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Abstract. Using Malliavin calculus, this paper establishes asymptotic Bis-
mut formulae for stochastic functional differential equations with infinite delay.
Both nondegenerate and degenerate diffusion coefficients are treated. In ad-
dition, combined with the corresponding exponential ergodicity, stabilization
bounds for ∇Ptf as t → ∞ are derived.

1. Introduction

The Bismut-type formulae were first established in [1] using Malliavin calculus
for stochastic differential equations (SDEs) on Remannian manifolds to obtain es-
timates of heat kernels and large deviations estimates. Then the formulae were
extended to a larger class of diffusion semigroups in [2] by using martingale argu-
ments. As a result, such formulae are also referred to as the Bismut-Elworthy-Li
formulae. Subsequently, the approach of coupling by change of measures was intro-
duced to derive the Bismut formulae and Harnack inequality for SDEs and stochas-
tic partial differential equations; see [3] and references therein. Due to their wide
range of applications on heat kernel estimates, functional inequalities, strong Feller
property, and sensitivity analysis in finance, the Bismut formulae have been inves-
tigated under various settings; see [4, 5] for SDEs with Brownian noise, [6–8] for
SDEs driven by jump-diffusion processes, [9] for the Lions derivatives of solutions
to distribution dependent SDEs.

For stochastic functional differential equations (SFDEs), Bao, Wang, and Yuan
established a Bismut-type formula and Harnack inequality in [10] for degenerate
SFDEs using coupling by change of measures. Then they obtained a Bismut for-
mula for semi-linear stochastic functional partial differential equations in [11] using
Malliavin calculus, and derived a Bismut-type formula in [12] for the Lions deriva-
tives of segment processes of distribution-path dependent SDEs. When the diffusion
term depends on the past history, the SFDEs might have a reconstruction property
[13], which causes the laws of segment processes with different initial data to be
mutually singular. Thus, the strong Feller property and the classical Bismut-type

Received by the editors June 13, 2021, and, in revised form, December 9, 2021.
2020 Mathematics Subject Classification. Primary 60J60, 34K50.
Key words and phrases. Asymptotic Bismut formula, Malliavin calculus, stochastic functional

differential equation, infinite delay.
The first and second authors were supported in part by the National Natural Science Founda-

tion of China (Grant Nos. 61873320). The third author was supported in part by the National
Science Foundation under grant DMS-2114649.

c©2022 American Mathematical Society

4037

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/15966


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4038 YA WANG, FUKE WU, AND GEORGE YIN

formulae are invalid. To circumvent the difficulty, using coupling by change of mea-
sures, Kulik and Scheutzow [14] introduced a weaker version of the formula, namely
asymptotic Bismut formula, for nondegenerate SFDEs; the asymptotic Bismut for-
mula for Lions derivatives of segment processes of nondegenerate and degenerate
distribution-path-dependent SDEs was proved in [12] using Malliavin calculus.

A crucial assumption in [14] is that the first-order Fréchet derivative of the
drift term is bounded and uniformly continuous on C([−τ, 0];Rd), where τ > 0
is the length of delay. In addition, it is worth pointing out that in [12, 14], only
(distribution dependent) SFDEs with finite delay were considered. It is crucial to
note that for SFDEs with finite delay, the classical Bismut-type formula holds only
for t > τ [10–12]. For SFDEs with infinite delay, the classical Bismut formula is
not applicable. This paper aims to relax the assumptions for the first-order Fréchet
derivative of the drift term in [14] and to establish asymptotic Bismut formulae for
SFDEs with infinite delay so as to extend and generalize the results in [12, 14].

Denote by C((−∞, 0];Rd) the family of continuous functions from (−∞, 0] to
R

d, and by Cr :=
{
φ ∈ C((−∞, 0];Rd) : sup−∞<θ≤0 e

rθ|φ(θ)| < ∞
}

with norm

‖φ‖r = sup−∞<θ≤0 e
rθ|φ(θ)| and r > 0. It is known that (Cr, ‖ · ‖r) is a Polish

space [15]. Let b : Cr �→ R
d and σ : Cr �→ R

d×m be continuous, W (t) be an m-
dimensional Wiener process, and Xt(θ) : (−∞, 0] � θ �→ X(t + θ) ∈ R

d be the
segment process. Consider the SFDE with infinite delay

(1.1) dX(t) = b(Xt)dt+ σ(Xt)dW (t)

and initial data X0 = ξ ∈ Cr.
As a preparation, we first provide some notation and definitions to be used in the

rest of the paper. Let ‖ · ‖HS denote the Hilbert-Schmidt norm, C1(Cr,Rd) be the
family of Fréchet differentiable functions f : Cr → R

d with continuous derivatives,
and ∇ξf(·) or 〈∇f(·), ξ〉 denotes the Gâteaux or Fréchet direction derivative of f
along the direction ξ. If, moreover, ‖∇f(·)‖ is bounded, we denote f ∈ C1

b (Cr,Rd),
where ‖ · ‖ is the operator norm, that is, ‖∇f(·)‖ := sup‖ξ‖r≤1 ‖〈∇f(·), ξ〉‖

HS
.

Denote by M0 the set of probability measures on (−∞, 0]. For any k > 0, further

define Mk, the subset of M0 by Mk := {μ ∈ M0 : μ(k) :=
∫ 0

−∞ e−kθμ(dθ) < ∞}.
Let T > 0 be fixed and arbitrarily,

H =
{
h ∈ C

(
[0, T ],Rm

)
: h(0) = 0, ḣ(t) exists a.s., ‖h‖2H :=

∫ T

0

|ḣ(s)|2ds < ∞
}

be the Cameron-Martin space, P be the Wiener measure, and Ω = C([0, T ];Rm).
Then the coordinate process W (t, ω) := ω(t), ω ∈ Ω is an m-dimensional Brownian
motion. A function F ∈ L2(Ω;P) is called a Malliavin differentiable along the
direction h ∈ H if the following limit

DhF := lim
ε→0

F (·+ εh)− F (·)
ε

exists in L2(Ω;P) and DhF is called the Malliavin directional derivative of F along
the direction h. If the map H � h �→ DhF ∈ L2(Ω;P) is bounded, there exists a
unique DF ∈ L2(Ω → H;P) such that 〈DF, h〉H = DhF holds in L2(Ω;P) for all
h ∈ H. In this case we denote F ∈ Dom(D) and call DF the Malliavin derivative
or gradient of F . For p ≥ 1, if h ∈ Lp(Ω → H;P) is an adapted stochastic process,
we write h ∈ Lp

a(Ω → H;P). Let (δ,Dom(δ)) be the dual operator of (D,Dom(D)),
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called divergence operator, which is characterized by using the following integration-
by-parts formula

E(DhF ) =

∫
Ω

DhFdP =

∫
Ω

Fδ(h)dP = E(Fδ(h)), F ∈ Dom(D), h ∈ Dom(δ).

