalent to neglecting or setting higher-order moments of 𝜌𝜌𝑚𝑚 to be zero. 
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Methods B: Interpretation of the Square-Gradient Coefficient 

By inversion symmetry, eq. (A.7) can be written as  

𝐹𝐹 ≈ � �𝑓𝑓(𝑐𝑐) +
1
2
�𝜌𝜌1(Δ𝐫𝐫1 ⋅ 𝛁𝛁)2𝑐𝑐𝑑𝑑𝑉𝑉1 +

1
2
��𝜌𝜌2(Δ𝐫𝐫1 ⋅ 𝛁𝛁𝑐𝑐)𝑑𝑑𝑉𝑉1(Δ𝐫𝐫2 ⋅ 𝛁𝛁𝑐𝑐)𝑑𝑑𝑉𝑉2� 𝑑𝑑𝑑𝑑 + ⋯ , (B. 1) 

or 

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) +
1
2
���𝜒𝜒1(𝛼𝛼,𝛽𝛽)

𝜕𝜕2𝑐𝑐
𝜕𝜕𝑟𝑟𝛼𝛼𝜕𝜕𝑟𝑟𝛽𝛽

+ 𝜒𝜒2(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝛼𝛼

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝛽𝛽

�
𝛽𝛽𝛼𝛼

� 𝑑𝑑𝑑𝑑 + ⋯ , (B. 2) 

where  

𝜒𝜒1(𝛼𝛼,𝛽𝛽) ≡ �𝜌𝜌1Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟1,𝛽𝛽𝑑𝑑𝑉𝑉1 (B. 3) 

and 

𝜒𝜒2(𝛼𝛼,𝛽𝛽) ≡ ��𝜌𝜌2Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟2,𝛽𝛽𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 (B. 4) 

are the 2nd-order function moments of 𝜌𝜌1 and 𝜌𝜌2 respectively. By the divergence theorem, eq. (B.2) can be 

rewritten as 

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) +
1
2
���𝜒𝜒2(𝛼𝛼,𝛽𝛽) −

𝜕𝜕𝜒𝜒1(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝛼𝛼

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝛽𝛽𝛽𝛽𝛼𝛼

�𝑑𝑑𝑑𝑑 + ⋯ . (B. 5) 

Defining  

𝜅𝜅𝛼𝛼,𝛽𝛽 ≡ �𝜒𝜒2(𝛼𝛼,𝛽𝛽) −
𝜕𝜕𝜒𝜒1(𝛼𝛼)
𝜕𝜕𝜕𝜕

� (B. 6) 

gives  

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) +
1
2
𝛁𝛁𝑐𝑐 ⋅ 𝛋𝛋 ⋅ 𝛁𝛁𝑐𝑐� 𝑑𝑑𝑑𝑑 + ⋯ , (B. 7) 

recovering eq. (14) in the main text.  

A more physically transparent expression for 𝛋𝛋 is derived below. Differentiating eq. (B.3) gives 

𝜕𝜕𝜒𝜒1(𝛼𝛼)
𝜕𝜕𝜕𝜕

= �
𝜕𝜕𝜌𝜌1
𝜕𝜕𝜕𝜕

Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟1,𝛽𝛽𝑑𝑑𝑉𝑉1 . (B. 8) 

Using the recursive property of the convolutional kernels (eq. (12) in the main text) 
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𝜕𝜕𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐𝑚𝑚
�
𝑐𝑐

= �𝜌𝜌𝑚𝑚�𝑑𝑑𝑉𝑉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, (B. 9) 

eq. (B.3) can be rewritten as  

𝜕𝜕𝜒𝜒1(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝜕𝜕

= ���𝜌𝜌2𝑑𝑑𝑉𝑉2� Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟1,𝛽𝛽𝑑𝑑𝑉𝑉1 . (B. 10) 

Rearranging terms in eq. (B.10) gives 

𝜕𝜕𝜒𝜒1(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝜕𝜕

= ��𝛿𝛿(𝑟𝑟1 − 𝑟𝑟2)𝜌𝜌2�Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟2,𝛽𝛽�𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 . (B. 11) 

