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ABSTRACT. Using Malliavin calculus, this paper establishes asymptotic Bis-
mut formulae for stochastic functional differential equations with infinite delay.
Both nondegenerate and degenerate diffusion coefficients are treated. In ad-
dition, combined with the corresponding exponential ergodicity, stabilization
bounds for VP f as t — oo are derived.

1. INTRODUCTION

The Bismut-type formulae were first established in [I] using Malliavin calculus
for stochastic differential equations (SDEs) on Remannian manifolds to obtain es-
timates of heat kernels and large deviations estimates. Then the formulae were
extended to a larger class of diffusion semigroups in [2] by using martingale argu-
ments. As a result, such formulae are also referred to as the Bismut-Elworthy-Li
formulae. Subsequently, the approach of coupling by change of measures was intro-
duced to derive the Bismut formulae and Harnack inequality for SDEs and stochas-
tic partial differential equations; see [3] and references therein. Due to their wide
range of applications on heat kernel estimates, functional inequalities, strong Feller
property, and sensitivity analysis in finance, the Bismut formulae have been inves-
tigated under various settings; see [4B] for SDEs with Brownian noise, [6H8] for
SDEs driven by jump-diffusion processes, [9] for the Lions derivatives of solutions
to distribution dependent SDEs.

For stochastic functional differential equations (SFDEs), Bao, Wang, and Yuan
established a Bismut-type formula and Harnack inequality in [I0] for degenerate
SFDEs using coupling by change of measures. Then they obtained a Bismut for-
mula for semi-linear stochastic functional partial differential equations in [I1] using
Malliavin calculus, and derived a Bismut-type formula in [I2] for the Lions deriva-
tives of segment processes of distribution-path dependent SDEs. When the diffusion
term depends on the past history, the SFDEs might have a reconstruction property
[13], which causes the laws of segment processes with different initial data to be
mutually singular. Thus, the strong Feller property and the classical Bismut-type
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formulae are invalid. To circumvent the difficulty, using coupling by change of mea-
sures, Kulik and Scheutzow [14] introduced a weaker version of the formula, namely
asymptotic Bismut formula, for nondegenerate SFDEs; the asymptotic Bismut for-
mula for Lions derivatives of segment processes of nondegenerate and degenerate
distribution-path-dependent SDEs was proved in [12] using Malliavin calculus.

A crucial assumption in [I4] is that the first-order Fréchet derivative of the
drift term is bounded and uniformly continuous on C([—7,0];R%), where 7 > 0
is the length of delay. In addition, it is worth pointing out that in [12,[14], only
(distribution dependent) SFDEs with finite delay were considered. It is crucial to
note that for SFDEs with finite delay, the classical Bismut-type formula holds only
for ¢ > 7 [I0HI2]. For SFDEs with infinite delay, the classical Bismut formula is
not applicable. This paper aims to relax the assumptions for the first-order Fréchet
derivative of the drift term in [I4] and to establish asymptotic Bismut formulae for
SFDEs with infinite delay so as to extend and generalize the results in [12114].

Denote by C((—o0,0]; R?) the family of continuous functions from (—oo,0] to
R?, and by C, := {¢ € C((—o0,0};R?) : sup_ . p<o€™|p(0)| < oo} with norm
]l = sup_.ocg<o€?(0)| and » > 0. It is known that (C.,| - |.) is a Polish
space [15]. Let b : C. — R? and o : C, — RY*™ be continuous, W (t) be an m-
dimensional Wiener process, and X;(6) : (—00,0] 3 0 — X(t + 60) € R? be the
segment process. Consider the SFDE with infinite delay

(1.1) dX () = b(X,)dt + o(X;)dW (t)

and initial data Xy = ¢ € C,..

As a preparation, we first provide some notation and definitions to be used in the
rest of the paper. Let || - ||, denote the Hilbert-Schmidt norm, C*(C,, R?) be the
family of Fréchet differentiable functions f : C, — R? with continuous derivatives,
and Ve f(-) or (Vf(-),€) denotes the Gateaux or Fréchet direction derivative of f
along the direction &. If, moreover, |V f(-)|| is bounded, we denote f € CL(C,,R?),
where || - || is the operator norm, that is, [Vf()|| := supje, <1 IKVF(), ) s
Denote by Mg the set of probability measures on (—oo,0]. For any k > 0, further
define My, the subset of Mg by My, := {u € Mg : pF) = f_ooo e~ u(df) < oo}
Let T' > 0 be fixed and arbitrarily,

T

H= {h € C([0,T],R™) : h(0) =0, h(t) exists a.s., ||h]3, = / |h(s)|?ds < oo}
0

be the Cameron-Martin space, P be the Wiener measure, and Q = C([0,T]; R™).

