Record: 1

Title: Spatial variation in aquatic food webs in the Amazon River floodplain.

Authors: Arantes, Caroline C.1,2 (AUTHOR) carolinearan@gmail.com

Winemiller, Kirk O.1 (AUTHOR) k-winemiller@tamu.edu Petrere, Miguel^{1,3} (AUTHOR) mpetrerejr@gmail.com Freitas, Carlos E. C.^{1,4} (AUTHOR) freitasc50@gmail.com

Source: Freshwater Science. Mar2019, Vol. 38 Issue 1, p213-228. 16p.

Document Type: Article

Subject Terms: *CORAL reefs & islands

*FLOODPLAINS *SPATIAL variation *RHEOLOGY

*AQUATIC habitats *STABLE isotopes

Author-Supplied Keywords: Brazil

carbon fish

fluvial systems freshwater landscape nitrogen

production source

scale

spatial variation stable isotope

tropics

Abstract: Food webs are spatially variable and temporally dynamic in heterogeneous and species-rich river floodplains. However, empirical evidence that shows how food webs vary across landscapes and scales in river-floodplain ecosystems is limited, especially in the tropics. Here, we evaluate how the flow of energy and matter varies among food webs in aquatic habitats and across scales in the lower Amazon River floodplains. We surveyed 109 habitats across 19 floodplain units (lake systems) and analyzed the isotopic composition of primary production sources and fish tissues to estimate relative contributions of these sources to fish biomass at local and regional scales. Basal production sources and fish species each varied considerably in their carbon and nitrogen isotopic ratios across the floodplain landscape. Aquatic macrophytes and suspended particulate organic material in the water column were inferred to be the principal basal sources contributing to the biomass of most fish species at the regional scale. However, the estimated contribution of different production sources to fish biomass

varied, on average, by ~40% across lake systems. The sources estimated to contribute most to fish biomass at the regional scale were sometimes unimportant in certain species and lake systems. Conversely, the least important sources at the regional scale were sometimes very important at the local scale. Spatial variation in the isotopic composition of production sources and fishes, and the proportional contributions of sources to fish biomass in the Amazon River floodplain, are probably influenced by multiple factors including variation in the quality and quantity of basal sources. Future stable isotope investigations of aquatic food webs of river-floodplain systems should consider not only suitable replication and appropriate temporal scale, but also spatial scale. [ABSTRACT FROM AUTHOR]

Copyright of Freshwater Science is the property of The Society for Freshwater Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Author Affiliations: ¹Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, USA

> ²Center for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan, USA

³Programa de Pós-graduação em Ecologia Aquática e Pesca, Universidade Federal do Pará, Belém, Pará, Brazil

⁴Departamento de Ciências Pesqueiras, Universidade Federal do

Amazonas, Manaus, Amazonas, Brazil

Full Text Word Count: 11698

ISSN: 2161-9549

DOI: 10.1086/701841

Accession Number: 135626751

Database: Academic Search Complete

Spatial variation in aquatic food webs in the Amazon River floodplain

Food webs are spatially variable and temporally dynamic in heterogeneous and species-rich river floodplains. However, empirical evidence that shows how food webs vary across landscapes and scales in river-floodplain ecosystems is limited, especially in the tropics. Here, we evaluate how the flow of energy and matter varies among food webs in aquatic habitats and across scales in the lower Amazon River floodplains. We surveyed 109 habitats across 19 floodplain units (lake systems) and analyzed the isotopic composition of primary production sources and fish tissues to estimate relative contributions of these sources to fish biomass at local and regional scales. Basal production sources and fish species each varied considerably in their carbon and

nitrogen isotopic ratios across the floodplain landscape. Aquatic macrophytes and suspended particulate organic material in the water column were inferred to be the principal basal sources contributing to the biomass of most fish species at the regional scale. However, the estimated contribution of different production sources to fish biomass varied, on average, by ~40% across lake systems. The sources estimated to contribute most to fish biomass at the regional scale were sometimes unimportant in certain species and lake systems. Conversely, the least important sources at the regional scale were sometimes very important at the local scale. Spatial variation in the isotopic composition of production sources and fishes, and the proportional contributions of sources to fish biomass in the Amazon River floodplain, are probably influenced by multiple factors including variation in the quality and quantity of basal sources. Future stable isotope investigations of aquatic food webs of river-floodplain systems should consider not only suitable replication and appropriate temporal scale, but also spatial scale.

Keywords: fish; freshwater; fluvial systems; stable isotope; carbon; nitrogen; landscape; spatial variation; production source; scale; tropics; Brazil

Food webs are spatially variable and temporally dynamic (Warren [78], Polis et al. [60]), particularly in the heterogeneous lowland rivers and floodplains in the tropics (Winemiller [81]). In these ecosystems, hydrology drives temporal variation in foodweb properties such as the number and intensity of predator-prey interactions, trophic link density, and food chain length (Winemiller [80]). Food webs also vary spatially in response to factors that change across landscape gradients, such as the sources of primary production, productivity, population abundance, or species interactions (Winemiller [80]). A growing body of work documents the temporal and spatial variation in foodweb structure in aquatic systems. However, few studies have used empirical data to test which mechanisms structure food webs across landscapes, and even fewer have evaluated how the spatial scale at which data are collected and analyzed influences foodweb patterns (Schoener [73], Thompson and Townsend [75]).

Most empirical studies of spatial variation in river food webs have compared sites with different watershed geochemistry, geomorphology, hydrology, land cover, human impacts, or some combination of these features (e.g., Benedito-Cecilio and Araujo-Lima [10], Jepsen and Winemiller [37], Hoeinghaus et al. [32], Ou and Winemiller [54], Alves et al. [1]). For example, patterns of material flow (e.g., availability of basal production sources and their contributions to fish biomass) diverge among rivers that have different levels of impact from hydroelectric dams (e.g., Hoeinghaus et al. [[32]], Upper Paraná Basin in Brazil; Ou and Winemiller [[54]], Lower Mekong Basin in Cambodia). In these cases, spatial variation in foodweb structure may be driven, either directly or indirectly, by differences in environmental conditions (e.g., biogeochemistry, topography, hydrology, land cover, etc.) as well as differences in productivity gradients and nutrient dynamics among reaches and watersheds associated to these conditions (Power [65], Polis and Hurd [61], Winemiller and Polis [85], Thompson and Townsend [74], DeAngelis [20]).

Currently, the extent to which foodweb structure and function varies along a given river-floodplain gradient is poorly understood and impossible to predict. In large river-floodplain systems, hydrological variation influences spatial habitat heterogeneity. This heterogeneity affects spatial variation among, and exchanges between, local food webs. Food web structure may be fairly constant across aquatic habitats present in a floodplain because flood pulses may facilitate dispersion of both aquatic organisms and their food sources across a large region (Junk et al. [39], Hurd et al. [34]). For example, a previous study described a lack of spatial variation in foodweb components in the Cinaruco River floodplain, which probably occurred because of the transport and exchange

of suspended particulate organic matter and lateral migrations of fishes during the flood pulse (Roach et al. [72]). Conversely, local food webs in a heterogeneous floodplain landscape may vary as functions of differences in the quality and quantity of food resources, assemblage composition, and species interactions (Hedges et al. [30], Winemiller [80], Polis et al. [60], Mortillaro et al. [51], Correa et al. [16], Arantes et al. [4]). Whether food webs vary across riverine landscapes has implications for foodweb structure and function at multiple scales—i.e., spatial variation in local food webs across the landscape may cause foodweb properties to differ at regional versus local scales (Martinez and Lawton [45], Polis et al. [60], Pillai et al. [59]).

Foodweb variation across environmental gradients in complex landscapes, such as tropical river-floodplain systems, can be explored with stable isotope analysis. Analysis of naturally occurring isotopic ratios of elements such as carbon (C) and nitrogen (N) can be used to infer trophic pathways (Peterson and Fry [56]), trophic niche breadth and overlap (Layman et al. [41]), and foodchain length (Post [63]). However, little is known about how isotopic composition of production sources and fishes vary spatially, although a few studies have used stable isotope analysis to evaluate temporal variation of primary C sources for some fish species in the floodplains of the Amazon River (i.e., Araujo-Lima et al. [5], Forsberg et al. [25], Benedito-Cecilio et al. [11], Benedito-Cecilio and Araujo-Lima [10], Oliveira et al. [53], Mortillaro et al. [50]). The limited information available shows evidence of upstream-downstream trends in the isotopic composition of production sources. This pattern has been found in δ^{13} C of C3 plants and C4 grasses (Martinelli et al. [43]), suspended particulate organic matter (Hedges et al. [30], Mortillaro et al. [51]), and the tissues of 2 fish species (*Prochilodus nigricans* and Colossoma macropomum; Benedito-Cecilio et al. [11]). However, spatial variation in the isotopic composition of production sources, fishes from different functional groups, and production source contributions to fish biomass have not yet been investigated in Amazon floodplains.