According to [16, Proposition 1.3.11], all adapted h ∈ L2(Ω → H;P) belong to

Dom(δ) and δ(h) =
∫ T

0
ḣ(s)dW (s).

The remainder of the paper is organized as follows. Section 2 establishes as-
ymptotic Bismut formulae and stabilization bounds of ∇Ptf as t → ∞ for non-
degenerate SFDEs with infinite delay. Section 3 investigates those of the degenerate
SFDEs to close the paper.

2. Nondegenerate SFDEs with infinite delay

To ensure the existence and uniqueness of the solution and to establish the
asymptotic Bismut formula, we make Assumption 2.1.

Assumption 2.1. b ∈ C1(Cr,Rd) is bounded on bounded subsets of Cr. There
exists a positive constant K > 0 such that for any φ, ψ ∈ Cr
(2.1) 2(φ(0)− ψ(0), b(φ)− b(ψ))+ + ‖σ(φ)− σ(ψ)‖2

HS
≤ K‖φ− ψ‖2r,

where
(
·, ·
)
denotes the scalar product in R

d and a+ := max{0, a} for any a ∈ R.

Remark 2.2. Note that (1.1) has a unique strong solution under Assumption 2.1
(see e.g., [17]). By using standard arguments [18, p.160], for any T > 0 and p > 0,
there exist a constant Cp,ξ > 0 and an increasing function A(t) : R+ → R+ such
that

(2.2) E
[

sup
0≤t≤T

‖Xt‖pr
]
≤ Cp,ξA(T ).

Assumption 2.3. For any φ ∈ Cr, the matrix σ(φ) admits a right inverse σ−1(φ)
and ‖σ−1‖∞ := supφ∈Cr

‖σ−1(φ)‖
HS

< ∞.

Assumption 2.4. There exist constants L and γ ≥ 1 such that for any φ ∈ Cr,
‖∇b(φ)‖ ≤ L(1 + ‖φ‖γr ).

Theorem 2.5. Assume Assumptions 2.1, 2.3, and 2.4 hold. Then for any T > 0,
f ∈ C1

b (Cr,R), λ ≥ 0, and ξ, η ∈ Cr, the following representation formula holds,

(2.3) ∇ηPT f(ξ) = E
〈
(∇f)(XT ), ZT

〉
+ λE

(
f(XT )

∫ T

0

σ(Xs)
−1ZsdW (s)

)
,

where Zt denotes the unique segment process to the SFDE with infinity delay

(2.4) dZ(t) = {−λZ(t) + 〈∇b(Xt), Zt〉}dt+ 〈∇σ(Xt), Zt〉dW (t)

and Z0 = η ∈ Cr. Furthermore, there exist constants A, α, and λ0 > 0 such that
for λ ≥ λ0,
(2.5)∣∣∣∇ηPT f(ξ)− λE

(
f(XT )

∫ T

0

σ(Xs)
−1ZsdW (s)

)∣∣∣ ≤ A sup
φ∈Cr

‖∇f(φ)‖‖η‖re−αT .

To prove this theorem, we need the following four lemmas. We first show that
for sufficiently large λ, (2.4) is exponentially stable.
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Lemma 2.6. Under Assumption 2.1, for any λ ≥ 0, (2.4) has a unique solution
and for any p ≥ 2, there exist A1, α1 > 0, and sufficiently large λp > 0 such that
for λ ≥ λp,

(2.6) E‖Zt‖pr ≤ A1‖η‖pre−α1t, t ≥ 0.

Proof. By (2.1), for any φ, ψ ∈ Cr, we have

2ε(φ(0), b(ψ + εφ)− b(ψ))+ + ‖σ(ψ + εφ)− σ(ψ)‖2
HS

≤ Kε2‖φ‖2r,
which implies that

(2.7) 2(φ(0), 〈∇b(ψ), φ〉)+ + ‖〈∇σ(ψ), φ〉‖2
HS

≤ K‖φ‖2r.
Therefore, combined with the linearity of the inner product, (2.7) implies that (2.4)
has a unique solution. Next, we proceed to prove (2.6). By the Lyapunov inequality,
it suffices to prove this inequality for p > 4. By virtue of the Itô formula and (2.7),
we obtain

e2λt|Z(t)|2 ≤ |η(0)|2 +K

∫ t

0

e2λs‖Zs‖2rds+Mλ(t),

where Mλ(t) := 2
∫ t

0
e2λs

(
Z(s), 〈∇σ(Xs), Zs〉dW (s)

)
. Letting κ = 2(λ − r), we

have

(2.8) e2rt|Z(t)|2 ≤ |η(0)|2e−κt +K

∫ t

0

e−κ(t−s)e2rs‖Zs‖2rds+ e−κtMλ(t).

Note that ‖Zt‖r ≤ e−2rt‖η‖2r + e−2rt sup0≤s≤t e
2rs|Z(s)|2 and e2rt‖Zt‖r is nonde-

creasing, which implies
∫ t

0
e−κ(t−u)e2ru‖Zu‖2rdu is nondecreasing with respective to

t. Then from (2.8), we see that

(2.9) e2rt‖Zt‖2r ≤ 2‖η‖2r +K

∫ t

0

e−κ(t−u)e2ru‖Zu‖2rdu+ sup
0≤s≤t

e−κsMλ(s).

The Hölder inequality yields that

(2.10)
(∫ t

0

e−κ(t−u)e2ru‖Zu‖2rdu
) p

2 ≤
(p− 2

κp

) p−2
2

∫ t

0

epru‖Zu‖prdu.

