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Abstract

We construct a class of quantum őeld theories depending on the data of a holomorphic Poisson

structure on a piece of the underlying spacetime. The main technical tool relies on a characteri-

zation of deformations and anomalies of such theories in terms of the GelfandśFuchs cohomology

of formal Hamitlonian vector őelds. In the case that the Poisson structure is non-degenerate

such theories are topological in a certain weak sense, which we refer to as łde Rham topologi-

cal". While the Lie algebra of translations acts in a homotopically trivial way, we will show that

the space of observables of such a theory does not deőne an En-algebra. Additionally, we will

highlight a conjectural relationship to theories of supergravity in four and őve dimensions.
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1. Introduction

This paper is devoted to the construction of a novel family of quantum őeld theories deőned on the

product of a holomorphic Poisson manifold X and a smooth manifold M . The action functional

of these theories is analogous to the BF theory action functional, but where the interaction term

is deőned using the holomorphic Poisson bracket on X, so we refer to these theories as Poisson

BF theories 1. We will show that these theories have a number of interesting properties.

1. The only potential anomaly to quantization of Poisson BF theory occurs at őrst order in ℏ.

On C
2n×R

m, this anomaly is given by a class in the cohomology of the inőnite-dimensional

Lie algebra h2n of Hamiltonian vector őelds on C
2n. We show that if m ≤ 6 this cohomology

class vanishes, and so the Poisson BF theory can be quantized to all orders (Section 3).
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1More precisely, we could use the term łholomorphic Poisson BF theoryž. One could make a similar deőnition

for real Poisson structures, but we will only consider the holomorphic case. For brevity we will omit the word

łholomorphicž and refer simply to łPoisson BF theories henceforth.
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2. Poisson BF theory is gravitational in nature. Indeed, there is a fundamental őeld of Poisson

BF theory of spin 2 and the interactions contain spacetime derivatives. Moreover, if X is a

holomorphic symplectic surface, Poisson BF theories appear to arise as twists of minimal

supergravity theories in dimensions 4 and 5. Such supergravity theories occur by dimen-

sionally reducing 11-dimensional N = 1 supergravity on a G2-manifold or CalabiśYau

3-fold respectively (Section 4).

3. Poisson BF theories are examples of theories that are łde Rham topologicalž but not łBetti

topologicalž. That is, their algebras of observables are not locally constant, but the group

of translations acts homotopically trivially. The factorization algebra of observables has

the structure of an algebra over the operad C•(Diskcol2n+m) of singular chains for colored

little (2n+m)-disks (Section 5).

1.1 Topological Field Theories In the literature on topological quantum őeld theories,

a distinction is often drawn between topological theories of Schwarz type, and of Witten (or

cohomological) type [23]. A őeld theory is topological of Schwarz type if the action functional is

strictly independent of the metric, so the gravitational stress-energy tensor T µν = δS
δgµν vanishes.

Being topological of Witten-type is slightly more subtle, one usually requires the existence of an

odd observable Q satisfying the condition [Q,Q] = 0, such that T µν = [Q,Gµν ] for some family

of observables Gµν .

This condition can be phrased more naturally in the BatalinśVilkovisky (BV) formalism,

which provides for a description of classical and quantum őeld theory in terms of homological

algebra and Lie theory, or equivalently in terms of formal derived geometry. In the BV formalism,

the local observables form a cochain complex that is further equipped with a bracket of coho-

mological degree +1. We refer to the differential on this cochain complex as the łclassical BV

complex" and the bracket as the łBV bracket". Now, a theory is topological of Schwarz type if

the stress-energy tensor strictly vanishes, and it is topological of Witten type if the stress-energy

tensor vanishes up to homotopy, i.e. if it is an exact element of the cochain complex. From

a homotopy-theoretic point of view only the latter notion is invariant: it is often possible to

describe a perturbative quantum őeld theory in many different homotopy-equivalent ways, and a

theory may be topological of Schwarz type in some models, but only topological of Witten type

in others.

Witten-type topological őeld theories appear naturally when one studies twisting for super-

symmetric őeld theories. Given a supersymmetric őeld theory on R
p,q and an odd element Q of

the supersymmetry algebra such that [Q,Q] = 0, one can twist the supersymmetric theory by

adding the action of Q to the BV differential on the algebra of local observables. According to

our discussion above, the resulting twist will be topological if the following condition holds:

T1: T µν = [Q,Gµν ] for some Gµν .

On the other hand, there is a weaker condition that is often checked őrst, that only depends

on Q itself and not on the choice of theory. The super Lie algebra of supertranslations is an

extension of the abelian Lie algebra R
p,q of translations by an odd space ΠΣ, where Σ is a

spinorial representation of Spin(p, q) (so Q is an element of Σ).

T2: The map [Q,−] : Σ → R
p,q is surjective.

This condition T2 is guaranteed, for example, if we choose a twisting homomorphism from

Spin(p, q) to the group GR of R-symmetries such that Q is invariant under the twisted Spin(p, q)-

action (this has the additional advantage of allowing the twisted theory to be deőned on all
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oriented manifolds).

It is possible to rephrase condition T2 in language similar to condition T1. The canonical

stress-energy tensor is the conserved current associated to the translation symmetry, condition T2

says that the canonical stress-energy tensor is Q-exact. The canonical stress-energy tensor and

the gravitational stress-energy tensor Tµν do not typically coincide, they differ by a correction

term (the BelinfanteśRosenfeld correction) derived from the conserved currents for the rotation

action. This term is de Rham exact, but need not be Q-closed.

Condition T1 implies T2, but are there examples satisfying only T2? We will now discuss what

the two conditions tell us, formally, about the algebra of local observables. We can extrapolate

the conditions T1 and T2 to families of theories that are łtopologicalž in two different senses,

which we refer to as łBettiž and łde Rhamž topological respectively.

1.2 Betti vs. de Rham topological factorization algebras The theory of factorization

algebras provides an effective mathematical model for the study of classical and quantum őeld

theories, describing their dependence on an open subset of spacetime, and their łoperator prod-

ucts". It is the central premise of Costello and Gwilliam’s work in [7, 8] that one can associate

to every quantum őeld theory on a manifold M a factorization algebra of łobservables" on M .

Let us provide an informal deőnition.

Deőnition 1.1. A prefactorization algebra on a smooth manifold M is an assignment of a

cochain complex Obs(U) to each open subset U ⊆ M , together with structure maps Obs(U1)⊗

· · · ⊗ Obs(Un) → Obs(V ) for each set of pairwise disjoint subsets U1, . . . , Un ⊆ V , satisfying

natural compatibility conditions. A factorization algebra is a prefactorization algebra satisfying

a descent condition (see [7, Chapter 6] for a precise deőnition).

In general, the open set Obs(U) is highly dependent on the geometry of U , for instance if

U ⊆ V are a pair of homotopy equivalent open subsets, the map Obs(U) → Obs(V ) will typically

be far from a quasi-isomorphism. However, if Obs describes the local observables in a topological

quantum őeld theory, this should not be the case: the local observables should be topological in

the following sense.

Deőnition 1.2. A factorization algebra Obs is Betti topological if, whenever U ↪→ V is a

homotopy equivalence, the associated map Obs(U) → Obs(V ) is a quasi-isomorphism.

Remark 1.3. A Betti topological factorization algebra is equivalent to what is often referred to

as a locally constant factorization algebra.

For example, the local observables in a Schwarz-type topological quantum őeld theory will

manifestly form a Betti topological factorization algebra, because the őelds and the action func-

tional will not be sensitive to the local geometry of an open set. We conjecture that the same

is true, at least inőnitesimally, of a Witten-type topological quantum őeld theory, such as a

topological twist satisfying the condition T1 (see the discussion in [12, Section 3.5]). When we

consider twists only satisfying the condition T2 however, we can only guarantee an apparently

weaker condition. Such theories are de Rham topological, in the following sense.

Deőnition 1.4. A factorization algebra Obs on R
n is de Rham topological if it is translation

invariant, meaning that there is a smooth action of the group R
n, and the translation action is
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homotopically trivial, meaning that there is additionally an inőnitesimal action of the abelian

Lie algebra R
n of cohomological degree −1, say

η : Rn → Der(Obs),

such that dη(v) = ∂v for all v ∈ R
n.

In [12], Safronov and the őrst author studied these de Rham topological factorization algebras,

and learned that they are not in fact that distant from Betti topological theories. To explain their

relationship, we will introduce a concept from homotopical algebra, the notion of an En-algebra.

The En-operad is an operad valued in cochain complexes. It is built by taking the singular

chain complex of the operad Diskn of little n-disks: the operad valued in smooth manifolds

whose space of order k operations is the space of embeddings of k n-disks into the unit n-disk.

The relationship between En-algebras and factorization operators begins with a famous result of

Lurie.

Theorem 1.1 ([20, Theorem 5.4.5.9]). There is a fully faithful embedding from the ∞-category

of En-algebras into the ∞-category of factorization algebras, whose essential image consists of

Betti topological factorization algebras.

One way of stating this result is to say that a Betti topological factorization algebra is

completely determined by its value on the unit disk. When we consider de Rham topological

factorization algebras, it turns out that they are determined by their values on disks, but but with

dependence on scale. There is a colored operad Diskcoln , with space R>0 of colors corresponding

to radii: this is the colored operad valued in smooth manifolds whose space of order k operations

Diskcoln (r1, . . . , rk|R) is the space of embeddings of k n-disks of radius r1, . . . , rk into a disk of

radius R.

Theorem 1.2 ([12, Theorem 2.23 and 2.29]). There is an equivalence of ∞-categories between

the C•(Diskcoln )-algebras and de Rham topological factorization algebras. The essential image of

the ∞-category of En algebras consists of those de Rham topological factorization algebras where

the map Obs(Br(0)) → Obs(BR(0)) is a quasi-isomorphism, where Br(0) ⊆ BR(0) are concentric

n-disks about 0 with radii r < R.