Here, we use stable isotope analysis to describe potential pathways of material transfer within food webs of aquatic habitats in floodplains of the lower Amazon River. We also investigate the extent to which variation in material transfer pathways is dependent on the spatial scale of analysis. We collected tissue samples of basal production sources and fishes for isotopic analysis from 109 floodplain habitats during the descending phase of the Amazon annual flood pulse in the Amazon floodplain. Our null hypothesis was that neither the isotopic composition of primary production sources, different fish trophic guilds, nor the relative contribution of these sources to fish biomass would vary across floodplain habitats. We expect our null hypothesis to be true when dispersal or transport among local habitats may cause high exchange of material and energy across the landscape. Several fish species are capable of dispersal over long distances and may therefore exploit resources from multiple locations (Arantes et al. [4]). Transport of nutrients and particulate organic matter also occurs, for example, via either downstream drift in the water or through movement of animals during migration (Winemiller and Jepsen [83], Winemiller et al. [84]). Therefore, variation among local habitats in isotopic composition of basal sources, fishes, and production sources assimilated by fishes could be minimal or nonexistent. In such a scenario, variation across scales (e.g., local vs. regional) would be minimal.

Our alternate hypothesis was that the isotopic composition of some production sources would vary among habitats, leading to spatial variation in isotopic composition of fishes and other consumers. In addition, the isotopic composition of fish tissue and the contribution of production sources to fish biomass could vary spatially if fish feeding behavior is sufficiently flexible to shift diets in response to variation in food quality or availability (Winemiller [80]). The magnitude of this spatial variation may depend on trophic guild. For example, tissues of herbivorous fishes (e.g., Colossoma macropomum, Piaractus brachypomus) feeding on basal production sources (e.g., fruits and seeds) may exhibit lower spatial variation in nitrogen isotopic ratios

compared with detritivores (e.g., Curimata incompta, Potamorhina latior) that consume organic matter of both autochthonous and allochthonous origin that can vary in both nutritional value (Goulding [28], [29], Bowen [12]) and isotopic composition (Benedito-Cecilio & Araujo-Lima [10]).

To test whether or not patterns are affected by spatial scale of analysis, we compare estimates for contributions of basal production to fish biomass at the scale of local habitats (lake systems) versus the broader regional landscape unit (lower Amazon). Thus, a basic objective of our study is to advance understanding of how spatial grain influences foodweb interpretations based on stable isotope analysis (Phillips et al. [58]). We also seek to improve knowledge of trophic ecology in the Amazon because this information is essential for managing human impacts that affect biodiversity and ecosystem services (Winemiller [82]).

Methods

Study area, data collection, and laboratory methods

This study was conducted within a 17,674-km² area in the floodplains of the lower Amazon River (referred to locally as várzea) in Brazil (Fig. 1). These floodplains are seasonally flooded by water that carries high loads of silt and nutrients that originate in the Andes Mountains. The study area contains a mosaic of forests, nonforested areas dominated by herbaceous vegetation, lakes, and secondary channels. The annual flood pulse produces gradual changes in water level from 4 to ~9 m annually as measured at the discharge gauges at Óbidos (mean = 5.7 m) and Parintins (mean = 5.4 m) (ANA [3]). The flood pulse reaches a maximum water level in June and a minimum in October [rising and high water levels: Jan-July; falling and low water level [Aug-Dec]) and causes shifts in habitat availability and environmental conditions. During the dry season, water is retained in channels and lakes, many of which are isolated, and during the wet, flood season, forests, pastures, channels, and lakes are well-connected.

Graph: Figure 1. Study area, local catchments (lake systems), and habitats sampled within lake systems in the lower Amazon River floodplain.

The sampling units were local catchments (or 'lake systems' sensu Castello et al. [13], Arantes et al. [4]) that contain lakes, interconnecting channels, forests, and areas with herbaceous vegetation and aquatic macrophytes that are hydrologically connected for 6 to 9 mo/y (Fig. 1). Lake systems are separated either by large flowing channels, natural levees, or a combination of these features.

We collected fish muscle tissue and common basal resources to capture the spatial variation in isotopic composition of both aquatic consumers and their potential food sources. We collected these samples from 109 locations that spanned a range of aquatic habitats (open water, flooded herbaceous vegetation, flooded forest) across 19 lake systems. These lake systems are distributed along ~250 km of the lower Amazon River (Fig. 1). We collected samples during the beginning of the falling-water stage of the annual hydrological cycle (August 2013, water level ~5.5 m) (Fig. 1), so the data should characterize the period of maximum lateral connectivity of aquatic floodplain habitats.

We collected fish with gillnets and took muscle tissue samples from 14 abundant species that represented various trophic guilds (Table 1). Fish muscle tissue samples were collected from the flank near the base of the dorsal fin, and we attempted to collect samples from 3-5 specimens per species in each lake system. The isotopic ratios in animal tissues reflect assimilation of elements from food over variable time intervals depending on tissue and isotopic/elemental turnover rates (Vander Zanden et al. [77]) rather than the isotopic

composition of the recent diet. The turnover time of fish muscle tissue typically ranges between 1–3 mo. depending on fish body size, age, or other factors (Jardine et al. [36], Weidel et al. [79]). Thus, we assumed that C and N isotopic ratios of fish muscle tissue reflect assimilation of sources during the ~3 mo preceding our surveys.

We classified fish species according to trophic guilds based on dietary information from published reports (e.g., Mérona and Mérona [47], Oliveira et al. [53], see Table 1). Four species were classified as herbivores-C3 (n = 165): Colossoma macropomum, Mylossoma aureum, Piaractus brachypomus, and Rhytiodus microlepis (Table 1). Herbivores-C3 feed predominantly on C3 plant material (seeds, fruits, or leaves) and on filamentous algae. Herbivores-C4 (1 species, Schizodon fasciatus, n = 75) feed predominantly on C4 plants (grasses and aquatic macrophytes). Two species classified as omnivores (*Hemiodus microlepis* and *Triportheus auritus*, n = 91) ingest combinations of plant material, detritus, and invertebrates. Detritivores (2 species, Curimata incompta and Potamorhina latior, n = 51) predominantly ingest fine particulate organic matter (POM) and filamentous algae. Planktivores (1 species, Hypophthalmus marginatus, n = 22) ingest variable combinations of phytoplankton, zooplankton, plant material, and detritus. Four species classified as piscivores (Acestrorhynchus abbreviatus, Pellona castelnaeana, Plagioscion squamosissimus, and Pygocentrus nattereri, n = 252) consume fish, scales and fins, or both, either whole or in pieces. Piscivores may also ingest small portions of terrestrial or aquatic macroinvertebrates (e.g., Ephemeroptera, Chironomidae, Coleoptera, Crustacea, etc.).

Graph

Table 1. Mean (±SD) values of carbon (C) and nitrogen (N) stable isotope ratios (δ 13 C and δ 15 N) for different fish species in the lower Amazon region. Results from analysis of variance (ANOVA) or analysis of covariance (ANCOVA) for groups of fish with similar trophic strategies are shown. ANCOVA was applied only for the detritivores, including Potamohina latior, and for the herbivore C4. Schizodon fasciatus, SL = standard length. Species trophic level estimates (mean ± CI) used in the trophic fractionation (TF) calculation (see Methods) and sample number (n) are also shown. * denotes statistically significant ($p \le 0.01$) values.

