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Abstract

We give a complete classification of twists of supersymmetric Yang—Mills theories
in dimensions 2 < n < 10. We formulate supersymmetric Yang—Mills theory classi-
cally using the BV formalism, and then we construct an action of the supersymmetry
algebra using the language of L, algebras. For each orbit in the space of square-zero
supercharges in the supersymmetry algebra, under the action of the spin group and
the group of R-symmetries, we give a description of the corresponding twisted theory.
These twists can be described in terms of mixed holomorphic-topological versions of
Chern—Simons and BF theory.
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1 Introduction

In this paper we calculate supersymmetric twists of super Yang—Mills theories in
dimension 2 through 10. Our main tools are the classical Batalin—Vilkovisky formal-
ism, which eliminates the need for auxiliary fields to close the on-shell supersymmetry
action, and a consistent use of dimensional reduction which allows us to deduce lower-
dimensional statements from higher-dimensional statements.

1.1 Classical field theories

Let us begin with an informal discussion of classical field theories. A classical field
theory is usually defined in terms of the data of the space of fields F equipped with
an action functional. To incorporate gauge symmetries, one may either work with
JF as a stack or, as in the BRST formalism, with & as a Q-manifold, i.e. a graded
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manifold equipped with a square-zero vector field of cohomological degree 1 (the
BRST differential). In the Batalin—Vilkovisky [11] approach one considers instead the
space of BV fields €, which is equipped with a (—1)-shifted symplectic structure; this
may be modeled by a Q P-manifold [83]. Moreover, we assume that the Q-structure
is Hamiltonian, i.e. that it is given by a Poisson bracket {S, —} with respect to the BV
action functional. Here € is interpreted as modelling the derived critical locus of the
action functional on J.

In this paper we follow the approach developed in the works of Costello and
Gwilliam [29, 30]. As the space of BV fields € is an infinite-dimensional manifold,
it is difficult to work with it directly (for instance, to make sense of a (—1)-shifted
symplectic structure). Instead, we zoom in on the neighborhood of a point where QO
vanishes (i.e. we consider a given classical solution). We may then consider € as the
space of sections of a graded vector bundle £ — M over the spacetime manifold M.
This allows us to work with finite-dimensional objects throughout. Namely, a (—1)-
shifted symplectic structure on € boils down to a (—1)-shifted symplectic pairing
E = E'[—1], where E' = E* ® Dens),. We refer to Definition 2.16 for the pre-
cise definition of a classical field theory in the BV formalism that we use. Moreover,
with this definition we may talk about weak equivalences of classical field theories
(a notion inaccessible with Q P-manifolds) which are simply maps of classical field
theories inducing a quasi-isomorphism on €. We call these perturbative equivalences
(see Definition 2.24) to emphasize that we are working in a formal neighborhood of
a given classical solution. For simplicity, throughout the paper we ignore issues of
unitarity: in other words, we always consider complexified bundles of fields.

1.2 Classical supersymmetric field theories

Now consider a classical field theory where the spacetime manifold is M = R", and
where the theory is translation-invariant. Given the data of a spinorial representation
¥ equipped with a symmetric pairing I': Sym?(¥) — V = C", we may construct
a super Lie algebra of supertranslations 2l = I1X @ V, where II indicates that X
is placed in odd Z/27Z-degree, with the only nonvanishing Lie bracket given by I.
A supersymmetric classical field theory is then a translation-invariant classical field
theory on R” where the translation action on the fields is extended to an action of
the super Lie algebra 2. In addition, we may consider an R-symmetry group G g that
acts on X preserving I" and the so(n)-action and also compatibly on the classical field
theory.

In most literature on supersymmetry one simply tries to build an action of 2 on the
space of ordinary fields I. However, one often runs into a problem that the supersym-
metry action is only on-shell: the map from 2 to vector fields Vect(F) preserves Lie
brackets only on the critical locus of the action functional. The usual solution is to
enlarge the space of fields by adding auxiliary fields with no kinetic terms on which
there is an honest (off-shell) action of 2. However, this choice may be not canonical.
For instance, in 10d N = (1, 0) super Yang-Mills one needs to break the Lorentz
group SO(10) to Spin(7) x SO(2) to have an off-shell action of a subalgebra of 2
where the odd part is 9-dimensional (instead of 16-dimensional) [13].
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We instead take another approach pioneered by Baulieu, Bellon, Ouvry and Wallet
[17]. Namely, one may canonically extend the supersymmetry action from the space
of ordinary fields F to the space of BV fields €. The property of the action being
on-shell now means that the map 2 — Vect(€) preserves Lie brackets, but only
up to homotopy. One may then try to incorporate these homotopies: to extend the Lie
action to an L, action. This contrasts with the auxiliary field approach of the previous
paragraph, where one instead builds a resolution of the space of BV fields on which
the supersymmetry Lie algebra acts strictly.

In this paper we consider supersymmetric Yang—Mills theories in dimensions 2
through 10. In dimensions 3 through 10 these may be obtained by dimensional reduc-
tion of the following theories: 10d N = (1, 0) super Yang-Mills, 6d N = (1, 0) super
Yang—Mills, 4d N = 1 super Yang—Mills and 3d N = 1 super Yang—Mills. These the-
ories depend on a choice of a Lie algebra g equipped with a symmetric nondegenerate
bilinear pairing. In addition, in dimensions 6, 4 and 3 we may add matter multiplets: in
dimension 6 these depend on a choice of a symplectic g-representation (a hypermulti-
plet), in dimension 4 these depend on a choice of a g-representation (a chiral multiplet)
and in dimension 3 these depend on a choice of an orthogonal g-representation. We do
not consider superpotential, mass, or Fayet—Iliopoulos terms in this paper. Moreover,
as we are working perturbatively, we ignore all topological terms (6-terms).

The on-shell supersymmetry of pure super Yang—Mills theories in these dimensions
can be proven by using a well-known relationship between composition algebras
(e.g. division algebras) and supersymmetry (see Sect. 3.3) which goes back to the
works [45, 61]. For instance, we may construct the 10d N = (1, 0) supersymmetry
from the algebra of octonions @, 6d N = (1, 0) supersymmetry from the algebra
of quaternions H, 4d N = 1 supersymmetry from the complex numbers C and 3d
N = 1 supersymmetry from the real numbers R. Our treatment follows the work of
Baez and Huerta [8] and we show how to extend the on-shell 2A-action to an L -
action using these ideas. As a new result, we also construct an L;-action on matter
multiplets where the language of composition algebras turns out to be indispensable
(see Sect. 4.2). Namely, for any real associative composition algebra Ag we simply
need a complex g-representation P equipped with an Ar-module structure and a
symmetric bilinear pairing. We have the following three cases:

e (6d N = (1,0) supersymmetry) For Ax = H P is forced to take the form
U ® W,, where U is a symplectic g-representation and W, is a 2d complex
symplectic vector space (so that H ®rx C = End(W,)).

e (4d N = 1 supersymmetry) For Arp = C P is forced to take the form R & R*,
where R is a g-representation.

e (3d N = 1 supersymmetry) For Ag = R we simply have an orthogonal g-
representation P.

In addition to the dimensional reduction of these super Yang—Mills theories, there
are also certain special super Yang—Mills theories with chiral supersymmetry in dimen-
sion 2: namely, 2d N = (1, 0), N = (2, 0) and N = (4, 0) with matter as well as pure
N = (N, 0) theories for any N. We treat these separately (see Sect. 3.4), but again
the language of composition algebras turns out to be convenient.
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1.3 Supersymmetric twists

The notion of supersymmetric twisting for a supersymmetric field theory was intro-
duced by Witten [95], and further developed mathematically by Costello [28]. The
definitions we use in this paper will follow our previous work [42], so let us briefly
recall the important terminology.

Suppose Q is a square-zero supercharge, i.e. an odd element Q € %l such that
[Q, O] = 0. Then it gives rise to a square-zero odd symplectic vector field on the space
of BV fields €. In particular, we may modify the differential on € by the replacement
d — d + Q. Working up to perturbative equivalence, this turns out to drastically
simplify the theory as we will shortly see.

The original classical field theory carried a Z x Z/2Z-grading, where Z is the
cohomological (in the physics literature: ghost number) grading and Z/27 is the
fermionic grading. We see that d has bidegree (1, 0) while Q has bidegree (0, 1). So,
in general the twisted theory is only Z/27Z-graded (with respect to the total grading).
To improve that, we may additionally consider a homomorphism «: U(1) — Gpr
into the R-symmetry group under which Q has weight 1 and such that the a-grading
modulo 2 coincides with the fermionic grading. Then the «-grading gives rise to a
Z-grading on the twisted theory.

