Higher Structures 5(1):282-309, 2021.

IGHE
STRU

Holomorphic Poisson Field Theories
Chris Elliott* and Brian R. Williams®

@University of Massachusetts, Amherst, Department of Mathematics and Statistics,
710 N Pleasant St, Amherst, MA 01003
®School of Mathematics, University of Edinburgh, Edinburgh, UK

Abstract

We construct a class of quantum field theories depending on the data of a holomorphic Poisson
structure on a piece of the underlying spacetime. The main technical tool relies on a characteri-
zation of deformations and anomalies of such theories in terms of the Gelfand—Fuchs cohomology
of formal Hamitlonian vector fields. In the case that the Poisson structure is non-degenerate
such theories are topological in a certain weak sense, which we refer to as “de Rham topologi-
cal". While the Lie algebra of translations acts in a homotopically trivial way, we will show that
the space of observables of such a theory does not define an E,-algebra. Additionally, we will
highlight a conjectural relationship to theories of supergravity in four and five dimensions.
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1. Introduction

This paper is devoted to the construction of a novel family of quantum field theories defined on the
product of a holomorphic Poisson manifold X and a smooth manifold M. The action functional
of these theories is analogous to the BF theory action functional, but where the interaction term
is defined using the holomorphic Poisson bracket on X, so we refer to these theories as Poisson
BF theories '. We will show that these theories have a number of interesting properties.
1. The only potential anomaly to quantization of Poisson BF theory occurs at first order in A.
On C?" x R™, this anomaly is given by a class in the cohomology of the infinite-dimensional
Lie algebra bo,, of Hamiltonian vector fields on C2". We show that if m < 6 this cohomology
class vanishes, and so the Poisson BF theory can be quantized to all orders (Section 3).
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More precisely, we could use the term “holomorphic Poisson BF theory”. One could make a similar definition
for real Poisson structures, but we will only consider the holomorphic case. For brevity we will omit the word
“holomorphic” and refer simply to “Poisson BF theories henceforth.
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2. Poisson BF theory is gravitational in nature. Indeed, there is a fundamental field of Poisson
BF theory of spin 2 and the interactions contain spacetime derivatives. Moreover, if X is a
holomorphic symplectic surface, Poisson BF theories appear to arise as twists of minimal
supergravity theories in dimensions 4 and 5. Such supergravity theories occur by dimen-
sionally reducing 11-dimensional N/ = 1 supergravity on a Gs-manifold or Calabi-Yau
3-fold respectively (Section 4).

3. Poisson BF theories are examples of theories that are “de Rham topological” but not “Betti
topological”. That is, their algebras of observables are not locally constant, but the group
of translations acts homotopically trivially. The factorization algebra of observables has
the structure of an algebra over the operad C,(DiskSo +m) of singular chains for colored
little (2n 4+ m)-disks (Section 5).

1.1 Topological Field Theories In the literature on topological quantum field theories,
a distinction is often drawn between topological theories of Schwarz type, and of Witten (or
cohomological) type [23]. A field theory is topological of Schwarz type if the action functional is
strictly independent of the metric, so the gravitational stress-energy tensor 7T+ = 52;9”, vanishes.
Being topological of Witten-type is slightly more subtle, one usually requires the existence of an
odd observable @ satisfying the condition [@Q, Q] = 0, such that 7T+ = [@Q,G*"] for some family
of observables GH¥.

This condition can be phrased more naturally in the Batalin—Vilkovisky (BV) formalism,

which provides for a description of classical and quantum field theory in terms of homological
algebra and Lie theory, or equivalently in terms of formal derived geometry. In the BV formalism,
the local observables form a cochain complex that is further equipped with a bracket of coho-
mological degree +1. We refer to the differential on this cochain complex as the “classical BV
complex" and the bracket as the “BV bracket". Now, a theory is topological of Schwarz type if
the stress-energy tensor strictly vanishes, and it is topological of Witten type if the stress-energy
tensor vanishes up to homotopy, i.e. if it is an exact element of the cochain complex. From
a homotopy-theoretic point of view only the latter notion is invariant: it is often possible to
describe a perturbative quantum field theory in many different homotopy-equivalent ways, and a
theory may be topological of Schwarz type in some models, but only topological of Witten type
in others.

Witten-type topological field theories appear naturally when one studies twisting for super-
symmetric field theories. Given a supersymmetric field theory on RP'? and an odd element @) of
the supersymmetry algebra such that [Q, Q] = 0, one can twist the supersymmetric theory by
adding the action of @ to the BV differential on the algebra of local observables. According to
our discussion above, the resulting twist will be topological if the following condition holds:

T1: T = [Q,GM] for some GH.
On the other hand, there is a weaker condition that is often checked first, that only depends
on ( itself and not on the choice of theory. The super Lie algebra of supertranslations is an
extension of the abelian Lie algebra RP? of translations by an odd space II3, where ¥ is a
spinorial representation of Spin(p, q) (so @ is an element of ).

T2: The map [@, —]: ¥ — RP? is surjective.
This condition T2 is guaranteed, for example, if we choose a twisting homomorphism from
Spin(p, ¢) to the group G of R-symmetries such that @ is invariant under the twisted Spin(p, q)-
action (this has the additional advantage of allowing the twisted theory to be defined on all



284 Chris Elliott and Brian R. Williams, Higher Structures 5(1):282-309, 2021.

oriented manifolds).

It is possible to rephrase condition T2 in language similar to condition T1. The canonical
stress-energy tensor is the conserved current associated to the translation symmetry, condition T2
says that the canonical stress-energy tensor is (Q-exact. The canonical stress-energy tensor and
the gravitational stress-energy tensor T#” do not typically coincide, they differ by a correction
term (the Belinfante-Rosenfeld correction) derived from the conserved currents for the rotation
action. This term is de Rham exact, but need not be @-closed.

Condition T1 implies T2, but are there examples satisfying only T27 We will now discuss what
the two conditions tell us, formally, about the algebra of local observables. We can extrapolate
the conditions T1 and T2 to families of theories that are “topological” in two different senses,
which we refer to as “Betti” and “de Rham” topological respectively.

1.2 Betti vs. de Rham topological factorization algebras The theory of factorization
algebras provides an effective mathematical model for the study of classical and quantum field
theories, describing their dependence on an open subset of spacetime, and their “operator prod-
ucts". It is the central premise of Costello and Gwilliam’s work in |7, 8] that one can associate
to every quantum field theory on a manifold M a factorization algebra of “observables" on M.
Let us provide an informal definition.

Definition 1.1. A prefactorization algebra on a smooth manifold M is an assignment of a
cochain complex Obs(U) to each open subset U C M, together with structure maps Obs(U;) ®
-+ ® Obs(U,) — Obs(V) for each set of pairwise disjoint subsets Uj,...,U, C V, satisfying
natural compatibility conditions. A factorization algebra is a prefactorization algebra satisfying
a descent condition (see [7, Chapter 6| for a precise definition).

In general, the open set Obs(U) is highly dependent on the geometry of U, for instance if
U C V are a pair of homotopy equivalent open subsets, the map Obs(U) — Obs(V') will typically
be far from a quasi-isomorphism. However, if Obs describes the local observables in a topological
quantum field theory, this should not be the case: the local observables should be topological in
the following sense.

Definition 1.2. A factorization algebra Obs is Betti topological if, whenever U — V is a
homotopy equivalence, the associated map Obs(U) — Obs(V) is a quasi-isomorphism.

Remark 1.3. A Betti topological factorization algebra is equivalent to what is often referred to
as a locally constant factorization algebra.

For example, the local observables in a Schwarz-type topological quantum field theory will
manifestly form a Betti topological factorization algebra, because the fields and the action func-
tional will not be sensitive to the local geometry of an open set. We conjecture that the same
is true, at least infinitesimally, of a Witten-type topological quantum field theory, such as a
topological twist satisfying the condition T1 (see the discussion in [12, Section 3.5]). When we
consider twists only satisfying the condition T2 however, we can only guarantee an apparently
weaker condition. Such theories are de Rham topological, in the following sense.

Definition 1.4. A factorization algebra Obs on R" is de Rham topological if it is translation
invariant, meaning that there is a smooth action of the group R™, and the translation action is
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homotopically trivial, meaning that there is additionally an infinitesimal action of the abelian
Lie algebra R™ of cohomological degree —1, say

n: R™ — Der(Obs),
such that dn(v) = dv for all v € R™.

In [12], Safronov and the first author studied these de Rham topological factorization algebras,
and learned that they are not in fact that distant from Betti topological theories. To explain their
relationship, we will introduce a concept from homotopical algebra, the notion of an [E,-algebra.
The E,-operad is an operad valued in cochain complexes. It is built by taking the singular
chain complex of the operad Disk,, of little n-disks: the operad valued in smooth manifolds
whose space of order k operations is the space of embeddings of k n-disks into the unit n-disk.
The relationship between E,-algebras and factorization operators begins with a famous result of
Lurie.

Theorem 1.1 (|20, Theorem 5.4.5.9|). There is a fully faithful embedding from the oo-category
of Ey-algebras into the oo-category of factorization algebras, whose essential image consists of
Betti topological factorization algebras.