Trophic strategy	δ ¹³ C Pr(>F)	δ ¹⁵ N Pr(>F)	Species/Trophic level n		Mean δ ¹³ C	SD $\delta^{13}C$	Mean δ ¹⁵ N	$\begin{array}{c} SD \\ \delta^{15}N \end{array}$	δ ¹³ C Pr(>F)	δ ¹⁵ N Pr(>F)
Herbivores C3	<0.01*	0.05	Colossoma macropomum	71	-27.1	2.2	9.1	1.1	<0.01*	<0.01*
3 (3.2–3.4)										
Piaractus	25	-26.2	0.7	7.1	1.4	0.03	0.04			
brachypomus										
2.6 (2.4–2.8)										
Mylossoma aureum	40	-27.1	1.3	8.6	0.9	0.08	0.06			
3.03 (2.8–3.2)										
Rhytiodus microlepis	29	-31.4	2.5	7.0	8.0	0.01*	<0.01*			
2.6 (2.4–2.7)										
Herbivore C4	0.03	<0.01*	Schizodon fasciatus	75	-20.9	4.4	8.2	1.4	_	_
0.6 (SL)	0.9 (SL) 3.8 (3.6–4.08)									
Omnivores	0.01*	0.09	Hemiodus microlepis	43	-33.1	2.0	8.5	8.0	0.01*	0.02
3.0 (2.8–3.2)										
Triportheus auritus	48	-27.1	1.9	10.5	8.0	0.03	<0.01*			
3.6 (3.4–3.8)										

4.0(3.8-4.2)

squamosissimus

Plagioscion

48

-25.6

1.9

We also collected terrestrial and aquatic plant material (macrophytes) to characterize the isotopic composition of basal food resources in Amazon floodplain food webs. These samples included leaves and fruits from the most common trees and shrubs (C3 terrestrial plants of the families Capparaceae and Lamiaceae), C3 aquatic macrophytes (e.g., Eichhornia crassipes, Salvinia minima), C4 grasses (Paspalum repens), suspended particulate organic material from the water column (POM), and benthic algae (hereafter, phytomicrobenthos). We collected samples of suspended POM by filtering water samples through pre-combusted Whatman GF/F filters (pore size $0.7 \mu m$) with a vacuum system under low pressure. It is not always possible to trace the origin of suspended POM, but a previous analysis of POM in the lower Amazon suggested it was derived primarily from autochthonous material, including C3 aquatic plants and phytoplankton dominated by cyanobacteria (Mortillaro et al. [49]). Another study showed that vascular plant debris and soil humic material also contribute to the pool of suspended POM in the Amazon (Hedges et al. [30]). We collected benthic algae by gently scraping submerged tree branches. This sampling technique was unlikely to produce a pure sample of benthic algae, so we consider these phytomicrobenthos samples, which were probably composed of a combination of periphyton, fine particulate organic matter, and associated microorganisms. Phytomicrobenthos δ^{13} C values are highly variable in aquatic systems (Hladyz et al. [31]) and, therefore, the samples we collected from wood may not be representative of algal biofilms on other surfaces (e.g., soil or submerged macrophytes).

11.8 0.6

<0.01* <0.01*

We also collected snails from floating aguatic vegetation. Snails often are considered algal grazers that can be used to estimate isotopic ratios of phytomicrobenthos, but our snail samples were insufficient (i.e., not found in every lake system) for use in verifying our phytomicrobenthos isotopic signatures. Our isotopic data for snails were, however, used as the primary consumer baseline for calculations of fish trophic position (see sections: Data analyses and Discussion: some limitations of stable isotope analysis for ecological inferences).

All samples were preserved in NaCl for later processing in the laboratory. We analyzed a total of 449 basal resource samples, 34 primary consumer samples (snails), and 656 fish muscle tissue samples for stable isotope ratios of C and N (Tables 1, 2). Nitrogen isotopic ratios ($^{15}N/^{14}N$ as expressed by $\delta^{15}N$) can be used to estimate the trophic position of an organism, because the proportion ¹⁵N in tissues increases incrementally (usually by 2-4%) as material is consumed and assimilated during successive steps in a food chain (Post [63], Caut et al. [14]). Carbon isotopic ratios (13 C/ 12 C, or δ^{13} C) often are useful for identifying sources assimilated by consumers, because once C is fixed into the tissue of a plant, this ratio typically changes only 0.4-1% as material passes from 1 trophic level to the next (Fry [26]).

Graph

Table 2. Mean, minimum (Min), and maximum (Max) values of C and N stable isotope ratios (δ 13 C and δ 15 N) for basal resources in the lower Amazon region and results for multivariate analysis of variance (MANOVA) and analysis of variance (ANOVA) testing for differences in δ 13 C and δ 15 N of each production source across lake systems (n = number of samples). * = statistically significant result (p \leq 0.01).

Sources of production	n	Mean δ ¹³ C	Mean δ ¹⁵ N	MANOVA	ANOVA			
(Min,Max)	(Min,Max)	df	F	Pr(>F)	$\delta^{13}C$	$\delta^{15} N$		
					Pr(>F)	Pr(>F)		
Phytomicrobenthos		24	-27.68	4.32	_	_		_
(-33.64, -21.12)	(1.1, 8.26)							
C3 aquatic	Eichhornia	79	-29.86	3.73	13	1.86	0.03 -	_
macrophytes	crassipes							
(-34.41, -27.10)	(0.53, 6.78)							
Salvinia minima			11	2.78	0.01*	0.02	0.05	
C4 grass		161	-12.88	4.72	18	4.45	0.01*<0.01	*<0.01*
(-16.04, -11.11)	(1.76, 8.44)							
Terrestrial plants	Capparaceae	133	-29.8	5.02	12	3.14	0.01*0.06	0.01*
			(–34.09, –	(0.21,				
			25.36)	11.17)				
	Lamiaceae		10	2.23	0.01*	0.17	0.01*	
POM		52	-25.13	0.40	18	3.15	0.01*0.01*	0.01*
(-29.87, -22.27)	(-4.99, 4.88)							

Prior to analysis, we soaked tissue samples in distilled water for 4 to 5 h, rinsed them, and dried them in an oven at 60° for ~48 h, following Arrington and Winemiller ([7]). After drying, we used a mortar and pestle to grind the samples into fine powder, divided the samples into subsamples and loaded into them into Ultra-Pure tin capsules (Costech Analytical, Valencia, California, USA). Each POM subsample was 15 to 20 mg, and fish muscle tissue and tissues from other sources were 1.5 to 3 mg. Samples were analyzed for C and N isotope ratios with mass spectrometry at the Analytical Chemistry Laboratory of the Institute of Ecology, University of Georgia, USA. We report isotope ratios in parts per thousand (%; standardized in relation to reference material [Pee Dee Belemnite for C, atmospheric nitrogen for N]) as $\delta X = [(R_{sample}/R_{standard})-1)] \times 10^3$, where $R = {}^{13}C/{}^{12}C$ or ¹⁵N/¹⁴N (the ratio of heavy and light stable isotopes of C or N). No lipid corrections were necessary because the C:N ratios of these samples were relatively low (typically <3.5; Post et al. [64]).

Data analyses

Regional scale analyses

Prior to all analyses, we used analysis of variance (ANOVA) to test for differences in δ^{13} C and δ^{15} N of sources and consumers among habitats types within each lake system. Isotope values were similar among habitats (p >0.1). We therefore used values of each source mean and standard deviation for a given lake system as the input for our analyses (i.e., Bayesian mixing model described below).

Then, we first evaluated general patterns of isotopic variation among fish species, trophic guilds, and primary producers with boxplots or biplots of δ^{13} C and δ^{15} N. Second, we estimated the proportional contribution of each primary producer to fish biomass at a regional scale (i.e., combined data for all lake systems) with a Bayesian mixing model. This stable isotope mixing model uses Bayesian statistical techniques to incorporate uncertainty and variation in input parameters into the estimates of proportional contributions of sources to consumer biomass (Parnell et al. [55]). Prior to analysis, we evaluated the data to ensure it conformed to the mixing model assumptions. One assumption is that consumer isotopic values fall within the polygon (isospace) defined by C and N isotopic values of potential food sources when they are adjusted to account for trophic fractionation (TF) (Olive et al. [52], Phillips et al. [58]). We multiplied averaged values for TF of C and N reported in the literature (i.e., mean TF of C = 0.54 ± 0.53 and of N = 3.02 ± 0.47 ; e.g., Bastos et al. [9]) by the trophic level of the consumer (Reid et al. [68], Phillips et al. [58]) to adjust isotopic ratios of sources to create a polygon to test a given consumer. We used the R (version 3.4.0; R Foundation for Statistical Computing, Vienna, Austria) package tRophicPosition (Post [63], Quezada-Romegialli et al. [67]) to estimate consumer trophic position with an equation that uses an assumed value for $\delta^{15}N$ enrichment and the baseline trophic level first (see estimated trophic positions in Table 1). We used the mean $\delta^{15}N$ value of the primary consumers (snails) as our baseline estimates (see Post [63]). Biplots of δ^{13} C and δ^{15} N of basal production sources and TFcorrected fish isotopic values revealed that, for 5 of 14 fish species, the TF corrected values fell outside the polygon defined by potential basal sources. These species included 2 detritivores (C. incompta, P. latior), 1 planktivore (H. marginatus), 1 herbivore (R. microlepis), and 1 omnivore (H. microlepis). We therefore did not run mixing models for these 5 species, but only for the other 9 species that the TF corrected values fell inside the polygon defined by potential basal sources as follows. Biplots showed that 5 species (the piscivores A. abbreviatus, P. nattereri, and P. squamosissimus, the herbivore S. fasciatus, and the omnivore T. auritus) had isotopic values that fell mostly within the polygon defined by potential sources when we included ¹³C-enriched C4 grass in the biplot. For these species, all 5 of our groups of basal sources (i.e., mean and standard deviation of isotope values of C3 terrestrial plants: Capparaceae and Lamiaceae, C3 aquatic macrophytes: E. crassipes, S. minima, C4 grasses, POM, and phytomicrobenthos) were included as inputs for the mixing model. Isotopic values for the remaining 4 species (*P. castelnaeana*, *C. macropomum*, *M. aureum*, *P. brachypomus*) plotted inside the polygon defined by isotopic values of 4 relatively ¹³C-depleted production sources, but well beyond the range of ¹³C-enriched C4 grasses. Previous studies analyzing gut contents and stable isotope data for Amazonian fishes have shown C4 plants to contribute little to Amazon fish diets and food chains supporting fish biomass (Araujo-Lima et al. [5], Forsberg et al. [25], Benedito-Cecilio et al. [11], Benedito-Cecilio and Araujo-Lima [10], Oliveira et al. [53]). Based on that information and our δ^{13} C and δ^{15} N biplots, we assumed these 4 species had not assimilated C from C4 grass, so we did not include C4 grass in the mixing model for these species. This assumption is reasonable since the discriminatory power of mixing models generally decreases with the number of sources (Phillips et al. [58]). Convergence diagnostics (Gelman diagnostics) were close to 1 (<1.1), indicating that the model performed well.