We can sloganize this result by saying that the difference between theories satisfying condition

T1 and condition T2 is the presence or absence of dilation invariance.

1.3 Goals of this Paper The main aim of this paper is to describe a class of quantum

őeld theories whose local observables are de Rham but not Betti topological. The examples we

construct will be deőned on the product of a holomorphic Poisson manifold and an oriented real

manifold, and theories of this type in dimension 4 and 5 conjecturally occur as twists of minimal

supergravity theories, as we will discuss in Section 4.

The basic idea is as follows. There is a procedure in the BV formalism for constructing

classical őeld theories on M of łcotangent typež. We start with a sheaf of differential graded Lie

algebras (L, d) on M . The cotangent theory associated to L has őelds given by elements (A,B)

of the cochain complex L⊕L![−3], where L! = Hom(L,DensM ), with an action functional of the

form

S(A,B) =

∫

M
⟨B, dA+

1

2
[A,A]⟩.
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The most famous example of a őeld theory of this form is BF theory, which is generated by this

procedure from the dg Lie algebra L = Ω•(M, g) for a Lie algebra g.

We will deőne a classical őeld theory of cotangent type on C
2n×R

m starting with the cochain

complex L = Ω0,•(C2n) ⊗̂Ω•(Rm). We then equip this complex with a Lie bracket coming from

the standard holomorphic symplectic structure on C
2n ∼= T ∗

C
n. Concretely, this Lie bracket is

deőned on the Ω0,•(C2n) factor of L by the formula

[fdzi1 ∧ · · · ∧ dzik , gdzj1 ∧ · · · ∧ dzjℓ ] = {f, g}dzi1 ∧ · · · ∧ dzik ∧ dzj1 ∧ · · · ∧ dzjℓ .

We will refer to this theory as an example of Poisson BF theory, because it has an action

functional analogous to that of BF theory, with bracket associated to the holomorphic Poisson

structure on C
2n.

Remark 1.5. We will deőne theories of this type much more generally: on the product X×M of a

holomorphic Poisson manifold and a real oriented manifold. We emphasise that this construction

is not purely arbitrary from a physical point of view. We explain in Section 4 that in low

dimensions, Poisson BF theories appear to arise as partially topological twists of supergravity

theories.

This classical őeld theory admits a natural quantization which is manifestly translation invari-

ant. We argue in Section 3.2 that classical Poisson BF theories can, for purely formal reasons,

be extended to one-loop exact quantum theories as long as we verify that a certain one-loop

anomaly vanishes. We show that this occurs for all n, and all m ≤ 6, by relating the anomaly to

a certain cocycle in the cohomology of an inőnite-dimensional Lie algebra, which we demonstrate

to be a coboundary in Theorem 3.2.

Poisson BF theory is not Betti topological: we can see this straight away by constructing its

algebra of observables and checking that the inclusion of concentric balls is not an equivalence.

On the other hand, we can see that it is automatically quite close to being de Rham topological,

without us needing to do much work. The group R
2n×R

m of translations in the antiholomorphic

z1, . . . , z2n and real t1, . . . , tm directions acts homotopically trivially because the action functional

only depends on a complex structure on C
2n (for an explicit potential, see Section 5.2). Less

obviously, we will also show the following.

Theorem 1.3 (See Theorem 5.1, Theorem 5.2). The Lie algebra of holomorphic translations on

C
2n acts on Poisson BF theory in a homotopically trivial way. Therefore the factorization algebra

of classical observables of Poisson BF theory is de Rham topological. When a quantization exists,

the factorization algebra of quantum observables is also de Rham topological.

Remark 1.6. The Lie algebra of holomorphic translations spanned by {∂z1 , . . . , ∂z2n} is an

abelian sub Lie algebra of holomorphic functions modulo constant functions Ohol(C2n)/C. In

fact, we will see that there is a homotopically trivial action of the dg Lie algebra Ω0,•(C2n),

which resolves the Lie algebra of holomorphic functions, on Poisson BF theory.

Remark 1.7. We should point out that our example of a theory with is de Rham but not

Betti topological does not provide an example of a twist where the supercharge Q satisőes

condition T2 but not T1. Although we conjecture that Poisson BF theory does arise as a twist,

the corresponding supercharge will only be holomorphic-topological, i.e. it will only satisfy T2

for some directions. In fact, for supersymmetric YangśMills theories we know that all twists

satisfying T2 also satisfy T1! This follows by exhaustive classiőcation of all possible twists [13].
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Additionally, twists of superconformal theories satisfying condition T2 also satisfy T1, as shown

in [12]. We speculate that in fact all twists satisfying condition T2 (making them a priori only

de Rham topological) also satisfy condition T1 (making them Betti topological, or Witten type),

but at the moment we don’t know a general argument justifying this in all cases.

Finally, we comment here on the proposed relationship of this class of theories with theories of

gravity. For more conjectural relationships to supergravity we refer to Section 4. For simplicity,

let us restrict to our theory deőned on a complex surface X with a holomorphic Poisson structure.

As we will see in the body of the paper, one of the fundamental őelds of holomorphic Poisson

theory on X is a (shifted) Dolbeault form

α ∈ Ω0,•(X)[1].

Here, the shift is so that α0,1 is in cohomological degree zero. The equations of motion read

∂α+
1

2
{α, α} = 0

where {−,−} is the holomorphic Poisson bracket. Consider the component α0,1 and the form of

type (1, 1) given by ∂α0,1. Using the holomorphic Poisson structure, ∂α0,1 determines a section

µ = (∂α0,1)# ∈ Ω0,1(X,T 1,0
X ) and the equations of motion imply that µ is a Beltrami differential.

In other words, on a complex surface X the solutions to the equations of motion of the

Poisson theory deőne, in part, deformations of the complex structure of X. In this way, Poisson

BF theory encodes a łholomorphicž variant of a theory of gravity on X. Concretely, the őeld

µ obtained from our holomorphic theory is a component of the four-dimensional stress-energy

tensor. This should be compared with the more familiar situation in complex dimension one,

where components of the stress-energy tensor őt together to describe the Virasoro algebra (and

its anti-holomorphic version).

2. Classical Field Theories on Holomorphic Poisson Manifolds

Let X be a holomorphic Poisson manifold of dimension d with holomorphic Poisson tensor

Π ∈ ∧2T 1,0
X . The Poisson tensor equips the sheaf of holomorphic functions Ohol(X) with a Lie

bracket that we denote by {−,−}Π. This bracket extends to a bracket on the Dolbeault complex

Ω0,•(X). Recall that a local Lie algebra on X is a sheaf of differential graded Lie algebras on X

where the differential and the bracket are given by differential operators ([7, Section 6.2]).

Deőnition 2.1. Let LΠ be the local Lie algebra on X with underlying cochain complex (Ω0,•(X), ∂),

and with Lie bracket given by the formula

[α, β] = (−1)|α||β|+1{α ∧ β}Π.

That is, the unique graded antisymmetric extension of the Poisson bracket of functions on X to

the Dolbeault complex.

This is a local Lie algebra deőned on any holomorphic Poisson manifold. There is a related

local Lie algebra deőned on product manifolds of the form X ×M , where M is a smooth (not

necessarily complex) manifold. This local Lie algebra will be manifestly topological (of Schwarz

type) along M .
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Deőnition 2.2. Let Y = X×M , where M is a smooth manifold and X is a holomorphic Poisson

manifold as above. Let LΠ,M be the local dg Lie algebra on Y whose sheaf of sections is

LΠ ⊗̂ Ω•(M ;C) = Ω0,•(X) ⊗̂ Ω•(M ;C).

The dg Lie algebra structure is obtained by tensoring the dg Lie algebra structure on LΠ with

the commutative dg algebra Ω•(M ;C).

As a trivial remark, note that in the case where M is a point, thought of as a zero dimensional

manifold, the local Lie algebra LΠ,M becomes the original local Lie algebra LΠ.

Using LΠ,M we arrive at the deőnition of the classical őeld that we will focus on for the

remainder of the paper. Let us őrst state the deőnition of a classical őeld theory in the Batalinś

Vilkovisky (BV) formalism [2] that we will be studying.

Deőnition 2.3. A classical őeld theory on a manifold X is a sheaf E of cochain complexes on X,

where the shift E [1] is equipped with the structure of a local Lie (or more generally, L∞) algebra,

and E is equipped with a (−1)-shifted symplectic pairing E ⊗ E [−1] → DensX . The cotangent

theory to a local Lie algebra L is the direct sum L[1] ⊕ L![−2], where L! = Hom(L,DensX),

equipped with its canonical shifted symplectic structure.

In this paper all the classical őeld theories we consider will be deőned over C. That is, E is

a sheaf of cochain complexes of complex vector spaces.

Remark 2.4. For a discussion of where this deőnition comes from, and what it means, we refer

the reader to the extensive discussion in [5, 8] and [13, Section 1.1].

Example 2.5. Let g be an ordinary Lie algebra. Consider the local Lie algebra L = Ω•(M ;C)⊗g

with differential ddR and with bracket induced from the bracket on g and the wedge pairing of

differential forms. The cotangent theory to L is the theory usually called (complex-valued)

BF theory with gauge Lie algebra g. The őelds of BF theory are (A,B) ∈ L[1] ⊕ L![−2] =

Ω•(M)⊗ g[1]⊕Ω•(M)⊗ g∗[d− 3] and the action is
∫
AdB + 1

2

∫
B[A,A]. We recall that in the

style of AKSZ theory one can write BF theory as a derived mapping space

T ∗[−1]Map(MdR, Bg) = Map(MdR, T
∗[m− 1]Bg)

where m = dimR(M) and T ∗[m− 1]Bg is the formal moduli space associated to the graded Lie

algebra g⋉ g∗[m− 2].