Then the coordinate process W (t,w) := w(t),w € Q is an m-dimensional Brownian

motion. A function F € L?*({;P) is called a Malliavin differentiable along the

direction h € H if the following limit

D, F := lim F(+eh) - F()
e—0 g

exists in L?(Q;P) and D, F is called the Malliavin directional derivative of F along
the direction h. If the map H > h — Dy F € L?(Q;P) is bounded, there exists a
unique DF € L?(Q — H;P) such that (DF,h)3, = D, F holds in L?(Q;P) for all
h € H. In this case we denote F' € Dom(D) and call DF the Malliavin derivative
or gradient of F. For p > 1, if h € LP(Q2 — H;P) is an adapted stochastic process,
we write h € LP(Q — H;P). Let (6, Dom(d)) be the dual operator of (D, Dom(D)),
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called divergence operator, which is characterized by using the following integration-
by-parts formula

E(D,F) = /QDhFd}P’ = /QF(S(h)dIE” = E(F§(h)), F € Dom(D), h € Dom(6).

According to [16, Proposition 1.3.11], all adapted h € L?(Q — H;P) belong to
Dom(d) and 6(h) = [, iu(s)dW (s).

The remainder of the paper is organized as follows. Section Pl establishes as-
ymptotic Bismut formulae and stabilization bounds of VP, f as t — oo for non-
degenerate SFDEs with infinite delay. Section[3investigates those of the degenerate
SFDEs to close the paper.

2. NONDEGENERATE SFDES WITH INFINITE DELAY

To ensure the existence and uniqueness of the solution and to establish the
asymptotic Bismut formula, we make Assumption 2.1

Assumption 2.1. b € C'(C,,R?) is bounded on bounded subsets of C,.. There
exists a positive constant K > 0 such that for any ¢, € C,

21)  2(6(0) = ¥(0),b(¢) = b(¥))+ + 0(9) — o (V)3 < Kllo = ¥II7,
where (-,-) denotes the scalar product in R? and ay := max{0,a} for any a € R.

Remark 2.2. Note that () has a unique strong solution under Assumption 2]
(see e.g., [IT]). By using standard arguments [I8] p.160], for any 7" > 0 and p > 0,
there exist a constant Cp, ¢ > 0 and an increasing function A(¢) : Ry — Ry such
that

(2.2) E[ sup [|X|[F] < CpeA(T).
0<t<T

Assumption 2.3. For any ¢ € C,, the matrix o(¢) admits a right inverse o~ (¢)
and [lo™ !l := supgec, 071 (0)[lus < o0

Assumption 2.4. There exist constants L and v > 1 such that for any ¢ € C,,
IVb(9)[l < L(1 +l¢]17)-

Theorem 2.5. Assume Assumptions 2.1, 23], and 24 hold. Then for any T > 0,
f € CHCHR),A >0, and &,m € C,., the following representation formula holds,

T
23 VaPrf(© = E(V1)(Xr). Zr) + XE(10Xr) [ o00) 2w ()
where Zy denotes the unique segment process to the SFDE with infinity delay
(2.4) dZ(t) = {-AZ(t) + (Vb(Xy), Z¢) }dt + (Vo (X)), Z)dW (1)

and Zy = n € C.. Furthermore, there exist constants A, o, and A\g > 0 such that
for X > Ao,
(2.5)

T
VaPr(©) < NB(7(Xr) [ 0(X) 1 ZaW ()| < A sup V@) lnlle T
0 ¢€Cy

To prove this theorem, we need the following four lemmas. We first show that
for sufficiently large A, [24) is exponentially stable.
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Lemma 2.6. Under Assumption 211, for any A > 0, (24) has a unique solution
and for any p > 2, there exist Ay, a1 > 0, and sufficiently large A\, > 0 such that
for X >\,

(2. EIZIP < Adinlzet, ¢ >0,
Proof. By [2)), for any ¢, € C,, we have

2¢(¢(0),b(y +¢) = b(¥))+ + o (¢ +c9) — o (¥)|% < Ke2[|o]7,
which implies that

(2.7) 2(6(0), (Vb(¥), 8))+ + (Vo (¥), $) 15 < K|#]7-

Therefore, combined with the linearity of the inner product, (2.7)) implies that (2.4))
has a unique solution. Next, we proceed to prove (2.6). By the Lyapunov inequality,
it suffices to prove this inequality for p > 4. By virtue of the It6 formula and (27),
we obtain

t
8Wmm%me+K/8“Mmm+MWL
0

where M (t) := 2ft e?(Z(s), (Vo (Xy), Zs)dW (s)). Letting = 2(\ — r), we
have
(28)  ZO) < n(0)|%e 7”t+K/ M| Z | Fds + e M (1),

Note that || Zy||, < e 2|2 + e~ supyc <, €**|Z(s5)|* and €| Z; ||, is nonde-

creasing, which implies fot e rt=we2ru| 7 ||2du is nondecreasing with respective to
t. Then from (ZF)), we see that

(2.9) 2W&mgmm+K/ K02 7, 2du + sup ™" MA(s).