Finally, let us observe that the original classical field theory carried an action of
Spin(n) by rotations of R”. But since Q is not preserved under Spin(n), this action
does not survive in the twisted theory. To improve that, we may consider a group G
with a twisting homomorphism G — Spin(n) x G g under which Q is a scalar. Given
such a twisting homomorphism, the twisted theory carries a G-action.

To summarize, supersymmetric twisting consists of the following three steps:

(1) Choose a square-zero supercharge Q € ¥ and modify the differential of the theory
asd — d+ Q.

(2) Choose a group G together with a twisting homomorphism G — Spin(n) x Gg
under which Q is scalar. To remove redundancy, we will assume G — Spin(n) is
an embedding.

(3) Choose a homomorphism «: U(1) — G g under which Q has weight 1 and such
that the o-grading modulo 2 is the fermionic grading. This step may not be possible
in general.

A classification of possible square-zero supercharges Q was previously done in [42]
and in this paper we use that classification to calculate the twist of super Yang—Mills
theories on R” in all dimensions.

1.4 Supersymmetric twists and supergravity

In this paper we only consider the case of global supersymmetry for super Yang—
Mills theories on R”. In certain cases one may consider coupling of super Yang—Mills
to supergravity in which case there is an interpretation of the twisting procedure as
performing perturbation theory in a nontrivial supergravity background. Let us briefly
explain this perspective.
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A classical solution of supergravity consists, in particular, of the following data:
a spacetime manifold M, a Spin(n)-bundle Pspin — M equipped with a connection
(spin connection), a G g-bundle P — M equipped with a connection and a ghost for
supertranslations 7 € I'(M, (Pspin x PR) xSPin(m*Gr 37y The ghost 7 is bosonic: it
lives in bidegree (—1, 1) for the Z x Z/27Z-grading, so it makes sense to give it a non-
zero value. If we couple super Yang—Mills to supergravity, then the super Yang—Mills
fields become sections of the associated bundles to Pspin X Pg.

We have the following supergravity analogs of the data (Q, ¢, o) for supersym-
metric twisting:

e The supergravity analog of the choice of a square-zero supercharge Q is the value
of the ghost 7.

e The supergravity analog of the twisting homomorphism is a choice of G-bundle
Pg — M with connection so that Pspin X P is induced via the homomorphism
G — Spin(n) x Grg.

e The supergravity analog of «: U(1) — G is a choice of trivial U(1)-subbundle
in G g on which the connection restricts to zero.

1.5 Applications to quantization

The quantization of gauge theories is notoriously subtle and requires a rich theory of
renormalization. One attractive application of the descriptions of the twists of super-
symmetric gauge theories that we provide is to study quantization in a setting where
the machinery required for renormalization is much more rigid.

To rigorously study the quantization of supersymmetric Yang—Mills theory we
can work with the mathematical theory of renormalization developed by Costello in
[29]. This theory of renormalization can been used to study field theories with and
without supersymmetry: for example in [24, 26, 33, 49, 64]. In the context of (non-
supersymmetric) Yang—Mills theory for instance, it is shown that this theory recovers
asymptotic freedom by an explicit analysis of the local counterterms present in the
four-dimensional gauge theory [43].

In principle, the existence of local counterterms can be used to analyze the full
untwisted supersymmetric gauge theories in a mathematically rigorous way. In prac-
tice, however, our approach to renormalization does not provide any significant
advantage over traditional approaches used in QFT. However, a significant simpli-
fication happens at the level of the twisted supersymmetric Yang—Mills theories that
we study in this work. To start with, for some examples (but not all), the twisted theory
turns out to be a topological field theory. This occurs whenever the bracket [Q, —]
with the twisting supercharge surjects onto the space of translations. The theory of
renormalization for topological theories can be handled using configuration spaces [7,
60].

In the general setting of this paper, while not every twist results in a topological
field theory, it does result in a theory in which some directions of spacetime behave
topologically and the remaining directions behave holomorphically. For a mixed
holomorphic-topological translation invariant field theory of this type on R” x C¢,

) Birkhauser



73 Page8of 124 C. Elliott et al.

this means that at least half of the linearly independent translation invariant vector
fields act on the field theory in a BRST exact way.

Inspired by the work of Costello and Li in [33] and Li in [65, 66], the foundations
of renormalization for mixed holomorphic-topological field theories on Euclidean
space has been developed in [92]. The key result is that the renormalization for mixed
holomorphic-topological theories is extremely well-behaved from an analytic perspec-
tive. It is shown in the cited work that, to first order in A, the renormalization of mixed
holomorphic/topological theory is finite. Furthermore, in [66], it is shown that in real
dimension two this holds to all orders in .

These results yield a practical approach to the problem of mathematically character-
izing the one-loop quantization of every twist of supersymmetric Yang—Mills theory.
Furthermore, in all examples of theories obtained via twisting occurring in dimensions
8 and lower, not much is lost when asking for the one-loop quantization. The twisted
gauge theories here are all either equivalent to BF-type theories (see Sect. 2.6.1) or
deformations of such theories by a holomorphic differential operator. Such theories
admit prequantizations (that is, they define families of effective field theories com-
patible under renormalization group flow), which are exact at one loop, meaning all
higher order corrections vanish identically.

From this starting point, the first natural problem would be to verify whether these
one-loop exact prequantizations define actual quantizations of the classical twisted
field theory. That is, for each such theory, to compute the one-loop anomalies to the
solution of the quantum master equation. This problem comes in two parts: first, to
compute the one-loop anomaly to quantization of the theory on flat space R" x C¢,
and second — in the case where we can use a twisting homomorphism to define the
twisted theory on certain structured (n +2d)-manifolds, to calculate the corresponding
one-loop anomaly on curved space (in other words, incorporating the computation of
a gravitational anomaly). We plan to return to this question in future work.

1.6 The relationship to factorization algebras

In our previous paper [42], we discussed supersymmetric twisting with an emphasis not
on the classical fields of a supersymmetric field theory, but instead on their classical or
quantum observables. The factorization algebra formalism of Costello and Gwilliam
[30, 31] provides a model for the local structure of the observables in a general quantum
field theory. In brief, for every open subset U € M of the spacetime manifold, one
associates a (possibly Z x Z/2Z-graded) vector space Obs(U) of local observables on
U. For any pair U;, U, C V of disjoint open subsets of an open set V, one associates
a morphism

my, y,: Obs(Up) ® Obs(Us) — Obs(V),

thought of as an operator product for local observables. These products should vary
smoothly as one varies the open subsets Uy, U, and V. Starting with a classical field
theory on M, defined using the BV formalism, one can build a factorization algebra
Obs®! modelling the classical observables of the field theory. If the classical field
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theory carries the action of a group G, so does the associated factorization algebra.
Furthermore, Costello and Gwilliam develop techniques for the quantization of such
algebras of classical observables, using the theory of renormalization as discussed in
the previous section.

In [42] we studied the supersymmetric twisting procedure as applied to factoriza-
tion algebras on R" with an action of a supersymmetry algebra. If Q is a topological
supercharge, then the Q-twist Obs€ of a supersymmetric factorization algebra auto-
matically satisfies a strong translation invariance condition: all translations must act
homotopically trivially. In good circumstances, we can say even more. An [, -algebra
is an algebra over the operad of little n-disks; in the language above, this can be
obtained from a factorization algebra for which homotopy equivalent configurations
Uy, U € V induce homotopy equivalent products.

Theorem ([42, Theorem 3]) If Q is a topological supercharge, and the operator
Obs?(B,(0)) — Obs2(Bg(0)) associated to the inclusion of concentric balls is
an equivalence, then the factorization algebra Obs€ has the canonical structure of an
E,-algebra.

The hypothesis of the theorem is automatically satisfied, for example, for supercon-
formal theories, and should be concretely checkable in examples.

In the present work we classify twists of classical field theories, to which one can
associate twisted factorization algebras of classical — and, if the appropriate anomalies
vanish, quantum — observables in the sense of our previous work. In some (topolog-
ical) examples, these define [E,-algebras. In other examples, where the twist is not
fully topological, the twisted local observables will define higher analogues of vertex
algebras (as in, for instance, [51]).

1.7 Summary of twisted super Yang-Mills theories

In this section we will summarize the main results of the paper presented in Part 2,
where we calculate twists of super Yang—Mills theories in dimensions 2 through 10.