The focus of this paper is the following example, which can be thought of as a deformation

of holomorphic BF theory with abelian Lie algebra g = C associated to a choice of holomorphic

Poisson structure..

Deőnition 2.6. We deőne Poisson BF Theory on Y = X ×M to be the cotangent theory as in

Deőnition 2.3 to the local Lie algebra LΠ,M . We will denote this theory by EΠ.

Remark 2.7. Such theories exist in slightly more generality. Indeed, we can consider Poisson BF

theory on the total space Y of any smooth őbration whose base is equipped with a holomorphic

Poisson structure. Since we will be only interested in the ŕat case in what follows, we will not

return to this general situation.
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Equivalently, a őeld theory in the BV formalism is speciőed by a space of őelds equipped

with a (−1)-shifted symplectic structure together with a local action functional S on the őelds

which satisőes the classical master equation {S, S}BV = 0. Here, the bracket {−,−}BV denotes

the BV bracket induced from the shifted symplectic structure.

Spelling this deőnition out, the őelds consist of pairs

(A,B) ∈ Ω0,•(X) ⊗̂ Ω•(M ;C)[1] ⊕ Ωd,•(X) ⊗̂ Ω•(M ;C)[d+m− 2]

where d = dimC(X) and m = dimR(M). The (C-valued) local functional representing the BV

action is

SΠ,M (A,B) =

∫

Y
B ∧

(
∂A+

1

2
{A ∧A}Π

)
. (1)

It will be useful in the next section to split the action functional above as S = Sfree + I where

I = 1
2

∫
Y B ∧ {A ∧A}Π.

Example 2.8. Later on, we will mostly consider the case where the Poisson structure is non-

degenerate, hence symplectic. For a class of examples of a different ŕavor, consider the following.

Every semi-simple complex Lie group G has a Poisson structure that is holomorphic [11]. In this

way, we obtain a holomorphic Poisson BF theory on Y = G whose őelds are

A ∈ Ω0,•(G)[1]

B ∈ Ω2,•(G)[d− 2].

Notice that the őelds are differential forms on the Lie group G, not valued in the Lie algebra of

G like in ordinary BF theory. The action functional reads
∫

G
B ∧ ∂A+

1

2

∫

G
B ∧ {A,A}G

where {−,−}G is the holomorphic Poisson bracket on G (extended to Dolbeault forms) deőned

by the quasi-triangular solution to the classical YangśBaxter equation.

Remark 2.9. We have mentioned in the introduction the gravitational nature of this theory.

For example, notice that the interaction above involves (holomorphic) derivatives. We will give

some further evidence of this in Section 4, but for now we point out that strictly speaking this

theory cannot be cast in the AKSZ formalism. However, the dimensional reduction along X is

an AKSZ theory described by the mapping space

Map(MdR, T
∗[m− 1]BgX)

where gX is the dg Lie algebra Ω0,•(X) that is equipped with the Poisson bracket of functions.2

In other words, if X is compact Kähler, then the dimensional reduction of this theory along

X is equivalent to topological BF theory on M for the őnite dimensional graded Lie algebra

H•(gX) = H•(X,OX).

Remark 2.10. A special case of the above construction is when the holomorphic Poisson struc-

ture Π is nondegenerate, so that X is a holomorphic symplectic manifold. In this case, we will

őnd that the theories we have introduced locally possess de Rham translation invariance. This

is not true in the case that Π is genuinely degenerate.
2Geometrically, gX describes the formal moduli problem of Poisson structures near the őxed Poisson structure

Π.
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Remark 2.11. There is a related theory studied by Costello in [6]. One can deőne a theory on

C
2n×R

m with the same classical BV complex of őelds as we have discussed here, but where the

interaction is deőned not using the Poisson bracket, but instead using the a quantization thereof:

the Moyal star-product. Costello studies theories of this type where n = m = 1, and argues that

such theories arise from supergravity in a suitable twisted Ω-background. Theories of this type

arise as a deformation quantization of Poisson BF theory on C
2 × R: Costello’s theory depends

on a formal parameter ε (the equivariant parameter in the Ω-background construction), and will

recover a theory similar to Poisson BF theory as the őber at the point ε = 0.

Costello’s theory differs from the theory discussed here somewhat: it is not a straightfor-

ward deformation of a cotangent theory. Rather than being deőned by analogy to (partially

holomorphic) BF theory, Costello deőnes a non-commutative version of (partially holomorphic)

ChernśSimons theory. We will discuss the connection to supergravity in Section 4, but the re-

lationship between these two theories is analogous to the fact that, starting with minimal super

YangśMills theory on R
n+2 with n = 3, 4, 5, 6, one obtains partially holomorphic BF theory as

the compactiőcation on T 2 of a twist, and partially holomorphic ChernśSimons theory by placing

the theory in the twisted Ω-background on (C×)2.

3. Quantization and Anomalies

From now on we will mostly restrict attention to the cotangent theory associated to the local

Lie algebra LΠ,Rm on Y = C
2n ×R

m where X = C
2n is equipped with its standard holomorphic

symplectic structure. We will denote the local Lie algebra LΠ,Rm where Π is the standard Poisson

structure on C
2n simply by Ln,m. In this section we will use the BV formalism as developed in

[5, 8] together with special results for mixed holomorphic-topological theories as in [25, 18, 16].

3.1 Background on Quantization For now, let us őx the data of a classical őeld theory

in the BV formalism. As we’ve discussed, this consists of a (−1)-symplectic sheaf of őelds E

together with a dg Lie structure. This can equivalently be encoded in terms of a local action

functional S0 = Sfree + I satisfying the classical master equation

{S, S}BV = 0, or equivalently QI +
1

2
{I, I}BV = 0.

Here, I is an element of the space Oloc(E) of local functionals on E . This space consists of

functionals on the őelds which are given by Lagrangian densities, where we quotient out by total

derivatives. For a precise deőnition we refer to [8, Deőnition 3.5.1.1].

The starting point in the renormalization group approach to quantum őeld theory is an

effective family of ℏ-dependent functionals {I[L]} on the space of őelds parametrized by a łlength

scale" L > 0. Heuristically, the łL → 0" limit, although naïvely ill-deőned, represents the full

quantum action of the őeld theory.

In order to make sense of the quantum action, for each L > 0 the functional I[L] ∈ O(E)[[ℏ]]

must satisfy various conditions, which can be found in [8, Deőnition 8.2.9.1]. The őrst condition

this family must satisfy is that its ℏ → 0 and L → 0 limit agrees with the classical interaction I

deőning the őeld theory. In addition, the family of functionals must satisfy (1) the renormaliza-

tion group equation and (2) the quantum master equation.

The renormalization group equation says that

I[L′] = WL<L′(I[L])
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where WL<L′ is an isomorphism called the renormalization group ŕow. It is deőned as a sum

over weights of graphs: the Feynman diagram expansion. Very roughly, the weight is obtained by

placing the classical interaction at each vertex of the graph and labelling the edges by elements

of E⊗2 called łpropagators", then contracting tensors according to the shape of the diagram. A

family {I[L]} of interactions satisfying the renormalization group equation is called an effective

family, or prequantization. For more on this construction see Chapter 2 of [5].

One of the main results of [5] is that an effective family exists for any classical őeld theory. In

general, however, to construct the family involves some serious analysis involving the introduction

of łcounterterms". Thankfully, for the class of theories we consider, the effective families can be

understood completely explicitly, without the introduction of counterterms.

The őrst step is the following easy combinatorial observation. One can check that any effective

family for a cotangent őeld theory necessarily only involves graphs that have genus at most one.

Thus, any effective family is at most linear in its ℏ expansion, referred to as łone-loop exact"

effective family.

The second step is a consequence of the following result, which states that for theories of mixed

holomorphic-topological type there exists a one-loop quantization which is void of counterterms.

A classical őeld theory on C
n × R

m is called a theory of mixed holomorphic-topological type if

there is a homotopically trivial action (see Deőnition 5.4) of the group R
n ×R

m, where R
n acts

on C
n by translations in the antiholomorphic directions. It is easy to see that Poisson BF theory

is an example of a mixed holomorphic-topological theory (in fact, more is true, as we will see in

Section 5.2).

Theorem 3.1 ([25, 18, 16]). For any mixed holomorphic-topological theory on C
n×R

m, n,m ≥ 0,

there exists a translation-invariant effective family {I[L]} which to őrst order in ℏ is őnite.

Remark 3.1. This theorem only concerns the effective family of holomorphic-topological theories

to őrst order in ℏ. It does not imply that counterterms of order ℏ
n, n > 1 vanish.

Since any theory of BF type is exact at one-loop, this theorem implies that a translation

invariant effective family for Poisson BF theory exists on C
2n × R

m for any n,m and that all

counterterms vanish.

Once an effective family is constructed, the next condition required of a quantization in the

BV formalism is the quantum master equation (henceforth abbreviated QME). Heuristically, if

Iq denotes the naïve quantum action, the QME reads

(Q+ ℏ△)eI
q/ℏ = 0.

Where △ is the łscale zero" BV Laplacian associated to the shifted symplectic structure deőning

the classical BV theory. There are two problems with this equation: őrst, the łscale zero" BV

Laplacian is ill-deőned as it involves contractions of distributions; second, Iq is only deőned by

means of an effective family {I[L]} as described above.

To make sense of this, one introduces a regularized QME at each scale L, which can equiva-

lently be written as

QI[L] + ℏ△LI[L] +
1

2
{I[L], I[L]}L = 0.