Note that Mλ(t ∧ τn) is a square integrable martingale for any n > ‖η‖r, where
τn := inf{t ≥ 0 : ‖Zs‖r ≥ n}. Then by (2.7) and [19, Lemma 2.2] or [12, Lemma
7.2], there exists a positive constant ap,κ satisfying limκ→∞ ap,κ = 0 such that

(2.11) E

[
sup

0≤s≤t∧τn

e−κsMλ(s)
] p

2 ≤ K
p
4 ap,κE

∫ t∧τn

0

epru‖Zu‖prdu.

Hence it follows from (2.9), (2.10), and (2.11) that

(2.12) Eepr(t∧τn)‖Zt∧τn‖pr ≤ 3
p−2
2 2

p
2 ‖η‖pr +Ap,κ,K

∫ t

0

epr(u∧τn)‖Zu∧τn‖prdu,

where Ap,κ,K := 3
p−2
2

((
p−2
κp

) p−2
2 +K

p
4 ap,κ

)
. The Gronwall inequality gives

Eepr(t∧τn)‖Zt∧τn‖pr ≤ 3
p−2
2 2

p
2 ‖η‖pr exp

{
Ap,κ,Kt

}
.

Recall that limn→∞ τn = ∞. By Fatou’s lemma, we obtain

E‖Zt‖pr ≤ 3
p−2
2 2

p
2 ‖η‖pr exp

{(
Ap,κ,K − pr

)
t
}
.
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Since Ap,κ,K → 0 as κ → ∞ (that is λ → ∞), there exists a positive constant α1

such that E‖Zt‖pr ≤ 3
p−2
2 2

p
2 ‖η‖pre−α1t. Then (2.6) holds. The proof is complete. �

By the pathwise uniqueness of (1.1), there exists a measurable functional Ψ :
Cr × C([0,∞);Rd) → C([0,∞);Rd) such that X(·, ξ) = Ψ(ξ,W (·)), P-a.e., where
ξ ∈ Cr denotes the initial data. Let h(·) ∈ L∞(Ω → H;P) be an adapted process.
Consider the following SFDE with infinite delay

(2.13) dXh,ε(t) = [b(Xh,ε
t ) + εσ(Xh,ε

t )ḣ(t)]dt+ σ(Xh,ε
t )dW (t), t ∈ [0, T ],

with Xh,ε
0 = ξ ∈ Cr. Let ε ∈ (0, 1] without loss of generality. Under Assumption

2.1, (2.13) has a unique strong solution. The Malliavin directional derivative of

X(t) along h is defined as DhX(t, ω) := limε→0
Xh,ε(t)−X(t)

ε , provided the limit

exists in L2(Ω → C([0, T ],Rd);P). To establish the existence of the above limit, we
provide Lemma 2.7.

Lemma 2.7. Under Assumption 2.1, let T > 0 and h(·) ∈ L∞(Ω → H;P) be an
adapted process. Then for any p ≥ 2 and t ∈ [0, T ], there exists an increasing and
continuous function Ap,h(t) such that

(2.14) E

[
sup

0≤s≤t
Xh,ε

s −Xs‖pr
]
≤ Ap,h(t)ε

p.

Proof. Let Y h,ε
t =

(
Xh,ε

t −Xt

)
/ε and Y h,ε(t) = Y h,ε

t (0) for t ≥ 0. Then we have

(2.15) dY h,ε(t)=
{b(Xh,ε

t )− b(Xt)

ε
+σ(Xh,ε

t )ḣ(t)
}
dt+

σ(Xh,ε
t )− σ(Xt)

ε
dW (t),

with Y h,ε
0 = 0 ∈ Cr. By the Itô formula and Assumption 2.1, for any p > 2, we

have

|Y h,ε(t)|p ≤Kp2

2

∫ t

0

|Y h,ε(s)|p−2‖Y h,ε
s ‖2rds

+ p

∫ t

0

|Y h,ε(s)|p−1‖σ(Xh,ε
s )‖

HS
|ḣ(s)|ds+M(t),(2.16)

where M(t) := p
ε

∫ t

0
|Y h,ε(s)|p−2

(
Y h,ε(s), (σ(Xh,ε

s ) − σ(Xs))dW (s)
)
. Since h(·) ∈

L∞(Ω → H;P), there exists a positive constant A such that
∫ T

0
|ḣ(s)|2ds ≤ A,P-a.s.

By Hölder’s inequality, Young’s inequality, and Assumption 2.1, we have

pE
[

sup
0≤u≤t

∫ u

0

|Y h,ε(s)|p−1‖σ(Xh,ε
s )‖HS |ḣ(s)|ds

]

≤ pE
(∫ t

0

|ḣ(s)|2ds
)1/2(∫ t

0

|Y h,ε(s)|2p−2‖σ(Xh,ε
s )‖2

HS
ds
)1/2

≤
√
ApE

(
sup

0≤s≤t
|Y h,ε(s)|2p−2

∫ t

0

‖σ(Xh,ε
s )‖2

HS
ds
)1/2

≤ 1

4
E sup

0≤s≤t
|Y h,ε(s)|p + 2p−1Ap/2C1K̄

pt(p−2)/2
E

∫ t

0

(1 + ‖Xh,ε
s ‖pr)ds,(2.17)
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where C1 :=
(
4(p − 1)

)p−1
and K̄ :=

√
K + ‖σ(0)‖

HS
. By using the Burkholder-

Davis-Gundy inequality, the Young inequality, and (2.1), we have

(2.18) E

[
sup

0≤s≤t
M(s)

]
≤ 1

4
E

[
sup

0≤s≤t
|Y h,ε(s)|p

]
+ 32Kp2E

∫ t

0

‖Y h,ε
s ‖prds.

Note that Y h,ε
0 = 0 ∈ Cr and ‖Y h,ε

s ‖r ≤ sup0≤u≤s |Y h,ε(u)|. Substituting (2.17)
and (2.18) into (2.16) gives

E

[
sup

0≤s≤t
|Y h,ε(s)|p

]
≤ C2t

p−2
2

∫ t

0

(1 +E‖Xh,ε
s ‖pr)ds+C3

∫ t

0

E

[
sup

0≤u≤s
|Y h,ε(u)|p

]
ds,

where C2 := 2pAp/2C1K̄
p and C3 := 65Kp2. By using a similar argument as in the

derivations of (2.17) and (2.18), for any q ≥ 2 and h(·) ∈ L∞(
Ω → H;P

)
, there

exists a continuous and increasing function Aq,h(·) such that

(2.19) sup
0<ε≤1

E‖Xh,ε
t ‖qr ≤ Aq,h(t), ∀ t ∈ [0, T ].