Local scale analyses and variations across the landscape

We 1st used ANOVAs to evaluate the among-lake-system variation in isotopic ratios (δ^{13} C and δ^{15} N as dependent variables) of each trophic guild. Whenever we observed significant differences, we used ANOVAs to test for among-lake differences in either the δ^{13} C or δ^{15} N of each fish species in that trophic guild. Between-site differences in fish tissue isotopic ratios could be influenced by differences in body size, because fish feeding and assimilation dynamics may shift ontogenetically. Therefore, prior to ANOVAs, we also tested for possible differences in the length-frequency distributions of each trophic guild and each species across lake systems with Fisher's exact test. Length-frequency distributions only differed significantly among lake systems for detritivores and the herbivore-C4 guild (represented only by S. fasciatus). Within trophic guilds, lengthfrequency distributions did not differ significantly (p > 0.05) among lake systems for any species pair except P. latior (detritivore) and S. fasciatus herbivore C4. Therefore, for detritivore and herbivore-C4 guilds, and for the species P. latior, analysis of isotopic differences among lake systems was done with standard length (SL) as a covariate in an analysis of covariance (ANCOVA).

We used multivariate analysis of variance (MANOVA) to test for differences in δ^{13} C and δ^{15} N of each production source across lake systems. Whenever MANOVA yielded significant differences in isotopic composition, we performed a univariate ANOVA to test for differences in either the δ^{13} C or δ^{15} N of each source. To ensure that possible interspecific variation in δ^{13} C and δ^{15} N of plants (Correa et al. [16]) would not influence results, we ran separate tests for each terrestrial (families Capparaceae and Lamiaceae) and aquatic (E. crassipes, S. minima) plant (Table 2). Phytomicrobenthos were not included in these analyses because of small sample sizes that resulted from the apparent scarcity of this material at most sites. Assumptions for these analyses (e.g., normally distributed residuals) were tested and met in all cases. Statistical significance of these tests were corrected for multiple comparisons (Bonferroni correction) at a significance level of $\alpha = 0.01$.

Finally, we assessed variation in the proportional contribution of each primary production source to the biomass of each fish species across lake systems. To do this we used Bayesian mixing models to estimate the proportional contributions of sources to the biomass of each species in each lake system and evaluated the coefficients of variation (CV) of these estimations across lake systems (involving 7-19 lake systems, depending on the species). Procedures for mixing model analyses were the same as described above for the regional scale analysis.

Results

Regional scale patterns

The basal production sources (C3 plants, C3 aquatic macrophytes, C4 grasses, phytomicrobenthos, POM), fish trophic guilds, and fish species all showed considerable variation in δ^{13} C and δ^{15} N values across the region (Tables 1, 2; Figs 2–4). Isotope values among all basal sources ranged from approximately –34 to –21% for C, and from -5 to 11% for N. The difference between minimum and maximum values of basal sources ranged from 12 (phytomicrobenthos) to 7.3% (aguatic macrophytes) for C and from 7 (grasses and phytomicrobenthos) to 11% (C3 terrestrial plants) for N.

Graph: Figure 2. Boxplots (median and quartiles) of δ13C and δ15N of fishes grouped by trophic quilds.

Carbon isotopic values among trophic guilds ranged from about –39% for the planktivore (*H. marginatus*) to -14‰ for the C4 herbivore (S. fasciatus). Carbon isotopic variability within trophic guilds ranged from 16‰ for herbivores-C4 to about 8% for planktivores (Fig. 2), and within-species values ranged from 16 (*R. microlepis*) to 3‰ (P. brachypomus) (Fig. 3, Table 1). The 5 fish species with isotopic values that fell outside the isospace

of our 5 basal sources (*C. incompta*, *P. latior*, *H. marginatus*, *H. microlepis*, *R. microlepis*) had relatively ¹³Cdepleted values (Fig. 3). 29% of fish had C isotopic signature values between those of C3 aquatic macrophytes and POM, and 38% had C isotopic signatures between those of the aquatic macrophytes and C4 grasses. Nitrogen isotopic signatures among trophic guilds and fish species ranged from ~4% for the C4 herbivore (S. fasciatus) to 15% for the piscivore P. castelnaeana (Figs 2, 4; Table 1). We found lower variability in the planktivore (~2%) and detritivores (~4%) than in herbivores (~8%) and piscivores (~7%) (Fig. 2). Intraspecific variability ranged from ~2 (A. abbreviatus) to ~6% (S. fasciatus, C. macropomum) (Fig. 4, Table 1).

Graph: Figure 3. Biplots of mean (±SE) δ13C and δ15N of primary producers, excluding C4 grasses, for different species of fish at the regional scale in the lower Amazon River floodplain. δ13C and δ15N of fishes are shown by black dots and are corrected for trophic fractionation (see Methods). Squares and lines represent mean and standard errors, respectively, of the isotopic signatures of the basal resources.

Graph: Figure 4. Biplots of mean (±SE) δ13C and δ15N of primary producers, excluding C4 grasses, for different species of fish at the regional scale in the lower Amazon River floodplain. δ13C and δ15N of fishes are shown by black dots and are corrected for trophic fractionation (see Methods). Squares and lines represent mean and standard errors, respectively, of the isotopic signatures of the basal resources.

The regional-scale mixing model indicated that C3 aguatic macrophytes and POM were the principal sources contributing to the biomass of most fish species, with C4 grasses having an important contribution only to S. fasciatus (Table 3, Fig. S1). Except for S. fasciatus, C4 grasses (when included in the model) and phytomicrobenthos appeared to be the least important basal production sources for fish biomass (Table 3, Fig. S1).

Graph

Table 3. Means and 1 st to 99 th percentile ranges of estimated contributions of basal production sources to fish biomass in the floodplains of the lower Amazon. CV = coefficient of variation of the proportional contribution of a given source across lake systems. PMB = Phytomicrobenthos, C3M = C3 aquatic macrophytes, TP = terrestrial plants, POM = particulate organic matter, C4G = C4 grasses.

Species	Source	Mean1 st 9	99 th CV (%)
Colossoma macropomum	PMB	0.09 0.020).2139
C3M	0.45	0.26 0.614	10
TP	0.10	0.02 0.233	32
POM	0.36	0.30 0.434	¥1
Piaractus brachypomus	PMB	0.13 0.030).2652
C3M	0.22	0.06 0.387	79
TP	0.15	0.03 0.313	32
POM	0.50	0.42 0.593	37
Mylossoma aureum	PMB	0.10 0.020).2324
C3M	0.45	0.27 0.612	26
TP	0.10	0.02 0.252	23
POM	0.35	0.28 0.412	21
Schizodon fasciatus	PMB	0.07 0.010).1729
C3M	0.07	0.01 0.162	23
C4G	0.30	0.24 0.372	27