Substituting eq. (B.11) into eq. (B.6) gives 

𝜅𝜅𝛼𝛼,𝛽𝛽 = ��[1 − 𝛿𝛿(𝑟𝑟1 − 𝑟𝑟2)]𝜌𝜌2�Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟2,𝛽𝛽�𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 . (B. 12) 

Next, applying eq. (B.9) for 𝑚𝑚 = 2, i.e.,  

𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
= ��𝜌𝜌2𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 , (B. 13) 

and since 𝜕𝜕
2𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
 is independent of 𝑟𝑟1 and 𝑟𝑟2, we obtain 

��𝜌𝜌�2𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 ≡ ���
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
�
−1

𝜌𝜌2𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 = 1. (B. 14) 

where 𝜌𝜌�2 ≡ ��𝜕𝜕
2𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
�
−1
𝜌𝜌2� is a convolution in the 𝑉𝑉1 × 𝑉𝑉2 space. Using eq. (B.14), eq. (B.12) can now be 

written as  

𝜅𝜅𝛼𝛼,𝛽𝛽 = −
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
��[𝛿𝛿(𝑟𝑟1 − 𝑟𝑟2) − 1]𝜌𝜌�2�Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟2,𝛽𝛽�𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 . (B. 15) 

Note that the negative sign and reordering in eq. (B.15) is introduced because the contribution from 

𝜒𝜒1(𝛼𝛼,𝛽𝛽) is usually larger than 𝜒𝜒2(𝛼𝛼,𝛽𝛽) (in the original CH derivation17, 𝜒𝜒2 = 0). The integral term in eq. 

(B.15) is a linear combination of the 2nd moments of 𝜌𝜌�2 and has units of length squared, and we define it as 

𝜎𝜎𝛼𝛼,𝛽𝛽
2 ≡ ��[𝛿𝛿(𝑟𝑟1 − 𝑟𝑟2) − 1]𝜌𝜌�2�Δ𝑟𝑟1,𝛼𝛼Δ𝑟𝑟2,𝛽𝛽�𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2 , (B. 16) 

leading to the final result 

𝜅𝜅𝛼𝛼,𝛽𝛽 = −𝜎𝜎𝛼𝛼,𝛽𝛽
2 𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
. (B. 17) 
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or in matrix form 

𝛋𝛋 = −𝛔𝛔2
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
. (B. 18) 

 

Methods C: Derivation of Generalized Square-Gradient (GSG) Model 

Consider the GL formalism 

𝐹𝐹 = ��𝑓𝑓(𝑐𝑐) + 𝛁𝛁𝑐𝑐 ⋅ 𝛋𝛋(𝑐𝑐) ⋅ 𝛁𝛁𝑐𝑐 + ⋯�𝑑𝑑𝑑𝑑 , (C. 1) 

with the gradient energy parameter derived in eq. (C.18) subject to constant 𝛔𝛔. The corresponding 

variational derivative is then given by 

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

≈ 𝜇̂𝜇 +
1
2
𝜕𝜕3𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐3
𝛁𝛁𝑐𝑐 ⋅ 𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐 − 𝛁𝛁 ⋅ �

𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐� 

= 𝜇̂𝜇 +
1
2
𝜕𝜕3𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐3
𝛁𝛁𝑐𝑐 ⋅ 𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐 −

𝜕𝜕3𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐3
𝛁𝛁𝑐𝑐 ⋅ (𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐) −

𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
𝛁𝛁 ⋅ (𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐) 

= 𝜇̂𝜇 −
1
2
𝜕𝜕3𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐3
𝛁𝛁𝑐𝑐 ⋅ 𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐 −

𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
𝛁𝛁 ⋅ (𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐). (C. 2) 

In the case of 𝛔𝛔2 = 𝜎𝜎2𝐈𝐈, eq. (C.2) reduces to  

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

≈ 𝜇̂𝜇 −
1
2
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
𝜎𝜎2(𝛁𝛁𝑐𝑐)2 −

𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
𝜎𝜎2𝛁𝛁2𝑐𝑐, (C. 3) 

or 

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

≈ 𝜇̂𝜇 − 𝜎𝜎2 �
1
2
𝜕𝜕2𝜇̂𝜇𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
(𝛁𝛁𝑐𝑐)2 +

𝜕𝜕𝜇̂𝜇𝑒𝑒𝑒𝑒

𝜕𝜕𝜕𝜕
𝛁𝛁2𝑐𝑐� . (C. 4) 

Finally noting that  

𝛁𝛁2𝜇̂𝜇𝑒𝑒𝑒𝑒 = 𝛁𝛁 ⋅ �
𝜕𝜕𝜇̂𝜇𝑒𝑒𝑒𝑒

𝜕𝜕𝜕𝜕
𝛁𝛁𝑐𝑐� =

𝜕𝜕2𝜇̂𝜇𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
(𝛁𝛁𝑐𝑐)2 +

𝜕𝜕𝜇̂𝜇𝑒𝑒𝑒𝑒

𝜕𝜕𝜕𝜕
𝛁𝛁2𝑐𝑐. (C. 5) 

allows us to rewrite eq. (C.4) as  

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

≈ 𝜇̂𝜇 −
1
2
𝜎𝜎2 �𝛁𝛁2𝜇̂𝜇𝑒𝑒𝑒𝑒 +

𝜕𝜕𝜇̂𝜇𝑒𝑒𝑒𝑒

𝜕𝜕𝜕𝜕
𝛁𝛁2𝑐𝑐� . (C. 6) 

Substituting eq. (C.6) into the diffusion equation finally gives  
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛁𝛁 ⋅ �𝐷𝐷𝛁𝛁𝛽𝛽 �𝜇̂𝜇 + 1
2
�𝛁𝛁 ⋅ 𝛔𝛔2 ⋅ 𝛁𝛁𝜇̂𝜇𝑒𝑒𝑒𝑒 + 𝜕𝜕𝜇𝜇�𝑒𝑒𝑒𝑒

𝜕𝜕𝜕𝜕
𝛁𝛁 ⋅ 𝛔𝛔2 ⋅ 𝛁𝛁𝑐𝑐��� . (C. 7)  

 

Methods D: Linear Stability Analysis within the Square-Gradient Theory 

Here we present linear stability analyses of CH and GSG free energy functionals, 

𝐹𝐹𝐶𝐶𝐶𝐶 ≡ � �𝑓𝑓 +
1
2
𝜅𝜅(𝛁𝛁𝑐𝑐)2� 𝑑𝑑𝑑𝑑 , (D. 1) 

And 

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 ≡ � �𝑓𝑓 − 𝜎𝜎2
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
(𝛁𝛁𝑐𝑐)2� 𝑑𝑑𝑑𝑑 , (D. 2) 

respectively, where both  𝜎𝜎2 and 𝜅𝜅 are assumed to be constant. Note that eqs. (D.1) and (D.2) are equivalent 

when 𝜕𝜕
2𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
= −𝜅𝜅/2𝜎𝜎2. Consider a system at an initial composition 𝑐𝑐(𝐫𝐫) = 𝑐𝑐0 + 𝜖𝜖 cos(𝐪𝐪 ⋅ 𝐫𝐫), where 𝜖𝜖 ≪ 1. 

Taylor expanding 𝑓𝑓 about 𝑥𝑥0 up to 2nd-order gives 

𝐹𝐹𝐶𝐶𝐶𝐶 ≈ � �𝑓𝑓(𝑐𝑐0) +
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

(𝑐𝑐 − 𝑐𝑐0) +
1
2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑐𝑐2

(𝑐𝑐 − 𝑐𝑐0)2 +
1
2
𝜅𝜅(𝛁𝛁𝑐𝑐)2� 𝑑𝑑𝑑𝑑 , (D. 3) 

and,  

𝛿𝛿𝐹𝐹𝐶𝐶𝐶𝐶 = 𝐹𝐹𝐶𝐶𝐶𝐶 − �𝑓𝑓(𝑐𝑐0)𝑑𝑑𝑑𝑑 ≈ � �
1
2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑐𝑐2