Let us begin by explaining what we mean by “calculation”. Recall that for a Lie
algebra g there is a d-dimensional topological BF theory defined on a d-dimensional
spacetime manifold M with the space of BV fields Q°*(M; g)[1] D Q2°*(M; g*)[d — 2],
where Q° denotes the space of differential forms equipped with the de Rham dif-
ferential d. If M is replaced by a complex manifold X, we may also consider
its version with the space of fields Q*°(X; g)[1] & Q*°(X; g*)[2dim(X) — 2],
where Q°° is the space of differential forms equipped with the Dolbeault differ-
ential. Finally, we have yet another version, a holomorphic BF theory, with the space
of BV fields Q¥*(X; g)[1] @ QUmE)-*(X: g*)[dim(X) — 2], again equipped with
the Dolbeault differential. We will denote the space of fields in these three exam-
ples as T*[—1]Map(Mgr, Bg), T*[—1]Map(Xpol, Bg) and T*[—1]Map(X, Bg)
respectively (the notation is explained in Sect. 2.2). We may also combine these
three examples into what we call a generalized BF theory with the spaces of fields
T*[—1]Map(X X Ypol X Myr, Bg) (see Definition 2.42 for more details).

Let us also recall that if g is equipped with a symmetric bilinear nondegenerate
pairing, we also have a 3-dimensional topological Chern—Simons theory. If we forgo
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Z-gradings and work with Z /27Z-gradings, we may also consider a topological Chern—
Simons theory in any odd dimension (see [3] for a 1-dimensional version and [9] for
a 5-dimensional version). Just like for the BF theory, we also have two other versions
which may be combined into a generalized Chern—Simons theory. Another direction
we can generalize in is to replace the Lie algebra g by a dg Lie algebra, in which case
the BF theory itself becomes a particular example of the Chern—Simons theory.

Our goal will then be to show that a particular twist of super Yang—Mills is equivalent
to a given generalized Chern—Simons theory. We summarize our results in two forms.
In Tables 1, 2 and 3 we summarize all the possible twists of dimensional reductions
of the 10d N = (1,0), 6d N = (1,0) and 4d N = 1 super Yang—Mills theories
respectively. In Table 4 we summarize the twists of 2d supersymmetric Yang—Mills
theory. Before these tables, we will give a short description of each twisted theory in
a more physical language, with references to where in the literature it was previously
considered.

Remark Let us briefly discuss a twisting construction that our classification will not
include. Given a supercharge Q whose square is not zero, but instead generates an
Sl-action on spacetime, one can construct a Q-twisted theory on the locus of S'-
fixed points. This is Nekrasov’s Q2-background construction [70, 71], see also the
discussion in [27]. In [70], 3d and 5d topological Chern—Simons theories, as well as a
4d mixed holomorphic-topological Chern—Simons theory are discussed as arriving in
this context. In [27] the 5-dimensional theory, and a non-commutative version thereof,
is shown to arise from this construction.

Dimension 10
e N = (1, 0) holomorphic twist. The unique twisted super Yang—Mills theory in 10
dimensions is equivalent to the 5d holomorphic Chern—Simons theory defined on
a Calabi—Yau 5-fold. Note that this theory is only Z/27Z-graded. This twist was
first studied by Baulieu [14]. As is well-known [32, 50], the theory has a one-loop
anomaly and does not admit a quantization.

Dimension 9

e N = 1 minimal twist. The unique twisted super Yang—Mills theory in 9 dimensions
is equivalent to a generalized version of the Chern—Simons theory defined on a
product of a Calabi—Yau 4-fold and a real 1-manifold. Note that this theory is
only Z/2Z-graded. Its classical solutions are G-bundles holomorphic along the
Calabi—Yau manifold and flat along the 1-manifold.

Dimension 8

e N = 1 holomorphic twist. Super Yang—Mills theory in 8 dimensions admits three
classes of twists. The minimal twist, by a holomorphic (or, equivalently, pure)
supercharge, is equivalent to a holomorphic version of the BF theory defined on a
complex 4-fold.

e N = 1 intermediate twist. The holomorphic twist admits a deformation to a twist
by a rank 1 impure spinor !. This theory is equivalent to a generalized version

! When we refer to the rank of a supercharge we will always mean the rank as a tensor, for instance in the
8d N = 1 case supercharges live in a tensor product S ® W, where S is an irreducible representation of
Spin(8) and W is a two-dimensional auxiliary symplectic vector space.
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of the Chern—Simons theory defined on a product of a Calabi—Yau 3-fold and an
oriented surface. Note that this theory is only Z/27Z-graded.

e N = 1 topological twist. The holomorphic twist also admits a deformation to
a topological twist defined on Spin(7)-manifolds. This theory is perturbatively
trivial, in the sense that the classical BV complex is contractible. It was studied
in [1, 15]. The partition function of this theory counts Spin(7)-instantons modulo
gauge [37, 63, 77]. If we denote by 2 the Cayley 4-form on a Spin(7)-manifold
M, then the classical solutions are given by principal Gr-bundles on M (where
Gr is a compact Lie group) together with a connection A, such that its curvature
F 4 satisfies the equation

F=%(QAF). (D

Dimension 7

e N = 1 minimal twist. The twists of super Yang—Mills theory in 7 dimensions arise
by dimensionally reducing the twists in 8 dimensions. The minimal twist, by a
pure spinor, is equivalent to a generalized version of the BF theory defined on a
product of a complex 3-fold and a real 1-manifold.

e N = 1 intermediate twist. The minimal twist admits a deformation to a twist by
arank 1 impure spinor. This theory is equivalent to a generalized version of the
Chern—Simons theory defined on a product of a Calabi—Yau surface and a real
oriented 3-manifold. Note that this theory is only Z/27Z-graded.

e N = 1 topological twist. The minimal twist also admits a deformation to a topo-
logical twist defined on G;-manifolds. This theory is again perturbatively trivial. It
was studied in [1, 15]. The partition function of this theory counts G>-monopoles
modulo gauge [38]. If we denote by y the calibration 4-form on a G2-manifold M,
then the classical solutions are given by principal Gr-bundles P — M together
with a connection A and a section o € I'(M, ad P) satisfying

dao = *(F A ). 2)

Dimension 6

e N = (1,0) and N = (1, 1) holomorphic twist. The holomorphic twist of the
6d N = (1,0) super Yang-Mills theory with matter valued in a symplectic
G-representation U is equivalent to the theory whose classical solutions are holo-
morphic maps from a Calabi—Yau 3-fold X to the Hamiltonian reduction of U
(a holomorphic version of the gauged Rozansky—Witten model). In general, this
theory is only Z/27Z-graded. If U = T*R, the theory is Z-graded and is the cotan-
gent theory to the space of holomorphic maps from a complex 3-fold to R/G. 6d
N = (1, 1) super Yang—Mills corresponds to the special case R = g. This twist is
studied in work of Costello—Yagi and of Butson [22, 34].

o N = (1, 1) rank (2, 2) twist. In the N = (1, 1) case there are two intermediate
twists. The one by a supercharge of rank (2, 2) is equivalent to a generalized
version of the Chern—Simons theory defined on a product of a Calabi—Yau curve
and a real oriented 4-manifold. Note that this theory is only Z/27Z-graded.
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e N = (1, 1) special rank (1, 1) twist. The other intermediate twist, by a rank (1, 1)
supercharge, is equivalent to a generalized form of the BF theory defined on a
product of a complex surface and a real surface.

e N = (1, 1) topological twist. The special rank (1, 1) twist admits a deformation
to a topological twist defined on Calabi—Yau 3-folds. This theory is perturba-
tively trivial. It was studied in [1, 15]. The partition function of this theory
counts solutions to the Donaldson—Thomas equations [88]. If we denote by w
the Kihler form on a Calabi—Yau 3-fold M, then the classical solutions are given
by principal Gr-bundles P — M together with a connection A and a 3-form
u € Q%3(M, adP ® C) satisfying

Foo404u=0 3)
Fii A +[u,ii] =0. “)

Dimension 5

e N = 1and N = 2 minimal twist. The minimal twist of the 5d N = 1 super Yang—
Mills theory with matter valued in a symplectic G-representation U is equivalent to
a theory defined on a product of a Calabi—Yau surface X and a real 1-manifold M.
The classical solutions are given by maps from X x M to the symplectic reduction
of U holomorphic along X and locally-constant along M. In general, this theory
is only Z/27Z-graded. It was studied by Kéllén and Zabzine [57]. If U = T*R, the
theory is Z-graded and is the cotangent theory to the space of maps from X x M
to R/G holomorphic along X and locally-constant along M. 5d N = 2 super
Yang—Mills corresponds to the special case R = g.

o N = 2 intermediate twist. In the N’ = 2 case the minimal twist admits a defor-
mation to an intermediate twist. The corresponding theory is equivalent to a
generalized BF theory defined on a product of a complex curve C and a real
3-manifold M. The twist was considered in [41] in the case M = S! x X for a
Riemann surface X, where the moduli space can be viewed as a multiplicative
version of the Hitchin system.

e N = 2 ropological A twist. The intermediate twist admits a deformation to two
topological twists. One, which we refer to as the A-twist, arises by dimensionally
reducing the topological twist of 6d N = (1, 1) super Yang—Mills theory. This
theory is perturbatively trivial. It was studied by Qiu and Zabzine, [76] (see also
[5] for a discussion of the twisting homomorphism). The partition function of this
theory counts solutions to the Haydys—Witten equations [52, 93]. Let M be a K -
contact manifold and denote by R the Reeb vector field. The classical solutions
are given by principal Gr-bundles P — M together with a connection A and a
section B € Q%(M; adP) satisfying a self-duality equation (g * B = B which
together satisfy the following equations (see [76, Equations (4) and (5)]; we refer
there for the explanation of the notation):

irF — @iB)" =0 (5)
1 1
F;—ZBXB—ELRdAB:O. (6)
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e N = 2 topological B twist. Finally, the other topological twist, associated to a
rank 4 supercharge, can be identified with a 5d Chern—Simons theory defined on
an oriented 5-manifold. Note that this theory is only Z/2Z-graded. This twist was
identified in work of Geyer—Miilsch and of Bak—Gustavsson [9, 10, 47].