	0		4 et	ooth OV (S()	
Species	SourceMean1 st 99 th			` '	
TP	0.06	0.01	0.142	27	
POM	0.50	0.42	0.572	26	
Pellona castelnaeana	PMB	0.10	0.020	0.2337	
C3M	0.55	0.37	0.71	44	
TP	0.12	0.02	0.25	31	
POM	0.23	0.16	0.303	33	
Pygocentrus nattereri	PMB	0.14	0.030	0.2842	
C3M	0.37	0.21	0.523	34	
C4G	0.07	0.04	0.11	46	
TP	0.09	0.02	0.20	47	
POM	0.34	0.28	0.394	41	
Plagioscion squamosissimus	s PMB	0.14	0.030	0.3026	
C3M	0.40	0.22	0.562	27	
C4G	0.06	0.02	0.10	56	
TP	0.10	0.02	0.22	23	
POM	0.30	0.23	0.373	30	
Acestrorhynchus abbreviatusPMB			0.030.2840		
C3M	0.38	0.22	0.523	33	
C4G	0.08	0.05	0.12	48	
TP	0.09	0.02	0.20	51	
POM	0.31	0.24	0.37	42	
Triportheus auritus	PMB	0.07	0.010	0.1940	
C3M	0.55	0.35	0.693	36	
C4G	0.02	0.00	0.043	34	
TP	0.08	0.01	0.223	38	
POM	0.28	0.21	0.363	39	

Local scale patterns and variation across the landscape

Isotopic compositions varied significantly across lake systems for most basal production sources, trophic guilds, and fish species. The effect of lake system on δ^{13} C and δ^{15} N was significant for all basal sources (C4 grass, C3 terrestrial plants, and the aquatic macrophyte S. minima) except for the C3 aquatic macrophyte E. crassipes (MANOVA, $F_{11,28} = 1.86$, p = 0.03) (Table 2). ANOVA revealed significant differences across lake systems for the δ^{13} C and δ^{15} N values of both C4 grass and POM, whereas significant differences occurred in $\delta^{15}N$ only for terrestrial plants (Table 2).

The variation in δ^{13} C and δ^{15} N among lake systems differed by fish trophic guild. Both δ^{13} C and δ^{15} N of detritivores and piscivores differed significantly among lake systems (Table 1). Lake system was associated with variation in δ^{13} C only for herbivores and omnivores, and only δ^{15} N varied significantly among lake systems for the C4 herbivore (S. fasciatus). The planktivore (H. marginatus) had no significant among-lake system variation for either element (Table 1). Patterns of variation in δ^{13} C and δ^{15} N in fish species differed with lake system (Table 1). Most species, including C. macropomum, R. microlepis, A. abbreviatus, and P. squamosissimus, showed significant differences in both δ^{13} C and δ^{15} N across lake systems. Hemiodus microlepis, P. castelnaeana and P. nattereri showed differences only in δ^{13} C, whereas P. latior and T. auritus had significant spatial variation only in δ^{15} N. *P. brachypomus*, *M. aureum* and *C. incompta* did not show significant differences, either in δ^{13} C or δ^{15} N across lake systems. Standard length was not related to variation in δ^{13} C or δ^{15} N across lake systems for 2 trophic guilds (detritivores and herbivore C4), but it was related to the variation in δ^{15} N for 1 species (*P. latior*) (Table 1).

Mixing model results for the 9 species that data conformed to the mixing model assumptions (e.g., consumer isotopic values fell within isospace) for individual lake systems indicated that, although C3 aguatic macrophytes and POM were the principal sources contributing to biomass of most fish species and lake systems, there was considerable variation within fish species (Table 3). Coefficients of variation (CV) indicated that the mean proportional contributions of production sources to fish biomass varied on averaged 37% across all sources and species, with variation among some sources and species as high as 79% (C3 aquatic macrophytes for P. brachypomus) (see coefficients of variation, CV, Table 3). Species with the greatest coefficients of variation in source contributions among lake systems were P. brachypomus (range of 47%), A. abbreviatus (18%), and P. nattereri (13%). The smallest CV in source contributions across lake systems was observed for S. fasciatus (range of 6%) and M. aureum (5%). Relatively high CV values reflect high variation in the contributions of production sources to fish biomass within a given lake system. For example, phytomicrobenthos and C3 terrestrial plants, the least important sources at the regional scale, were the most important sources (contributing >30%) for 5 species in 5 lake systems, and for 4 other species in 7 lake systems. Conversely, C3 aguatic macrophytes and POM, the most important sources assimilated by fishes at the regional scale, were relatively unimportant (proportional contribution <7%) for 5 species in 4 lake systems, and 4 other species in 7 lake systems.

Discussion

Our results indicate that isotopic ratios of production sources, fish trophic guilds, and fish species vary across the Amazon floodplain landscape, even when connectivity has been high for ~7 mo. Our results also showed that contributions of alternative basal production sources to fish biomass, and therefore foodweb proprieties, vary with the spatial scale of observation. Taken together, these results are consistent with the view that networks of local food webs interact within broader landscapes to produce a regional trophic network (Holt [33], Winemiller and Jepsen [83], Pillai et al. [59]) and that ecological processes and interactions depend on mechanisms operating at multiple spatial scales (Leibold et al. [42], Presley et al. [66]). In addition, because outcomes from stable isotope analyses varied spatially and were sensitive to spatial scale, our study also supports the idea that sampling protocols for stable isotope analyses need to address spatial variability in isotopic composition (Correa et al. [16]). Finally, as described below, our findings on the spatial variation in the isotopic composition of production sources, fishes from different functional groups, and production source contributions to fish biomass advance understanding of the flow of matter and energy in aquatic habitats of the Amazon floodplain.

Regional scale patterns

Our results indicate that aquatic macrophytes and POM are important basal sources that contribute to fish biomass in the Amazonian floodplains, at least under the high-water conditions of the annual flood pulse. This result is consistent with findings for other rivers that carry high loads of suspended fine sediments (Roach [71], Ou and Winemiller [54]). These results are also consistent with studies that evaluated δ^{13} C values of tree parts, C3 aquatic macrophytes, and periphyton and phytoplankton, and found that C3 plants were the primary source of C for several Amazonian fish species (e.g., Araujo-Lima et al. [5], Forsberg et al. [25], Benedito-Cecilio et al. [11], Oliveira et al. [53]). C3 aquatic macrophyte leaves tend to have relatively high mineral and protein content, and along with fruits and seeds, are probably among the most nutritious plants in the Amazon floodplain (Forsberg et al. [25]). Herbivorous fishes associated with aquatic macrophyte beds that contain both C4 grasses (e.g., Echinochloa polystachya, Paspalum repens) and C3 macrophytes (e.g., E. crassipes, Pistia stratiotes, Ceratopteris pteroides, S. minima) were reported to avoid eating C4 grasses (Junk [38]). Instead, these fish consumed and, in many cases controlled, C3 plant biomass (Junk [38]). Our mixing model estimates

indicate that most fishes assimilated relatively little material from C3 terrestrial plants compared with aquatic C3 macrophytes. This result, however, does not discount the importance of fruits and seeds that are consumed directly by several herbivorous fishes, especially those from the family Serrasalmidae (Goulding [28], Correa et al. [15]). Most of our tissue samples for frugivorous species, such as Colossoma macropomum, were from subadults, which tend to be less-specialized frugivores and granivores than larger conspecifics (Forsberg et al. [25], Araujo-Lima and Goulding [6]), Given overlapping ranges of δ^{13} C values for C3 aquatic and terrestrial plants, it also is possible that our mixing model overestimated contributions from aquatic macrophytes versus C3 terrestrial plants. However, our analysis of the variation in proportional contributions of basal production sources to fish biomass across the landscape indicated that in some catchments C3 terrestrial plants were an important or a moderately important basal food source in food webs. C3 terrestrial plants were an important food source for P. nattereri, T. auritus, A. abbreviatus, and P. castelnaeana. C3 terrestrial plants were a moderately important food source for *C. macropomum*, *P. squamosissimus*, *M. aureum*, and *P. brachypomus*.

POM has not been previously reported to be an important production source supporting fish biomass in the Amazonian floodplains. Previous studies (Forsberg et al. [25]) have used similar methods for sampling suspended POM, but they found ¹³C-depleted values that suggested a stronger contribution from phytoplankton. Conversely, our δ¹³C values for POM are less ¹³C-depleted and show intermediate values between those of C3 plants and C4 macrophytes. Since it is unlikely that this suspended material was derived from ¹³C-depleted production sources, such as phytoplankton, the POM in our study could have been a mixture of detritus derived from aquatic and riparian plants with humic material from soil (Hedges et al. [30]).