One way of stating this result is to say that a Betti topological factorization algebra is
completely determined by its value on the unit disk. When we consider de Rham topological
factorization algebras, it turns out that they are determined by their values on disks, but but with
dependence on scale. There is a colored operad Diskffl, with space R+ of colors corresponding
to radii: this is the colored operad valued in smooth manifolds whose space of order k operations
Disk!(ry,...,r,|R) is the space of embeddings of k n-disks of radius r1,..., 7 into a disk of
radius R.

Theorem 1.2 ([12, Theorem 2.23 and 2.29|). There is an equivalence of co-categories between
the C’.(Diskffl)-algebms and de Rham topological factorization algebras. The essential image of
the co-category of E,, algebras consists of those de Rham topological factorization algebras where
the map Obs(B,(0)) — Obs(Bgr(0)) is a quasi-isomorphism, where B,.(0) C Br(0) are concentric
n-disks about 0 with radii r < R.

We can sloganize this result by saying that the difference between theories satisfying condition
T1 and condition T2 is the presence or absence of dilation invariance.

1.3 Goals of this Paper The main aim of this paper is to describe a class of quantum
field theories whose local observables are de Rham but not Betti topological. The examples we
construct will be defined on the product of a holomorphic Poisson manifold and an oriented real
manifold, and theories of this type in dimension 4 and 5 conjecturally occur as twists of minimal
supergravity theories, as we will discuss in Section 4.

The basic idea is as follows. There is a procedure in the BV formalism for constructing
classical field theories on M of “cotangent type”. We start with a sheaf of differential graded Lie
algebras (£,d) on M. The cotangent theory associated to L has fields given by elements (A, B)
of the cochain complex £ @ £'[—3], where L' = Hom(L, Densy;), with an action functional of the
form

S(A,B) = /M<B,dA + %[A, A)).
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The most famous example of a field theory of this form is BF theory, which is generated by this
procedure from the dg Lie algebra L = Q°®(M, g) for a Lie algebra g.

We will define a classical field theory of cotangent type on C?" x R™ starting with the cochain
complex L = Q%*(C?") ® Q*(R™). We then equip this complex with a Lie bracket coming from
the standard holomorphic symplectic structure on C?* = T*C". Concretely, this Lie bracket is
defined on the Q0*(C?") factor of L by the formula

[fdZ"' Ao AdZ®, gdZt Ao AdZH] = {f,g}dZD Ao AdZ* ADE A A dF

We will refer to this theory as an example of Poisson BF theory, because it has an action
functional analogous to that of BF theory, with bracket associated to the holomorphic Poisson

structure on C2".

Remark 1.5. We will define theories of this type much more generally: on the product X x M of a
holomorphic Poisson manifold and a real oriented manifold. We emphasise that this construction
is not purely arbitrary from a physical point of view. We explain in Section 4 that in low
dimensions, Poisson BF theories appear to arise as partially topological twists of supergravity
theories.

This classical field theory admits a natural quantization which is manifestly translation invari-
ant. We argue in Section 3.2 that classical Poisson BF theories can, for purely formal reasons,
be extended to one-loop exact quantum theories as long as we verify that a certain one-loop
anomaly vanishes. We show that this occurs for all n, and all m < 6, by relating the anomaly to
a certain cocycle in the cohomology of an infinite-dimensional Lie algebra, which we demonstrate
to be a coboundary in Theorem 3.2.

Poisson BF theory is not Betti topological: we can see this straight away by constructing its
algebra of observables and checking that the inclusion of concentric balls is not an equivalence.
On the other hand, we can see that it is automatically quite close to being de Rham topological,
without us needing to do much work. The group R?” x R™ of translations in the antiholomorphic
Z', ..., 72" andreal t!,. .., t™ directions acts homotopically trivially because the action functional
only depends on a complex structure on C?" (for an explicit potential, see Section 5.2). Less
obviously, we will also show the following.

Theorem 1.3 (See Theorem 5.1, Theorem 5.2). The Lie algebra of holomorphic translations on
C?" acts on Poisson BF theory in a homotopically trivial way. Therefore the factorization algebra
of classical observables of Poisson BF theory is de Rham topological. When a quantization exists,
the factorization algebra of quantum observables is also de Rham topological.

Remark 1.6. The Lie algebra of holomorphic translations spanned by {0,,,...,0,,,} is an
abelian sub Lie algebra of holomorphic functions modulo constant functions O"!(C?")/C. In
fact, we will see that there is a homotopically trivial action of the dg Lie algebra Q%*(C?"),
which resolves the Lie algebra of holomorphic functions, on Poisson BF theory.

Remark 1.7. We should point out that our example of a theory with is de Rham but not
Betti topological does not provide an example of a twist where the supercharge () satisfies
condition T2 but not T1. Although we conjecture that Poisson BF theory does arise as a twist,
the corresponding supercharge will only be holomorphic-topological, i.e. it will only satisfy T2
for some directions. In fact, for supersymmetric Yang-Mills theories we know that all twists
satisfying T2 also satisfy T1! This follows by exhaustive classification of all possible twists [13].
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Additionally, twists of superconformal theories satisfying condition T2 also satisfy T1, as shown
in [12]. We speculate that in fact all twists satisfying condition T2 (making them a priori only
de Rham topological) also satisfy condition T1 (making them Betti topological, or Witten type),
but at the moment we don’t know a general argument justifying this in all cases.

Finally, we comment here on the proposed relationship of this class of theories with theories of
gravity. For more conjectural relationships to supergravity we refer to Section 4. For simplicity,
let us restrict to our theory defined on a complex surface X with a holomorphic Poisson structure.
As we will see in the body of the paper, one of the fundamental fields of holomorphic Poisson
theory on X is a (shifted) Dolbeault form

a € QY (X)[1].
Here, the shift is so that a%! is in cohomological degree zero. The equations of motion read
= 1
Oa + 5{01, a}=0

where {—, —} is the holomorphic Poisson bracket. Consider the component a®! and the form of
type (1,1) given by da®!. Using the holomorphic Poisson structure, da%! determines a section
p = (0a"M)# € Q01 (X, T)l(’o) and the equations of motion imply that p is a Beltrami differential.

In other words, on a complex surface X the solutions to the equations of motion of the
Poisson theory define, in part, deformations of the complex structure of X. In this way, Poisson
BF theory encodes a “holomorphic” variant of a theory of gravity on X. Concretely, the field
u obtained from our holomorphic theory is a component of the four-dimensional stress-energy
tensor. This should be compared with the more familiar situation in complex dimension one,
where components of the stress-energy tensor fit together to describe the Virasoro algebra (and
its anti-holomorphic version).

2. Classical Field Theories on Holomorphic Poisson Manifolds

Let X be a holomorphic Poisson manifold of dimension d with holomorphic Poisson tensor
II e A’T )1(’0. The Poisson tensor equips the sheaf of holomorphic functions O"!(X) with a Lie
bracket that we denote by {—, —}y1. This bracket extends to a bracket on the Dolbeault complex
0%*(X). Recall that a local Lie algebra on X is a sheaf of differential graded Lie algebras on X
where the differential and the bracket are given by differential operators (|7, Section 6.2]).

Definition 2.1. Let L be the local Lie algebra on X with underlying cochain complex (2%°(X), 9),
and with Lie bracket given by the formula

[, 8] = (=1)*IPF{a A B

That is, the unique graded antisymmetric extension of the Poisson bracket of functions on X to
the Dolbeault complex.

This is a local Lie algebra defined on any holomorphic Poisson manifold. There is a related
local Lie algebra defined on product manifolds of the form X x M, where M is a smooth (not
necessarily complex) manifold. This local Lie algebra will be manifestly topological (of Schwarz
type) along M.
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Definition 2.2. Let Y = X x M, where M is a smooth manifold and X is a holomorphic Poisson
manifold as above. Let L s be the local dg Lie algebra on Y whose sheaf of sections is

L ® Q*(M;C) = Q% (X) & Q°(M;C).

The dg Lie algebra structure is obtained by tensoring the dg Lie algebra structure on Ly with
the commutative dg algebra Q°*(M;C).

As a trivial remark, note that in the case where M is a point, thought of as a zero dimensional
manifold, the local Lie algebra L1 37 becomes the original local Lie algebra Lig.

Using L p we arrive at the definition of the classical field that we will focus on for the
remainder of the paper. Let us first state the definition of a classical field theory in the Batalin—
Vilkovisky (BV) formalism [2] that we will be studying.

Definition 2.3. A classical field theory on a manifold X is a sheaf £ of cochain complexes on X,
where the shift £[1] is equipped with the structure of a local Lie (or more generally, L) algebra,
and & is equipped with a (—1)-shifted symplectic pairing £ ® £[—1] — Densy. The cotangent
theory to a local Lie algebra £ is the direct sum L[1] @ £'[—2], where £' = Hom(L, Densy),
equipped with its canonical shifted symplectic structure.

In this paper all the classical field theories we consider will be defined over C. That is, £ is
a sheaf of cochain complexes of complex vector spaces.