Dimension 4

e N = 1 holomorphic twist. The holomorphic twist of the 4d N = 1 super Yang—
Mills theory with matter valued in a G-representation R is equivalent to the
cotangent theory of the theory of holomorphic maps from a complex surface X to
R/G. This twist was studied by Johansen [56] (see also [16, 28]).

e N =2 and N = 4 holomorphic twist. We may also consider holomorphic twists
of 4d N = 2 and 4d N = 4 super Yang-Mills theories. The holomorphic twist of
4d N = 2 super Yang—Mills with matter valued in a symplectic G-representation
U is equivalent to the cotangent theory of the theory of holomorphic maps from
a Calabi—Yau surface X to the Hamiltonian reduction of U. The d N = 4 super
Yang-Mills theory corresponds to the case U = T*g in which case the space
of classical solutions is a (—1)-shifted cotangent bundle to the moduli stack of
G-Higgs bundles on a complex surface X.

e N = 2 and N = 4 intermediate twist. There is a deformation of the N = 2
holomorphic twist which is equivalent to a theory of maps from a product of a
Calabi—Yau curve C and an oriented surface X into the Hamiltonian reduction of
U which are holomorphic along C and locally-constant along X. This twist was
previously studied by Kapustin [58].

o N =2 topological rank (2, 0) twist. The N = 2 holomorphic twist admits a defor-
mation to a topological twist, the Donaldson twist. This theory is perturbatively
trivial. This theory was first considered in [95], and the coupling to matter was
studied in [4, 6, 55]. The partition function counts solutions to nonabelian Seiberg—
Witten equations [74]. Let Gg be acompact Lie group and U a quaternionic-unitary
Gr-representation. In particular, U carries a commuting SU(2)-action given by
unit quaternions. Suppose M is a spin 4-manifold and let Pspi, — M be the corre-
sponding Spin(4)-principal bundle. The classical solutions in this theory are given
by principal Gr-bundles P — M together with a connection A and a section
uel' (M, (P x Pspn) x GrxSpin(4) 17y which together satisfy

dau=0 (7
FT+ &) =0, (8

where @ is the moment map and d 4 is the Dirac operator (we refer to [53, 74] for
more details).

e N = 4 topological rank (2, 0) twist. The same twist may be considered for the 4d
N = 4 super Yang-Mills theory, in which case it has three compatible twisting
homomorphisms [97] (see also [62, 67] for more details), i.e. there are three ways
of interpreting the differential equations on arbitrary oriented 4-manifolds. First,
considering the 4d N = 4 super Yang—Mills theory as a 4d N = 2 super Yang—
Mills theory with U = g ® H, we obtain a theory which counts solutions to the
nonabelian Seiberg—Witten Eqs. (7) and (8). Another twisting homomorphism was
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studied by Vafa and Witten [91]. The corresponding theory counts solutions of the
Vafa—Witten equations on an oriented 4-manifold M. The classical solutions are
given by principal Gr-bundles P — M together with a connection A, a self-dual
two-form B € %1 (M, adP) and a section C € I'(M, ad P) which satisfy

—dasC +d5B =0 ©9)

L1 1
F*— B xB—[C.B]=0. (10)

Finally, the third twisting homomorphism was studied by Marcus [69] and
Kapustin and Witten [59]. The classical solutions are given by principal Gpr-
bundles P — M together with a connection A and a one-form ¢ € Q'(M, adP)
which satisfy

(F=¢pr¢)" =0 (11
(dap)” =0 (12)
di¢ = 0. (13)

Twists of the 4d N = 4 super Yang—Mills theory in the context of lattice gauge
theory were also studied in [23, 90].

e N = 4 topological B twist. For the 4d N = 4 super Yang-Mills theory there is
a single topological twist which is not perturbatively trivial. It is equivalent to
a topological BF theory defined on a 4-manifold (this theory corresponds to the
value t = =i of the family considered in [59]).

e N = 4 ropological rank (2,2) twist. The N = 4 topological B twist admits a
deformation to a perturbatively trivial theory. The corresponding deformation is
parameterized by s € C*, where s = 1 is the topological B twist. Choosing a
parametert € C* satisfying s = —r2, the theory counts solutions of the Kapustin—
Witten equations on an oriented 4-manifold M. The classical solutions are given
by principal Gr-bundles P — M together with a connection A and a one-form
¢ € Q' (M, ad P) which satisfy

(F—¢pAp+tdap)t =0 (14)
(F—¢png—1t""dag)” =0 (15)
dip = 0. (16)

e N = 4 ropological rank (2, 1) twist. The N = 4 intermediate twist also admits a

deformation to a perturbatively trivial theory defined on Kéhler surface M given by
twisting by arank (2, 1) supercharge. The corresponding equation is a deformation
of the Kapustin—Witten equations using the Kihler form.
An analysis of topological twists of the 4d N = 4 super Yang—Mills theory using
similar techniques to this paper, but with the aim of obtaining the full derived stack
of solutions to the equations of motion, rather than only the perturbative classical
field theory, was carried out in [44].
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Dimension 3

o N = 2 minimal twist. The minimal twist of the 3d N = 2 super Yang—Mills theory
with matter valued in a G-representation R is defined on a product C x L of a
complex curve C and a real 1-manifold L. It is equivalent to the cotangent theory
of the theory of maps from C x L to R/G which are holomorphic along C and
locally-constant along L. This twist was studied in [2]

e N = 4 and N = 8 minimal twist. We may also consider the minimal twist of
N = 4 and N = 8 super Yang-Mills theories. The minimal twist of the N = 4
super Yang—Mills theory with matter valued in a symplectic G-representation U
is equivalent to the cotangent theory of the theory of maps from C x L to the
Hamiltonian reduction of U which are holomorphic along C and locally-constant
along L. The 3d N = 8 theory corresponds to the case U = T*g.

e N = 4 topological A twist. In 3d N = 4 super Yang—Mills theory we may consider
a deformation of the minimal twist which gives rise to a perturbatively trivial
topological theory defined on spin 3-manifolds. This twist was studied in [12, 20,
72]. From a mathematical point of view the space of states on a two-sphere is
studied in [21]. The partition function counts solutions to a 3-dimensional version
of the nonabelian Seiberg—Witten Eqs. (7) and (8). Let Gr be a compact Lie group
and U a quaternionic-unitary Gpr-representation. Let M be a spin 3-manifold
and let Pspin — M be the corresponding Spin(3)-principal bundle. The classical
solutions in this theory are given by principal Gr-bundles P — M together
with a connection A, a section 0 € I'(M, adP) and a section u € I'(M, (P %
Pspin) x 9&XSPING) 17) which together satisfy

dau+[o,ul =0 a7
F +xdjqo + ®(u) =0. (18)

e N = 8 topological A twist. We may regard the 3d N = 8 super Yang-Mills
theory as a 3d N = 4 super Yang—Mills theory with matter valued in U = g ® H.
In particular, the partition function in the twisted theory counts solutions to the
Egs. (17) and (18). We may also consider a different twisting homomorphism
obtained by dimensionally reducing the Vafa—Witten or Kapustin—Witten twisting
homomorphism. The classical solutions in this theory are given by principal G-
bundles P — M (G is the complexification of the compact Lie group Gr) together
with a connection A and a section 0 € I'(M, adP) satisfying a complexified
version of the Bogomolny equation:

F +xdso = 0.