Then applying the Gronwall inequality yields that

(2.20) E sup
0≤s≤t

|Y h,ε(s)|p ≤ Āp,h(t)e
C3t,

where Āp,h(t) := C2t
p/2(1 +Ap,h(t)). By the definition of norm ‖ · ‖r, we have

(2.21) sup
0≤s≤t

‖Y h,ε
s ‖r = sup

0≤s≤t
sup
θ≤0

erθ|Y h,ε(s+ θ)| ≤ sup
0≤s≤t

|Y h,ε(s)|.

Thus we arrive at E

[
sup0≤s≤t ‖Y h,ε

s ‖pr
]
≤ Āp,h(t)e

C3t. This implies that (2.14)

holds for Ap,h(t) := Āp,h(t)e
C3t. The proof is complete. �

Lemma 2.8. Let Assumptions 2.1 and 2.4 hold. Then for any T > 0, h(·) ∈
L∞(Ω → H;P), the limit

(2.22) DhXt := lim
ε→0

Xh,ε
t −Xt

ε
, t ∈ [0, T ]

exists in L2(Ω → C([0, T ]; Cr);P). Moreover, the segment process {DhXt}t∈[0,T ]

uniquely solves the following SFDE with infinite delay

(2.23) dUh(t) = {〈∇b(Xt), U
h
t 〉+ σ(Xt)ḣ(t)}dt+ 〈∇σ(Xt), U

h
t 〉dW (t)

with Uh
0 = 0 ∈ Cr, where Uh

t = DhXt denotes the segment process of Uh(t).

Remark 2.9. For any given h(·) ∈ L∞(Ω → H;P), existence of the limit in (2.22)
implies that Xt is Malliavin differentiable along h, denoted by DhXt. Moreover, the
solution process X(t) is also Malliavin differentiable along h, denoted by DhX(t),
and solves uniquely (2.23) on [0, T ]. In fact, for any ε > 0, by Remark 2.2, for any
h ∈ L2+ε

a (Ω → H;P), (2.23) has a unique solution under Assumption 2.1.

Proof. For h(·) ∈ L∞(Ω → H;P), by (2.7) and the Lipschitz continuity of σ(·),
(2.23) has a unique solution. Now it remains to show that the limit DhXt exists in
L2(Ω → C([0, T ]; Cr),P) and is the segment process Uh

t of SFDE (2.23). In view of
(2.21), it suffices to prove that

lim
ε→0

E

[
sup

0≤t≤T
|Y h,ε(t)− Uh(t)|2

]
= 0.
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By b ∈ C1(Cr,Rd), σ ∈ C1(Cr,Rd×m), the Mean Value Theorem [20, Theorem 3.2.6]
implies

b(Xh,ε
t )− b(Xt) =

∫ 1

0

〈∇b(Xt + θ(Xh,ε
t −Xt)), X

h,ε
t −Xt〉dθ,

σ(Xh,ε
t )− σ(Xt) =

∫ 1

0

〈∇σ(Xt + θ(Xh,ε
t −Xt)), X

h,ε
t −Xt〉dθ.

Let Zh,ε(t) = Y h,ε(t)− Uh(t). It follows from (2.15) and (2.23) that

dZh,ε(t) = {〈∇b(Xt), Z
h,ε
t 〉+ Iε1(t)}dt+ {〈∇σ(Xt), Z

h,ε
t 〉+ Iε2(t)}dW (t),

where

Iε1(t) := (σ(Xh,ε
t )− σ(Xt))ḣ(t) +

∫ 1

0

〈∇b(Xt + θ(Xh,ε
t −Xt))−∇b(Xt), Y

h,ε
t 〉dθ,

Iε2(t) :=

∫ 1

0

〈∇σ(Xt + θ(Xh,ε
t −Xt))−∇σ(Xt), Y

h,ε
t 〉dθ.

Applying the Itô formula and (2.7) gives that

(2.24) |Zh,ε(t)|2 ≤
∫ t

0

2K‖Zh,ε
s ‖2r + |Zh,ε

s |2 + |Iε1(s)|2 + 2‖Iε2(s)‖2HS
ds+ M̃(t),

where M̃(t) := 2
∫ t

0

(
Zh,ε(s), 〈∇σ(Xs), Z

h,ε
s 〉+Iε2(s)

)
dW (s). By a similar argument

as in the derivation of (2.18), we obtain

(2.25) E

[
sup

0≤s≤t
M̃(s)

]
≤ 1

2
E

[
sup

0≤s≤t
|Zh,ε(s)|2

]
+128E

∫ t

0

K‖Zh,ε
s ‖2r+‖Iε2(s)‖2HS

ds.

From (2.24) and (2.25), there exist constants C4 and C5 > 0 such that

E

[
sup

0≤s≤t
|Zh,ε(s)|2

]
≤ C4E

∫ t

0

|Iε1(s)|2+‖Iε2(s)‖2HS
ds+C5

∫ t

0

E

[
sup

0≤u≤s
|Zh,ε(u)|2

]
ds.

Then the Gronwall inequality implies that

(2.26) E

[
sup

0≤s≤t
|Zh,ε(s)|2

]
≤ C4e

C5tE

∫ t

0

|Iε1(s)|2 + ‖Iε2(s)‖2HS
ds.

By virtue of the definition of Iε1(s) and Iε2(s), we have

(2.27) |Iε1(s)|2 + ‖Iε2(s)‖2HS
≤ 2‖σ(Xh,ε

s )− σ(Xs)‖2HS
|ḣ(s)|2 + 2Jε(s)‖Y h,ε

s ‖2r,

where Jε(s) :=
∫ 1

0
‖∇b(Xs+θ(Xh,ε

s −Xs))−∇b(Xs)‖2+‖∇σ(Xs+θ(Xh,ε
s −Xs))−

∇σ(Xs)‖2dθ. By virtue of Assumption 2.4 and (2.7), there exists an increasing
function C6 > 0 such that for all s ∈ [0, T ]

(2.28) Jε(s) ≤ C6

(
1 + ‖Xs‖2γr + ‖Xh,ε

s −Xs‖2γr
)
.