Remark 2.4. For a discussion of where this definition comes from, and what it means, we refer
the reader to the extensive discussion in |5, 8] and [13, Section 1.1].

Example 2.5. Let g be an ordinary Lie algebra. Consider the local Lie algebra £ = Q°*(M;C)®g
with differential dgr and with bracket induced from the bracket on g and the wedge pairing of
differential forms. The cotangent theory to L is the theory usually called (complex-valued)
BF theory with gauge Lie algebra g. The fields of BF theory are (A,B) € L[1] ® £'[-2] =
Q°(M) ® g[1] & Q*(M) ® g*[d — 3] and the action is [ AdB + 5 [ B[A, A]. We recall that in the
style of AKSZ theory one can write BF theory as a derived mapping space

T*[~1]Map(Mqr, Bg) = Map(Mgr, T"[m — 1] Bg)

where m = dimg (M) and T*[m — 1] Bg is the formal moduli space associated to the graded Lie
algebra g x g*[m — 2].

The focus of this paper is the following example, which can be thought of as a deformation
of holomorphic BF theory with abelian Lie algebra g = C associated to a choice of holomorphic
Poisson structure..

Definition 2.6. We define Poisson BF Theory on' Y = X x M to be the cotangent theory as in
Definition 2.3 to the local Lie algebra L7 3. We will denote this theory by &iy.

Remark 2.7. Such theories exist in slightly more generality. Indeed, we can consider Poisson BF
theory on the total space Y of any smooth fibration whose base is equipped with a holomorphic
Poisson structure. Since we will be only interested in the flat case in what follows, we will not
return to this general situation.
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Equivalently, a field theory in the BV formalism is specified by a space of fields equipped
with a (—1)-shifted symplectic structure together with a local action functional S on the fields
which satisfies the classical master equation {5, S}gy = 0. Here, the bracket {—, —}py denotes
the BV bracket induced from the shifted symplectic structure.

Spelling this definition out, the fields consist of pairs

(A,B) € Q"*(X) ® Q*(M;C)[1] & Q¥*(X) & Q°(M;C)[d +m — 2]

where d = dimg(X) and m = dimg(M). The (C-valued) local functional representing the BV
action is

Stwar(A, B) = /

Y

It will be useful in the next section to split the action functional above as S = Sgee + I Where
I=3%[, BAN{ANA}M.

B A <6A+ %{A/\ A}H> : (1)

Example 2.8. Later on, we will mostly consider the case where the Poisson structure is non-
degenerate, hence symplectic. For a class of examples of a different flavor, consider the following.
Every semi-simple complex Lie group G has a Poisson structure that is holomorphic [11]. In this
way, we obtain a holomorphic Poisson BF theory on Y = G whose fields are

Ac Q% (Q)[1]
B € Q**(@)[d - 2).

Notice that the fields are differential forms on the Lie group G, not valued in the Lie algebra of
G like in ordinary BF theory. The action functional reads

/B/\E)A+1/BA{A,A}G
G 2 Ja

where {—, —}¢ is the holomorphic Poisson bracket on G (extended to Dolbeault forms) defined
by the quasi-triangular solution to the classical Yang—Baxter equation.

Remark 2.9. We have mentioned in the introduction the gravitational nature of this theory.
For example, notice that the interaction above involves (holomorphic) derivatives. We will give
some further evidence of this in Section 4, but for now we point out that strictly speaking this
theory cannot be cast in the AKSZ formalism. However, the dimensional reduction along X is
an AKSZ theory described by the mapping space

Map(Mgr, T*[m — 1]Bgx)

where gx is the dg Lie algebra Q%*(X) that is equipped with the Poisson bracket of functions.?
In other words, if X is compact Ké&hler, then the dimensional reduction of this theory along
X is equivalent to topological BF theory on M for the finite dimensional graded Lie algebra
H*(gx) = H*(X,Ox).

Remark 2.10. A special case of the above construction is when the holomorphic Poisson struc-
ture II is nondegenerate, so that X is a holomorphic symplectic manifold. In this case, we will
find that the theories we have introduced locally possess de Rham translation invariance. This
is not true in the case that II is genuinely degenerate.

2Geometrically, gx describes the formal moduli problem of Poisson structures near the fixed Poisson structure
II.



290 Chris Elliott and Brian R. Williams, Higher Structures 5(1):282-309, 2021.

Remark 2.11. There is a related theory studied by Costello in [6]. One can define a theory on
C?" x R™ with the same classical BV complex of fields as we have discussed here, but where the
interaction is defined not using the Poisson bracket, but instead using the a quantization thereof:
the Moyal star-product. Costello studies theories of this type where n = m = 1, and argues that
such theories arise from supergravity in a suitable twisted {2-background. Theories of this type
arise as a deformation quantization of Poisson BF theory on C? x R: Costello’s theory depends
on a formal parameter ¢ (the equivariant parameter in the -background construction), and will
recover a theory similar to Poisson BF theory as the fiber at the point € = 0.

Costello’s theory differs from the theory discussed here somewhat: it is not a straightfor-
ward deformation of a cotangent theory. Rather than being defined by analogy to (partially
holomorphic) BF theory, Costello defines a non-commutative version of (partially holomorphic)
Chern—Simons theory. We will discuss the connection to supergravity in Section 4, but the re-
lationship between these two theories is analogous to the fact that, starting with minimal super
Yang-Mills theory on R"*2 with n = 3,4,5,6, one obtains partially holomorphic BF theory as
the compactification on T2 of a twist, and partially holomorphic Chern-Simons theory by placing
the theory in the twisted Q-background on (C*)2.

3. Quantization and Anomalies

From now on we will mostly restrict attention to the cotangent theory associated to the local
Lie algebra Liyrm on Y = C?" x R™ where X = C?" is equipped with its standard holomorphic
symplectic structure. We will denote the local Lie algebra L1 gm where 11 is the standard Poisson
structure on C?" simply by Ly, m- In this section we will use the BV formalism as developed in
[5, 8] together with special results for mixed holomorphic-topological theories as in [25, 18, 16].

3.1 Background on Quantization For now, let us fix the data of a classical field theory
in the BV formalism. As we’ve discussed, this consists of a (—1)-symplectic sheaf of fields £
together with a dg Lie structure. This can equivalently be encoded in terms of a local action
functional Sy = Shee + I satisfying the classical master equation

1
{S, S}y =0, or equivalently QI + 5{I,I}BV = 0.

Here, I is an element of the space Oyc(€) of local functionals on €. This space consists of
functionals on the fields which are given by Lagrangian densities, where we quotient out by total
derivatives. For a precise definition we refer to [8, Definition 3.5.1.1].

The starting point in the renormalization group approach to quantum field theory is an
effective family of i-dependent functionals {I[L]} on the space of fields parametrized by a “length
scale" L > 0. Heuristically, the “L — 0" limit, although naively ill-defined, represents the full
quantum action of the field theory.

In order to make sense of the quantum action, for each L > 0 the functional I[L] € O(E)][A]]
must satisfy various conditions, which can be found in [8, Definition 8.2.9.1|. The first condition
this family must satisfy is that its A — 0 and L — 0 limit agrees with the classical interaction
defining the field theory. In addition, the family of functionals must satisfy (1) the renormaliza-
tion group equation and (2) the quantum master equation.

The renormalization group equation says that

IIL') = Wi (I[L))



Holomorphic Poisson Field Theories 291

where Wy s is an isomorphism called the renormalization group flow. It is defined as a sum
over weights of graphs: the Feynman diagram expansion. Very roughly, the weight is obtained by
placing the classical interaction at each vertex of the graph and labelling the edges by elements
of £92 called “propagators", then contracting tensors according to the shape of the diagram. A
family {I[L]} of interactions satisfying the renormalization group equation is called an effective
family, or prequantization. For more on this construction see Chapter 2 of [5].

One of the main results of [5] is that an effective family exists for any classical field theory. In
general, however, to construct the family involves some serious analysis involving the introduction
of “counterterms". Thankfully, for the class of theories we consider, the effective families can be
understood completely explicitly, without the introduction of counterterms.

The first step is the following easy combinatorial observation. One can check that any effective
family for a cotangent field theory necessarily only involves graphs that have genus at most one.
Thus, any effective family is at most linear in its h expansion, referred to as “one-loop exact"
effective family.

The second step is a consequence of the following result, which states that for theories of mixed
holomorphic-topological type there exists a one-loop quantization which is void of counterterms.
A classical field theory on C™ x R™ is called a theory of mixed holomorphic-topological type if
there is a homotopically trivial action (see Definition 5.4) of the group R™ x R™, where R™ acts
on C" by translations in the antiholomorphic directions. It is easy to see that Poisson BF theory
is an example of a mixed holomorphic-topological theory (in fact, more is true, as we will see in
Section 5.2).

Theorem 3.1 (|25, 18, 16]). For any mized holomorphic-topological theory on C*xR™, n,m > 0,
there exists a translation-invariant effective family {I[L]} which to first order in h is finite.

Remark 3.1. This theorem only concerns the effective family of holomorphic-topological theories
to first order in 4. It does not imply that counterterms of order A", n > 1 vanish.