0<s<t

The Hélder inequality yields that

t b2l —9 p—2 t
(210) efn(tfu)GQTuHZuHQdu 2 < p— 2 ep'ru”ZuH:Ddu_
r T
0 Kp 0

Note that M*(t A 7,) is a square integrable martingale for any n > |7, where
Tp i=inf{t > 0: || Zs||» > n}. Then by (21) and [19, Lemma 2.2] or [IZ, Lemma
7.2], there exists a positive constant a,, .. satisfying lim,_, @, = 0 such that

) tAT,
(2.11) E[ sup e_"“M’\(s)r gK%ap,KE/O | Zy P dus.

0<s<tATp

Hence it follows from (Z39)), 2I0), and ZII]) that

t
(2.12) Eepr(tmn)”Zth”p < 35 2 ]2 +Aan/ e;DT(u/\Tn)HZuATn
0

P
Pdu,

where A, , i = 3"7 ((Z2 pz) C K3 ap,). The Gronwall inequality gives

Eepr(t/\Tn) HZt/\T

P <3 9% [l exp { Ap i it}

Recall that lim,_,,, 7, = co. By Fatou’s lemma, we obtain

E||Z,||P < 3" 25 ||| exp { (Apon.ic — pr)t}.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ASYMPTOTIC BISMUT FORMULAE FOR INFINITE-DELAY SFDES 4041

Since Ap .k — 0 as k —> oo (that is A — 00), there exists a positive constant c;
such that E||Z;||P < 3% ok [Inl|Ee=tt. Then (Z6) holds. The proof is complete. [J

By the pathwise uniqueness of (II]), there exists a measurable functional ¥ :
C, x C([0,00); R?) — C([0,00); RY) such that X(-,&) = (&, W(+)), P-a.e., where
¢ € C, denotes the initial data. Let h(-) € L>°(Q — H;P) be an adapted process.
Consider the following SFDE with infinite delay

(2.13)  dX™E(t) = (X)) 4+ eo (XS ()]t + o (X])dW (t), t e [0,T],

with X(]f © =¢ €. Let e € (0,1] without loss of generality. Under Assumption

21 (2I3) has a unique strong solution. The Malliavin directional derivative of
h,e

X(t) along h is defined as Dy X (t,w) = lim._,q w, provided the limit

exists in L2(Q — C([0,T],R%); P). To establish the existence of the above limit, we

provide Lemma 2.7

Lemma 2.7. Under Assumption 211, let T > 0 and h(-) € L>®(Q — H;P) be an
adapted process. Then for any p > 2 and t € [0,T], there exists an increasing and
continuous function Ay, (t) such that

(2.14) E[ sup XMe — XS||5} < Ay n(t)eP.

0<s<t
Proof. Let ;" = (X" — X;) /e and Y™<(t) = Y;*(0) for t > 0. Then we have

b(Xth’E) —b(X4)
€

+0(Xth’€)h(t)}dt+ o(X;) - X)),

(2.15) dY™<(t) :{

with Yoh’8 = 0 € C,. By the Itd formula and Assumption 211 for any p > 2, we
have

e <B2 /|Y’” S
(2.16) +p / Y (3) P o (X1) s (3)]ds + M (1),

where M(t) := 2 fo [y e ( )|p*2(Yh75(s), (o(Xe) — O'(XS))dW(S)). Since h(:) €
L= (Q — H; P), there exists a positive constant A such that fOT |h(s)[2ds < A, P-a.s.
By Holder’s inequality, Young’s inequality, and Assumption 2.1 we have

b s [P o (X i) s

o<u<tJo
t 1/2 t 1/2
< VApE( sup [V (s) 2/ o (X2)]2 ds)

0<s<t

1 _
(2.17) < JE sup \Y’%E(s)v’+2P*1AP/201KH<P*2>/2E/ (14 | X2=|P)ds

0<s<t 0
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where Cy == (4(p — 1))1071 and K := VK + ||0(0)||,s. By using the Burkholder-
Davis-Gundy inequality, the Young inequality, and (2.I]), we have

t
(2.18) E[ sup M(s)} < IE[ sup [Ye(s )|p} +32Kp2IE/ Y|P ds.
0

0<s<t 0<s<t

Note that Yy =

< supg<y<s Y (u)]. Substituting ZI7)

and (2ZI8) into ([2.10) gives
t t
]E|: sup |Yh78(s)|pj| SCQtpTiz/ (1+E||X;L’E||£)d8+03/ E[ sup |Yh,8(u)|17?|d8
0<s<t 0 0 0<u<s

where Cy := 2P AP/2C, KP and C5 := 65K p?. By using a similar argument as in the
derivations of ([ZIT7) and (ZIJ), for any ¢ > 2 and h(-) € L>® (2 — H;P), there
exists a continuous and increasing function A%"(-) such that