In view of h ∈ L∞(Ω → H,P) and Lemma 2.7, we obtain

lim sup
ε→0

∫ T

0

E‖σ(Xh,ε
s )− σ(Xs)‖2HS

|ḣ(s)|2ds

≤ K‖h‖2L∞(Ω→H,P) lim sup
ε→0

E

[
sup

0≤s≤T
‖Xh,ε

s −Xs‖2r
]
= 0.(2.29)

Since ∇b and ∇σ are continuous, Lemma 2.7 implies that Jε(s) and Jε(s)‖Y h,ε
s ‖2r

converge to 0 in probability as ε → 0. In addition, it follows from (2.19) and
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(2.14) that {(1 + ‖Xs‖2γr )‖Y h,ε
s ‖2r}ε∈(0,1] and ‖Xh,ε

s −Xs‖2γr ‖Y h,ε
s ‖2r are uniformly

integrable for any fixed s ∈ [0, T ]. Hence by the dominated convergence the-
orem, limε→0 EJ

ε(s)‖Y h,ε
s ‖2r = 0. In light of Lemma 2.7, (2.19), and (2.28),

limε→0

∫ T

0
EJε(s)‖Y h,ε

s ‖2rds = 0. Then it follows from (2.26), (2.27), and (2.29)
that

lim
ε→0

E

[
sup

0≤s≤T
|Zh,ε(s)|2

]
≤ C4e

C5T lim
ε→0

∫ T

0

E{|Iε1(s)|2 + ‖Iε2(s)‖2HS
}ds = 0.

Hence this proof is completed. �

Lemma 2.10. Let Assumptions 2.1 and 2.4 hold. Then for any T > 0, the limit

(2.30) ∇ηXt := lim
ε→0

Xt(ξ + εη)−Xt(ξ)

ε
, t ∈ [0, T ], ξ, η ∈ Cr

exists in L2(Ω → C([0, T ]; Cr);P) and is the unique functional solution to the fol-
lowing SFDE

(2.31) dV (t) = 〈∇b(Xt), Vt〉dt+ 〈∇σ(Xt), Vt〉dW (t), V0 = η ∈ Cr.

Proof. It is easy to see from (2.7) that (2.31) has a unique solution, and the proof of
existence of the limit in (2.30) is similar to that of Lemma 2.8. We omit it here. �

Proof of Theorem 2.5. Let h(t) = λ
∫ t

0
σ−1(Xs)Z(s)ds, which is an adapted sto-

chastic process. By Lemma 2.6 and Assumption 2.3, Hölder’s inequality leads to

E

(∫ T

0

|ḣ(s)|2ds
)2

≤ λ4‖σ−1‖4∞T

∫ T

0

E|Z(s)|4ds < ∞.

This shows that h(·) ∈ L4
a(Ω → H,P)∈ Dom(δ). Hence, (2.23) has a unique solution

for this h(·) under Assumption 2.1. By Lemmas 2.8 and 2.10, ut := ∇ηXt − Uh
t

satisfies the following SFDE

du(t) = {〈∇b(Xt), ut〉 − λZ(t)}dt+ 〈∇σ(Xt), ut〉dW (t)

with u0 = η ∈ Cr. By the strong uniqueness of solution to (2.4), Zt = ut =
∇ηXt − Uh

t for t ∈ [0, T ]. Then for any f ∈ C1
b (Cr,R) and λ > 0, the chain rule

yields

(2.32) ∇ηPtf(ξ) = E〈(∇f)(Xt),∇ηXt〉 = E〈(∇f)(Xt), Zt〉+ E〈(∇f)(Xt), U
h
t 〉.

Let

hn(t) =

∫ t

0

ḣ(s)1{|ḣ(s)|≤n}ds = λ

∫ t

0

σ−1(Xs)Z(s)1{λ|σ−1(Xs)Z(s)|≤n}ds, t ∈ [0, T ].

Obviously, hn(t) ∈ L∞(Ω → H;P). By Lemma 2.8, Uhn
t = Dhn

Xt for any t ∈ [0, T ].
Furthermore, the chain rule and integration-by-parts formula yields

(2.33) E〈(∇f)(XT ), U
hn

T 〉 = EDhn
f(XT ) = Ef(XT )δ(hn).

By (2.7), (2.23), Assumption 2.3, and a similar approach as in the derivations of
(2.17) and (2.18), we have

E‖Uh
T − Uhn

T ‖2r ≤ C(T )E
(∫ T

0

|σ(Xs)(ḣ(s)− ḣn(s))|ds
)2

≤ λ2C(T )T

∫ T

0

E|Z(s)|21{λ|σ−1(Xs)Z(s)|>n}ds → 0 as n → ∞.(2.34)
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By virtue of Assumption 2.3 and Lemma 2.6, as n → ∞, we have

(2.35) E|δ(h)− δ(hn)|2 = λ2
E

∫ T

0

|σ−1(Xs)Z(s)|21{λ|σ−1(Xs)Z(s)|>n}ds → 0.

Since f ∈ C1
b (Cr,R), it follows from (2.33), (2.34), and (2.35) that

E〈(∇f)(XT ), U
h
T 〉 = Ef(XT )δ(h) = λE

(
f(XT )

∫ T

0

σ−1(Xs)Z(s)dW (s)
)
.

Hence, from (2.32),

∇ηPT f(ξ) = E〈(∇f)(XT ), ZT 〉+ λE
(
f(XT )

∫ T

0

σ−1(Xs)Z(s)dW (s)
)
,

which is the desired assertion (2.3). This together with (2.6) yields (2.5). �

Proposition 2.11 presents the stabilization bound for ∇Ptf as t → ∞. To pro-
ceed, we first introduce the following notation. Let P(Cr) denote the family of
probability measures on Cr. Given a nonnegative and continuous functional F
on Cr and a constant γ ∈ (0, 1], define a distance-like function by dF,γ(ξ, η) :=√
(1 ∧ ‖ξ − η‖γr )(1 + F (ξ) + F (η)). For dF,γ , the associated Wasserstein distance

between two probability measures μ, ν ∈ P(Cr) is defined as follows:

WdF,γ
(μ, ν) = inf

Π∈C (μ,ν)

∫
Cr×Cr

dF,γ(ξ, η)Π(dξ, dη),

where C (μ, ν) denotes the collection of all couplings of μ and ν. Let L(F ) denote
the family of Lipschitz continuous function with respective to dF,γ on Cr, that is,

L(F ) :=
{
f : ‖f‖F,γ := sup

ξ �=η,ξ,η∈Cr

|f(ξ)− f(η)|
dF,γ(ξ, η)

< ∞
}
.