Here △L is the well-deőned regularized scale L BV Laplacian, and {−,−}L is a regularized

version of the classical BV bracket. The ℏ → 0, L → 0 limit of the above equation is precisely

the classical master equation. An effective family {I[L]} is a quantum őeld theory if it satisőes

the scale L QME for every L > 0. For more complete details we refer to [8, Chapter 8].
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In general, not every effective theory satisőes the QME. The scale L obstruction to satisfying

the QME describes the failure of I[L] to satisfy the scale L QME. Since I[L] is őltered by powers

of ℏ, so is the obstruction. For theories of cotangent type as considered in this paper, I[L]

truncates at order ℏ, hence we only need to consider the ℏ-linear obstruction which we denote

by ℏΘ[L]. The L → 0 limit of Θ[L] is deőned and determines a cohomological degree +1 local

functional

Θ
def
= lim

L→0
Θ[L] ∈ Oloc(E).

Moreover, Θ is closed for the classical differential {S,−}BV, hence determines a cohomology class

[Θ] ∈ H1(Oloc(E), {S,−}BV), see [5, ğ5.11].

In fact, for theories of cotangent type such as Poisson BF theory, we have more control over

the obstruction. Before stating this result, we recall that the space of őelds of our theory is of the

form E = Ln,m[1]⊕L!
n,m[−2]. One can identify the operator {S,−}BV acting on local functionals

Oloc(E) with the ChevalleyśEilenberg differential for the dg Lie algebra E [−1] = Ln,m⋉L!
n,m[−3].

Therefore, we will use the notation C•
loc(E [−1]), which we refer to as the local ChevalleyśEilenberg

cochain complex, for the cochain complex (Oloc(E), {S,−}BV). Notice further that there is an

embedding of cochain complexes C•
loc(Ln,m) ↪→ C•

loc(E [−1]) consisting of local cochains which

depend only on the A-őelds.

Lemma 3.2. Let ℏΘn,m be the one-loop obstruction for Poisson BF theory on C
2n×R

m satisfying

the QME. Then Θn,m is a degree +1 cocycle of the local cohomology C•
loc(Ln,m).

Proof. We use a general result of Costello [4, Corollary 16.0.5] which states that the one-loop

anomaly of any BV theory reduces to the weight of wheel graphs. From here, the proof is

purely combinatorial. The classical interaction for a theory of BF type is generally of the form∫
B[A,A]. Thus, for a wheel graph whose vertices are labeled by this interaction, the weight is

purely a function of the A-őeld and the result follows.

Returning back to the general situation momentarily, we emphasize that the goal of BV

quantization is to solve the quantum master equation order-by-order in ℏ. At őrst-order, suppose

that the one-loop obstruction cocycle Θ mod ℏ
2 represents a trivial class in the local cohomology.

In other words, Θ mod ℏ
2 = {S, ℏJ} for some local functional J of cohomological degree zero.

Then, we obtain a solution to the quantum master equation modulo ℏ
2 by the formula

I[L] + ℏJ [L]

where J [L] = W0<L(J) is functional obtained by running RG ŕow to the local functional J to

scale L [5, Section 5.11]. The space of all trivializations of the one-loop obstruction is a torsor

for H0(Oloc, {S,−}). In particular, if H0 = 0 then the one-loop quantizations are unique up to

equivalence.

3.2 Quantization of Poisson BF Theory We are now ready to state the main result of

this section.

Theorem 3.2. Poisson BF theory on C
2n × R

m admits a translation invariant quantization in

each of the following cases:

(a) m is even,

(b) m = 1, 3 or 5.
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Remark 3.3. We speculate that the quantization exists (and is unique) for all values of m,

though we do not prove that here, see Remark 3.13.

Since Poisson BF theory is of BF type, a consequence of Theorem 3.1 is that in order to

prove this result we need to show that the one-loop anomaly Θn,m is cohomologically trivial in

the cases mentioned. This anomaly is a degree one cocycle in the local cohomology of the Lie

algebra Ln,m. Since we are using the standard Poisson structure on C
2n, the classical theory, as

well as the prequantization we have just constructed, is translation invariant. Thus, we study

quantizations that are also translation invariant. Let us summarize the steps we will follow in

order to prove Theorem 3.2.

1. We begin by proving the theorem for even m ≥ 2. For such theories we can use a very

abstract argument to show that the anomaly vanishes, by realizing it as a deformation of

a completely holomorphic theory, then using structural results from [25]. This is Lemma

3.4.

2. Next, we will begin to study, in detail, the local cohomology of Ln,m. This local Lie algebra

admits a map to the Lie algebra Vectholsymp(C
2n) of holomorphic symplectic vector őelds.

In Lemma 3.5 we will show that the anomaly class [Θn,m] can be lifted to a cocycle for

Vectholsymp(C
2n).

3. Now, this is useful, because we can relate the cohomology of this Lie algebra to something

more mathematically familiar. We show in Proposition 3.7 that the Lie algebra cohomology

of Vectholsymp(C
2n) is equivalent ś up to a shift ś to the cohomology of an inőnite-dimensional

Lie algebra h2n of formal Hamiltonian vector őelds, studied in work of Gelfand, Kalinin

and Fuchs. We have therefore reduced our calculation of [Θn,m] to the calculation of a

cohomology class in h2n.

4. Even better, the cohomology of h2n is naturally graded, and the non-positively graded

piece is relatively well understood. In Lemma 3.9 we show that [Θn,m] lives in the weight

0 summand H4n+m+1
(0) (h2n).

5. Finally, we compute this weight 0 cohomology group, and show in Lemma 3.11 that it

vanishes when m = 0, 1, 3 or 5, thus proving the Theorem.

So, we will őrst address the case when m is even and greater than zero, in which case the

anomaly vanishes for structural reasons.

Lemma 3.4. If m ≥ 2 is even then the class [Θn,m] of the one-loop anomaly vanishes.

Proof. Suppose m ≥ 2 is even, and let r = m
2 . We can equip R

m = C
r with its standard complex

structure. Notice that we can decompose the őelds as follows:

A =
r∑

k=0

Ak in
r⊕

k=0

Ω0,•(C2n) ⊗̂Ωk,•(Cr)[1]

B =
r∑

k=0

Bk in
r⊕

k=0

Ω2n,•(C2n) ⊗̂Ωk,•(Cr)[2n+m− 2].

Using this decomposition, the action is of the form

∫

C2n×Cr

B ∧

((
∂ + ∂Cr

)
A+

1

2
{A,A}Π

)
+

r∑

k=1

∫

C2n×Cr

Bk ∧ ∂Cr (Ar−k−1) (2)

Here, ∂ continues to denote the Dolbeault operator on C
2n and now ∂Cr , ∂Cr are the holomor-

phic and anti-holomorphic Dolbeault operators on C
r. Forgetting about the second term, the
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őrst term describes a purely holomorphic theory in the sense of [25]. (In fact, this describes Pois-

son BF theory for the holomorphic Poisson manifold C
2n+r where we choose the trivial Poisson

bivector on the last r coordinates.)

Furthermore, the second term in (2) involves only holomorphic differential operators with

respect to our őxed complex structure. Thus we can view Poisson BF theory as a (translation

invariant) holomorphic őeld theory on C
2n+r. As a consequence of [25, Proposition 4.4] (see [9,

Lemma 7.2.7] or [17, Lemma B.1], for a similar calculation) the anomaly Θn,m for such a theory

is necessarily a sum of local functionals of the form
∫

C2n+r

(Di0A) ∂ (Di1A) · · · ∂ (Di2nA) ∂Cr

(
Di2n+1A

)
· · · ∂Cr

(
Di2n+rA

)
. (3)

Here, ∂ denotes the holomorphic de Rham differential on C
2n and the Dij ’s are all translation

invariant holomorphic differential operators.

Each of these elements are considered as cochains in the cochain complex of local functionals

equipped with the classical BV differential {S,−}BV. In this case, the BV differential is of the

form

{S,−}BV = ∂ + ∂Cr + dΠ + ∂Cr (4)

Here, dΠ is the ChevalleyśEilenberg differential for the Poisson bracket {−,−}Π.

We consider the spectral sequence converging to the local cohomology of Ln,m induced by

the őltration on the A-őelds

F k = Ω0,•(C2n) ⊗̂Ω≥k,•(Cr)[1].

The E1-page is given by the cohomology with respect to the őrst three terms in (4).

Assuming a class Θn,m which is a sum of functionals of the form (3) survives to this page, we

will show that it is rendered exact by the next term in the spectral sequence. By the formula,

we see that at least one holomorphic derivative from each of the directions in C
2n+r necessarily

appear. For simplicity, consider the direction zr. By this observation, we can write

Θn,m =
∂

∂zr
Θ′

n,m

for some local functional Θ′
n,m which is also of degree +1. Finally, notice that the class ι ∂

∂zr

Θ′
n,m

satisőes

∂Cr

(
ι ∂
∂zr

Θ′
n,m

)
= Θn,m

Here, if X is a holomorphic vector őeld, the operator ιX denotes the operator induced from the

contraction A 7→ ιXA. This shows that on the E∞-page all such functionals Θn,m become trivial

and the result follows.

3.3 The Anomaly as a GelfandśFuchs Cocycle For the remaining cases of Theorem 3.2,

we must understand the cohomology of local functionals more explicitly.

To start, we interpret the one-loop anomaly Θn,m as a local cocycle in a slightly different

local Lie algebra.

Consider the sheaf of Lie algebras Ohol(C2n) which is equipped with the Poisson bracket

coming from the standard symplectic structure on C
2n. There is a short exact sequence of

sheaves of Lie algebras

0 → C → Ohol(C2n) → Vectholsymp(C
2n) → 0 (5)
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where Vectholsymp(C
2n) denotes the sheaf of holomorphic vector őelds preserving the symplectic

structure on C
2n. Here the right-most map associates to a function its Hamiltonian vector őeld.