(2.19) sup E||X[°||2 < A2M(t), Vtelo,T).
0<e<1
Then applying the Gronwall inequality yields that
(2.20) E sup |[Y™(s)[P < A, p(t)e”?,
0<s<t

where A, j,(t) := Cot?/2(1 + AP"(t)). By the definition of norm || - ||,., we have

(2.21) = sup supe”?|Y (s +0)| < sup |Yh5( ).
0<s<t 9<0

Thus we arrive at E[supogsgt ||Ysh5||$} < A, n(t)e“st. This implies that (ZI4)
holds for A, 5 (t) := A, 5 (t)e“3t. The proof is complete. O

Lemma 2.8. Let Assumptions 21 and 24 hold. Then for any T > 0, h(:) €

L>(Q — H;P), the limit

X Xt
€

ezists in L*(Q — C([0,T];C,);P). Moreover, the segment process {Dn X+ }eepo,m
uniquely solves the following SFDE with infinite delay

(2.23) AU (t) = {(Vb(Xy), Ul") + o(Xo)h(t) bt + (Vo (X,), U/ dW (t)
with Ul = 0 € C,., where UM = D, X; denotes the segment process of UM (t).

Remark 2.9. For any given h(-) € L°(Q — H;P), existence of the limit in ([Z.22]
implies that X; is Malliavin differentiable along h, denoted by Dy X;. Moreover, the
solution process X (t) is also Malliavin differentiable along h, denoted by Dp X (¢),
and solves uniquely (Z23) on [0, 7). In fact, for any £ > 0, by Remark 22 for any
h € L2t¢(Q — H;P), (223) has a unique solution under Assumption 211

Proof. For h(-) € L*(2 — H;P), by ([Z71) and the Lipschitz continuity of o(-),
[223) has a unique solution. Now it remains to show that the limit D X; exists in
L?(Q2 — C([0,T);C,),P) and is the segment process U}* of SFDE ([2.23). In view of
210, it suffices to prove that

(2.22) DX, = lim € [0,7]

limE| sup [Y™(t) - U"(1)]*| =0.
| sup [¥<(0) - UM 0)F]
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By b € CY(C,,R%),0 € C(C,,R¥*™), the Mean Value Theorem [20, Theorem 3.2.6]
implies

1
b(X[) = b(X,) = / (Vb(Xy 4+ 0(X° — Xy)), X]*° — X,)d6,
0

1
(X)) — o(Xy) = /0 (Vo (X, 4+ 0(X]° — X,)), X[ — X,)do.

Let Z™=(t) = YMe(t) — UM(¢t). Tt follows from (ZI5) and ([ZZ3) that
dz™e(t) = {(VB(X.), 2,"°) + I (8)}dt + {(Vo(X,), Z,°%) + I5(8) }dW (1),

where
1
(1) = (a(X{"%) — o(X2))A(t) + / (VB(X; + (X[ — X1)) — Vb(X,), Y{"%)db,
0
1
E(t) = / (Vo(X, +0(XPF — X,)) - Vo(X,), Y/"%)do.
0

Applying the 1t6 formula and ([Z7) gives that

71285+ I ()P + 205 () 15 ds + M (1),

t
(2.24) |Zh75(t)\2§/ 2K || 2=
0

where M (t) := 2 fg (Z2M5(s),(Vo(X,), ZI°) + I5(s))dW (s). By a similar argument
as in the derivation of ([ZI8]), we obtain

||12{Sds.

— 1 t
(2.25) E[ sup M(s)} < §E{ sup |Zh’5(s)|2}+128]E/ K| ZM2 |2 +||15(s)
0

0<s<t 0<s<t
From (Z24) and (220]), there exist constants Cy and Cs > 0 such that
t t
E{ sup |Zh7a(3)|2] §C4E/ |Il€(5)\2+||I§(s)||isds+05/ IE[ sup ‘Zh’E(U)ﬂds.
0<s<t 0 0 0<u<s

Then the Gronwall inequality implies that

Hisds.