Proposition 2.11. Assume Assumptions 2.1, 2.3, and 2.4 hold. Assume further
that there exist a continuous functional V : Cr → [0,∞) with lim‖ξ‖r→∞ V (ξ) = ∞
and constants CV , θ > 0 such that

(2.36) PtV (ξ) :=

∫
Cr

V (η)Pt(ξ, dη) ≤ CV e
−θtV (ξ) + CV

holds for all ξ ∈ Cr and t ≥ 0. Then for any γ ∈ (0, 1], there exist positive constants
ᾱ and C such that for any f ∈ C1

b (Cr)
⋂
L(V ) and ξ ∈ Cr, t > 0,

(2.37) ‖∇Ptf(ξ)‖ ≤ A sup
φ∈Cr

‖∇f(φ)‖e−αt + C‖f‖V,γe−ᾱt.

Proof. Under assumptions of this proposition, it follows from [17] that Pt has a
unique invariant probability measure μ and there exist constants C0 and ρ > 0
such that

(2.38) WdV,γ
(Pt

(
ξ, ·), μ

)
≤ C0e

−ρt
√
1 + V (ξ), t ≥ 0.

For any t0 ∈ [0, t], we have∣∣∣E(f(Xt)

∫ t

0

σ(Xs)
−1ZsdW (s)

)∣∣∣ ≤ ∣∣∣E(f(Xt)

∫ t

t0

σ(Xs)
−1ZsdW (s)

)∣∣∣
+
∣∣∣E(f(Xt)

∫ t0

0

σ(Xs)
−1ZsdW (s)

)∣∣∣ =: I1 + I2.(2.39)
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By virtue of (2.6), (2.36), and the Hölder inequality, we obtain

I1 =
∣∣∣E((f(Xt)− f(0))

∫ t

t0

σ(Xs)
−1ZsdW (s)

)∣∣∣
≤ ‖f‖V,γ

√
1 + EV (Xt) + V (0)

(
E

∫ t

t0

|σ(Xs)
−1Zs|2ds

)1/2

≤ ‖η‖r
α1

‖f‖V,γ‖σ−1‖∞
√
(1 + CV + CV e−θtV (ξ) + V (0))A1e

−α1t0
2 .(2.40)

Note that |Pt−t0f(Xt0) − μ(f)| ≤ C0‖f‖V,γ
√
1 + V (Xt0)e

−ρ(t−t0), where μ(f) :=∫
Cr

f(ζ)μ(dζ), which follows from (2.38). By Markov property and (2.6), we have

I2 =
∣∣∣E((Pt−t0f(Xt0)− μ(f)

) ∫ t0

0

σ(Xs)ZsdW (s)
)∣∣∣

≤ C0‖f‖V,γe−ρ(t−t0)E

(√
1 + V (Xt0)

∣∣∣ ∫ t0

0

σ(Xs)
−1ZsdW (s)

∣∣∣)

≤ C0

α1
‖f‖V,γe−ρ(t−t0)

√
1 + CV e−θt0V (ξ) + CV ‖σ−1‖∞

√
A1‖η‖r.(2.41)

Taking t0 = t/2 it follows from (2.40), (2.41), and (2.39) that there exists a constant
C > 0 such∣∣∣E(f(Xt)

∫ t

0

σ(Xs)
−1ZsdW (s)

)∣∣∣ ≤ C(e−α1t/4 + e−ρt/2)‖f‖V,γ‖η‖r,

which together with (2.5) yields

‖∇Ptf(ξ)‖ ≤ A sup
φ∈Cr

‖∇f(φ)‖e−αt + C(e−α1t/4 + e−ρt/2)‖f‖V,γ .

Hence, (2.37) holds for ᾱ = (α1/4) ∧ (ρ/2). The proof is concluded. �

3. Degenerate SFDEs with infinite delay

This section considers the following SFDE with infinite delay and degenerate
diffusion coefficients on R

2d := R
d × R

d:

(3.1)

⎧⎨
⎩
dX(1)(t) = b(1)(Xt)dt,

dX(2)(t) = b(2)(Xt)dt+ σ(Xt)dW (t)

with X0 = ξ := (ξ(1), ξ(2)) ∈ Cr × Cr, where Xt := (X
(1)
t , X

(2)
t ) ∈ Cr × Cr for some

r > 0, {W (t)}t≥0 is an m-dimensional Brownian motion, b := (b(1), b(2)) : Cr×Cr �→
R

2d and σ : Cr × Cr �→ R
d×m are continuous functionals.

For (3.1), the diffusion term is degenerate and it does not satisfy the assumptions
of Theorem 2.5. To establish the asymptotic Bismut formula for (3.1), we make
Assumptions 3.1 and 3.2.

Assumption 3.1. b ∈ C1(Cr × Cr,R2d) is bounded on bounded sets. There exist

constants K1, K2, K3, κ > 0 satisfying inf0<ε<1
2K1ε+(ε+32)K3

2(1−ε)ε < r ∧ κ, such that

for any φ := (φ(1), φ(2)), ψ := (ψ(1), ψ(2)) ∈ Cr × Cr, ‖∇φσ(ψ)‖2HS
≤ K3‖φ‖2r and(

φ(1)(0),∇φb
(1)(ψ)

)
+
(
φ(2)(0),∇φb

(2)(ψ)
)
≤ K1‖φ‖2r+K2|φ(2)(0)|‖φ‖r−κ|φ(1)(0)|2.
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Assumption 3.2. b ∈ C1(Cr × Cr,R2d) is bounded on bounded sets. ‖∇σ‖ and

‖∇b(2)‖ are bounded. There exist constants β, κ > 0 with inf0<α<κ∧r
β2

α(κ−α) < 4

such that (
φ(1)(0),∇φb

(1)(ψ)
)
≤ β|φ(1)(0)|‖φ‖r − κ|φ(1)(0)|2.