Isotope studies have consistently shown that C4 grasses contribute little to the biomass of most fishes in the Amazon and other floodplain rivers (Araujo-Lima et al. [5], Forsberg et al. [25], Thorp et al. [76], Benedito-Cecilio et al. [11], Benedito-Cecilio and Araujo-Lima [10], Oliveira et al. [53], Zeug and Winemiller [86], Roach et al. [72], Mortillaro et al. [50], Ou and Winemiller [54]). Despite the fact that C4 grasses are responsible for much of the primary production in floodplain systems (Melack and Forsberg [46]), they seem to have low importance as a basal source in food chains supporting aquatic consumers. Their low importance may be caused by the relatively low digestibility of C4 grasses for many consumer taxa (Minson [48], Mortillaro et al. [50]). At the regional level, even S. fasciatus, a species known to feed extensively on grasses, appears to have assimilated large fractions of material that originated from POM. However, our analysis of the variation in proportional contributions of grasses to fish biomass across the landscape indicated that in many lake systems there were some fish species that had assimilated substantial amounts of material that originated from C4 grasses (e.g., coefficients of variation of assimilation of C4 grasses among lake systems for *P. nattereri* = 46%, *A. abbreviatus* = 48%, and *P. squamosissimus* = 56%)

The biplots and ranges of δ^{13} C and δ^{15} N values of fishes, particularly detritivores, indicate that biomass of 5 fish species we analyzed was probably derived, in part, by 1 or more relatively ¹³C-depleted production source we did not sample. One candidate is phytoplankton. The range of δ^{13} C values for these fishes (-38.7 to -24.6%) falls within the range of values reported for phytoplankton in the Amazon (Araujo-Lima et al. [5], Forsberg et al. [25], Martinelli et al. [44]). Phytoplankton is probably one of the main sources of C supporting biomass of several fish species in the Amazon floodplain, such as detritivores (Araujo-Lima et al. [5], Benedito-Cecilio et al. [11]), including *C. incompta* and *P. latior*, and the planktivorous catfish *H. marginatus*. Alternatively. the missing source in our analysis could be chemolithotrophic bacteria, which have δ^{13} C values significantly lower than phytoplankton (Peterson et al. [57], Fry and Sherr [27]) and could support higher consumers via detritus-microbial pathways. However, the consumer $\delta^{15}N$ values were not unusually low, as might be

expected if these fish consume chemolithotrophic bacteria. Improved knowledge of aquatic food webs in the Amazonian River and floodplains could be achieved by focusing research on the potential roles of phytoplankton and the microbial loop in supporting fish biomass.

Isotopic variation across the landscape

Our results demonstrated that δ^{13} C and δ^{15} N values of sources, fish trophic guilds, fish species, and the proportional contributions of production sources to fish biomass each varied across the landscape. These results are consistent with earlier claims about the variable nature of foodweb structure (Warren [78], Winemiller [80], [81]). Nitrogen and C isotopic values of all production sources, except for δ^{13} C of C3 terrestrial plants, varied spatially. This pattern is consistent with previous studies that found variation in the isotopic values of plants and POM along the Amazon River (Hedges et al. [30], Martinelli et al. [43], Mortillaro et al. [51]). Similar to these studies, our investigation produced evidence of a longitudinal gradient in which downriver δ^{13} C in aquatic macrophytes and phytomicrobenthos was lower than δ^{13} C for these groups in upstream reaches (Fig. S2). These patterns could be a result of the relatively limited number of samples we had at the ends of the longitudinal gradient for these sources, which may have obscured the potential variability in δ^{13} C. However, the longitudinal trend of δ^{13} C in aquatic macrophytes could also be a result of greater fluxes of more ¹³C-depleted dissolved CO₂ going from the river into the atmosphere in downstream reaches. Higher CO₂ output from downstream reaches would result in lower δ^{13} C in aquatic macrophytes that assimilate this dissolved CO₂ (Martinelli et al. [43], Benedito-Cecilio et al. [11]). Low values of δ^{13} C in phytomicrobenthos samples might be associated with CO₂ respired by ¹³C-depleted aquatic macrophytes. The spatial variation in δ^{13} C, as well as δ^{15} N, for some sources of POM (Fig. S2) may be explained by variation in geomorphology and the extent of forest cover, which could result in differences in the quality of decomposing organic materials and soils (Renó et al. [69], Mortillaro et al. [51]).

Based on our results, we can only speculate on possible causes of δ^{13} C and δ^{15} N spatial variation. However, our findings provide a foundation for future research to tests these and other hypotheses. Multiple factors have either been shown or suggested to influence isotopic composition of basal production sources. These include variation in biogenic CO₂, differential diffusion rates of ¹³C and ¹²C during photosynthesis associated with variation in environmental conditions (e.g., river discharge, water velocity and canopy cover), pH and other abiotic factors, ChI a density, availability of dissolved inorganic C from various pools, physiological processes, genotype, etc. (Depetris and Kempre [21], Forsberg et al. [25], Finlay et al. [24], Evans [22], Finlay [23], Dawson et al. [19], Amundson et al. [2], Ishikawa et al. [35]).

Spatial variation in δ^{13} C for certain trophic guilds and species (herbivores-C3: *C. macropomum*, *R. microlepis*, and H. microlepis; piscivores: A. abbreviatus, P. squamosissimus, P. castelnaeana and P. nattereri), as well as variation in estimates of relative contribution of production sources to fish biomass in general, may reflect differences in trophic pathways at various locations within the landscape. Local food webs probably vary in the abundance and nutritional quality of alternative primary producers, detritus, and invertebrate prey as well as local environmental conditions. This hypothesis is supported by previous studies showing that tropical fishes have flexible feeding strategies that allow specialization when preferred resources become more available or when alternative resources become less available (Winemiller [80], Dabrowski and Portella [18], Correa and Winemiller [17]).

The spatial variation in δ^{15} N observed for certain trophic guilds and species (e.g., *C. macropomum*, *R.* microlepis, S. fasciatus, P. latior, T. auritus, A. abbreviatus, P. squamosissimus) could be influenced by variations in δ^{15} N among sources or may reflect intraspecific differences in trophic position across the landscape. Our results that length-frequency distributions of most fish species were similar among lake systems suggest that there were no ontogenetic shifts in trophic positions in relation to location. However, the trophic level of an organism or average trophic level of a population should be dynamic rather than constant (Polis and Strong [62]). Many factors could affect spatial variation in trophic ecology, such as life history traits or the availability of alternative basal production sources and prey. Conversely, spatial variation in $\delta^{15}N$ of production sources was sometimes accompanied by similar variation in fish δ^{15} N values, indicating that these variations may covary in space (e.g., $\delta^{15}N$ of grass and *S. fasciatus* were positively related; Fig. S2).

Some limitations of stable isotope analysis for ecological inferences

The normal range of fish movement in the lower Amazonian floodplains is within lake systems, but some fishes migrate across lake systems during high-water conditions. Some of these species undergo seasonal migrations up to several hundred km (Ribeiro de Brito and Petrere [70], Barthem et al. [8]). Therefore, it is possible that δ¹³C and δ¹⁵N values in tissues of some fishes may actually reflect isotopic composition of production sources assimilated in inundated habitats or a different lake system. If this were the case, it could bias mixing model estimates of proportional contributions of local basal sources to fish biomass. Replication of this study across hydrological stages of the Amazon, particularly during the end of the dry season when lake systems have been isolated from each other for about 2 months, might reveal even stronger patterns of spatial variation in foodweb structure.

Stable isotope analysis has some practical limitations in general, including when it is used to estimate production sources and consumer diets in food webs. For example, there are uncertainties in the estimates of isotopic turnover time of tissues and trophic fractionation. There can also be missing basal resources, a lack of isotopic distinction among sources (end-members), and isotopic variability in sources and consumers (and see Layman et al. [40], Phillips et al. [58]). We used the same mixing model assumptions uniformly in our analyses, and results were based on a large number of samples obtained over a large region. However, we recognize that the aforementioned limitations could have influenced our results and interpretations.

In our study, potential sources of bias for mixing model estimates of proportional contributions of basal sources to fish biomass also include missing sources, exclusion of C4 grass as an end member, and low discrimination of certain sources based on δ^{13} C (e.g., aquatic vs terrestrial C3 plants). Relevant production sources could have been missing even for species that plotted inside an isospace polygon defined by source end members. As previously mentioned, missing sources might include phytoplankton and bacteria, as well as phytomicrobenthos samples from other microhabitats (see Methods). The exclusion of C4 grass from mixing models for certain species was based on our exploratory analysis of isotopic data and knowledge of the diets of these fishes, and it seems unlikely that its inclusion in models would significantly change estimated contributions of other basal sources to consumer biomass. The optimal number of sources to include in models always involves a tradeoff between sensitivity to missing sources versus lack of resolution associated with too many sources (Phillips et al. [58]). Ultimately, discriminatory power depends on the isotopic separation of sources. We note, however, that even if these factors influenced our estimates of proportional contributions of sources to fish biomass, it is unlikely that this bias would have systematically changed the major patterns of variation we observed within and among lake systems.