Since any theory of BF type is exact at one-loop, this theorem implies that a translation
invariant effective family for Poisson BF theory exists on C?" x R™ for any n,m and that all
counterterms vanish.

Once an effective family is constructed, the next condition required of a quantization in the
BV formalism is the quantum master equation (henceforth abbreviated QME). Heuristically, if
19 denotes the naive quantum action, the QME reads

(Q + AN h = 0.

Where A is the “scale zero" BV Laplacian associated to the shifted symplectic structure defining
the classical BV theory. There are two problems with this equation: first, the “scale zero" BV
Laplacian is ill-defined as it involves contractions of distributions; second, I is only defined by
means of an effective family {I[L]|} as described above.

To make sense of this, one introduces a regularized QME at each scale L, which can equiva-
lently be written as

QI[L) + hALIL] + L{I[L) 1L} = .

Here Ay is the well-defined regularized scale L BV Laplacian, and {—, —}p is a regularized
version of the classical BV bracket. The A — 0, L — 0 limit of the above equation is precisely
the classical master equation. An effective family {I[L]} is a quantum field theory if it satisfies
the scale L QME for every L > 0. For more complete details we refer to |8, Chapter 8|.
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In general, not every effective theory satisfies the QME. The scale L obstruction to satisfying
the QME describes the failure of I[L] to satisfy the scale L QME. Since I[L] is filtered by powers
of h, so is the obstruction. For theories of cotangent type as considered in this paper, I[L]
truncates at order h, hence we only need to consider the A-linear obstruction which we denote
by hO[L]. The L — 0 limit of O[L] is defined and determines a cohomological degree +1 local

functional
def

© = lim O[L] € O1c(€).
L—0
Moreover, O is closed for the classical differential {S, —}py, hence determines a cohomology class
(0] € HY(O1c(£), {S, —}BV), see [5, §5.11].

In fact, for theories of cotangent type such as Poisson BF theory, we have more control over
the obstruction. Before stating this result, we recall that the space of fields of our theory is of the
form & = L,y [1] EB[,!n’m[fZ]. One can identify the operator {5, —}pyv acting on local functionals
Oloc(€) with the Chevalley-Eilenberg differential for the dg Lie algebra £[—1] = L, ,,, X E!n’m[—3].
Therefore, we will use the notation C} _(£[—1]), which we refer to as the local Chevalley-Eilenberg
cochain complex, for the cochain complex (Oyoc(€),{S,—}pv). Notice further that there is an
embedding of cochain complexes C}, (Lynm) — C}.(€[—1]) consisting of local cochains which
depend only on the A-fields.

Lemma 3.2. Let h©,, ,, be the one-loop obstruction for Poisson BF theory on C?" x R™ satisfying
the QME. Then O, ,, is a degree +1 cocycle of the local cohomology C} (L m)-

Proof. We use a general result of Costello [4, Corollary 16.0.5] which states that the one-loop
anomaly of any BV theory reduces to the weight of wheel graphs. From here, the proof is
purely combinatorial. The classical interaction for a theory of BF type is generally of the form
| B[A, A]. Thus, for a wheel graph whose vertices are labeled by this interaction, the weight is
purely a function of the A-field and the result follows. O

Returning back to the general situation momentarily, we emphasize that the goal of BV
quantization is to solve the quantum master equation order-by-order in h. At first-order, suppose
that the one-loop obstruction cocycle © mod h? represents a trivial class in the local cohomology.
In other words, ©® mod h? = {S,hJ} for some local functional J of cohomological degree zero.
Then, we obtain a solution to the quantum master equation modulo A2 by the formula

I[L] + hJ[L]

where J[L] = Wy<r(J) is functional obtained by running RG flow to the local functional J to
scale L [5, Section 5.11]. The space of all trivializations of the one-loop obstruction is a torsor
for H%(Oloc, {S, —}). In particular, if H° = 0 then the one-loop quantizations are unique up to
equivalence.

3.2 Quantization of Poisson BF Theory We are now ready to state the main result of
this section.

Theorem 3.2. Poisson BF theory on C?" x R™ admits a translation invariant quantization in
each of the following cases:

(a) m is even,

(b)) m=1,3 orb.
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Remark 3.3. We speculate that the quantization exists (and is unique) for all values of m,
though we do not prove that here, see Remark 3.13.

Since Poisson BF theory is of BF type, a consequence of Theorem 3.1 is that in order to
prove this result we need to show that the one-loop anomaly ©,, ,, is cohomologically trivial in
the cases mentioned. This anomaly is a degree one cocycle in the local cohomology of the Lie
algebra L, ,,,. Since we are using the standard Poisson structure on C?, the classical theory, as
well as the prequantization we have just constructed, is translation invariant. Thus, we study
quantizations that are also translation invariant. Let us summarize the steps we will follow in
order to prove Theorem 3.2.

1. We begin by proving the theorem for even m > 2. For such theories we can use a very

abstract argument to show that the anomaly vanishes, by realizing it as a deformation of
a completely holomorphic theory, then using structural results from [25]. This is Lemma
3.4.

2. Next, we will begin to study, in detail, the local cohomology of £,, ,,. This local Lie algebra
hol

symp
In Lemma 3.5 we will show that the anomaly class [©,, ] can be lifted to a cocycle for

Vecthol (c2m).

symp
3. Now, this is useful, because we can relate the cohomology of this Lie algebra to something

admits a map to the Lie algebra Vect (C?™) of holomorphic symplectic vector fields.

more mathematically familiar. We show in Proposition 3.7 that the Lie algebra cohomology
of Vect?sf’rlnp(((?”) is equivalent — up to a shift — to the cohomology of an infinite-dimensional
Lie algebra ho,, of formal Hamiltonian vector fields, studied in work of Gelfand, Kalinin
and Fuchs. We have therefore reduced our calculation of [© ] to the calculation of a
cohomology class in hoy,.

4. Even better, the cohomology of o, is naturally graded, and the non-positively graded
piece is relatively well understood. In Lemma 3.9 we show that [©,, ] lives in the weight
0 summand H?&+m+1(h2n).

5. Finally, we compute this weight 0 cohomology group, and show in Lemma 3.11 that it
vanishes when m = 0,1, 3 or 5, thus proving the Theorem.

So, we will first address the case when m is even and greater than zero, in which case the

anomaly vanishes for structural reasons.
Lemma 3.4. If m > 2 is even then the class [Oy, ] of the one-loop anomaly vanishes.

Proof. Suppose m > 2 is even, and let r = 5. We can equip R™ = C" with its standard complex

structure. Notice that we can decompose the fields as follows:

A= Z Ay in @ QO (C?) & QM (CT)[1]

k=0 k=0
B=) B, in @¥*(C*") R0 (C")2n+m —2].
k=0 k=0

Using this decomposition, the action is of the form
_ 1 T
/ B A <(8+6@)A+ {A,A}H> + Z/ B A Ocr (Ay_j_1) (2)
(C2n xCr 2 1 (C2n xCr

Here, O continues to denote the Dolbeault operator on C?”* and now dc¢r, dcr are the holomor-
phic and anti-holomorphic Dolbeault operators on C". Forgetting about the second term, the
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first term describes a purely holomorphic theory in the sense of [25]. (In fact, this describes Pois-
son BF theory for the holomorphic Poisson manifold C?"*" where we choose the trivial Poisson
bivector on the last r coordinates.)

Furthermore, the second term in (2) involves only holomorphic differential operators with
respect to our fixed complex structure. Thus we can view Poisson BF theory as a (translation
invariant) holomorphic field theory on C?"*". As a consequence of [25, Proposition 4.4] (see [9,
Lemma 7.2.7| or [17, Lemma B.1], for a similar calculation) the anomaly ©,, ,,, for such a theory
is necessarily a sum of local functionals of the form

/(C2n+r (DZOA) a (DllA) e a (DZZnA) 8CT (Di2n+1A) e a(C’r (Di2n+7'A) * (3)

Here, O denotes the holomorphic de Rham differential on C?* and the D;;’s are all translation
invariant holomorphic differential operators.

Each of these elements are considered as cochains in the cochain complex of local functionals
equipped with the classical BV differential {S, —}py. In this case, the BV differential is of the
form

{S,—}Bv :5+5(cr +dp + dcr (4)

Here, dyg is the Chevalley-Eilenberg differential for the Poisson bracket {—, —}11.
We consider the spectral sequence converging to the local cohomology of L, ,, induced by
the filtration on the A-fields

Fk — QO,.((C2n) @ sz’.((cr)[l].

The Ej-page is given by the cohomology with respect to the first three terms in (4).

Assuming a class ©,, ,,, which is a sum of functionals of the form (3) survives to this page, we
will show that it is rendered exact by the next term in the spectral sequence. By the formula,
we see that at least one holomorphic derivative from each of the directions in C?"*" necessarily
appear. For simplicity, consider the direction z,.. By this observation, we can write

) sy

, :82’7~ n,m

for some local functional ©/, . which is also of degree +1. Finally, notice that the class ¢ o O/ .
) Bzr )

satisfies
8(Cr (L%@;Lm) = @n,m
Here, if X is a holomorphic vector field, the operator tx denotes the operator induced from the

contraction A — ¢x A. This shows that on the E-page all such functionals ©,, ,, become trivial
and the result follows. O

3.3 The Anomaly as a Gelfand—Fuchs Cocycle For the remaining cases of Theorem 3.2,
we must understand the cohomology of local functionals more explicitly.