Of course, none of the sheaves in the above short exact sequence are local Lie algebras. For

Ohol(C2n) we know that Ω0,•(C2n) provides a free resolution and hence a presentation as a local

Lie algebra. Similarly, for Vectholsymp(C
2n) we have the following presentation as a local Lie algebra

0 1

Tsymp(C
2n) = Ω0,•(C2n,T)

L(−)ω
−−−−→ Ω≥2,•(C2n).

Here, T denotes the holomorphic tangent bundle and Ω0,•(C2n,T) is its Dolbeault resolution

equipped with the ∂ operator. Also Ω≥2,•(C2n) is a Dolbeault model for the sheaf of closed

two-forms, it is equipped with the differential ∂ + ∂. Finally, the indicated differential sends a

vector őeld X to the Dolbeault form LXω, the Lie derivative of ω by X.

The sheaf Tsymp(C
2n) becomes a local Lie algebra on C

2n utilizing the standard Lie bracket of

vector őelds together with the natural action of vector őelds on Dolbeault forms. Moreover, the

process of taking a Hamiltonian vector őeld determines a map of local Lie algebras Ω0,•(C2n) →

Tsymp(C
2n), providing a resolved version of the map in (5). Upon tensoring with the complex of

complexiőed de Rham forms on R
m we obtain a map of local Lie algebras

Ln,m → Tsymp(C
2n) ⊗̂ Ω•(Rm;C). (6)

By Lemma 3.2, we a priori only know that the anomaly lives in C•
loc(Ln,m). In fact, we have

the following.

Lemma 3.5. The anomaly Θn,m lifts to a local cocycle of degree +1 for Tsymp(C
2n) ⊗̂ Ω•(Rm;C)

along the cochain map

C•
loc

(
Tsymp(C

2n) ⊗̂ Ω•(Rm);C
)
→ C•

loc(Ln,m)

induced from (6).

Proof. The result actually follows from a similar statement at the level of the classical action.

For this proof, we denote by Tn,m the local Lie algebra Tsymp(C
2n) ⊗̂ Ω•(Rm;C). First, we note

that the natural contragradient action of an element of Ln,m on L!
n,m is zero if the element is

a constant function. Thus L!
n,m[−3] descends to a module for Tn,m. The map (6) determines a

cochain map

C•
loc

(
Tn,m ⋉ L!

n,m[−3]
)
→ C•

loc

(
Ln,m ⋉ L!

n,m[−3]
)
.

Recall, the classical action decomposes as S = Sfree+I where I is a local cocycle in C•
loc(Ln,m⋉

L!
n,m[−3]). Since I is identically zero if one of the A-inputs is a constant function, it lifts to a

local cocycle in C•
loc

(
Tn,m ⋉ L!

n,m[−3]
)
.

Proceeding just as in the proof of Lemma 3.2, we see that the one-loop anomaly only depends

on Tn,m and the result follows.

We will utilize a description from [24] of the local cohomology of

Tsymp(C
2n) ⊗̂ Ω•(Rm;C)

in terms of the ordinary Lie algebra cohomology of the őber of this local Lie algebra at zero.

For this, we őrst introduce the following Lie algebra of formal Hamiltonian vector őelds on the

formal (holomorphic) 2n-disk.
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Deőnition 3.6. The Lie algebra of formal Hamiltonian vector őelds h2n has underlying C-vector

space

h2n = C[[p1, . . . pn, q1, . . . , qn]] / C

On linear elements, the bracket is given by the formula [pi, qj ] = δij .

Note that h2n is equivalent to the subalgebra of the Lie algebra of all formal vector őelds on

the 2n-disk which preserve the standard symplectic structure.

We can now state the concrete relationship between local cohomology and the Lie algebra

cohomology of Hamiltonian vector őelds. Given any symplectic vector őeld X on C
2n we can take

its Taylor expansion at zero to get a formal Hamiltonian vector őeld j0(X) ∈ h2n. At the level

of cochains this determines a map j∗0 : C
•
Lie(h2n) → C•

Lie(J(T
symp(C2n))). Here J(−) denotes the

bundle of ∞-jets. In [24] it is shown via certain łdescent equations" how to extend this map to

the local cohomology to give a cochain map

C•
Lie(h2n)[4n] → C•

loc(T
sym(C2n)).

In fact, it is shown that this map is a quasi-isomorphism. The shift down by 4n is related to the

real dimension of C2n.

Upon tensoring with the de Rham complex on R
m, which of course does not contribute to

cohomology, we obtain the following analogous result. The proof follows the outline of the proof

of the main result of [24] closely, where the case of all holomorphic vector őelds is considered.

The modiőcations in the Hamiltonian case are speciőed in the proof below.

Proposition 3.7. There is a quasi-isomorphism

C•
red(h2n)[4n+m]

∼=
−→ C•

loc

(
Tsymp(C

2n) ⊗̂Ω•(Rm;C)
)

Therefore the anomaly cocycle Θ can be understood as a cocycle in

C4n+m+1
Lie (h2n).

Proof. Consider the GelfandśKazhdan pair (h2n ⊕wm, Sp(2n)×GL(m)), where wm denotes the

Lie algebra of formal vector őelds on R
m. Given any module M for this pair, techniques of

formal geometry deőne a D-module M on any product manifold of the form X ×M where X is

a holomorphic symplectic manifold and M is a smooth m-manifold. For the module C•
red(h2n)

this D-module is equivalent to C•
red (JTsymp(X)). Furthermore, since C•

red(h2n) is acted upon by

the GelfandśKazhdan pair in a homotopically trivial way, this D-module is trivial and hence its

de Rham complex is quasi-isomorphic to

Ω•(X ×M ;C)⊗ C•
red(h2n).

Finally, by [8, Lemma 3.5.4.1] we know that this de Rham complex is equivalent to the shift of

the local cohomology C•
loc

(
Tsymp(X)⊗̂Ω•(Rn;C)

)
[−4n−m]. The result follows by applying this

argument to the special case X = C
2n and M = R

m.

We have whittled down our understanding of the anomaly Θn,m to a description of the Lie

algebra cohomology of Hamiltonian vector őelds on the formal disk. Unfortunately, a complete

description of the cohomology of the Lie algebra h2n is unknown. Partial results have appeared

in the works [14, 15, 21, 19]. The őrst step in order to obtain such a partial description is to take
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advantage of a natural grading on h2n which we will refer to as the weight. In fact, there is a

bigrading on h2n in which the element pk+1
i qℓ+1

j is homogenous of weight (k, ℓ). The cohomology

is concentrated in the diagonal piece of this bigrading, so it’s enough to consider only the diagonal

Z-grading in which pk+1
i qℓ+1

j has weight k + ℓ. The bracket respects this grading and hence the

Lie algebra cohomology admits a decomposition

H•(h2n) =
⊕

j∈2Z

H•
(j)(h2n)

where H•
(j)(h2n) is the cohomology of the weight j subcomplex of the Lie algebra cohomology.

Remark 3.8. Our grading convention differs slightly from the one used in the reference [14],

but agrees with the convention in [21]. For instance, the weight k cohomology, as deőned in [14],

agrees with H•
(2k)(h2n) in our convention.

We return to the characterization of the anomaly cocycle. The class [Θn,m] of the anomaly de-

composes according to this weight decomposition of the Lie algebra cohomology group H4n+m+1(h2n).

In fact, we have the following.

Lemma 3.9. The anomaly class [Θn,m] lies in the weight zero summand H4n+m+1
(0) (h2n) of the

Lie algebra cohomology.

Proof. We őrst assign a weight grading to the classical BV theory. Let E be the holomorphic

Euler vector őeld on C
2n

E =
∑

i

(
zi

∂

∂zi
+ wi ∂

∂wi

)
,

where zi, wi are holomorphic Darboux coordinates on C
2n. We say that an element A ∈ L is of

weight j ∈ Z if

LE(A) = (j + 2)A.

Notice that the differential and the bracket on the local Lie algebra L are of weight zero with

respect to this grading.

To deőne the grading on the cotangent theory to the local Lie algebra L we say an element

B ∈ L! is of weight k ∈ Z if

LE(B) = (k − 2)B.

With respect to this grading, the action S of Equation (1) is of weight 0.

Recall that the anomaly is characterized as the obstruction to solving the quantum master

equation. Since the classical BV differential is automatically weight zero, we simply need to check

that the BV Laplacian is weight zero. This is equivalent to checking that the shifted symplectic

pairing

Lc × L!
c → C

A⊗B 7→

∫

C2n×Rm

A ∧B

is of weight zero. Observe that the pairing between a compactly supported A-őeld and a B-őeld

can be written as ∫

C2n×Rm

A ∧B =

∫

C2n×Rm

⟨Π⊗A,ω ⊗B⟩

where on the right hand side we use the linear pairing between ∧2TC2n and KC2n . Since this

linear pairing is manifestly weight zero, the claim follows.
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Remark 3.10. We can provide a geometric description of the weight assignments used in proof

of the previous lemma. Consider the standard Poisson bivector Π =
∑

i ∂zi ∧ ∂wi . It determines

an isomorphism

Π⊗ (·) : Ω0,•(C2n) ⊗̂ Ω•(Rm;C)
∼=
−→ PV2,•(C2n) ⊗̂ Ω•(Rm;C).

The weight on A-őelds agrees with pulling back the standard dilation on C
2n acting on elements

on the right hand side of this isomorphism. That is, A has weight j if and only if LE(Π⊗A) =

j(Π⊗A). Similarly, if ω = Π−1, then we have an isomorphism

ω ⊗ (·) : Ω2,•(C2n) ⊗̂ Ω•(Rm;C)
∼=
−→ Ω0,•(C2n,K⊗2

C2n) ⊗̂ Ω•(Rm;C).