Conclusions

Aquatic food webs in the Amazon River floodplains vary spatially according to scales of resolution. The isotopic composition of basal production sources and fishes belonging to several trophic guilds differ among lake systems. Estimates of proportional contributions of basal production sources revealed the importance of C3 aquatic macrophytes and POM to biomass of most fish species. Grass was only important for 1 species, S. fasciatus, both at the regional scale and within most lake systems. Estimates for relative contributions of basal sources to biomass of most species varied among lake systems, with important sources assimilated at the regional scale sometimes being relatively unimportant in certain lake systems. Conversely, sources of low importance for most species at the regional scale (e.g., phytomicrobenthos, C3 terrestrial plants) sometimes were very important at the local scale. Several factors probably influence spatial variation in aquatic food webs of the Amazon floodplain, including variation in the quality and quantity of basal sources associated with gradients of watershed vegetation, heterogeneity of abiotic environmental conditions, and differences in structures of local populations and species assemblages. Although it would be difficult to do for a large system like the Amazon River and floodplains, it would be useful to investigate, at finer and broader spatial and temporal scales, the ways that these factors mediate variation in isotopic compositions of foodweb components and estimates of material transfer in food webs. Given that estimated contributions of production sources to fish biomass varied according to the spatial scale of analysis, researchers should be cautious when analyzing and interpreting isotopic data based on few samples. Depending on the hypothesis being tested, study designs should consider not only temporal replication, but also replication at appropriate spatial scales.

Acknowledgements

Author contributions. CCA, KOW, and MP designed the research. CCA and KOW collected and analyzed data. CCA, KOW, MP, and CECF wrote the paper.

Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (grant # 563073/2010) and Instituto de Desenvolvimento Sustentável Mamirauá supported field collections. Financial support to the authors came from CNPq (grant #5200893/2012-2), and Applied Biodiversity Science Program, Tom Slick Fellowship and Dissertation Fellowship from Texas A&M University, NSF-IFEWS (grant #1639115), and the International Sportfish Fund via the Estate of George and Caroline Kelso. Matt Whiles, Katie Sirianni, Charles Hawkins, and 2 anonymous reviewers provided valuable revisions. All applicable institutional and national guidelines for the care and use of animals were followed.

Footnotes

1 E-mail addresses: carolinearan@gmail.com

2 k-winemiller@tamu.edu

3 mpetrerejr@gmail.com

4 freitasc50@gmail.com

Literature Cited

Alves, G. H. Z., D. J. Hoeinghaus, G. I. Manetta, and E. Benedito. 2017. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains. PLoS ONE 12:e0174499.

Amundson, R., A. T. Austin, E. A. Schuur, K. Yoo, V. Matzek, C. Kendall, A. Uebersax, D. Brenner, and W. T. Baisden. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17:1031.

- ANA (Agência Nacional de Águas). 2014. Historical fluviometric data for Óbidos/Parintins-Linigrafo gauge. Agência Nacional de Águas, Brazil. (Available from: www.hidroweb.ana.gov.br)
- Arantes, C. C., K. O. Winemiller, M. Petrere, L. Castello, C. E. Freitas, and L. L. Hess. 2018. Relationships between forest cover and fish diversity in the Amazon River floodplain. Journal of Applied Ecology 55:386–395.
- 5 Araujo-Lima, C. A., B. R. Forsberg, R. Victoria, and L. Martinelli. 1986. Energy sources for detritivorous fishes in the Amazon. Science 234:1256-1258.
- 6 Araujo-Lima, C., and M. Goulding. 1997. So fruitful a fish: ecology, conservation, and aquaculture of the Amazon's tambaqui. Columbia University Press, New York.
- 7 Arrington, D. A., and K. O. Winemiller. 2002. Preservation effects on stable isotope analysis of fish muscle. Transactions of the American Fisheries Society 131:337–342.
- 8 Barthem, R. B., M. Goulding, R. G. Leite, C. Cañas, B. Forsberg, E. Venticinque, P. Petry, M. L. de B. Ribeiro, J. Chuctaya, and A. Mercado. 2017. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles. Scientific Reports 7:41784.
- 9 Bastos, R. F., F. Corrêa, K. O. Winemiller, and A. M. Garcia. 2017. Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method. Ecological Indicators 75:234-241.
- Benedito-Cecilio, E., and C. Araujo-Lima. 2002. Variation in the carbon isotope composition of Semaprochilodus insignis, a detritivorous fish associated with oligotrophic and eutrophic Amazonian rivers. Journal of Fish Biology 60:1603-1607.
- Benedito-Cecilio, E., C. Araujo-Lima, B. Forsberg, M. Bittencourt, and L. Martinelli. 2000. Carbon sources of Amazonian fisheries. Fisheries Management and Ecology 7:305-315.
- Bowen, S. H. 1983. Detritivory in Neotropical fish communities. Environmental Biology of Fishes 9:137–144.
- Castello, L., L. Hess, L., R. Thapa, D. G. McGrath, C. C. Arantes, V. F. Renó and V. J. Isaac. 2018. Fishery yields vary with land cover on the Amazon River floodplain. Fish and Fisheries 19:431-440.
- Caut, S., E. Angulo, and F. Courchamp. 2009. Variation in discrimination factors $\Delta 15N$ and $\Delta 13C$: the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46:443-453.
- Correa, S. B., J. K. Araujo, J. M. Penha, C. N. da Cunha, P. R. Stevenson, and J. T. Anderson. 2015. Overfishing disrupts an ancient mutualism between frugivorous fishes and plants in Neotropical wetlands. Biological Conservation 191:159-167.
- Correa, S. B., K. Winemiller, and D. Cárdenas. 2016. Isotopic variation among Amazonian floodplain woody plants and implications for food-web research. Biota Neotropica 16:e20150078.

Correa, S. B., and K. O. Winemiller. 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95:210-24.

Dabrowski, K., and M. C. Portella. 2005. Feeding plasticity and nutritional physiology in tropical fishes. Fish Physiology 21:155-224.

Dawson, T. E., S. Mambelli, A. H. Plamboeck, P. H. Templer, and K. P. Tu. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33:507-559.

DeAngelis, D. 2012. Dynamics of nutrient cycling and food webs. Springer Science & Business Media, New York.

Depetris, P. J., and S. Kempre, 1993, Carbon dynamics and sources in the Paraná River, Limnology and Oceanography 38:382-395.

Evans, R. D. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science 6:121-126.

Finlay, J. C. 2001. Stable-Carbon-Isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82:1052-1064.

Finlay, J. C., M. E. Power, and G. Cabana. 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnology and Oceanography 44:1198–1203.

Forsberg, B., C. Araujo-Lima, L. Martinelli, R. Victoria, and J. Bonassi. 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74:643-652.

Fry, B. 2006. Stable isotope ecology. Springer-Verlag, New York, New York.

Fry, B., and E. Sherr. 1988. δ 13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Pages 197-229 in P. W. Rundel, J. R. Ehleringer, and K. A. Nagy (editors). Stable isotopes in ecological research. Springer, New York.

Goulding, M. 1980. The fishes and the forest: explorations in Amazonian natural history. University of California Press, Berkeley, Los Angeles.

Goulding, M. 1993. Flooded forests of the Amazon. Scientific American 268:114-120.

Hedges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. H. Devol, and M. Santos. 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography 31:717-738.

Hladyz, S., R. A. Cook, R. Petrie, and D. L. Nielsen. 2011. Influence of substratum on the variability of benthic biofilm stable isotope signatures: implications for energy flow to a primary consumer. Hydrobiologia 664:135-146.

Hoeinghaus, D. J., K. O. Winemiller, and A. A. Agostinho. 2007. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10:1019-1033.

Holt, R. D. 2002. Food webs in space: on the interplay of dynamic instability and spatial processes. Ecological Research 17:261-273.

Hurd, L. E., R. G. Sousa, F. K. Siqueira-Souza, G. J. Cooper, J. R. Kahn, and C. E. Freitas. 2016. Amazon floodplain fish communities: habitat connectivity and conservation in a rapidly deteriorating environment. Biological Conservation 195:118-127.

Ishikawa, N. F., H. Doi, and J. C. Finlay. 2012. Global meta-analysis for controlling factors on carbon stable isotope ratios of lotic periphyton. Oecologia 170:541-549.

Jardine, T. D., D. L. MacLatchy, W. L. Fairchild, R. A. Cunjak, and S. B. Brown. 2004. Rapid carbon turnover during growth of Atlantic salmon (Salmo salar) smolts in sea water, and evidence for reduced food consumption by growth-stunts. Hydrobiologia 527:63-75.

Jepsen, D. B., and K. O. Winemiller. 2002. Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96:46-55.

Junk, W. J. 1979. Macrófitas aquáticas nas várzeas da Amazônia e possibilidades do seu uso na agropecuária. Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas.

Junk, W. J., P. B. Bayley, R. E. Sparks, and others. 1989. The flood pulse concept in river–floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106:110–127.