t
(2.26) E[ sup |Zh’€(s)|2} < C4eCStJE/ I1I5 () + (15 (s)
0

0<s<t
By virtue of the definition of I{(s) and I5(s), we have
(227) ()P + 15 ()5 < 20l0(X8%) = o (Xo) 5 a(s)? + 275 () |41,
where J(s) i= Ji}[[VB(X, +8(X1 — X,)) — Vb(X,) |2+ | Vo (X, +6(X]= — X,)) -

Vo(X5)||?dd. By virtue of Assumption 24 and (27), there exists an increasing
function C > 0 such that for all s € [0, 7]

(2.28) J2(s) < Co(1+ [IXS 77 + 1 X0 = X[27).
In view of h € L*>°(Q — H,P) and Lemma [Z7], we obtain
T
limsup/ ]E||0(Xf’€) - 0(X3)||is|h(s)|2ds

e—0 0

(2.29) < KB e limsup B[ sup [ X0 — X|12] = 0.
e—0 0<s<T

Since Vb and Vo are continuous, Lemma [27] implies that J¢(s) and J¢(s)||Y/¢||?
converge to 0 in probability as ¢ — 0. In addition, it follows from (2I9) and
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2I4) that {(1 + [| X[V 2} e, and [ X5 — X2V Y%7 are uniformly
integrable for any fixed s € [0,7]. Hence by the dominated convergence the-
orem, lim. ,oEJ%(s)||[Y/||? = 0. In light of Lemma 27 2I9), and [228),

lim o fy EJ*(s)|Y/*%|2ds = 0. Then it follows from (Z26), 27), and ZZI)
that

T
nmE[ sup |Zh’€(s)|2] < CyeCsT lim/ E{|I5(s)[2 + [ I5(s) ]2, }ds = 0.
e—0 OSSST e—0 0

Hence this proof is completed. O
Lemma 2.10. Let Assumptions 211 and B4 hold. Then for any T > 0, the limit

(2'30) ant = ;5% Xt(f + 6776) — Xt(g)

5 tE[O,T], Eanecr

exists in L*(Q — C([0,T);C,); P) and is the unique functional solution to the fol-
lowing SFDE

(2.31) dV () = (Vb(X,), Vi)dt + (Vo(X,), VAW (t), Vo =n€C,.

Proof. Tt is easy to see from (2717) that (23] has a unique solution, and the proof of
existence of the limit in (Z30) is similar to that of Lemma28 We omit it here. O

Proof of Theorem 5. Let h(t) = )\fg o Y(Xs)Z(s)ds, which is an adapted sto-
chastic process. By Lemma and Assumption 23] Holder’s inequality leads to

T 2 T
IE(/O lh(s)Pds)” < A4||a—1||§oT/O E| Z(s)|*ds < oo.

This shows that h(-) € L(Q — H,P)€ Dom(d). Hence, ([2:23) has a unique solution
for this h(-) under Assumption 211 By Lemmas 28 and 210, u; := V,X; — U}!
satisfies the following SFDE

du(t) = {(VB(Xy), u) — AZ(t)}dt + (Vo (Xy), u)dW (t)

with wg = n € C,.. By the strong uniqueness of solution to 24), Z; = u; =

V,X: — U}t for t € [0,T]. Then for any f € C}(C,,R) and A > 0, the chain rule
ields

yie

(2.32) VP f(§) = E(V)(Xy), Vo Xe) = B(V)(X0), Z1) + E(V)(X0), U}").
Let

t t
n(2) :/0 h($)L (i) <ny b5 = A/O 07 (X Z () 1t (x) 2(s)|<mpds, € [0,T].

Obviously, h, (t) € L®(Q — H;P). By LemmalZ8 U/ = D), X, for any t € [0, T).
Furthermore, the chain rule and integration-by-parts formula yields

(2.33) E((V/)(Xr),Up") = EDy, f(X7) = Ef (X1)8(hs).
By 27), 223), Assumption 23] and a similar approach as in the derivations of

@I7) and @I])), we have

T
BIUE = U < CE( [ 1o(X)(s) = b ()l

T
(234) S)\2C(T)T/ ]E|Z(s)|21{/\\U_1(X5)Z(s)\>n}ds —0 as n — oo.
0
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By virtue of Assumption 2.3] and Lemma 2.6] as n — oo, we have
(2.35)  E[5(h) = d(hn)|* = N’E /OT 0™ (X) Z ()1 iajo-1(x.)2(s) 5n}ds — 0.
Since f € C}(C,,R), it follows from ([Z33), [Z34), and ([Z35) that
B{(5)(X0),Uf) = BS (X)) = X&) [ 07 (X Z(6)a ().
Hence, from (2.32),
VP (©) = (V1) (), Ze) + NE(1061) [ 07 ()20 ),

which is the desired assertion (2.3)). This together with (2.0) yields (2.3]). O

Proposition 2.1T] presents the stabilization bound for VP, f as t — co. To pro-
ceed, we first introduce the following notation. Let P(C,) denote the family of
probability measures on C,.. Given a nonnegative and continuous functional F
on C, and a constant v € (0, 1], define a distance-like function by dr(§,n) =
VAAE=n)(A+ F(€) + F(n)). For dp., the associated Wasserstein distance
between two probability measures u,v € P(C,) is defined as follows:

W — inf d TI(d¢, d
e, (1, V) HG‘lél(mV)/crxcr Py (& mIL(dE, dn),

where € (u,v) denotes the collection of all couplings of y and v. Let L(F') denote
the family of Lipschitz continuous function with respective to dr~ on C,, that is,

(. _ 1£(€) = f(n)]
L(F) == {f : Ifllrs = s e < o).

Proposition 2.11. Assume Assumptions B1l, 2.3, and 2.4 hold. Assume further
that there exist a continuous functional V' : C. — [0, 00) with lim)¢|, 00 V(§) = 00
and constants Cy,0 > 0 such that

(2.36) PV(E) = /C V(n)Pu&, dn) < Cye=V (€) + Cy

holds for all ¢ € C,. andt > 0. Then for any v € (0,1], there exist positive constants
a and C such that for any f € CHC.)NL(V) and £ € C,., t >0,

(2.37) VPO < Asgg IVF(@)lle™" + Cllfllvye™".
Proof. Under assumptions of this proposition, it follows from [I7] that P; has a

unique invariant probability measure p and there exist constants Cy and p > 0
such that

(2.38) Way (Pi(&), 1) < Coe P\ /1+V(E), t>0.
For any t¢ € [0,t], we have

(s | o) Zaw ()| < [£(rx) / (X)) ZaW ()

to

(2.39) + ]E(f(xt) /Oto U(Xs)—lzde(s))‘ = 1) + L.
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By virtue of (28], (2.36), and the Holder inequality, we obtain

I = [E((£(X0) - 0)) /t:a<Xs>lzde<s>)\

< | fllva VT +EV(X,) + V(0) (E \U(Xs)_lZs|2ds)1/2

to

(240) < %IIwaIIo*IIw\/(l +Cy + Cye V(&) + V(0)) Are™ 2"

Note that |Pr—t, f (X1) = u(£)] < Coll flvav/I+ V(X )e 771, where u(f) =
fCr F(Op(d¢), which follows from ([23]). By Markov property and (2.0]), we have

I, = ’]E((Pt—tof(Xto) —u(f)) /OtO U(Xs)stW(S))‘

to
< Coll fllvae " B(VIHF V)| [ o) 12,40 (s))
0

C (- -
(2.41) < a—fllfllv,we . t°)\/1+0v6‘9t°V(§)+Cv|IU Hoo VA0l

Taking tg = t/2 it follows from (2:40)), (Z41]), and (239]) that there exists a constant
C > 0 such

B(rox | (X ZAW ()| < Ol 4+ )

which together with ([Z3) yields
IVP (I < Asgg IVF(@)lle™" + Cle** + e /2) | fllv-

Hence, (231) holds for & = (a1 /4) A (p/2). The proof is concluded. O

3. DEGENERATE SFDES WITH INFINITE DELAY

This section considers the following SFDE with infinite delay and degenerate
diffusion coefficients on R24 := R? x R4:
1) dXM () = bW (X,)dt,
3.1
dX @ (t) = b (X,)dt + o(X;)dW (t)

with Xo = € := (€M, ¢@)) € ¢, x C,, where X, := (Xt(l),Xt(z)) € C, x C, for some
r >0, {W(t)};>0 is an m-dimensional Brownian motion, b := (b1, b)) : C, xC,
R24 and o : C, x C, — R¥™ are continuous functionals.

For (31]), the diffusion term is degenerate and it does not satisfy the assumptions
of Theorem To establish the asymptotic Bismut formula for (BI), we make
Assumptions B.1] and

Assumption 3.1. b € C'(C, x C,,R??) is bounded on bounded sets. There exist

constants K1, Ko, K3, k£ > 0 satisfying infgc.<1 W < r A K, such that

for any ¢ := (1), 6(2)), ¢ := (D, @) € C, x C,., || Voo (9|2, < K3 ¢]? and
(61(0), Vb (1)) +(62(0), Veb® (1)) < K1l 7+ K2|6P (0)[| ]| —r| 6™ (0)[.
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Assumption 3.2. b € C}(C, x C.,R??) is bounded on bounded sets. ||VUH and
Vb3 are bounded. There exist constants (8, % > 0 with infoca<nnr y <4
such that

Ot(li a

(61(0), Vb () < BloM (0|16l — [ (0)]2.