Then, B has weight k if and only if LE(ω ⊗B) = k(ω ⊗B).

We now argue the vanishing of the one-loop anomaly of the theory on C
2n×R

m by collecting

facts about the known cohomology of Hamiltonian vector őelds. In fact, a result of Gelfand,

Kalinin, and Fuchs [14] gives a complete description of the non-positive weight part of the

cohomology of Hamiltonian vector őelds h2n. The description uses the HochschildśSerre spectral

sequence associated to the subalgebra sp(2n) ⊆ h2n.

Explicitly, the E2-page of this spectral sequence is

Ei,j
2 = Hi(h2n, sp(2n))⊗Hj(sp(2n))

and the spectral sequence converges to Hi+j(h2n). In the remainder, we let H•
(≤0) denote the

non-positive weight part of the cohomology.

Theorem 3.3 ([14][Theorem 2]). The non-positive weight part of the relative Gelfand-Fuchs

cohomology Hi
(≤0)(h2n, sp(2n))⊗Hj(sp(2n)) is isomorphic to the algebra

C[Γ,Ψ1, . . . ,Ψn]/I

where Γ has degree 2n − 1 and weight −1, Ψi has degree 4i and weight 0, and the ideal I is

generated by the elements ΓkΨk1
1 · · ·Ψkn

n where k + k1 + 2k2 + · · ·nkn > n.

Furthermore, in the HochschildśSerre spectral sequence, the standard generators hi of H•(sp(2n))

of degrees 3, 7, . . . , 4n− 1 map under transgression to the generators Ψ1, . . . ,Ψn.

This implies the following result.

Lemma 3.11. The cohomology group H4n+k
(0) (h2n) vanishes if k = 1, 2, 4 or 6, for all n.

Proof. Classes of weight 0 are generated by monomials of the form a = Ψk1
1 · · ·Ψkn

n hℓ11 · · ·hℓnn ,

where each ℓi = 0 or 1. If c does not include hi then a is in the image of the transgression map,

and therefore vanishes, so from now on we will assume that at least one ℓj ̸= 0. If such a class

survives to the E∞ page of the spectral sequence it must in particular be in the kernel of the

transgression map.

Now, the classes Ψi have degree 0 mod 4 and hi have degree 3 mod 4. Let us consider

the possible degrees of classes involving different numbers of hi. Applying the transgression

to c gives a sum of elements of the form Ψk1
1 · · ·Ψ

kj+1
j · · ·Ψkn

n hℓ11 · · · ĥj · · ·h
ℓn
n , where for each

summand
∑n

i=1 iki + j > n. The element Ψk1
1 · · ·Ψkn

n hj therefore has degree at least 4n

1. If only one ℓj ̸= 0 then c has degree 3 mod 4.
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2. If two ℓj ̸= 0 then c has degree 2 mod 4. Because Ψk1
1 · · ·Ψkn

n hj has degree at least 4n, a

class of the form Ψk1
1 · · ·Ψkn

n hj1hj2 has degree at least 4n+ 3.

3. If three or more ℓj ̸= 0 then, likewise c has degree at least 4n+ 3 + 7 = 4n+ 10.

In particular, there are no non-zero classes in degree 4n+ 1, 4n+ 2, 4n+ 4 or 4n+ 6.

Now, we can use this cohomology calculation to immediately prove the main theorem of this

section.

Proof of Theorem 3.2. By Lemma 3.9, the class [Θn,m] of the one-loop anomaly lies in the weight

0 summand H4n+m+1
(0) (h2n). By Lemma 3.11 this cohomology group vanishes, and therefore so

does the anomaly.

Remark 3.12. The same calculation shows that this quantization is unique among weight 0

quantizations in the cases where m = 0, 1, 2, 4 or 6. Indeed, deformations of a quantum őeld

theory are controlled by classes in H0
loc(Ln,m). We have demonstrated that the weight 0 part of

this cohomology vanishes if m = 0, 1, 2, 4 or 6.

Remark 3.13. At this point it seems natural to speculate that all Poisson BF theories are

anomaly free. The őrst example to which our methods do not apply is the 17-dimensional

Poisson BF theory on C
4 × R

9. The anomaly here is given by a weight 0 class in H18
(0)(h4)

∼= C
2

(this is the smallest non vanishing weight 0 even cohomology group of a Lie algebra h2n, it is

generated by the classes Ψ2
1h1h2 and Ψ2h1h2.).

4. Occurence as Twisted Supergravity

The BV theories we have introduced so far have conjectural connections to string theory and

supergravity, using the theory of twisted supergravity as discussed by Costello and Li [10]. In

this section we provide a brief survey of these relationships, but these ideas will not be used in

the remainder of the paper.

Conjecture 4.1. The twist of 5d N = 1 supergravity on R
5 is equivalent to Poisson BF theory

on C
2 × R where C

2 carries its canonical holomorphic symplectic structure.

Remark 4.2. This conjecture can be deduced from a description of the twist of M -theory on

the 11-manifold R×C
3×C

2 discussed in [22] upon dimensional reduction along the CalabiśYau

three-fold C
3. More generally, one can study M -theory on a geometry of the form R×X × C

2,

where X is an arbitrary CalabiśYau three-fold. The reduction along X is expected to produce

N = 1 supergravity coupled to a N = 1 vector multiplet with gauge group U(1) and a N = 1

hypermultiplet valued in the symplectic vector space H3(X). We thank Kevin Costello for

clarifying this point.

The proof of this conjecture starting from an explicit description of 5d N = 1 supergravity is

currently joint work with Ingmar Saberi. Let us explain some evidence for this conjecture. First,

we recall the form of the twist of 5d N = 1 super YangśMills theory on R
5, which has been

worked out in [13]. Recall that 5d N = 1 gauge theory is deőned for any Lie algebra g together

with a representation V . The twist of this theory on C
2×R is equivalent to the cotangent theory

to the local dg Lie algebra

Ω0,•(C2) ⊗̂ Ω•(R;C)⊗ (g⋉ V [−1]) .
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which we will denote by LSYM(g, V ).

Given this description, it is clear how LSYM(g, V ) is a module for the local dg Lie algebra

L2,1 = Ω0,•(C2) ⊗̂ Ω•(R;C)

underlying Poisson BF theory. Indeed, if A ∈ L2,1 and γ ∈ LSYM(g, V ) the action is through the

Poisson bracket {A, γ}Π.

In this way, there is a natural way to łcouple" Poisson BF theory to the twist of super

YangśMills theory. One considers the cotangent theory to the local dg Lie algebra

L2,1 ⋉ LSYM(g, V ).

The dimensional reduction of 5d N = 1 SYM along R is 4d N = 2 SYM. For pure gauge

theory, this means that the dimensional reduction of 5d N = 1 SYM is equivalent to 4d N = 1

SYM coupled to an adjoint-valued 4d N = 1 chiral multiplet.

Following this line of reasoning, the dimensional reduction of 5d N = 1 supergravity is 4d N =

2 supergravity, which we can hope to further decompose in terms of 4d N = 1 supersymmetry.

The reduction of our 5d theory along R is equivalent to the cotangent theory to the local dg Lie

algebra

Ω0,•(C2)[ε] = Ω0,•(C2)⋉ εΩ0,•(C2)

where ε is a parameter of cohomological degree +1. The Lie structure is similar to that of L2,0:

we take the dg Lie algebra L2,0 = Ω0,•(C2) with its Poisson bracket and tensor it with the graded

ring C[ε].

We can decompose the őelds of this 4d theory as A+ εγ, where A, γ ∈ Ω0,•(C2). Denote the

anti-őelds by B, β. The action functional reads

∫

C2

B ∧

(
∂A+

1

2
{A,A}Π

)
+

∫

C2

β ∧ ∂γ +

∫

C2

β ∧ {A, γ}Π.

The őrst term we recognize as Poisson BF theory on C
2, described by the local dg Lie algebra L

of Deőnition 2.1. The second term is that of the free βγ system on C
2, this is equivalent to the

twist of a single 4d N = 1 chiral multiplet, see [13].

This leads us to the following 4d analogue of our conjecture on twisted supergravity.

Conjecture 4.3. The twist of pure 4d N = 1 supergravity on R
4 is equivalent to Poisson BF

theory on C
2 with its standard holomorphic symplectic structure; this is the cotangent theory

to the local Lie algebra L2,0 = Ω0,•(C2).

Remark 4.4. Let Y be a G2 manifold. This conjecture can also be deduced from the dimensional

reduction of the conjectural twist of M -theory on Y × C
2, given in [22], along the G2 manifold

Y .

Remark 4.5. In the previous section we have shown that Poisson BF theory on C
2 is non-

anomalous. This is compatible with the conjecture above and the result of Alvarez-Gaumé and

Witten in [1] that there are no pure gravitational anomalies in any theory of supergravity in

dimension 4k, where k ∈ Z.
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5. Factorization Algebras and Symplectic Symmetry

5.1 Factorization Algebras In the introduction we have mentioned the relationship of quan-

tum őeld theory to factorization algebras. Thanks to the foundational work of [8], we know that

to every quantum őeld theory one can associate a factorization algebra of łobservables".

At the classical level, this idea is based on the following sequence of observations. First,

note that the deőnition of the space of őelds E of a theory is local on spacetime; it is given as

the sheaf of smooth sections of a (graded) vector bundle. For such sheaves, the continuous dual

E∨ carries the structure of a cosheaf. The natural product on the completed symmetric algebra

O(E) = Ŝym(E∨) endows the factorization structure maps as in Deőnition 1.1.