(𝜖𝜖 cos(𝐪𝐪 ⋅ 𝐫𝐫))2 +
1
2
𝜅𝜅(𝜖𝜖𝑞𝑞2 sin(𝐪𝐪 ⋅ 𝐫𝐫))2� 𝑑𝑑𝑑𝑑 , (D. 4) 

where 𝑞𝑞 = |𝐪𝐪|. For small perturbations the saddle-point approximation gives 

𝛿𝛿𝐹𝐹𝐶𝐶𝐶𝐶
𝑉𝑉

(𝑞𝑞) ≈
𝜖𝜖2𝑞𝑞2

4
�
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑐𝑐2

+ 𝜅𝜅𝑞𝑞2� 𝛿𝛿𝛿𝛿, (D. 5) 

where all quantities are evaluated at 𝑥𝑥0. Applying the standard linear stability analysis for the GSG model, 

the critical wavelengths are then given by  

𝜆𝜆𝐶𝐶𝐶𝐶𝑐𝑐 = 2𝜋𝜋�−𝜅𝜅 �
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑐𝑐2

�
−1

, (D. 6) 

and 

𝜆𝜆𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐 = 2𝜋𝜋𝜋𝜋√2𝑟𝑟. (D. 7) 

where 𝑟𝑟 ≡ 𝜕𝜕2𝑓̂𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
/ 𝜕𝜕2𝑓̂𝑓
𝜕𝜕𝑐𝑐2

.  
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To obtain the fastest-growing Fourier modes among all the modes that do not decay, we consider 

the diffusion equation for each free energy (eqs. (D.1) and (D.2)). For 𝐹𝐹𝐶𝐶𝐶𝐶 , 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≈ 𝐷𝐷𝛁𝛁2
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

≈ 𝐷𝐷 �
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑐𝑐2

𝛁𝛁2𝑐𝑐 − 𝜅𝜅𝛁𝛁4𝑐𝑐� , (D. 8) 

where 𝐷𝐷 is assumed to be constant for small fluctuations. Applying a time-varying perturbation of the form 

𝛿𝛿𝛿𝛿 = 𝜖𝜖 cos(𝐪𝐪 ⋅ 𝐫𝐫) exp(𝜔𝜔𝜔𝜔) into eq. (D.8) gives 

𝜔𝜔 = −
𝐷𝐷
4
𝜅𝜅𝑞𝑞2 �

1
𝜅𝜅
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑐𝑐2

+ 𝑞𝑞2� . (D. 9) 

Solving for the 𝑞𝑞 that maximizes 𝜔𝜔 gives the fastest growing Fourier mode wavelength as 

𝜆𝜆𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝜋𝜋�−�
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑐𝑐2

�
−1

2𝜅𝜅 = 2𝜋𝜋�−�
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
�
−1

2𝜅𝜅𝜅𝜅, (D. 10) 

for the CH free energy and 

𝜆𝜆𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 4𝜋𝜋𝜋𝜋√𝑟𝑟. (D. 11) 

The dominant Fourier modes for the CH and GSG models diverge from each other as the tricritical point is 

approached (𝑟𝑟 → ∞) according to  

𝜆𝜆𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜆𝜆𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝜋𝜋√𝑟𝑟 �2𝜎𝜎 − �−2𝜅𝜅 �
𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
�
−1

� . (D. 12) 

The corresponding growth rates, 𝜔𝜔𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

𝑚𝑚𝑚𝑚𝑚𝑚 , which scale as 𝑞𝑞4 as the tricritical point is approached 

(see eq. (D.9)), tend to zero as 

𝜔𝜔𝐺𝐺𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜔𝜔𝐶𝐶𝐶𝐶

𝑚𝑚𝑚𝑚𝑚𝑚 = −
𝐷𝐷
8
�2𝜎𝜎2

𝜕𝜕2𝑓𝑓𝑒𝑒𝑒𝑒

𝜕𝜕𝑐𝑐2
(𝑞𝑞𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚)4 − 𝜅𝜅(𝑞𝑞𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)4� ∝ 𝑟𝑟−4. (D. 13) 