To start, we interpret the one-loop anomaly ©, ,, as a local cocycle in a slightly different
local Lie algebra.

Consider the sheaf of Lie algebras O"!(C?") which is equipped with the Poisson bracket
coming from the standard symplectic structure on C?". There is a short exact sequence of
sheaves of Lie algebras

0 — C — O"NC?) — Vect™l (C?") = 0 (5)

symp
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where Vectg}?rlnp(c%) denotes the sheaf of holomorphic vector fields preserving the symplectic
structure on C?". Here the right-most map associates to a function its Hamiltonian vector field.
Of course, none of the sheaves in the above short exact sequence are local Lie algebras. For

Ohl(C?7) we know that Q%*(C2") provides a free resolution and hence a presentation as a local

thOl

Symp((CQ”) we have the following presentation as a local Lie algebra

Lie algebra. Similarly, for Vec

0 1
Li_yw
Tamp(C) = Q0@ T) “2% 0z2e(c)

Here, T denotes the holomorphic tangent bundle and Q%*(C?* T) is its Dolbeault resolution
equipped with the 0 operator. Also Q2%*(C?") is a Dolbeault model for the sheaf of closed
two-forms, it is equipped with the differential & + 0. Finally, the indicated differential sends a
vector field X to the Dolbeault form Lxw, the Lie derivative of w by X.

The sheaf Tsymp(C?") becomes a local Lie algebra on C*" utilizing the standard Lie bracket of
vector fields together with the natural action of vector fields on Dolbeault forms. Moreover, the
process of taking a Hamiltonian vector field determines a map of local Lie algebras Q¥ (C?") —
Tsymp (C2?"), providing a resolved version of the map in (5). Upon tensoring with the complex of
complexified de Rham forms on R" we obtain a map of local Lie algebras

Lom = Toymp(C*) ® Q*(R™; C). (6)

By Lemma 3.2, we a priori only know that the anomaly lives in C}

(Ly,m). In fact, we have
the following.

Lemma 3.5. The anomaly 0, ,,, lifts to a local cocycle of degree +1 for Teymp(C?") ® Q*(R™; C)
along the cochain map

Cloc (Eymp((c%) ® Q°(R™); C) = Cloe(Lam)
induced from (6).

Proof. The result actually follows from a similar statement at the level of the classical action.
For this proof, we denote by 7, the local Lie algebra Teymp(C2") & Q®(R™; C). First, we note

!

that the natural contragradient action of an element of £, ,, on £ is zero if the element is

n,m
a constant function. Thus L!n’m[—?)] descends to a module for 7y, ,,,. The map (6) determines a

cochain map
e (T % L3 [=3]) = Choe (Lnm % £[-3]) -

Recall, the classical action decomposes as S = Sp.ce+I where I is a local cocycle in Cy, (L, X

E!mm[—fi]). Since [ is identically zero if one of the A-inputs is a constant function, it lifts to a
local cocycle in Cf (Tnm X E!n,m[—?;]).
Proceeding just as in the proof of Lemma 3.2, we see that the one-loop anomaly only depends

on 7pm and the result follows. O
We will utilize a description from [24] of the local cohomology of
Toymp(C*") ® Q°(R™; C)

in terms of the ordinary Lie algebra cohomology of the fiber of this local Lie algebra at zero.
For this, we first introduce the following Lie algebra of formal Hamiltonian vector fields on the
formal (holomorphic) 2n-disk.
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Definition 3.6. The Lie algebra of formal Hamiltonian vector fields ho, has underlying C-vector
space
bon =Cllp1,.-.Pn,q1,-- . an]] / C

On linear elements, the bracket is given by the formula [p;, ¢;] = d;;.

Note that ho,, is equivalent to the subalgebra of the Lie algebra of all formal vector fields on
the 2n-disk which preserve the standard symplectic structure.

We can now state the concrete relationship between local cohomology and the Lie algebra
cohomology of Hamiltonian vector fields. Given any symplectic vector field X on C?" we can take
its Taylor expansion at zero to get a formal Hamiltonian vector field jo(X) € hay,. At the level
of cochains this determines a map j5: C}..(han) — CP (J(T™P(C?M))). Here J(—) denotes the
bundle of co-jets. In [24] it is shown via certain “descent equations" how to extend this map to
the local cohomology to give a cochain map

Lie(h2n) [4n] = Clo (T (C*")).

In fact, it is shown that this map is a quasi-isomorphism. The shift down by 4n is related to the
real dimension of C2".

Upon tensoring with the de Rham complex on R™, which of course does not contribute to
cohomology, we obtain the following analogous result. The proof follows the outline of the proof
of the main result of [24] closely, where the case of all holomorphic vector fields is considered.
The modifications in the Hamiltonian case are specified in the proof below.

Proposition 3.7. There is a quasi-isomorphism

[~23

Clea(h2n)[4n +m] = Cl; (Toymp(C*") ® Q°(R™; C))
Therefore the anomaly cocycle © can be understood as a cocycle in
Ci?e+m+1 (hQn) .

Proof. Consider the Gelfand-Kazhdan pair (ha,, @ w,,,Sp(2n) x GL(m)), where tv,,, denotes the
Lie algebra of formal vector fields on R™. Given any module M for this pair, techniques of
formal geometry define a D-module M on any product manifold of the form X x M where X is
a holomorphic symplectic manifold and M is a smooth m-manifold. For the module Cg_;(bh2y)
this D-module is equivalent to C?.4 (J Tsymp(X)). Furthermore, since Cg_4(h2y) is acted upon by
the Gelfand—Kazhdan pair in a homotopically trivial way, this D-module is trivial and hence its

de Rham complex is quasi-isomorphic to
Q%X x M;C) ® Choq(ban).

Finally, by [8, Lemma 3.5.4.1] we know that this de Rham complex is equivalent to the shift of
the local cohomology Cf . (Tsymp(X)®Q*(R™; C)) [—4n —m]. The result follows by applying this

argument to the special case X = C?" and M = R™. O

We have whittled down our understanding of the anomaly ©,, ,, to a description of the Lie
algebra cohomology of Hamiltonian vector fields on the formal disk. Unfortunately, a complete
description of the cohomology of the Lie algebra ho, is unknown. Partial results have appeared
in the works [14, 15, 21, 19]. The first step in order to obtain such a partial description is to take
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advantage of a natural grading on hs, which we will refer to as the weight. In fact, there is a
bigrading on hso, in which the element pk“qfJrl is homogenous of weight (k, ¢). The cohomology
is concentrated in the diagonal piece of this bigrading, so it’s enough to consider only the diagonal

k+1 £+1

Z-grading in which p; has weight k + £. The bracket respects this grading and hence the

Lie algebra cohomology admlts a decomposition

b2n @ H bZn

JE2Z

where H (f)gn) is the cohomology of the weight j subcomplex of the Lie algebra cohomology.

Remark 3.8. Our grading convention differs slightly from the one used in the reference [14],
but agrees with the convention in [21]. For instance, the weight k& cohomology, as defined in [14],
agrees with HEQk)(hgn) in our convention.

We return to the characterization of the anomaly cocycle. The class [0, ;] of the anomaly de-
composes according to this weight decomposition of the Lie algebra cohomology group H*"tm+1(f,,,).
In fact, we have the following.

Lemma 3.9. The anomaly class [©,, ] lies in the weight zero summand H?§)+m+1(h2n) of the
Lie algebra cohomology.

Proof. We first assign a weight grading to the classical BV theory. Let E be the holomorphic

Euler vector field on C2" 5
b= Z < 9 " ﬁwl> ’

where 2%, w’ are holomorphic Darboux coordinates on C?”. We say that an element A € L is of
weight j € 7 if

Ly(A) = (j + 2)A.

Notice that the differential and the bracket on the local Lie algebra £ are of weight zero with
respect to this grading.

To define the grading on the cotangent theory to the local Lie algebra £ we say an element
B e L' is of weight k € Z if

Lg(B) =(k—-2)B
With respect to this grading, the action S of Equation (1) is of weight 0.

Recall that the anomaly is characterized as the obstruction to solving the quantum master
equation. Since the classical BV differential is automatically weight zero, we simply need to check
that the BV Laplacian is weight zero. This is equivalent to checking that the shifted symplectic
pairing

Lox L —C

A® B~ ANB
C2n xR™

is of weight zero. Observe that the pairing between a compactly supported A-field and a B-field

/ A/\B:/ (II® A,w® B)
C2n xR™ C2n xR™

where on the right hand side we use the linear pairing between A?T2n and Kgan. Since this

can be written as

linear pairing is manifestly weight zero, the claim follows. O
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Remark 3.10. We can provide a geometric description of the weight assignments used in proof
of the previous lemma. Consider the standard Poisson bivector II =", 0.: A 0,,i. It determines
an isomorphism

I (-): Q%*(C>) ® Q*(R™;C) = PV>*(C¥") & Q*(R™; C).