Together with the BV bracket, the classical action functional S determines a differential

{S,−}BV on O(E).

Deőnition 5.1. The factorization algebra of classical observables in the theory (E , S) (a factor-

ization algebra valued in cochain complexes) is deőned to be

Obscl =

(
O(E) , {S,−}BV

)
.

Consider the example of Poisson BF theory on X × M , where X is a complex manifold

equipped with a holomorphic Poisson structure Π, so E = LΠ,M [1] ⊕ L!
Π,M [−2]. For simplicity,

denote L = LΠ,M in what follows.

We őrst note that the continuous dual of E = L[1]⊕ L![−2] is

E∨ = L
!
c[−1]⊕ Lc[2]

where (−)c denotes the space of compactly supported distributional sections. Hence, as a graded

vector space the observables have the form Sym
(
L
!
c[−1]

)
⊗ Sym

(
Lc[2]

)
.

The classical BV differential {S,−}BV can be identiőed with the ChevalleyśEilenberg dif-

ferential of the dg Lie algebra L with values in the module Sym
(
Lc[2]

)
. Thus, the classical

observables have the form

Obscl = C•
Lie

(
L ; Sym

(
Lc[2]

))
.

Fix an open set inside X ×M , which for simplcity we’ll take of the form U × V where U is

an open subset of X and V is an open subset of M . Then we have the dg Lie algebra

L(U × V ) = Ω0,•(U)⊗̂Ω•(V ;C)

with differential ∂ + ddR and bracket {−,−}Π. The observables supported on U × V take the

form

Obscl(U × V ) = C•
Lie

(
Ω0,•(U)⊗̂Ω•(V ;C) ; Sym

(
Ω
0,•
c (U)⊗̂Ω

•
c(V )[2]

))
.

We now immediately observe the following.

Proposition 5.2. The factorization algebra Obscl is not Betti topological.

Proof. Write Dr(0) ⊆ C
2n for the polydisk around 0 of radius r. Choose r < R, and any open

subset V of Rm, and consider the inclusion Dr(0) × V ↪→ DR(0) × V . The associated map on

classical local observables is not an equivalence: this is dual to the observation that the map

Ω0,•(Dr(0)) → Ω0,•(DR(0)) is not surjective on cohomology.
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5.2 Translation and Dilation Actions Let us begin by recalling what it means for a group

to act on a classical or quantum őeld theory, using the language of factorization algebras and

the BV formalism. We will not include all details here, for a more thorough account see [8,

Chapter 4.8] and [12, Section 2]. Lie algebra actions in the BV formalism was also studied, in a

somewhat different formalism, in the recent work [3]. Let GR be a Lie group with complexiőed

Lie algebra g = gR ⊗C, and őx a smooth action ρ of GR on the spacetime manifold X. If Obs is

a factorization algebra on X, we can deőne a smooth action of GR on Obs in the following way.

Deőnition 5.3 ([12, Deőnition 2.11]). A smooth action of GR on Obs consists of an isomorphism

αg : Obs(U) → Obs(ρ(g)(U)) for every g ∈ GR and open U ⊆ X, satisfying the following

conditions.

1. αg1g2 = αg1 ◦ αg2 for all g1, g2 in GR.

2. The map αg commutes with the factorization structure, for all g in GR.

3. For all collections of pairwise disjoint open subsets U1, . . . , Uk of an open set V , the map

m : {(g1, . . . , gk) ∈ Gk
R : gk(Uk) are disjoint subsets of V } → Hom

(
k⊗

i=1

Obs(Ui),Obs(V )

)
,

deőned by őrst acting by (g1, . . . , gk) then using the factorization structure, is smooth.

4. There is an inőnitesimal action ρ : g → Der(Obs) of g such that for all w ∈ g and i =

1, . . . , k,

∂w,img1,...,gk(O1, . . . ,Ok) ∼= mg1,...,gk(O1, . . . , . . . , ρ(w)Oi, . . . ,Ok)

where the map ∂w,i is the directional derivative on Gk
R

with respect to the tangent vector

(0, . . . , Lgi(w), . . . , 0) ∈ Tg1,...,gkG
k
R,

where the non-zero element is placed in the ith slot.

The smooth action extends the inőnitesimal action ρ of the Lie algebra g to a global action

of the Lie group GR. With this deőnition in hand, we can now make precise what it means for a

őeld theory to be de Rham topological. We say a smooth action is de Rham if this inőnitesimal

action is homotopically trivialized, in the following sense.

Deőnition 5.4 ([12, Deőnition 2.18]). Deőne gdR to be the dg Lie algebra with underlying

cochain complex g[1]
id
→ g, where the degree zero Lie algebra g acts on g[1] by the adjoint

representation.

An action ρ of a Lie algebra g on a factorization algebra Obs is de Rham if ρ is equipped

with an extension to

ρdR : gdR → Der(Obs).

A de Rham action of a Lie group GR on Obs is a smooth action of GR where the inőnitesimal

action of g is extended to a de Rham action.

Deőnition 5.5. We say a factorization algebra Obs on R
n is de Rham topological if there is a

de Rham action of Rn, where R
n acts on itself by translations.

The last general bit of background we need concerns a special type of action of a Lie algebra g

on the classical factorization algebra of observables Obscl. Recall that the BV bracket {−,−}BV

endows the shift of the cochain complex of local functionals Oloc(E)[−1] with the structure of a

dg Lie algebra. The differential is given by {S,−}BV.
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Deőnition 5.6. An inner action of a dg Lie algebra g on a classical őeld theory is a map of L∞

algebras

P : g → Oloc(E)[−1].

Giving an inner action on a theory is equivalent to prescribing an element

P ∈ C•
red(g)⊗Oloc(E)[−1]

satisfying the equivariant classical master equation

dgP + {S,P}BV +
1

2
{P,P}BV = 0 (7)

where dg denotes the ChevalleyśEilenberg differential for g.

Notice that through the BV bracket {−,−}BV the dg Lie algebra Oloc(E)[−1] acts on the

classical observables. That is, there is a dg Lie map

Oloc(E)[−1] → Der(Obscl)

O 7→ {O,−}BV.

Therefore, any inner action by a Lie algebra g determines an action of g on the factorization

algebra Obscl as deőned above.

Let us now focus attention on the example of Poisson BF theory. As in ğ3 we consider Poisson

BF theory on C
2n × R

m where C
2n is equipped with its standard symplectic structure. We will

begin by constructing a de Rham action of the Lie algebra of holomorphic functions which is

equipped with the Poisson bracket. As above, En,m denotes the őelds of Poisson BF theory and

Ln denotes the dg Lie algebra Ω0,•(C2n) resolving the Lie algebra of holomorphic functions on

C
2n.

Theorem 5.1. There is an inner action of (Ln)dR on Poisson BF theory on C
2n × R

m. This

induces a de Rham action of the Lie algebra Ln on the classical observables.

Proof. We will construct a (strict) map of dg Lie algebras

PdR : (Ln)dR = Ln ⊕ Ln[1] → Oloc(En,m)[−1]

which we split up as a pair of linear maps PdR = (P,Q).

Given α ∈ Ln deőne the local functionals Pα,Qα ∈ Oloc(En,m) by

Pα(A,B) =

∫
B ∧ {p∗α,A}Π (8)

Qα(A,B) =

∫
B ∧ p∗α. (9)

Here, p : C2n × R
m → C

2n is the projection. Together, these deőne the pair of linear maps

P : α 7→ Pα and Q : α 7→ Qα. Note that if α is a (0, k)-form then Pα is a local functional of

degree k − 1 and Qα is a local functional of degree k − 2.

The equivariant classical master equation (7) for PdR is equivalent to the three equations

dLnP + {S,P}BV +
1

2
{P,P}BV = 0

∂Q+ P + {S,Q}BV = 0

dΠQ+ {P,Q}BV = 0.
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The őrst equation is implied by the ordinary classical master equation {S, S}BV = 0. (This

simply says that the classical theory is equivariant for the dg Lie algebra Ln, which is clear.)

Next, let’s consider the third equation. Here, dΠ denotes the component of the Chevalleyś

Eilenberg differential for (Ln)dR arising from the Poisson bracket. We apply the left-hand side

to a pair of forms α ∈ Ln and β ∈ Ln[1]. Then (dΠQ)(α, β) = Q{α,β}Π and

{P,Q}BV(α, β) = −{Pα,Qβ}BV = −

{∫
B ∧ {p∗α,A}Π,

∫
B ∧ p∗β

}

= −

∫
B ∧ {p∗α, p∗β}Π

= −Q{α,β}Π .

Finally, we turn our attention to the second equation. Decomposing the action into free and

interacting summands, S = Sfree+ I where I =
∫
B∧{A,A}Π, and recalling that {Sfree,−}BV =

∂, we see that the second equation is equivalent to P + {I,Q}BV = 0. The operator {I,−}BV

is the component of the ChevalleyśEilenberg differential for Ln,m which encodes the Lie bracket

{−,−}Π. Evaluating this on an element α ∈ Ln we thus obtain

{I,Q}BV(α) = −

∫
B ∧ {p∗α,A}Π = −Pα (10)

as desired.

Given any translation invariant vector őeld v on C
2n × R

m we deőne the local functional

Tv(A,B) =

∫
B ∧ Lv(A) (11)

where Lv(−) denotes the Lie derivative. This deőnes an inner action of inőnitesimal translations

T : R4n+m → Oloc(En,m)[−1]

sending v 7→ Tv.

Let us őx Darboux coordinates {zi} and {wj} on C
2n. The Lie algebra of holomorphic

translations spanned by holomorphic derivatives in zi and wj admits a linear map to holomorphic

functions via
R
2n → Ohol(C2n)
∂
∂zi

7→ wi
∂

∂wj
7→ −zj .