Theorem 3.3. Assume Assumptions 2.3, 2.4, and 3.1 or 3.2 hold. Then for any
T > 0, λ > 0, f ∈ C1

b (Cr × Cr,R), and ξ, η ∈ Cr × Cr,

(3.2) ∇ηPT f(ξ) = E
〈
(∇f)(Xt), ZT

〉
+ λE

(
f(XT )

∫ T

0

σ(Xs)
−1Z(2)

s dW (s)
)
,

where Zt is the segment process of Z(t) := (Z(1)(t), Z(2)(t)) ∈ R
2d which solves

uniquely the following SFDE

(3.3) dZ(t) = {−λ
(
0, Z(2)(t)

)
+ 〈∇b(Xt), Zt〉}dt+

(
0, 〈∇σ(Xt), Zt〉dW (t)

)
,

with Z0 = η ∈ Cr × Cr. Moreover, there exist constants c, α, and λ0 > 0 such that
for any λ > λ0

(3.4)
∣∣∣∇ηPT f(ξ)− λE

(
f(XT )

∫ T

0

σ(Xs)
−1Z(2)

s dW (s)
)∣∣∣ ≤ c‖η‖re−αT .

We first derive Lemma 3.4 before proving Theorem 3.3.

Lemma 3.4. Let Assumptions 2.3 and 3.1 or 3.2 hold. Then (3.3) has a unique
solution. Moreover, there exist constants p0 > 2, c, θ > 0, and λ0 > 0 large enough
such that for any λ > λ0,

(3.5) E‖Zt‖pr ≤ c‖η‖pre−θt, p ∈ (0, p0], t ≥ 0.

Proof. Note that (3.3) has a unique solution under Assumption 3.1 or 3.2 and
for any q > 0 there exist a nonnegative continuous increasing function A2(t) and
constant C > 0 such that

(3.6) E‖Zt‖qr ≤ C‖η‖qrA2(t), t ≥ 0.

To proceed, we prove (3.5) under Assumptions 3.1 and 3.2.
(i) Assumption 3.1 holds. Let λ ≥ 2κ. Then for some p > 2 and any α ≤ r ∧ κ,

applying the Itô formula, Assumption 3.1 and the Young inequality gives

epαt|Z(t)|p

≤ |Z(0)|p + p

∫ t

0

epαs|Z(s)|p−2
{
α|Z(s)|2 +K1‖Zs‖2r +K2|Z(2)(s)|‖Zs‖r

− κ|Z(1)(s)|2 − λ|Z(2)(s)|2 + K3(p− 1)

2
‖Zs‖2r

}
ds+ pN(t)

≤ |Z(0)|p + p
(
K1 +

K3(p− 1)

2
+

K2
2

2λ

) ∫ t

0

epαs|Z(s)|p−2‖Zs‖2rds+ pN(t),

(3.7)

where N(t) :=
∫ t

0
epαs|Z(s)|p−2

(
Z(2)(s), 〈∇σ(Xs), Zs〉dW (s)

)
. Similar to (2.18), by

Assumption 3.1, there exists a constant ε ∈ (0, 1) such that
(3.8)

pE
[

sup
0≤u≤t

N(u)
]
≤ εE

[
sup

0≤s≤t
epαs|Z(s)|p

]
+

8p2K3

ε
E

∫ t

0

epαs|Z(s)|p−2‖Zs‖2rds.
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Let C6 = 2K1 + (p− 1 + 16p/ε)K3 +K2
2/λ, then by (3.7) and (3.8), we have

E

[
sup

0≤s≤t
epαs|Z(s)|p

]
≤ 1

1− ε
|Z(0)|p + p

2(1− ε)
C6E

∫ t

0

epαs‖Zs‖prds.

Since α ≤ r, then ‖Zt‖pr ≤ e−pαt‖η‖pr + e−pαt sup0≤s≤t e
pαs|Z(s)|p. Thus we obtain

Eepαt‖Zt‖pr ≤ 2− ε

1− ε
‖η‖pr +

p

2(1− ε)
C6

∫ t

0

Eepαs‖Zs‖prds.

Applying the Gronwall inequality leads to

E‖Zt‖pr ≤ 2− ε

1− ε
‖η‖pr exp

{ p

2(1− ε)
C6t− pαt

}
.

Take α = r ∧ κ. Noting that inf0<ε<1
2K1ε+(ε+32)K3

2(1−ε)ε < r ∧ κ, we can choose

constants ε0 ∈ (0, 1), p > 2 sufficiently close to 2 and λ0 large enough such that for
any λ > λ0,

1
2(1−ε0)

C6 − α < 0. Thus, there exists a θ > 0 such that (3.5) holds.

(ii) Assumption 3.2 holds. In terms of (3.3), for λ > r, we have

eλtZ(2)(t) = Z(2)(0) +

∫ t

0

eλs〈∇b(2)(Xs), Zs〉ds+
∫ t

0

eλs〈∇σ(Xs), Zs〉dW (t).

Then for any α ∈ (0, r ∧ κ), we have

eαtZ(2)(t) =Z(2)(0)e−(λ−α)t +

∫ t

0

e−(λ−α)(t−s)eαs〈∇b(2)(Xs), Zs〉ds

+

∫ t

0

e−(λ−α)(t−s)eαs〈∇σ(Xs), Zs〉dW (t).

Noting that ‖∇b(2)‖ and ‖∇σ‖ are bounded, then by using similar arguments to
derive (2.10) and (2.11), for any p > 2 there exist a constant c1 > 0 and a function
ap,s : R+ → R+ with lims→∞ ap,s = 0 such that

E sup
0≤s≤t

epαs|Z(2)(s)|p ≤ c1|Z(2)(0)|p + ap,λ−α

∫ t

0

Eepαs‖Zs‖prds.

Using the definition of norm ‖ · ‖r, we obtain

(3.9) epαtE‖Z(2)(s)‖pr ≤ (c1 + 1)|Z(2)(0)|p + ap,λ−α

∫ t

0

epαsE‖Zs‖prds.

For any ε > 0, by virtue of Assumption 3.2 and (3.3), we have

eκt
(
|Z(1)(t)|2 + ε

) 1
2 −

(
|Z(1)(0)|2 + ε

) 1
2

≤
∫ t

0

eκs
{
κ
(
|Z(1)(s)|2 + ε

) 1
2 +

β|Z(1)(s)|‖Zs‖r − κ|Z(1)(s)|2(
|Z(1)(s)|2 + ε

) 1
2

}
ds

≤
∫ t

0

eκs
(
β‖Zs‖r +

κε(
|Z(1)(s)|2 + ε

) 1
2

)
ds.