The weight on A-fields agrees with pulling back the standard dilation on C?” acting on elements
on the right hand side of this isomorphism. That is, A has weight j if and only if Lg(Il ® A) =
j(IT ® A). Similarly, if w = IT"!, then we have an isomorphism

w® () Q2 (C2) & Q*(R™; C) = QO*(C2, K&h) ® Q°(R™;C).

Then, B has weight k if and only if Lg(w ® B) = k(w ® B).

We now argue the vanishing of the one-loop anomaly of the theory on C?” x R™ by collecting
facts about the known cohomology of Hamiltonian vector fields. In fact, a result of Gelfand,
Kalinin, and Fuchs [14] gives a complete description of the non-positive weight part of the
cohomology of Hamiltonian vector fields ha,,. The description uses the Hochschild—Serre spectral
sequence associated to the subalgebra sp(2n) C bhay,.

Explicitly, the Es-page of this spectral sequence is

By’ = H'(han, 5p(2n)) @ H (sp(2n))

and the spectral sequence converges to H*/(hy,). In the remainder, we let H (‘<0) denote the

non-positive weight part of the cohomology.

Theorem 3.3 ([14]|[Theorem 2|). The non-positive weight part of the relative Gelfand-Fuchs
cohomology H§<O)(h2n,5p(2n)) ® H(sp(2n)) is isomorphic to the algebra

(C[Fa\ljlw : a\Ijn}/I

where I has degree 2n — 1 and weight —1, V; has degree 4i and weight 0, and the ideal I is
generated by the elements I‘k\I/]fl e \I’ﬁ" where k + k1 + 2ky + - - - nk, > n.

Furthermore, in the Hochschild-Serre spectral sequence, the standard generators h; of H®(sp(2n))
of degrees 3,7,...,4n — 1 map under transgression to the generators Vq,...,¥,.

This implies the following result.

Lemma 3.11. The cohomology group H?g;rk(b%) vanishes if £k = 1,2,4 or 6, for all n.

Proof. Classes of weight 0 are generated by monomials of the form a = \IlllCl e \I/fbnhtf - hbn,
where each ¢; = 0 or 1. If ¢ does not include h; then a is in the image of the transgression map,
and therefore vanishes, so from now on we will assume that at least one ¢; # 0. If such a class
survives to the F, page of the spectral sequence it must in particular be in the kernel of the
transgression map.

Now, the classes ¥; have degree 0 mod 4 and h; have degree 3 mod 4. Let us consider
the possible degrees of classes involving different numbers of h;. Applying the transgression
to ¢ gives a sum of elements of the form \I/]fl e \IJ?H e \I’fl”h? ﬁj - hln,

summand Y. | ik; + j > n. The element \I/lfl co Pk h; therefore has degree at least 4n
1. If only one £; # 0 then c has degree 3 mod 4.

where for each



Holomorphic Poisson Field Theories 299

2. If two ¢; # 0 then c has degree 2 mod 4. Because \Illfl -+ Wknp has degree at least 4n, a
class of the form \I/]fl - Wknp by has degree at least 4n + 3.
3. If three or more ¢; # 0 then, likewise ¢ has degree at least 4n + 3 + 7 = 4n + 10.

In particular, there are no non-zero classes in degree 4n + 1,4n + 2,4n + 4 or 4n + 6. O

Now, we can use this cohomology calculation to immediately prove the main theorem of this
section.

Proof of Theorem 3.2. By Lemma 3.9, the class [0, ,,] of the one-loop anomaly lies in the weight

0 summand H%L)erﬂ(bgn). By Lemma 3.11 this cohomology group vanishes, and therefore so
does the anomaly. O

Remark 3.12. The same calculation shows that this quantization is unique among weight 0
quantizations in the cases where m = 0,1,2,4 or 6. Indeed, deformations of a quantum field
theory are controlled by classes in H?OC (Ly,m). We have demonstrated that the weight 0 part of
this cohomology vanishes if m = 0,1,2,4 or 6.

Remark 3.13. At this point it seems natural to speculate that all Poisson BF theories are
anomaly free. The first example to which our methods do not apply is the 17-dimensional
Poisson BF theory on C* x R?. The anomaly here is given by a weight 0 class in H%g)(h4) >~ C?
(this is the smallest non vanishing weight 0 even cohomology group of a Lie algebra ha,, it is
generated by the classes \I’%hlhz and Wahihs.).

4. Occurence as Twisted Supergravity

The BV theories we have introduced so far have conjectural connections to string theory and
supergravity, using the theory of twisted supergravity as discussed by Costello and Li [10]. In
this section we provide a brief survey of these relationships, but these ideas will not be used in
the remainder of the paper.

Conjecture 4.1. The twist of 5d N = 1 supergravity on R is equivalent to Poisson BF theory
on C? x R where C? carries its canonical holomorphic symplectic structure.

Remark 4.2. This conjecture can be deduced from a description of the twist of M-theory on
the 11-manifold R x C3 x C? discussed in [22] upon dimensional reduction along the Calabi-Yau
three-fold C3. More generally, one can study M-theory on a geometry of the form R x X x C?,
where X is an arbitrary Calabi—Yau three-fold. The reduction along X is expected to produce
N = 1 supergravity coupled to a N' = 1 vector multiplet with gauge group U(1) and a N' =1
hypermultiplet valued in the symplectic vector space H*(X). We thank Kevin Costello for
clarifying this point.

The proof of this conjecture starting from an explicit description of 5d N/ = 1 supergravity is
currently joint work with Ingmar Saberi. Let us explain some evidence for this conjecture. First,
we recall the form of the twist of 5d A/ = 1 super Yang Mills theory on R®, which has been
worked out in [13]. Recall that 5d ' = 1 gauge theory is defined for any Lie algebra g together
with a representation V. The twist of this theory on C? x R is equivalent to the cotangent theory
to the local dg Lie algebra

Q%*(CH ® Q*(R;C) ® (g x V[-1]).
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which we will denote by Lgywm(g, V).
Given this description, it is clear how Lgynm(g, V) is a module for the local dg Lie algebra

La1 = 0" (C? & Q*(R;C)

underlying Poisson BF theory. Indeed, if A € L1 and v € Lgym(g, V') the action is through the
Poisson bracket {A,~}r.

In this way, there is a natural way to “couple" Poisson BF theory to the twist of super
Yang—Mills theory. One considers the cotangent theory to the local dg Lie algebra

£2,1 X ESYM(g, V).

The dimensional reduction of 5d N'= 1 SYM along R is 4d N' = 2 SYM. For pure gauge
theory, this means that the dimensional reduction of 5d N/ =1 SYM is equivalent to 4d N =1
SYM coupled to an adjoint-valued 4d A/ = 1 chiral multiplet.

Following this line of reasoning, the dimensional reduction of 5d N = 1 supergravity is 4d N' =
2 supergravity, which we can hope to further decompose in terms of 4d N/ = 1 supersymmetry.
The reduction of our 5d theory along R is equivalent to the cotangent theory to the local dg Lie
algebra

QO,.(CQ)[E] — QO’.((C2) X EQO’.((CQ)

where € is a parameter of cohomological degree +1. The Lie structure is similar to that of L3 :
we take the dg Lie algebra Lo = Q0:*(C?) with its Poisson bracket and tensor it with the graded
ring Cle].

We can decompose the fields of this 4d theory as A + e7, where A, € Q%*(C?). Denote the
anti-fields by B, 8. The action functional reads

_ 1 _
/@BA <8A+2{A,A}H> —1—/(:25/\87—1—/(:26A{A,'y}n.

The first term we recognize as Poisson BF theory on C2, described by the local dg Lie algebra £
of Definition 2.1. The second term is that of the free 87 system on C2, this is equivalent to the
twist of a single 4d N/ =1 chiral multiplet, see [13].

This leads us to the following 4d analogue of our conjecture on twisted supergravity.

Conjecture 4.3. The twist of pure 4d N = 1 supergravity on R* is equivalent to Poisson BF
theory on C? with its standard holomorphic symplectic structure; this is the cotangent theory
to the local Lie algebra Lo = Q%*(C?).

Remark 4.4. Let Y be a G2 manifold. This conjecture can also be deduced from the dimensional
reduction of the conjectural twist of M-theory on Y x C2, given in [22], along the G2 manifold
Y.

Remark 4.5. In the previous section we have shown that Poisson BF theory on C? is non-
anomalous. This is compatible with the conjecture above and the result of Alvarez-Gaumé and
Witten in [1] that there are no pure gravitational anomalies in any theory of supergravity in
dimension 4k, where k € 7Z.
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5. Factorization Algebras and Symplectic Symmetry

5.1 Factorization Algebras In the introduction we have mentioned the relationship of quan-
tum field theory to factorization algebras. Thanks to the foundational work of [8], we know that
to every quantum field theory one can associate a factorization algebra of “observables".