The corresponding field theory in the formalism of extended topological field
theories is studied in [18].

e N =4 and N = 8 topological B twist. The minimal twist of the 3d N = 4 super
Yang-Mills theory also admits another deformation to a gauged version of the
Rozansky—Witten model valued in the Hamiltonian reduction U /G [19, 78].
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Dimension 2

e N = (2,2),(4,4), (8,8) holomorphic twist. There is a holomorphic twist in
dimension 2 which is defined on complex curves C. The twist of 2d N = (2, 2)
super Yang—Mills theory with matter valued in a G-representation R is equivalent
to the cotangent theory to the theory of holomorphic maps from C to R/G. The
twist of 2d N = (4, 4) super Yang—Mills theory with matter valued in a sym-
plectic G-representation U is equivalent to the cotangent theory to the theory of
holomorphic maps from C to the Hamiltonian reduction U /G. Finally, the case
of 2d N = (8, 8) super Yang—Mills theory corresponds to choosing U = T*g.

e N=(2,2),4,4), (8,8) topological A twist. In each of these cases, the minimal
twist can again be deformed to a topological theory in two inequivalent ways.
The first is a perturbatively trivial theory, the gauged A-model. We begin with a
description of the twist of the 2d N = (2, 2) super Yang—Mills theory with gauge
group GR (a compact Lie group) and matter valued in a unitary Gr-representation
R equipped with a moment map ®. The partition function counts solutions to
symplectic vortex equations [25]. Let ¥ be an oriented surface equipped with an
almost complex structure and a square root S of the line bundle of densities Densy;.
The classical solutions are given by principal Gr-bundles P — X equipped with
a connection A and a section u € I'(M, (P x°% R) ®g S) which satisfy

au=0 (19)
F+®u)=0. (20)

Next, consider the twist of the 2d N = (4, 4) super Yang—Mills theory with
a complexified gauge group G and matter valued in a complex symplectic G-
representation U equipped with a moment map . In this case the classical
solutions are given by principal G-bundles P — X equipped with a connec-
tion A and a section u € T'(Z, (P x% U) ®g S) which satisfy a complexified
version of (19), (20):

au=0 21)
F+®u)=0. (22)

Finally, consider the twist of the 2d N = (8, 8) super Yang-Mills theory. The
classical solutions are given by principal G-bundles P — X equipped with a
connection A and sections u; € ['(Z, adP), ur € Q"1 (Z, coad P) which satisfy

dau; =0 (23)
daur =0 (24)
F+2(uy,up) =0. (25)

e N = (2,2),(4,4), (8, 8) topological B twist. The other topological twist gives
rise to a gauged B-model. The twist of the 2d N = (2, 2) super Yang—Mills theory
with complexified gauge group G and matter valued in a G-representation R is
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Fig. 1 This figure shows the orbits of square-zero supercharges in each dimension, and how they relate to
one another under dimensional reduction. The labels indicate each orbit: the number refers to the rank, and
the subscript indicates the situations where the supercharges of a given rank split into multiple orbits. Each
column is labelled by a dimension, and each row by the number of invariant directions of the supercharge.
Colours indicate the maximal supersymmetry algebra where the given supercharges live, so black indicates
supercharges defined in algebras with 16 supercharges, gray those with 8 supercharges, and white those
with 4 supercharges. There is an arrow whenever one twist dimensionally reduces to another twist one
dimension lower

equivalent to the cotangent theory to the theory of locally-constant maps from a
surface ¥ to R/G. The twist of the 2d N = (4, 4) super Yang—Mills theory with
complexified gauge group G and matter valued in a symplectic G-representation
U is equivalent to the cotangent theory of the theory of locally-constant maps
from ¥ to the Hamiltonian reduction U /G. Finally, the case of the 2d N = (8, 8)
super Yang—Mills theory corresponds to choosing U = T*g. The study of the
topological twists of 2d N = (2, 2) supersymmetric field theories goes back to the
works of Eguchi and Yang [40] and Witten [94].

(N, 0) holomorphic twist. Theories with chiral supersymmetry in 2 dimensions (i.e.
with 2d (N, 0) supersymmetry) only admit a holomorphic twist. The corresponding
twisted theory is equivalent to a cotangent theory to the theory of holomorphic maps
from a complex curve C to gN~2/G. Twisted 2-dimensional (2, 0) o-models were
first studied by Witten in [94], and can be used to obtain the chiral algebra of chiral
differential operators [96].
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Table 1 Twists of Maximally Supersymmetric Pure Yang-Mills Theories with Lie algebra g (16 super-

charges)

d N Twist

Description

Invariant Directions

10 (1,0) Rank (1, 0)

9 1 Rank 1

8 1 Rank (1, 0) pure

Rank (1, 1)

Rank (1, 0) impure

7 1 Rank 1 pure

Rank 2

Rank 1 impure

6 (1, 1) Rank (1, 0)

Rank (1, 1) special

Rank (2, 2)

Rank (1, 1) generic

5 2 Rank 1

Rank 2 special

Rank 4

Rank 2 generic

Holomorphic Chern-Simons Theory
Map(C®, Bg)

Generalized Chern-Simons Theory
Map(C* x Rar. Bg)

Holomorphic BF Theory
T*[—1]Map(C*, Bg)

Generalized Chern-Simons Theory
Map(C3 x R3y. Bg)

Perturbatively trivial (Spin(7) Instanton)
Map(C*, Bg)ar

Generalized BF Theory
T*[~1]Map(C* x Ry, Bg)

Generalized Chern-Simons Theory
Map(C2 x RgR, Byg)

Perturbatively trivial (G, Monopole)
Map(C* x Rgr, Bg)ar

Holomorphic BF Theory
T*[—1]Map(C3, g/g)

Generalized BF Theory
T*[—1Map(C? x R, Bg)

Generalized Chern-Simons Theory
Map(C x RgR, Byg)

Perturbatively trivial
Map(C? x R3z. Bg)ar

Generalized BF Theory
T*[~1]Map(C* x Rar, 9/9)

Generalized BF Theory
T*[—1]Map(C x R}y, Bg)

5d Chern-Simons Theory
Map(R3 . Bg)

Perturbatively trivial
Map(C x R3p. Ba)dr

5 (holomorphic)

5 (minimal)

4 (holomorphic)

8 (topological)

4 (minimal)

7 (topological)

3 (holomorphic)

6 (topological)

3 (minimal)

5 (topological)

5 (topological)

1.8 Outline of the paper

The remainder of the paper is divided into two parts. In Part 1 we set up the formalism
that we will use when we study supersymmetric gauge theories and their twists. The
first main ingredient is the Batalin-Vilkovisky formalism for classical field theory
(Sect. 2). The other main ingredient is the systematic study of supersymmetry algebras
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Table 1 continued

d N Twist Description Invariant Directions
4 4 Rank (1, 0) Holomorphic BF Theory 2 (holomorphic)
T*[—1]Map(C},. Bg)
Rank (1, 1) Generalized BF Theory 3
T*[—1]Map(Cpo x R3z. Bg)
Rank (2, 2) special BF Theory 4 (topological)
T*[~1]Map(R{ , Bg)
Rank (2, 1) Perturbatively trivial 4 (topological)
Map(Cpor x R2;. Bg)ar
Rank (2, 0) Perturbatively trivial 4 (topological)
Map(Cy;. Ba)ar
Rank (2, 2) generic Perturbatively trivial 4 (topological)
Map(Rd . Ba)dar
3 8 Rank 1 Generalized BF Theory 2 (minimal)
T*[—11Map(Cpol x Rdr. g/9)
Rank 2 (B) BF Theory 3 (topological)
T*[—1]Map(R3 . 9/9)
Rank 2 (A) Perturbatively trivial 3 (topological)

Map(R3y . 9/8)dR

and supersymmetric action functionals using normed division algebras (Sect. 3). We
use this formalism to prove in Sect. 4 that super Yang—Mills theories with matter
in dimensions 10, 6, 4 and 3 are in fact supersymmetric, meaning that there is a
well-defined L, action of the supersymmetry algebra on the classical BV theory in
question. We introduce the idea of dimensional reduction (Sect. 2.7) for classical field
theories to show that supersymmetry action are well-defined in lower dimensions.

In Part 2 of the paper, we produce the classification of supersymmetric Yang—
Mills theories in dimensions 2 to 10 systematically. We start with dimension 10 and
work down by dimensional reduction. Each subsection is divided by the number of
supersymmetries, and the orbits of square-zero supercharges by which we can twist.
Twisted theories are characterized up to perturbative equivalence, including the resid-
ual Lorentz symmetry acting on each twisted theory.