Of course, this map is not a Lie map since {zi, wj}Π = δij . However, since the Poisson bracket

of the constant function 1 with any holomorphic function is zero, we see that the composition

R
2n → Ohol(C2n)

≃
−→ Ω0,•(C2n)

P
−→ Oloc(En,m)[−1],

where P is deőned in the proof of the previous theorem, is a map of dg Lie algebras. In fact,

if v = ∂
∂zi

or ∂
∂wj

is a holomorphic translation invariant vector őeld, then Tv = Pwi
or −Pzj ,

respectively.

Corollary 5.7. The classical Poisson BF theory on C
2n×R

m is de Rham translation invariant.
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Proof. First note that Poisson BF theory is translation invariant. That is, there is a smooth

action of the group R
4n+m by translations, which acts on the observables inőnitesimally by the

directional derivative. The inőnitesimal action is inner and deőned by the Lie map T : R4n+m →

Oloc(En,m)[−1] in (11).

We must describe an extension of this inőnitesimal action to an action of R4n+m
dR . We will do

this by őnding a potential S such that the pair of maps

(T ,S) : R4n+m
dR → Oloc(En,m)[−1]

deőnes an inner action by R
4n+m
dR .

Choose Darboux coordinates {zi, wj} for C2n as above and denote by {tk} the coordinate on

R
m.

The potential for translations in the zi, wj and tk directions can be written as follows. Given

a translation invariant vector őeld v in the span of these directions, let ιv denote the interior

product with v, and deőne the local functional

Sv(A,B) =

∫
B ∧ ιv(A).

The potential for translations in the holomorphic zi and wj directions has already been

written down in the proof of Theorem 5.1. We set

S ∂
∂zi

= Qwi
, S ∂

∂zi

= −Qzj

where Q is deőned in (9).

We show that the equivariant classical master equation holds for the pair of maps (T ,S):

d
R
4n+m
dR

(T + S) + {S, T + S}BV +
1

2
{T + S, T + S}BV = 0 (12)

where d
R
4n+m
dR

is the ChevalleyśEilenberg differential for R4n+m
dR . Notice, őrst, that by translation

invariance we have {S, T }BV = 0. Next, the potentials Qv for v mutually commute, and they

commute with the inőnitesimal translation action so the őnal term also vanishes.

It suffices to show this equation holds upon applying any őxed translation invariant vector

őeld to the left-hand side. Applied to a őxed vector őeld v we have

d
R
4n+m
dR

(T + S)(v) = Tv.

For the second term in equation 12, suppose őrst that v is in the span of translations in the

zi, wj and tk directions. Then

{S,S}BV(v) = −
(
∂ + dt

)
Sv − {I,Sv}BV.

Here, dt denotes the de Rham differential in the R
m direction. Since ιv is a derivation for the

Poisson bracket {−,−}Π the term {I,Sv}BV vanishes. Finally,

(∂ + dt)Sv =

∫
B ∧ [∂ + dt, ιv]A = Tv

by Cartan’s formula, and the classical master equation 12 follows.

Finally, suppose that v is a holomorphic translation, say ∂
∂zi

. Then Tv = Pwi
and by (10) we

have

{S,S}BV(v) = −{S,Qwi
}BV = −Pwi

,

and again equation 12 follows.
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Remark 5.8. More generally, on a holomorphic Poisson manifold the inőnitesimal action of

Theorem 5.1 will extend to a smooth de Rham action of the group of holomorphic Poisson

automorphisms. On C
2n such automorphisms include holomorphic translations, and this action

combines with the de Rham action of anti-holomorphic translations to make the theory de Rham

topological.

Remark 5.9. We can additionally describe a smooth action of the group R>0 of dilations, that

is, where c ∈ R>0 acts on C
2n × R

m by simultaneously rescaling all the coordinate directions

by c. Inőnitesimally, this action is described by the action of the Euler vector őeld on Ln,m.

This action is not inner and not de Rham, since any de Rham translation invariant factorization

algebra which is additionally de Rham dilation invariant is automatically Betti topological [12,

Proposition 3.38], which is not the case for Poisson BF theory.

5.3 Factorization Algebra of Quantum Observables Due to issues of renormalization in

the deőnition of a quantum őeld theory, as surveyed in ğ3.1, the deőnition of the factorization

algebra of quantum observables is much more subtle than the deőnition of classical observables.

To begin, one őrst deőnes a cochain complex of global observables. We provide a brief synopsis

of the construction of the factorization algebra of quantum observables, but refer the reader to

[8] for complete details.

We begin by őxing the data of a quantum őeld theory described by an effective family {I[L]}.

A global observable O is an assignment of an ℏ-dependent functional on the space of őelds

O[L] ∈ O(E(M))[[ℏ]]

for each łlength scale" L > 0. The functionals O[L], O[L′] at different length scales L < L′ must

be related by the renormalization group ŕow which O[L′] = WL<L′(O[L]) (this condition also

appears in the deőnition of an effective family as detailed in ğ3.1).

The space of global observables is a cochain complex with differential

dL = Q+ {I[L],−}L + ℏ△L

where I[L] is the scale L effective action and △L is the scale L BV Laplacian. The fact that

renormalization group ŕow WL<L′ intertwines the differentials dL and dL′ turns this into a well-

deőned deőnition of the cochain complex of global observables, which we denote by Obsq(M).

The next step is to deőne what a local observable is. This is the most technical part of the

deőnition. Given an open set U ⊂ M , one says that {O[L]} is an element Obsq(U) if O[L] is

supported on U in the limit L → 0. Roughly, this means that for L close to zero O[L] has

support approximately in the open set.

The factorization product is described in a similar way to the classical case. It utilizes the

commutative product on O(E)[[ℏ]] together with renormalization group ŕow. To get a sense for

the deőnition, let’s consider the case of two disjoint open sets U, V in M and the factorization

product

mU,V : Obsq(U)×Obsq(V ) → Obsq(U ⊔ V ).

If O = {O[L]} ∈ Obsq(U) and O′ = {O′[L]} ∈ Obsq(V ) then the observable mU,V (O,O′) =

{mU,V (O,O′)[L]} is deőned by

mU,V (O,O′)[L] = lim
L′→0

WL<L′

(
O[L′] ·O[L′]

)
.
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Here the · on the right-hand side denotes the commutative product in O(E)[[ℏ]]. To see that

this is well-deőned and gives U 7→ Obsq(U) the structure of a (pre)factorization algebra is the

content of [8, Theorem 8.5.1.1].

Remark 5.10. To handle the issue with supports one must be more careful than using an

effective family {O[L]} based simply on a łlength scale" L. The correct notion is that of a

parametrix, but since we will not need it here we will skip over this technical detail.

We őnally turn to Poisson BF theory on C
2n × R

m. Suppose we are in one of the cases

of Theorem 3.2 where a translation invariant quantization is guaranteed to exist. Fix such a

quantization and write Obsqn,m for the factorization algebra on C
2n×R

m of quantum observables.

Theorem 5.2. The factorization algebra Obsqn,m of quantum observables is de Rham but not

Betti topological.

Proof. First, it is straightforward to observe that Obsqn,m is not Betti topological. We can recover

the factorization map Obscln,m(Br(0) × U) → Obscln,m(BR(0) × U) in the classical factorization

algebra by reducing the corresponding map in the quantum factorization algebra modulo ℏ. Since

this map is not an equivalence at the classical level, it cannot be an equivalence at the quantum

level.

To show that Obsqn,m is de Rham topological, őrst note that it admits a smooth translation

action by [8, Proposition 10.1.1.2], using the fact from 3.1 that our quantization is translation

invariant. We must verify that we can extend the translation action by lifting the inőnitesimal

R
4n+m
dR action to the quantum level. To do so, we will use a result of Costello and Gwilliam

on the equivariant quantization of őeld theories [8, Section 12.3]. There is a one-loop obstruc-

tion to lifting the R
4n+m
dR from the classical to the quantum level given by a 1-cocycle Θeq

n,m in

C•
red(R

4n+m
dR ,Oloc). We will check that this cocycle automatically vanishes when at least one of

the inputs is a degree −1 element of R4n+m
dR .

The obstruction Θeq
n,m takes a form similar to the description of the anomaly that we saw in

equation 3. It is computed as a sum of weights of wheel Feynman diagrams where the external legs

are labelled by őelds A,B, or by background őelds: elements of R4n+m
dR . It is a straightforward

observation that there are no such diagrams whose external legs are labelled by a degree −1

auxiliary őeld in R
4n+m[1]. Indeed, by the deőnition 9 of the degree −1 inner symmetry Qv,

it is purely quadratic in v and B, and therefore degree −1 background őelds cannot label the

external legs of a wheel diagram. As such, there is no obstruction to lifting the R
4n+m
dR action to

the quantum level.

Remark 5.11. Let (Cn,Π) be a general (possibly degenerate) translation invariant holomorphic

Poisson structure and consider the subspace Im(Π) ⊂ R
n of holomorphic translations that are

in the image of Π. If the quantization of holomorphic BF theory on C
n × R

m associated to Π

exists, the same argument as above shows that the space of translations

Im(Π)⊕

{
∂

∂zi

}
⊕

{
∂

∂tj

}
∼= Im(Π)⊕ R

n ⊕ R
m

act homotopically trivially, yet the holomorphic translations in R
n/Im(Π) act in a potentially

non-trivial way.

As a simple example, suppose C
n ∼= C

2k + C
ℓ is equipped with the standard holomorphic

Poisson structure on the őrst factor, and the zero Poisson structure on the second factor. In

the C
ℓ direction this theory looks like ordinary abelian holomorphic BF theory, which is not de

Rham topological: the holomorphic translations on the C
ℓ factor will be non-trivial.
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