Therefore, the spinodal decomposition timescales, 𝜏𝜏𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1/𝜔𝜔𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 1/𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

𝑚𝑚𝑚𝑚𝑚𝑚 , both tend 

towards infinity as 

𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜏𝜏𝐶𝐶𝐶𝐶𝑚𝑚𝑎𝑎𝑎𝑎 ∝
1

𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 −
1

𝜔𝜔𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
≈ 𝑟𝑟4. (D. 14) 
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Figures and Tables 

 

Figure 1. Representative pattern structures predicted by various free energy functional-based 
continuum models. a Fickian diffusion54, b Cahn-Hilliard equation55, c Phase-field crystal56, and d Swift-
Hohenberg equation57. 
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Figure 2. Spinodal decomposition behavior in an initially homogeneous, subcritical mixture 
predicted by CH (top) and GSG (bottom) models for three mixture free energies. a 𝜖𝜖 = 0 and 𝜂𝜂𝐶𝐶𝐶𝐶 =
3.0, b 𝜖𝜖 = 0.022 and 𝜂𝜂𝐶𝐶𝐶𝐶 = 2.91, and c 𝜖𝜖 = 0.026 and 𝜂𝜂𝐶𝐶𝐶𝐶 = 2.90. In all cases a, b, c: 𝜎𝜎 = 2𝑎𝑎0 and time 
is scaled by the grid diffusion timescale, 𝜏𝜏𝐷𝐷 = 0.01(𝑙𝑙𝐺𝐺)2/𝐷𝐷. 
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Figure 3. Growth behavior of a square compositional heterogeneity predicted by CH (top) and GSG 
(bottom) models as a function of interaction range for a supercritical mixture. a 𝜎𝜎 = 2𝑎𝑎0, b 𝜎𝜎 =
2.3𝑎𝑎0, c 𝜎𝜎 = 3.3𝑎𝑎0. For all cases a, b, c: 𝜖𝜖 = 0.075, 𝜂𝜂𝐶𝐶𝐶𝐶 = 2.70, and time is scaled by the grid diffusion 
timescale, 𝜏𝜏𝐷𝐷 = 0.01(𝑙𝑙𝐺𝐺)2/𝐷𝐷. 
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Figure 4. Pattern evolution due to different initial compositional heterogeneities predicted by CH 

(top) and GSG (bottom) models in a supercritical mixture. For all cases, a, b, c:  𝜖𝜖 = 0.1, 𝜎𝜎 = 3𝑎𝑎0, and 

time is scaled by the grid diffusion timescale, 𝜏𝜏𝐷𝐷 = 0.01(𝑙𝑙𝐺𝐺)2/𝐷𝐷 
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Figure 5. One-dimensional interdiffusion as a function of time around a Gaussian well in SiGe. Top 
row –Fickian, bottom row – GSG. ‘Well’ compositional profile (left) is given by 𝑥𝑥𝐺𝐺𝐺𝐺 = 𝑐𝑐𝐺𝐺𝐺𝐺/𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 0.1 +
5.26 ⋅ 𝑁𝑁�25,√3�, and ‘anti-well’ compositional profile (right) is 𝑥𝑥𝐺𝐺𝐺𝐺 = 𝑐𝑐𝐺𝐺𝐺𝐺/𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 0.9 − 5.26 ⋅
𝑁𝑁�25,√3�. The quantity 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 is the concentration of atomic sites. Position is scaled by 𝑎𝑎0. Time is scaled 
by the well variance diffusion timescale, 𝜏𝜏 = 𝑡𝑡/𝜏𝜏𝐷𝐷, with 𝜏𝜏𝐷𝐷 = 0.3/𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐷𝐷(𝑥𝑥 = 1). In all 
cases, 𝜎𝜎 = 2𝑎𝑎0. 
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