Part 1.Supersymmetric Gauge Theory

2 The BV-BRST formalism

In this section we will set up the homological formalism in which we study classical
field theory: the BV-BRST formalism. Much of the material in this section is not
original. We refer the reader to [29, 31] for more details on this perspective. We will
conclude the section by describing a number of fundamental examples of classical
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Table 2 Twists of Supersymmetric Yang-Mills Theories with gauge Lie algebra g with a hypermultiplet
valued in a symplectic representation U (8 supercharges)

d N Twist Description Invariant Directions
6 (1,0) Rank (1,0) Holomorphic BF Theory coupled to a holomorphic 3 (holomorphic)
symplectic boson
Sect(C3, (U ® K;:éz)//g)
51 Rank 1 Generalized BF Theory coupled to a generalized 3 (minimal)
symplectic boson
Sect(C? x Rar, (U ® K 5)/9)
4 2 Rank (1, 0) Holomorphic BF Theory 2 (holomorphic)
1/2
TH—11Sect(C, (U ® K5 /19)
Rank (1, 1) Generalized BF Theory coupled to a generalized 3
symplectic boson
Sect(C x R2g. (U @ K/ /)
Rank (2, 0) Perturbatively trivial 4 (topological)
1/2
Sect(C2, (U ® K[5) /9)ar
3 4 Rank 1 Generalized BF Theory coupled to a generalized 2 (minimal)

symplectic boson

T*[~11Sect(C x Rar, (U ® K/ /9)

Rank 2 (B) BF Theory coupled to a symplectic boson 3 (topological)
Map(R3,. U /g)
Rank 2 (A) Perturbatively trivial 3 (topological)

Sect(C x Ryr, (U ® Kéﬂ)//g)dR

Table 3 Twists of Supersymmetric Yang-Mills Theories with gauge Lie algebra g with a chiral multiplet
valued in a representation R (4 supercharges)

d N Twist Description Invariant Directions

4 1 Rank (1, 0) Holomorphic BF Theory coupled to R-matter 2 (holomorphic)
T*[~11Map(C*, R/g)

3 2 Rank 1 Generalized BF Theory coupled to R-matter 2 (minimal)

T*[—1IMap(C x Rgr. R/g)

field theories that are highly structured: mixed holomorphic-topological theories. We
will also discuss the concept of dimensional reduction of a classical field theory on M
along a fibration M — N. We will use the idea of dimensional reduction to construct
many of the supersymmetric field theories which we will consider in the next section.

2.1 Conventions

Throughout the paper we will frequently study objects, for instance vector bundles,
equipped with a Z x Z/27Z-grading. Degree will refer to the first (cohomological)
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Table 4 Twists of Supersymmetric Yang-Mills Theories in two dimensions with gauge group G. When
N = (0, 2) and (2, 2) the theory includes a chiral multiplet valued in a representation R. When N = (0, 4)
and (4, 4) the theory includes a hypermultiplet valued in a symplectic representation U. We can promote
the supersymmetry to N = (8, 8) when U = T*g, but no new twists occur

N Twist Description Invariant Directions

“4,4) Rank (1, 0) Holomorphic BF theory coupled to a 1 (holomorphic)
holomorphic symplectic boson

T*[~1IMap(C, T[11(U /' 9))

Rank (1, 1) (B) Topological BF theory coupled to a 2 (topological)
holomorphic symplectic boson

T*[—1]Map(R3z. U /9)

Rank (1, 1) (A) Perturbatively trivial (A-model) 2 (topological)
Map(R3 . (U/@)dr)
2,2) Rank (1, 0) Holomorphic BF theory coupled to R 1 (holomorphic)
matter
T*[~1Map(C, T[11(R/g))
Rank (1, 1) (B) Topological BF theory coupled to R 2 (topological)
matter
T*[—1]Map(R3y. R/g)
Rank (1, 1) (A) Perturbatively trivial (A-model) 2 (topological)
T*[~11Map(C, (R/g)dr)
N4, 0) Rank (1, 0) Holomorphic BF theory coupled to 1 (holomorphic)

N4 — 2 free fermions
T*[—1]Sect(C, (gN+2 ®
k0
4,0) Rank (1, 0) Holomorphic BF theory coupled to a 1 (holomorphic)
holomorphic symplectic boson

T*[=11Sect(C, (U ® K/ ™) /9)

2,0) Rank (1, 0) Holomorphic BF theory coupled to R 1 (holomorphic)
matter

T*[-11Map(C, R/g)

grading and odd or even to the second (fermionic) grading. We will write ITE to
denote E placed in odd Z/27Z degree. For an element x we denote by |x| € Z /27 the
total degree.

Given a vector bundle E — M we denote by & the topological vector space of
smooth sections of E and by &, the topological vector space of smooth compactly
supported sections. We denote by O(E) (respectively O(E.)) the completed algebra of
symmetric functions on € (respectively £.). We denote by Ojoc(€) the space of local
functionals on € (see [31, Definition 4.5.1.1]). An element of O1o. (&) will be denoted
symbolically by an expression of the form

/Mf(d),fﬁ/,---),
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where f is a density on M depending on infinite jets of sections of E. Note, however,
that the integral here is a formal symbol. The space of local functionals can be viewed
as a subspace

oloc(g) C O(Ec)

where the integral symbol makes sense in earnest when applied to sections which
are compactly supported. We denote by OfgC(S) C Oloc(€) the subspace of local
functionals which are at least cubic.

Given two vector bundles E, F on M we can also make sense of the space of local
functionals from E to F. By definition, this is

Funoe (€, ) = [ | PolyDiff(£X", F)s,

n>0

where PolyDiff (€%, &) denotes the space of polydifferential operators, and we take
coinvariants for the obvious symmetric group action. When & = &, we refer to
Funy,. (€, €) as the space of local vector fields on E. There is a natural Lie bracket on
Funye. (€, €) and a canonical action of this Lie algebra on local functionals.

2.2 Formal moduli problems and classical field theories

The classical BV (Batalin-Vilkovisky) formalism [11] is a model for classical field
theory from the Lagrangian perspective. In brief, the classical BV formalism produces
alocal model for the critical locus of an action functional, but considered in the derived
sense. That is, given a space F of fields and an action functional with derivative dS,
one considers not just the usual locus in F of fields with dS(¢) = 0, but the derived
intersection dCrit(S) = F ﬂ};*g [gs of the zero section in T*JF with the graph of dS.

The formalism we describe below can be interpreted as an abstract formalism
for modelling the tangent complex at a point to a derived critical locus dCrit(S) as a
formal moduli problem. We will provide this motivation and interpretation from formal
derived geometry in brief before proceeding to the main definitions of this section (for
which an understanding of the following motivational notions is not required).

Recall that a formal moduli problem is a functor from connective dg Artinian
algebras (R, m) to simplicial sets which satisfies a derived version of Schlessinger’s
condition. We refer to [68, 75, 89] for more details.

For instance, if g is an L, algebra, we have a formal moduli problem Bg defined
by

(Bg)(R, m) = MC(g ® m),
where MC(g ® m) is the simplicial set of Maurer—Cartan elements. The main result
of [68, 75] is that the functor B defines an equivalence of co-categories between Lo
algebras and formal moduli problems. The inverse functor sends a formal moduli

problem M to the Loo-algebra Ty .[—1], the shifted tangent complex of M at the
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basepoint. This important result will serve as motivation for the main definition in this
section (Definition 2.16).

Remark 2.1 We would like to emphasise that, while our definitions are motivated by
formal derived geometry, all of our constructions will be formulated entirely using the
language of L,-algebras. No knowledge of co-categories or formal derived algebraic
geometry will be needed for any of the results we present in this paper, and — indeed
— using the result of Lurie and Pridham cited above, the datum of a formal moduli
problem is equivalent to the datum of an L, algebra.

Let V be a g-representation. Then we may construct an L, algebra
LV,g =g V[-1]

with the only nontrivial brackets coming from the L, brackets on g and the action
map of g on V. We introduce the notation

V/g:= BLy 4.

Example 2.2 1f g is an L, algebra, it has an adjoint representation g. We define the
n-shifted tangent bundle of Bg to be

T[n]Bg =g[n + 11/g.

Example 2.3 Suppose gis an L, algebra which is bounded as a complex and has finite-
dimensional graded pieces. Then g* is a coadjoint representation of g. We define the
n-shifted cotangent bundle of Bg to be

T*[n]Bg = g*[n — 1]/g.

Definition 2.4 Let g be an L, algebra. A G,,-action on a formal moduli problem Bg
is a weight grading g = €p,,, g(m) compatible with the L, structure.

Example 2.5 Suppose g is an L, algebra and V is a g-representation. Then V /g
carries a Gy,-action: the underlying L, algebra g @ V[—1] carries a grading where
g has weight 0 and V[—1] has weight 1. For instance, T'[n]Bg and T*[n]Bg carry
G,y -actions.