Theorem 3.3. Assume Assumptions 23], 24, and Bl or hold. Then for any
T>0,A>0, feCHC xCr,R), and &,n € Cr X Cp,

T
(82)  VyPrf(§) =E((VF)(X0), Zr) + AE(f(Xr) /0 o(X) T 2B W (s) ).

where Zy; is the segment process of Z(t) := (ZW(t), ZP)(t)) € R?** which solves
uniquely the following SFDE
(33)  dZ(t) = {-A(0, 2P (1)) + (VB(X1), Zi) }dt + (0, (Vo (Xy), Z,)dW (1)),

with Zg = n € C. x C.. Moreover, there exist constants c, o, and \g > 0 such that
for any A > X

B4 VPO - B (sxn) [ Lo 22w ()| < el e,

We first derive Lemma [3.4] before proving Theorem [3.31
Lemma 3.4. Let Assumptions 23] and B] or hold. Then B3) has a unique

solution. Moreover, there exist constants pg > 2, ¢, 8 > 0, and \g > 0 large enough
such that for any A > A,

(3-5) E[ Z:|17 < cllnlZe™, p € (0,po], t >0.
Proof. Note that (B3) has a unique solution under Assumption BI or and

for any ¢ > 0 there exist a nonnegative continuous increasing function As(t) and
constant C' > 0 such that

(3.6) E[[Z:I7 < Clinll7A2(#), ¢ > 0.

To proceed, we prove ([B.35) under Assumptions [3.1] and
(i) Assumption Bl holds. Let A > 2k. Then for some p > 2 and any a < r A &,
applying the It6 formula, Assumption 3] and the Young inequality gives

e’ Z ()P
t
< IZ(0)|p+p/ 6”“SIZ(S)I”*2{QIZ(S)I2 + K1l Zs|I7 + Ko 2P ()1 Zs
0

—RZO(E) - Nz )2+ B 7 2 4 v

(3.7)
Ks(p—1 K32
< 1200 + (s + 220 B [ ooz p-ryz s + o),
where N(t) := fot P Z(s)[P=2(Z23) (s), (Vo(X,), Zs)dW (s)). Similar to ZI8), by
Assumption B] there exists a constant ¢ € (0,1) such that
(3.8)

8p° K. t
p]E[ sup N(u)} §5E[ sup epaS|Z(s)|p} + %E/ epaS|Z(s)|p_2||ZS||fds.
0

0<u<t 0<s<t
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Let Cs = 2K + (p — 1+ 16p/e)K3 + K3/, then by 3.7) and B.8), we have
1 P t
E[ sup e"*|Z(s)l"] < ——2(0 p+7CE/ eP2%|| Z,||Pds.
s V)] < 12O + gt Gt [ ez

Since a < r, then || Z;[|? < e P ||n||2 + e~ P* supg ., €’**| Z(s)|P. Thus we obtain

2—¢ P
EePt|| Z,1|P < p
27 < Tl + 37—

Applying the Gronwall inequality leads to

t
CG/ EeP*?|| Z4||Pds.
0

2 —
EllZ|I? < —Hnll” Xp{—E)Cet — pat}.
Take @ = r A k. Noting that infgc.c1 W < r A Kk, we can choose

constants g € (0 1), p > 2 sufficiently close to 2 and )\ large enough such that for
any A > Xo, 37—y C’G a < 0. Thus, there exists a @ > 0 such that (3.5) holds.

(i) Assumptzon holds. In terms of ([3)), for A > r, we have

eMZP(t) = 23 (0) + / t (VB D(X,), Z,)ds + / t (Vo (X,), Zs)dW (t).
0 0

Then for any a € (0,7 A k), we have

1
eatZ(Q) (t) :Z(Q) (0)6—(A—a)t + / e—()\—a)(t—s)eas <Vb(2) (XS), Zs>d8
0

¢
+/ e~ A= t=5)eas (7o (X,), Z)dW (t).
0
Noting that ||V6®)|| and ||Vo| are bounded, then by using similar arguments to
derive (210) and (2I1), for any p > 2 there exist a constant ¢; > 0 and a function
ap.s : Ry — Ry with limg_,o ap,s = 0 such that

t
E sup epo‘s|Z(2)(s)\p §01|Z(2)(0)|p—|—ap7>\_a/ EeP*?|| Z||Pds.
0

0<s<t
Using the definition of norm || - ||, we obtain
¢
(3.9) PUE[ZP ()7 < (er + DIZP )P + ap,A—a/ PR Zs 7 ds.
0