Layman, C. A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post, S. Bearhop. 2012. Applying stable isotopes to examine foodweb structure: an overview of analytical tools. Biological Reviews 87:545-562.

Layman, C. A., D. A. Arrington, C. G. Montaña, and D. M. Post. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42-48.

Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601-613.

Martinelli, L. A., A. H. Devol, R. L. Victoria, and J. E. Richey. 1991. Stable carbon isotope variation in C3 and C4 plants along the Amazon River. Nature 353:57-59.

Martinelli, L. A., R. L. Victoria, B. R. Forsberg, and J. E. Richey. 1994. Isotopic composition of major carbon reservoirs in the Amazon floodplain. International Journal of Ecology and Environmental Sciences 20:31–46.

Martinez, N. D., and J. H. Lawton. 1995. Scale and food-web structure: from local to global. Oikos 73:148-154.

Melack, J. M., and B. R. Forsberg. 2001. Biogeochemistry of Amazon floodplain lakes and associated wetlands. Pages 235-274 in M.E. McClain, R.L. Victoria, J.E. Richey (editors). The biogeochemistry of the Amazon basin. Oxford University Press, Oxford, UK.

Mérona, B., and J. Mérona. 2004. Food resource partitioning in a fish community of the central Amazon floodplain. Neotropical Ichthyology 2:75-84.

Minson, D. 1971. Influence of lignin and silicon on a summative system for assessing the organic matter digestibility of Panicum. Australian Journal of Agricultural Research 22:589-598.

Mortillaro, J.-M., G. Abril, P. Moreira-Turcq, R. Sobrinho, M. Perez, and T. Meziane. 2011. Fatty acid and stable isotope (δ13C and δ15N) signatures of particulate organic matter in the Lower Amazon River: Seasonal contrasts and connectivity between floodplain lakes and the mainstem. Organic Geochemistry 42:1159-1168.

Mortillaro, J.-M., M. Pouilly, M. Wach, C. Freitas, G. Abril, and T. Meziane. 2015. Trophic opportunism of central Amazon floodplain fish. Freshwater Biology 60:1659-1670.

Mortillaro, J.-M., F. Rigal, H. Rybarczyk, M. Bernardes, G. Abril, and T. Meziane. 2012. Particulate organic matter distribution along the Lower Amazon River: addressing aquatic ecology concepts using fatty acids. PLoS ONE 7:e46141.

Olive, P. J., J. K. Pinnegar, N. V. Polunin, G. Richards, and R. Welch. 2003. Isotope trophic-step fractionation: a dynamic equilibrium model. Journal of Animal Ecology 72:608-617.

Oliveira, A. C. B., M. G. M. Soares, L. A. Martinelli, and M. Z. Moreira. 2006. Carbon sources of fish in an Amazonian floodplain lake. Aquatic Sciences 68:229–238.

Ou, C., and K. O. Winemiller. 2016. Seasonal hydrology shifts production sources supporting fishes in rivers of the Lower Mekong Basin. Canadian Journal of Fisheries and Aquatic Sciences 73:1342–1362.

Parnell, A. C., D. L. Phillips, S. Bearhop, B. X. Semmens, E. J. Ward, J. W. Moore, A. L. Jackson, J. Grey, D. J. Kelly, and R. Inger. 2013. Bayesian stable isotope mixing models. Environmetrics 24:387–399.

Peterson, B. J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293-320.

Peterson, B. J., R. W. Howarth, F. Lipschultz, and D. Ashendorf. 1980. Salt marsh detritus: an alternative interpretation of stable carbon isotope ratios and the fate of Spartina alterniflora. Oikos:173-177.

Phillips, D. L., R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. C. Parnell, B. X. Semmens, and E. J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92:823-835.

Pillai, P., A. Gonzalez, and M. Loreau. 2011. Metacommunity theory explains the emergence of food web complexity. Proceedings of the National Academy of Sciences of the United States of America 108:19293-19298.

Polis, G. A., W. B. Anderson, and R. D. Holt. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28:289–316.

Polis, G. A., and S. D. Hurd. 1996. Allochthonous input across habitats, subsidized consumers, and apparent trophic cascades: examples from the ocean-land interface. Pages 275-285 in G. A. Polis and K. O. Winemiller (editors). Food webs: integration of patterns and dynamics. Chapman and Hall, New York.

Polis, G. A., and D. R. Strong. 1996. Food web complexity and community dynamics. The American Naturalist 147:813-846.

Post, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703-718.

Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi, and C. G. Montana. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179-189.

Power, M. E. 1992. Top-down and bottom-up forces in food webs: do plants have primacy. Ecology 73:733-746.

Presley, S. J., C. L. Higgins, and M. R. Willig. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908-917.

Quezada-Romegialli, C., Jackson, A. L., and Harrod, C. 2017. tRophicPosition: Bayesian trophic position. Calculation with stable isotopes. R package version 0.7.0. https://github.com/clquezada/tRophicPosition.

Reid, D. J., G. P. Quinn, P. Lake, and P. Reich. 2008. Terrestrial detritus supports the food webs in lowland intermittent streams of south-eastern Australia: a stable isotope study. Freshwater Biology 53:2036–2050.

Renó, V. F., E. M. Novo, C. Suemitsu, C. D. Rennó, and T. S. Silva. 2011. Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sensing of Environment 115:3446-3456.

Ribeiro de Brito, M. C. L., and M. Petrere. 1990. Fisheries ecology and management of the Jaragui (Semaprochilodus Taeniurus, S. Insignis) in central Amazonia. Regulated Rivers: Research and Management 5:195-215.

Roach, K. A. 2013. Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshwater Science 32:283-298.

Roach, K. A., K. O. Winemiller, C. A. Layman, and S. C. Zeug. 2009. Consistent trophic patterns among fishes in lagoon and channel habitats of a tropical floodplain river: evidence from stable isotopes. Acta Oecologica 35:513-522.

Schoener, T. W. 1989. Food webs from the small to the large. Ecology 70:1559–1589.

Thompson, R. M., and C. R. Townsend. 2005a. Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108:137-148.

Thompson, R. M., and C. R. Townsend. 2005b. Food-web topology varies with spatial scale in a patchy environment. Ecology 86:1916-1925.

Thorp, J. H., M. D. Delong, K. S. Greenwood, and A. F. Casper. 1998. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117:551–563.

Vander Zanden, M. J., M. K. Clayton, E. K. Moody, C. T. Solomon, and B. C. Weidel. 2015. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE 10:e0116182.

Warren, P. H. 1989. Spatial and temporal variation in the structure of a freshwater food web. Oikos 55:299–311.

Weidel, B. C., S. R. Carpenter, J. F. Kitchell, and M. J. Vander Zanden. 2011. Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. Canadian Journal of Fisheries and Aquatic Sciences 68:387-399.

Winemiller, K. O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60:331-367.

Winemiller, K. O. 1996. Factors driving temporal and spatial variation in aquatic floodplain food webs. Pages 298–312 in G.A. Polis and K.O. Winemiller (editors) Food webs: integration of patterns and dynamics. Chapman & Hall, New York.

Winemiller, K. O. 2003. Floodplain river food webs: generalizations and implications for fisheries management. Pages 285–309 in R. L. Welcomme and T. Petr (editors). Proceedings of the second international symposium on the management of large rivers for fisheries. Food and Agriculture Organization & Mekong River Commission, FAO Regional Office for Asia and the Pacific, Phnom Penh, Kingdom of Cambodia.

Winemiller, K. O., and D. B. Jepsen. 2004. Migratory neotropical fish subsidize food webs of oligotrophic blackwater rivers. Pages 115-132 in G. A. Polis, M. E. Power, and G. R. Huxel (editors). Food webs at the landscape level. The University of Chicago Press, Chicago and London.

Winemiller, K. O., C. G. Montana, D. L. Roelke, J. B. Cotner, J. V. Montoya, L. Sanchez, M. M. Castillo, and C. A. Layman. 2014. Pulsing hydrology determines top-down control of basal resources in a tropical riverfloodplain ecosystem. Ecological Monographs 84:621-635.

Winemiller, K. O., and G. A. Polis. 1996. Food webs: what can they tell us about the world? Pages 1–22 in G.A. Polis and K.O. Winemiller (editors) Food webs: integration of patterns and dynamics. Chapman & Hall, New York.

Zeug, S. C., and K. O. Winemiller. 2008. Evidence supporting the importance of terrestrial carbon in a largeriver food web. Ecology 89:1733-1743.

By Caroline C. Arantes; Kirk O. Winemiller; Miguel Petrere and Carlos E. C. Freitas

Reported by Author; Author; Author; Author

Copyright of Freshwater Science is the property of The Society for Freshwater Science and its content may not be copied or emailed to multiple sites or posted to a listsery without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.