Example 2.6 Suppose g is a dg Lie algebra and U a g-representation equipped with an
n-shifted symplectic pairing U ® U — C[n]. Consider the dg Lie algebra

h=g@®U[-11®g*[n —2]
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with the brackets g ® g — g given by the Lie bracketon g, g ® U — U given by the
g-actionon U, g® g* — g* given by the coadjoint actionand u: UQU — g*[d — 1]
defined by (u(v, w), x)g = ([x, v], w)y. The dg Lie algebra f carries nondegenerate
invariant symmetric pairing of cohomological degree n — 2 given by pairing g and g*
and pairing U with itself. We denote

U/g := Bb.

This formal moduli problem is equipped with a G, -action where g has weight 0, U [—1]
has weight 1 and g*[n — 2] has weight 2. This may be thought of as an infinitesimal
version of the Hamiltonian reduction of U by the g-action.

Now suppose L is a local Ly, algebra on a manifold M. By a local L, algebra,
we mean an L, algebra whose underlying graded vector space is the sheaf of sec-
tions of a graded vector bundle, where the differential and the brackets are given by
polydifferential operators (see [31, Section 3.1.3] for a detailed definition).

Remark 2.7 The constructions given in Examples 2.2 to 2.6 all still make sense for local
L algebras, although we should take some care. Instead of using the linear dual g*
of a dg Lie algebra, we should always form the density-valued dual L' = L* ® densy,
for a local L, algebra L on a manifold M.

For every open subset U C M we have a formal moduli problem
(BL)(U) = BL(U),

i.e. L defines a presheaf B L of formal moduli problems on M. The following definition
was introduced in [31, Definition 4.1.3.3].

Definition 2.8 A local formal moduli problem on M is a presheaf of formal moduli
problems on M represented by a local L, algebra.

Remark 2.9 In [31] an extra assumption of ellipticity is required for the local L
algebras considered. It is only relevant for quantization, which we do not consider in
this paper, so for simplicity we will not require ellipticity (though in fact all examples
we consider will end up being elliptic).

Given a local formal moduli problem M = B L, we may consider the space of local
functionals which is defined as

O1oc (M) := O (L[1]).

The local L, structure on £ induces a Chevalley—FEilenberg differential on Oy, (M).

Example 2.10 Let X, Y be complex manifolds, let M be a smooth manifold and let Bg
be a formal moduli problem represented by an L, algebra g. Then we may define the
following local formal moduli problemon X x Y x M. Let Q%' be the graded vector
bundle of (0, n)-forms on X, Q;" be the graded vector bundle of (p, g)-forms on Y
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and 9, a graded vector bundle of differential forms on M. We may then consider a
graded vector bundle

L=0%"029)° ), g
on X X Y x M. It carries a differential given by the sum dx +0y +dy + dg.Italso

carries a local L, structure which uses the L, structure on g and the wedge product
of differential forms. We then define

Map(X X Ypol X Myr, Bg) := BL.

Remark 2.11 A smooth complex algebraic variety X gives rise to derived stacks Xp)
and Xgr defined by Simpson [73, 84]. So, given smooth complex algebraic varieties
X,Y, M and a derived stack F we may consider the mapping stack

Map(X X Ypol X Mgr, F).

Example 2.10 is an analogous construction in the world of formal moduli problems.
Example 2.12 Consider X, Y, M, g as in Example 2.10 and suppose E is a line bundle

on X x Y x M, equipped with a holomorphic structure along X x ¥ and a flat connection
along M. Moreover, assume Bg carries a ,,-action. We then have a local L, algebra

L=P % @y ©e) e am @ ES”
m

on X x Y x M. We define
Sect(X X Ypol X Mgr, Bg X Gy L):= BL.

As in Examples 2.2 and 2.3, we may define shifted tangent and cotangent bundles
of a local formal moduli problem which give more examples.

Proposition 2.13 Consider X, Y, M, g as in Example 2.10. The local formal moduli

problem T*[n]Map(X X Ypoi X Mgr, Bg) is isomorphic to the local formal moduli
problem

Sect (X x Ypoi X Mgr, T*[n + dim(X) + 2dim(Y) + dim(M)]Bg
X, (Kx ® Densy)),

where K is the canonical bundle of X and Densyy is the line bundle of densities on
M.
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Proof The claim follows from the following isomorphisms of graded vector bundles:

(sz?{) ~ Q%* @ Kx[dim(X)]
(@3*) = Q) 12dim(Y)]
(Q3,)' = Q3 ® Densy[dim(M)],

where the superscript ! refers to the Dens,; valued dual space: &' = €Y ® Densy,. O

Corollary 2.14 Suppose X, Y, M, g are as in Example 2.10 and, moreover, that X is
equipped with a holomorphic volume form and M is oriented. Then

T*[n]Map(X X Ypol X Mar, Bg) = Map(X x Ypol X Mgr, T*[n 4 dim(X)
+2dim(Y) + dim(M)]Bg).

Given a local formal moduli problem, we may talk about shifted symplectic struc-
tures [73] on it. In this paper we will only be interested in a strict notion as follows.

Definition 2.15 Let M be a local formal moduli problem on M represented by a local
L algebra L. A strict n-shifted symplectic structure on M is a pairing w: L® L —
Densys[n — 2] satisfying the following conditions:

(1) Ttis fiberwise nondegenerate.

(2) Itis graded skew symmetric.

(3) The pairing L, ® L, — C on the space of compactly supported sections of L
defined by

a®,3|—>/ w(a, B)
M

is an invariant pairing on the L, algebra L.
We can now state a concise definition of a classical field theory in the BV formalism.

Definition 2.16 A classical BV field theory (or, simply, classical field theory) is a
local formal moduli problem on the spacetime manifold M equipped with a strict
(—1)-shifted symplectic structure.

Remark 2.17 This definition is extremely broad, for instance the complex L of fields
can have cohomology in any degree. In specific applications to quantum field theory
one is likely to encounter examples that are more heavily restricted by assumptions
about the existence of a quantization with certain properties.

Given a local formal moduli problem M = BL equipped with a strict n-shifted
symplectic structure, the space of local functionals Ojoc (M) is equipped with a Poisson
bracket (see [29, Chapter 5.3])

{—=, =} O10c(M) x O1oc(M) — Ojoc (M)[—n]
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This bracket is a graded version of the so-called Soloviev bracket [86] defined on the
oo-jets, as described in [46, Section 4].

We explain how to define the Poisson bracket in our context. Write E = L[1] for
convenience. First note that there is a linear map

ddr : Otoc(€) — Funjee(€, €'

defined as follows. A local functional F' € O, (€) can be written as an equivalence
class of a sum of densities of the form

Di(=) -+ Du(—)R2
where D; is a differential operator D;: &€ — Cf; and € is a density on M. Without

loss of generality, suppose F' is of this form. Then, we can view F as a functional in
O(€E.) by the assignment

¢ = / Di(¢)--- Dp(¢)L2
M

where ¢ denotes a compactly supported section. Define the symmetric multilinear
map

dgr F: £X=D — gV
@1, ..., ¢u—1) = D1(¢1) - - Dy—1(¢p—1) Dp(—) + {symmetric terms}.

Integrating by parts, we see that for any (n — 1)-tuple (¢1, ..., ¢dn—1) € 8?‘1 the
linear functional (dgr F) (@1, . .., ¢n—1) is an element of &', This implies that dgr ' €
Funyc (€, 8!)'

The non-degenerate pairing  determines a bundle isomorphism w: E = E'[n]
and hence an isomorphism of local functions

@: Funioe(€, &) = Funioc (€, E[—n)).
We recognize the right hand side as the space of local vector fields placed in a shifted
cohomological degree. In total, we see that a local functional F determines a local
vector field by applying this isomorphism to dgg F":

Xr = wodgr(F) € Funi,. (€, E[—n)).

This is the Hamiltonian vector field corresponding to . We can now define the Poisson
bracket.

Definition 2.18 The Poisson bracket between local functionals F, G is defined by
{F,G} = Xr(G).
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The Poisson bracket enjoys the graded skew symmetry property
(F. G} = (=D G, F)

as well as the graded Jacobi identity.

The differential on a local L, algebra L is given by a differential operator
Opv: L — L. The structure of the L, brackets can be encoded into its poten-
tial. In the same way, the structure of a local L, algebra L together with an n-shifted
symplectic structure on B L may be encoded into the action functional S € O (BL)
of cohomological degree n + 1 such that

1
S=—/ w(e, Opve) + 1,
2 u

where ¢ € L and I € Ojoc(BL) is at least cubic. Moreover, the action functional
satisfies the classical master equation

(S, 8} =0.

We refer to [31, Proposition 5.4.0.2] for this construction.

Given a classical field theory represented by a local L, algebra L on M, as in
Definition 2.16, we call E = L[1] the bundle of BV fields, and we call the complex
(E, Qv) the classical BV complex. We call the Poisson bracket on Ojoc(M) the
BV bracket. 1t will sometimes be convenient to think of a classical field theory as
a quadruple (E, w, Oy, I) consisting of the bundle of BV fields equipped with a
(—1)-shifted symplectic pairing w, a classical BV differential Oy and an interaction
functional /. We characterize such data in the following way.