At the classical level, this idea is based on the following sequence of observations. First,
note that the definition of the space of fields £ of a theory is local on spacetime; it is given as
the sheaf of smooth sections of a (graded) vector bundle. For such sheaves, the continuous dual
EY carries the structure of a cosheaf. The natural product on the completed symmetric algebra
0¢€) = S/yﬁl(é’v) endows the factorization structure maps as in Definition 1.1.

Together with the BV bracket, the classical action functional S determines a differential

{S,—}pv on O(&).

Definition 5.1. The factorization algebra of classical observables in the theory (£, 5) (a factor-
ization algebra valued in cochain complexes) is defined to be

Obs! = (0(5) . {8, —}BV).

Consider the example of Poisson BF theory on X x M, where X is a complex manifold
equipped with a holomorphic Poisson structure II, so & = L a[1] @ E!ll v [—2]. For simplicity,
denote £ = L1y in what follows.

We first note that the continuous dual of £ = £[1] @ £'[-2] is

£ = L.[-1] ® L.[2]

where (—),. denotes the space of compactly supported distributional sections. Hence, as a graded
vector space the observables have the form Sym (Z!c[—l]) ® Sym (L.[2]).

The classical BV differential {S, —}pv can be identified with the Chevalley-Eilenberg dif-
ferential of the dg Lie algebra £ with values in the module Sym (ZC[Q]). Thus, the classical
observables have the form

Obs? = Cp,, (ﬁ ; Sym (L.[2]) >

Fix an open set inside X x M, which for simplcity we’ll take of the form U x V where U is
an open subset of X and V is an open subset of M. Then we have the dg Lie algebra

LU x V) =Q"*(U)&0*(V;C)

with differential d + dqr and bracket {—, —}1. The observables supported on U x V take the
form

Obs™ (U x V) = Cfe (QO"(U)@M'(V; ©); Sym (90°()EQL(V)[2) >
We now immediately observe the following.
Proposition 5.2. The factorization algebra Obs® is not Betti topological.

Proof. Write D,.(0) C C?" for the polydisk around 0 of radius 7. Choose 7 < R, and any open
subset V' of R™, and consider the inclusion D,(0) x V < Dg(0) x V. The associated map on
classical local observables is not an equivalence: this is dual to the observation that the map
0%¢(D,.(0)) — Q%*(Dg(0)) is not surjective on cohomology. O
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5.2 Translation and Dilation Actions Let us begin by recalling what it means for a group
to act on a classical or quantum field theory, using the language of factorization algebras and
the BV formalism. We will not include all details here, for a more thorough account see [8,
Chapter 4.8] and [12, Section 2|. Lie algebra actions in the BV formalism was also studied, in a
somewhat different formalism, in the recent work [3]. Let Ggr be a Lie group with complexified
Lie algebra g = gr ® C, and fix a smooth action p of Gr on the spacetime manifold X. If Obs is
a factorization algebra on X, we can define a smooth action of Gg on Obs in the following way.

Definition 5.3 ([12, Definition 2.11]). A smooth action of Gg on Obs consists of an isomorphism
ag: Obs(U) — Obs(p(g)(U)) for every g € Gr and open U C X, satisfying the following
conditions.

1. g, g, = g, 0y, for all g1, go in Gg.

2. The map a4, commutes with the factorization structure, for all g in Gg.

3. For all collections of pairwise disjoint open subsets Uy, ..., U of an open set V', the map

k
m: {(g1,-..,9r) € GE: gp(Uy) are disjoint subsets of V} — Hom (@ Obs(U;), Obs(V)) ,
i=1
defined by first acting by (g1, ..., gr) then using the factorization structure, is smooth.

4. There is an infinitesimal action p: g — Der(Obs) of g such that for all w € g and i =
1,... .k

3w7imglw7gk (01, ey Ok) = mghm’gk (01, cegaaey p(w)oi, ey Ok)
where the map 0,,; is the directional derivative on Gﬁ% with respect to the tangent vector
k
0,...,Lg(w),...,0) € Ty, ... 4.GR,
where the non-zero element is placed in the i*" slot.

The smooth action extends the infinitesimal action p of the Lie algebra g to a global action
of the Lie group Gr. With this definition in hand, we can now make precise what it means for a
field theory to be de Rham topological. We say a smooth action is de Rham if this infinitesimal
action is homotopically trivialized, in the following sense.

Definition 5.4 (|12, Definition 2.18|). Define gqr to be the dg Lie algebra with underlying
cochain complex g[1] < g, where the degree zero Lie algebra g acts on g[l] by the adjoint
representation.
An action p of a Lie algebra g on a factorization algebra Obs is de Rham if p is equipped
with an extension to
PdR: 9dR — Der(Obs).

A de Rham action of a Lie group Gr on Obs is a smooth action of Ggr where the infinitesimal
action of g is extended to a de Rham action.

Definition 5.5. We say a factorization algebra Obs on R™ is de Rham topological if there is a
de Rham action of R™, where R™ acts on itself by translations.

The last general bit of background we need concerns a special type of action of a Lie algebra g
on the classical factorization algebra of observables Obs?. Recall that the BV bracket {—, —}py
endows the shift of the cochain complex of local functionals Ojc(€)[—1] with the structure of a
dg Lie algebra. The differential is given by {S, —}pv.
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Definition 5.6. An inner action of a dg Lie algebra g on a classical field theory is a map of Ly
algebras

P:g— One(E)]-1].
Giving an inner action on a theory is equivalent to prescribing an element
P € Clea(8) @ Oloc(€)[—1]

satisfying the equivariant classical master equation
1
dgP + {5, Plav + 5{777 Plev =0 (7)

where dg denotes the Chevalley-Eilenberg differential for g.
Notice that through the BV bracket {—, —}py the dg Lie algebra O),.(€)[—1] acts on the
classical observables. That is, there is a dg Lie map

Oloc(E)[~1] = Der(Obs)
O {O, _}BV-
Therefore, any inner action by a Lie algebra g determines an action of g on the factorization
algebra Obs® as defined above.

Let us now focus attention on the example of Poisson BF theory. Asin §3 we consider Poisson
BF theory on C?" x R™ where C?" is equipped with its standard symplectic structure. We will
begin by constructing a de Rham action of the Lie algebra of holomorphic functions which is
equipped with the Poisson bracket. As above, &, ;,, denotes the fields of Poisson BF theory and

L, denotes the dg Lie algebra Q0*(C2") resolving the Lie algebra of holomorphic functions on
c?.

Theorem 5.1. There is an inner action of (L,)qr on Poisson BF theory on C** x R™. This
induces a de Rham action of the Lie algebra L, on the classical observables.

Proof. We will construct a (strict) map of dg Lie algebras
PdR: (ﬁn)dR = £n ¥ ﬁn[l] — Oloc(gn,m)[_l]

which we split up as a pair of linear maps Pgr = (P, Q).
Given « € L, define the local functionals Py, Qn € Oloe(Enm) by

Pu(A, B) = / BA{p*a, Aln (8)
Q.(A,B) = /B ApFa. (9)

Here, p: C?" x R™ — C?" is the projection. Together, these define the pair of linear maps
P:aw— P, and Q: a — Q,. Note that if a is a (0, k)-form then P, is a local functional of
degree k — 1 and @, is a local functional of degree k — 2.

The equivariant classical master equation (7) for Pgg is equivalent to the three equations

1
de, P+ {S,P}pv + 5{77, Plpv =0

09+ P +1{S,Q}gy =0
dnQ+{P,Q}sv = 0.
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The first equation is implied by the ordinary classical master equation {S,S}gy = 0. (This
simply says that the classical theory is equivariant for the dg Lie algebra L,,, which is clear.)

Next, let’s consider the third equation. Here, di; denotes the component of the Chevalley—
Eilenberg differential for (£,,)qr arising from the Poisson bracket. We apply the left-hand side
to a pair of forms a € £, and 8 € L,[1]. Then (dnQ)(«, 8) = Qa8 and

{P,Q}pv(a,B) = —{Pa, Qs}BV = — {/B A {p*avA}Hv/B Ap*ﬁ}
= —/B/\ {p*a,p"Bin
= _Q{aﬁ}n‘

Finally, we turn our attention to the second equation. Decomposing the action into free and
interacting summands, S = Spee + I where I = [ BA{A, A}, and recalling that {Sgee, — }Bv =
0, we see that the second equation is equivalent to P + {I, Q}gy = 0. The operator {I, —}pv
is the component of the Chevalley-Eilenberg differential for £,, ;, which encodes the Lie bracket
{—, —}n. Evaluating this on an element a € £,, we thus obtain

(I, Qpv(a) = — / BA{pa, Ay = —Pa (10)
as desired. 0

Given any translation invariant vector field v on C?" x R™ we define the local functional
TAB) = [ BALA) ()
where L, (—) denotes the Lie derivative. This defines an inner action of infinitesimal translations
TR 5 Oe(Enm)[—1]

sending v — 7.
Let us fix Darboux coordinates {z;} and {w;} on C?". The Lie algebra of holomorphic
translations spanned by holomorphic derivatives in z; and w; admits a linear map to holomorphic

functions via

RQn SN Ohol ((C2n)

9 )
97 — wj
o, — —Zj.