For any € > 0, by virtue of Assumption and (B3], we have
1 1
ent(‘Z(l)(t)‘Z + E) 2 (‘Z(l)(0)|2 4 E) 3

t 1 (€] — 1)
B S R e L A ATC
0 (1Z0(s)2 +¢)*

t
< | e (811l + s,
/0 ( (12 (1)()|2+€)5)

Then, letting € — 0 gives

t
Z00)] < 1200)]+ 5 [ |2 s
0
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For any « € (0,7 A k), we have
|z <12V ()] + 5 / e 7, s,
0
which further implies that there exist constants ¢ and e; > 0 such that

B ZMV P < || Z§V |2+ E sup e[ 20 (s)|P
0<s<t

s p
< el 28712+ (1+2)B°E sup ( / e (e 7, | du)

0<s<t 0
(3.10) <alzp+ 0+ ] [ oz
<l We-al o ’“

where we have used the inequality (a+b)P < ccaP + (1+¢)b? for a,b,e,¢. > 0,p > 1
and Hoélder’s inequality. By (8.9) and (B.10), there exist constants €5 and ¢, , > 0
satisfying lim._,¢ c.,, = 00 and ¢, ¢, > 0 such that

t
B ZP < oy ea| Z0l17 + Trer e / PR Z, |Pds,
0

_ -1 .
where ¢, ., == {(1+&2)(1 + 61)6’)[17(’;—_100]1) + (1 + Cepp)apr—a}- Applying
the Gronwall inequality yields that

(3.11) EZi|I7 < cey ol Zoll7 exp[(Tae, e — P)].

It is easy to see from Assumption that there exists ag € (0,K A r) such that
B%/12(k — ap)] < 2ap. Then we can find constants €1, 2 small enough, p > 2 close
to 2 enough and )y large enough such that

p—1 qr-t
{(1 +e2)(14¢1)B7 [m] +(1+ cszyp)apyk,ao} < pay,
which implies that (3] holds for some 6 > 0. The proof is complete. O

Proof of Theorem B3l For any h € L>°(Q2 — H,P), by Lemma 28 the segment
process X; is Malliavin differentiable along the direction h and the directional
derivative Dj X; is the unique solution to the following 2d-dimensional SFDE

(3.12)  dU"(t) = ((Vb(X,), Ul) + (0,0(X)h(1)))dt + (0, (Vo (X,), U)dW (¢),

on t € [0,T], with U} = 0 € C, x C,, where U"(t) := (UMM (t), UM (1)) € R,
Let h(t) = )\fg 0~ (X,)Z®(s)ds, which is an adapted stochastic process. From
Lemma [3.4] and Assumption 23] we see that

po—2

T . %l T
B( [ loas) T < ot s [ Bjz® pds < o

which implies h € L2°(Q) — H,P) € Dom(d), where pg > 2 comes from Lemma B4
And [BI2) has a unique solution for this A under assumptions of Theorem
By Lemma 210, the segment process to (BI) is Fréchet differentiable and the
directional derivative V, X, is the unique segment process to the following SFDE
(3.13) dV (t) = (Vb(Xy), Vi)dt + (0, (Vo (Xy), Vi))dW (t), t € [0,T], Vo = 1.

Because ([B:3) has a unique solution, from [BI2) and BI3), Z; := V, X; —U]" is the
unique segment process to B3] for ¢ € [0,T]. Then using similar arguments as in
the derivation of Theorem 2.5l yields the desired results. This proof is complete. [
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To present the bound for VP, f as t — 0o, we need the stronger assumption:

Assumption 3.5. b € C'(C, x C,,R?%) is bounded on bounded sets. There exist a

A Cp e 2k (37 2) kg 37
measure p € Mo, and constants ki, kg, & > 0 with infgc.q =28 ZJ(rl(fJg)ga) 2h <

r A & such that for any ¢ := (¢, ), := (M), ) € C,. x C,
0

(6(0) = 0(0):b(6) ~ b)) < ~&l9(0) ~ B(OP + ks [ [6(6) ~ v(6) Pudb),

— 00

0

() = oz < [ 1606) = w()Fn(as).

—00
Proposition 3.6. Under Assumptions 23], B4, and B35, there exist constants @,
C > 0 such that for any f € CL(C, x C;,R) and £ € C. x C,. and t > 0,

(3.14) IVPFEN < CIV Flloo (1 + [1&]lr)e™"

Proof. By [21l, Theorems 5.1 and 4.3], (B]) has a unique invariant probability
measure 4 under Assumption and for any £ € C, xCy, f € CL(C, x C;,R), there
exist constants C; and &; > 0 for ¢ = 1,2 such that

E[| X7 < Co(L+ [gllre™™) and [Pif(€) = u(f)] < CallV oo (1 + [I€]lr)e =",

Then by using similar arguments as in the proof of Proposition 21Tl (3I4]) follows.
|
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