Then, letting ε → 0 gives

eκt|Z(1)(t)| ≤ |Z(1)(0)|+ β

∫ t

0

eκs‖Zs‖rds.
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For any α ∈ (0, r ∧ κ), we have

eαt|Z(1)(t)| ≤ |Z(1)(0)|e−(κ−α)t + β

∫ t

0

e−(κ−α)(t−s)eαs‖Zs‖rds,

which further implies that there exist constants c2 and ε1 > 0 such that

epαtE‖Z(1)
t ‖pr ≤ ‖Z(1)

0 ‖pr + E sup
0≤s≤t

epαs|Z(1)(s)|p

≤ c2‖Z(1)
0 ‖pr + (1 + ε1)β

p
E sup

0≤s≤t

(∫ s

0

e−(κ−α)(s−u)eαu‖Zu‖rdu
)p

≤ c2‖Z(1)
0 ‖pr + (1 + ε1)β

p
[ p− 1

p(κ− α)

]p−1
∫ t

0

epαsE‖Zs‖prds,(3.10)

where we have used the inequality (a+b)p ≤ cεa
p+(1+ε)bp for a, b, ε, cε > 0, p > 1

and Hölder’s inequality. By (3.9) and (3.10), there exist constants ε2 and cε2,p > 0
satisfying limε→0 cε,p = ∞ and cε1,ε2 > 0 such that

epαtE‖Zt‖pr ≤ cε1,ε2‖Z0‖pr + Γλ,ε1,ε2

∫ t

0

epαsE‖Zs‖prds,

where Γλ,ε1,ε2 :=
{
(1 + ε2)(1 + ε1)β

p
[

p−1
p(κ−α)

]p−1
+ (1 + cε2,p)ap,λ−α

}
. Applying

the Gronwall inequality yields that

(3.11) E‖Zt‖pr ≤ cε1,ε2‖Z0‖pr exp[(Γλ,ε1,ε2 − pα)t].

It is easy to see from Assumption 3.2 that there exists α0 ∈ (0, κ ∧ r) such that
β2/[2(κ− α0)] < 2α0. Then we can find constants ε1, ε2 small enough, p > 2 close
to 2 enough and λ0 large enough such that{

(1 + ε2)(1 + ε1)β
p
[ p− 1

p(κ− α0)

]p−1

+ (1 + cε2,p)ap,λ−α0

}
< pα0,

which implies that (3.5) holds for some θ > 0. The proof is complete. �

Proof of Theorem 3.3. For any h ∈ L∞(Ω → H,P), by Lemma 2.8, the segment
process Xt is Malliavin differentiable along the direction h and the directional
derivative DhXt is the unique solution to the following 2d-dimensional SFDE

(3.12) dUh(t) =
(
〈∇b(Xs), U

h
t 〉+ (0, σ(Xt)ḣ(t))

)
dt+

(
0, 〈∇σ(Xt), U

h
t

)
dW (t),

on t ∈ [0, T ], with Uh
0 = 0 ∈ Cr × Cr, where Uh(t) := (Uh,(1)(t), Uh,(2)(t)) ∈ R

2d.

Let h(t) = λ
∫ t

0
σ−1(Xs)Z

(2)(s)ds, which is an adapted stochastic process. From
Lemma 3.4 and Assumption 2.3, we see that

E

(∫ T

0

|ḣ(s)|2ds
) p0

2 ≤ λp0‖σ−1‖p0
∞T

p0−2
2

∫ T

0

E|Z(2)(s)|p0ds < ∞,

which implies h ∈ Lp0
a (Ω → H,P) ∈ Dom(δ), where p0 > 2 comes from Lemma 3.4.

And (3.12) has a unique solution for this h under assumptions of Theorem 3.3.
By Lemma 2.10, the segment process to (3.1) is Fréchet differentiable and the

directional derivative ∇ηXt is the unique segment process to the following SFDE

(3.13) dV (t) = 〈∇b(Xt), Vt〉dt+ (0, 〈∇σ(Xt), Vt〉)dW (t), t ∈ [0, T ], V0 = η.

Because (3.3) has a unique solution, from (3.12) and (3.13), Zt := ∇ηXt−Uh
t is the

unique segment process to (3.3) for t ∈ [0, T ]. Then using similar arguments as in
the derivation of Theorem 2.5 yields the desired results. This proof is complete. �
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To present the bound for ∇Ptf as t → ∞, we need the stronger assumption:

Assumption 3.5. b ∈ C1(Cr ×Cr,R2d) is bounded on bounded sets. There exist a

measure μ ∈ M2r and constants k̂1, k̂2, κ̂ > 0 with inf0<ε<1
2k̂1μ

(2r)ε+(ε+32)k̂2μ
(2r)

2(1−ε)ε <

r ∧ κ̂ such that for any φ := (φ(1), φ(2)), ψ := (ψ(1), ψ(2)) ∈ Cr × Cr

(φ(0)− ψ(0), b(φ)− b(ψ)) ≤ −κ̂|φ(0)− ψ(0)|2 + k̂1

∫ 0

−∞
|φ(θ)− ψ(θ)|2μ(dθ),

‖σ(φ)− σ(ψ)‖2
HS

≤ k̂2

∫ 0

−∞
|φ(θ)− ψ(θ)|2μ(dθ).

Proposition 3.6. Under Assumptions 2.3, 2.4, and 3.5, there exist constants ᾱ,
C > 0 such that for any f ∈ C1

b (Cr × Cr,R) and ξ ∈ Cr × Cr and t > 0,

(3.14) ‖∇Ptf(ξ)‖ ≤ C‖∇f‖∞(1 + ‖ξ‖r)e−ᾱt.

Proof. By [21, Theorems 5.1 and 4.3], (3.1) has a unique invariant probability
measure μ under Assumption 3.5 and for any ξ ∈ Cr ×Cr, f ∈ C1

b (Cr ×Cr,R), there
exist constants Ci and α̃i > 0 for i = 1, 2 such that

E‖Xt‖2r ≤ C1(1 + ‖ξ‖re−α̃1t) and |Ptf(ξ)− μ(f)| ≤ C2‖∇f‖∞(1 + ‖ξ‖r)e−α̃2t.

Then by using similar arguments as in the proof of Proposition 2.11, (3.14) follows.
�
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