Of course, this map is not a Lie map since {z;,w;}n = 6;;. However, since the Poisson bracket

of the constant function 1 with any holomorphic function is zero, we see that the composition
R2n — Ohol(CQn) i) QO,.((CQn) 3) Oloc(gn,m)[_l]v

where P is defined in the proof of the previous theorem, is a map of dg Lie algebras. In fact,

if v = % or % is a holomorphic translation invariant vector field, then 7, = P,, or —P;,
i J

respectively.

Corollary 5.7. The classical Poisson BF theory on C?" x R™ is de Rham translation invariant.
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Proof. First note that Poisson BF theory is translation invariant. That is, there is a smooth
action of the group R4"*™ by translations, which acts on the observables infinitesimally by the
directional derivative. The infinitesimal action is inner and defined by the Lie map 7 : R4+™ —
Oloc(gn,m)[_” in (11)'

We must describe an extension of this infinitesimal action to an action of Rﬁ?ﬁm. We will do
this by finding a potential S such that the pair of maps

(T,S): RIE™ — Oroe(Enm) [—1]

defines an inner action by Rﬁ?f’”.

Choose Darboux coordinates {z;, w;} for C*" as above and denote by {t;} the coordinate on
R™,

The potential for translations in the Z;,w; and ¢, directions can be written as follows. Given
a translation invariant vector field v in the span of these directions, let ¢, denote the interior
product with v, and define the local functional

Sy(A, B) = /B A Lo(A).

The potential for translations in the holomorphic z; and w; directions has already been
written down in the proof of Theorem 5.1. We set

Si :sz‘ 9 SB :_QZj

dz; Oz;

where Q is defined in (9).
We show that the equivariant classical master equation holds for the pair of maps (7,S):

1
dginim (T +8) {8, T +Stpv + {T + S, T + Sty =0 (12)

471‘{”". Notice, first, that by translation

where ngfm is the Chevalley—Eilenberg differential for R
invariance we have {S, T }gy = 0. Next, the potentials Q, for v mutually commute, and they
commute with the infinitesimal translation action so the final term also vanishes.

It suffices to show this equation holds upon applying any fixed translation invariant vector

field to the left-hand side. Applied to a fixed vector field v we have
dR371}{+m (T + S)(U) = 7;

For the second term in equation 12, suppose first that v is in the span of translations in the
Zi,w; and tj, directions. Then

{S,S}Bv(v) = — (54— dt) Sy, — {I,SU}B\/.

Here, d; denotes the de Rham differential in the R™ direction. Since ¢, is a derivation for the
Poisson bracket {—, —}i1 the term {I, S, }py vanishes. Finally,

@+ dy)S, :/B/\[ﬁ—i—dt,LU]A:ﬂ,

by Cartan’s formula, and the classical master equation 12 follows.
Finally, suppose that v is a holomorphic translation, say Bizi' Then 7, = Py, and by (10) we

have
{S,S}tev(v) = —{S, Qu, }Bv = —Pu;,

and again equation 12 follows. O
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Remark 5.8. More generally, on a holomorphic Poisson manifold the infinitesimal action of
Theorem 5.1 will extend to a smooth de Rham action of the group of holomorphic Poisson
automorphisms. On C?” such automorphisms include holomorphic translations, and this action
combines with the de Rham action of anti-holomorphic translations to make the theory de Rham
topological.

Remark 5.9. We can additionally describe a smooth action of the group R~ of dilations, that
is, where ¢ € Ry acts on C?” x R™ by simultaneously rescaling all the coordinate directions
by c. Infinitesimally, this action is described by the action of the Euler vector field on L, .
This action is not inner and not de Rham, since any de Rham translation invariant factorization
algebra which is additionally de Rham dilation invariant is automatically Betti topological [12,
Proposition 3.38|, which is not the case for Poisson BF theory.

5.3 Factorization Algebra of Quantum Observables Due to issues of renormalization in
the definition of a quantum field theory, as surveyed in §3.1, the definition of the factorization
algebra of quantum observables is much more subtle than the definition of classical observables.
To begin, one first defines a cochain complex of global observables. We provide a brief synopsis
of the construction of the factorization algebra of quantum observables, but refer the reader to
[8] for complete details.

We begin by fixing the data of a quantum field theory described by an effective family {I[L]}.
A global observable O is an assignment of an hA-dependent functional on the space of fields

O[L] € O(E(M))[[n]]

for each “length scale" L > 0. The functionals O[L], O[L'] at different length scales L < L’ must
be related by the renormalization group flow which O[L'] = Wy /(O|[L]) (this condition also
appears in the definition of an effective family as detailed in §3.1).

The space of global observables is a cochain complex with differential

dp = Q + {I[L], Y1 + hig

where I[L] is the scale L effective action and Ay is the scale L BV Laplacian. The fact that
renormalization group flow Wy, intertwines the differentials d;, and dys turns this into a well-
defined definition of the cochain complex of global observables, which we denote by Obs%(M).

The next step is to define what a local observable is. This is the most technical part of the
definition. Given an open set U C M, one says that {O[L]} is an element Obs%(U) if O[L] is
supported on U in the limit L — 0. Roughly, this means that for L close to zero O[L] has
support approximately in the open set.

The factorization product is described in a similar way to the classical case. It utilizes the
commutative product on O(E)[[h]] together with renormalization group flow. To get a sense for
the definition, let’s consider the case of two disjoint open sets U,V in M and the factorization
product

my,y: Obs(U) x Obsd(V) — Obs(U L V).

If O = {O[L]} € Obs%(U) and O" = {O’'[L]} € Obs%(V) then the observable myy(0,0’) =
{mu v (0,0")[L]} is defined by

mU,V(O, O/)[L] = Ll’lglo Wi (O[L/] . O[LI]) .
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Here the - on the right-hand side denotes the commutative product in O(E)[[A]]. To see that
this is well-defined and gives U — Obs%(U) the structure of a (pre)factorization algebra is the
content of [8, Theorem 8.5.1.1].

Remark 5.10. To handle the issue with supports one must be more careful than using an
effective family {O[L]} based simply on a “length scale" L. The correct notion is that of a
parametriz, but since we will not need it here we will skip over this technical detail.

We finally turn to Poisson BF theory on C?" x R™. Suppose we are in one of the cases
of Theorem 3.2 where a translation invariant quantization is guaranteed to exist. Fix such a
quantization and write Obs;} , for the factorization algebra on C?" x R™ of quantum observables.

Theorem 5.2. The factorization algebra Obsy . of quantum observables is de Rham but not

Betti topological.
Proof. First, it is straightforward to observe that Obs} ,, is not Betti topological. We can recover
the factorization map Obsf}}m(BT(O) xU) — Obsff7m(B r(0) x U) in the classical factorization
algebra by reducing the corresponding map in the quantum factorization algebra modulo A. Since
this map is not an equivalence at the classical level, it cannot be an equivalence at the quantum
level.

To show that Obs!

n.m 18 de Rham topological, first note that it admits a smooth translation

action by [8, Proposition 10.1.1.2|, using the fact from 3.1 that our quantization is translation
invariant. We must verify that we can extend the translation action by lifting the infinitesimal
Rﬁ?jm action to the quantum level. To do so, we will use a result of Costello and Gwilliam
on the equivariant quantization of field theories [8, Section 12.3]. There is a one-loop obstruc-

tion to lifting the ]Riﬁ’f{‘””

from the classical to the quantum level given by a 1-cocycle ©n), in
;ed(Rfl%J“m, Oloc). We will check that this cocycle automatically vanishes when at least one of
the inputs is a degree —1 element of Rﬁ}?m.

The obstruction Oy, takes a form similar to the description of the anomaly that we saw in
equation 3. It is computed as a sum of weights of wheel Feynman diagrams where the external legs
are labelled by fields A, B, or by background fields: elements of Ré?;rm. It is a straightforward
observation that there are no such diagrams whose external legs are labelled by a degree —1
auxiliary field in R¥*™[1]. Indeed, by the definition 9 of the degree —1 inner symmetry Q,,
it is purely quadratic in v and B, and therefore degree —1 background fields cannot label the
external legs of a wheel diagram. As such, there is no obstruction to lifting the Rﬁ’f{m action to

the quantum level. O

Remark 5.11. Let (C",II) be a general (possibly degenerate) translation invariant holomorphic
Poisson structure and consider the subspace Im(IT) C R™ of holomorphic translations that are
in the image of II. If the quantization of holomorphic BF theory on C™ x R™ associated to II
exists, the same argument as above shows that the space of translations

Im(IT) ® {821} ® {ai} = Im(II) @ R" & R™

act homotopically trivially, yet the holomorphic translations in R™/Im(II) act in a potentially

non-trivial way.

As a simple example, suppose C"* = C?* 4+ C is equipped with the standard holomorphic
Poisson structure on the first factor, and the zero Poisson structure on the second factor. In
the C direction this theory looks like ordinary abelian holomorphic BF theory, which is not de
Rham topological: the holomorphic translations on the C¢ factor will be non-trivial.
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