Definition 2.19 A free BV theory on a manifold M is the data of:

e a finite rank graded vector bundle £ — M equipped with an even differential
operator of cohomological degree +1

Opv: & — E[1]

such that (1): Q2BV = 0 and (2): the pair (€, Qpyv) is an elliptic complex;
e a map of bundles

w: E® E — Densy[—1]

that is

(1) fiberwise nondegenerate,

(2) graded skew symmetric, and

(3) satisfies [,, w(eo, Opver) = (—=1)leol [ @(QBveo, er) where ¢; are com-
pactly supported sections of E .
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Remark 2.20 The datum of aclassical BV field theory as in Definition 2.16 is equivalent
to the datum of a free BV theory (E, Q, w) equipped with an even functional

10,8

of cohomological degree zero satisfying the Maurer-Cartan equation

1
OvlI + 5{1,1} =0,
under the identification of the BV action as

s=3 [ ate. Quer+1 < Ow®).
2J)m

Example 2.21 Let M = BL be a local formal moduli problem. Then the (—1)-

shifted cotangent bundle 7*[—1]M carries a natural (— 1)-shifted symplectic structure.

Indeed, T*[—1]M = B(L & L![—3]) and we simply pair L and L'. Classical field

theories arising via this construction are called cotangent type theories.

We will also consider C[]-families of classical field theories.

Definition 2.22 A Clt]-family of classical field theories is a graded bundle of
locally-free C[¢]-modules L on M equipped with a structure of a C[¢]-linear local
Lo algebra and a C[t]-linear (—1)-shifted symplectic structure w: L Qcj;) L —
C[t] ® Densys[—3].

We will consider C[¢]-families of classical field theories where L = C[¢]® L and
the pairing

w: L ®cp L — C[t] ® Densy[—3]
comes from a pairing
wo: Lo ® Ly — Densy[—3].

In this case the local L, structure is encoded in a #-dependent action functional S.

Remark 2.23 Besides the Z-graded classical field theories defined above, we may
consider the following variants of the above definition:

o AZ x Z/27Z-graded local L, algebrais a Z-graded local L, algebra L equipped
with an extra Z/2Z-grading (the fermionic grading) with respect to which all
operations are even. An n-shifted symplectic structure on a Z x Z/27Z-graded
local formal moduli problem BL is a pairing L @ L — Densys[n — 2], which is
even with respect to the fermionic grading.

e A 7/2Z-graded classical field theory is defined in the same way as a Z-graded
classical field theory where we only consider the cohomological grading modulo
2.
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2.3 Perturbative equivalence of classical field theories

Next, we formulate the notion of a morphism, and an equivalence, of classical BV
theories.

Definition 2.24 A morphism ®: (E,®,S) ~ (E', o', S") of classical field theo-
ries over the same manifold M is a collection ® = ) 72| ®, of poly-differential
operators ®,: Sym”(E) — E' that intertwine the pairings w, @’ and define an
Loo map E[—1] — E&’[—1]. A morphism is a perturbative equivalence if the map
®1: (&, Opy) — (&, Q%V) is a quasi-isomorphism. A classical field theory is per-
turbatively trivial if it is perturbatively equivalent to the zero theory (E = 0).

The interpretation of this definition is that ® is a non-linear map between the bundles
of BV fields, and ®,, is its n" Taylor coefficient.

We will now describe two primitive examples of equivalences of classical field
theories that will be useful in simplifying twisted theories. First, we consider the
process of eliminating an auxiliary field.

Proposition 2.25 Fix a volume form dvoly on M. Suppose (E, w, S) is a classical
field theory, where E = Eo® (O @ Densy[—1]) with the symplectic pairing w given
by a sum of a symplectic pairing wg on Eqy and the standard symplectic pairing on the
second summand. Denote by ¢ a section of Oy and by ¢* a section of Densy[—1].
Suppose the BV action is

1
S=So+5 / dvoly (¢ — 248)),

where Sy is a local functional independent of ¢, ¢* and Sy is a O yr-valued polydiffer-
ential operator which is independent of ¢. Then the theory (E, w, S) is perturbatively
equivalent to the theory (Eg, wo, ') with the BV action S’ = Sy — S12/2, where we
set ¢ = S| and ¢* = 0.

Proof Concretely, suppose that the linear part of S; is given by an operator Q, and
that the interacting part of S| is given by a functional I} = ) 2 | I 1("). The desired
equivalence ®: (E, w, S) — (Ep, wp, S’) is given by the natural projection ® =
®,: E — Ey. The quasi-inverse ¥: (Eg, wg, S') — (E, w, S) is defined as follows.
First Wy (e) = (e, Q1(e),0) € E. Forn > 1, define

W, : Sym"(Eg) - E
elR---Qey > (Ov Il(n)(elv ""e”)’o)'

These W, manifestly intertwine the pairings @ and «’. To see that they intertwine the
action functionals, we observe that

S(W(e)) = S(e, S1(e), 0)

1 2 2
= Soe) + 5 dvoly / (81(0) = 281()?)
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=5 ls 2
= So(e) — 3 1(e)
= 5(e).
O

Remark 2.26 1In terms of the classical BV complex, this proposition has the following
interpretation. We consider theories where the classical BV complex is of the form

=]
|—

Om _0vl Bens M.
The bottom map multiplies a function by the volume element. The dotted arrows
are induced from S;. The proposition implies that we can replace this with a quasi-

isomorphic cochain complex consisting of only the first line, provided we make a
suitable modification of the classical action functional.

We may also eliminate pairs of fields as follows.

Proposition 2.27 Let (Ey, wo, So) be a classical BV theory and let F — M be a
graded vector bundle. Consider the theory (E, w, S) with underlying graded vector
bundle

E=E® (F ® F’[—l]) @ (F’ ® F[—l])

whose sections we denote by eq + ¢ + ¢ + ¥ + ¥* according to the above decom-
position. The shifted symplectic form w is given by the sum of wo and the standard
degree +1 pairings between F, F'[—1]and F', F[—1). Suppose further that the local
functional

S=So+/¢¢*—/¢l¢—/¢*l,,,*—/¢*I¢*—/w1¢

satisfies the classical master equation, where Ly, L+, ly+, Iy, are polydifferential oper-
ators on fields valued in F', F, F, F' respectively, and which are independent of ¢
and *. Then the classical BV theory (E, w, S) is perturbatively equivalent to the BV
theory (Eq, wo, S") where S’ is given by setting ¢ = ILy+, $* = 0and y* = Iy, y =0
in the original action functional S.

Proof Concretely, we will write ), ., I (1()") and )", Igi) for the Taylor expansions
of Iy and Iy« respectively. The desired equivalence ®: (E, w, S) — (Ep, wp, SN
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is given by the natural projection & = &;: E — Ej. The quasi-inverse
W: (Ep, wp,S") — (E,w,S) is defined as follows. The linear term is Wi(e) =
(e, Ié,l)(e), 0,0, Il(pl*) (e)), and for n > 1 we have

Wy(er® - ®en) = (0,15 (er, ... en). 0. I e1. ... €n)).

The maps WV, manifestly intertwine the pairings on E( and E, since the image of
W, lands in an isotropic summand of the E| @ E’l[—l] ® E'l @ Eq[—1] part of E.
Also, by construction, the W, intertwine the action functionals, since

1
S(F(e)) = So(e) + 5/ o(ly=(e), Ip(e) — Ip(e)) + w(lp(e), Iy=(e) — Iy=(e))
M

= S'(e).

m}

Remark 2.28 For the classical BV theory (E, w, S) as in the proposition, the linearized
BV differential defines the following cochain complex of fields:

-1 0 1 2
—1 0 1 2
EO EO EO EO
- ooy A
- Ty
- |
F¢ Fd)*

pg

!
Fy

where the subscripts match the notation for the fields in the statement above 2. The
top line is the underlying cochain complex of the theory with fields E. The arrows
Fy — Fyand F, I’p,f — F q;* are given by the identity. The dotted arrows represent terms
in the differential arising from I, I+, Iy, I,. The above proposition implies we can
replace this cochain complex of fields with a quasi-isomorphic complex consisting of
only the first line, provided we make a suitable modification of the classical action
functional.

Remark 2.29 We will call the pair (¢, ) satisfying the conditions of the previous
proposition a trivial BRST doublet.

2 Note that we are writing F as if it is concentrated in a single cohomological degree, but the proposition
applies for any graded vector bundle as in the statement of the proposition.
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2.4 Symmetries in the classical BV formalism

In this section we define what it means for a (super) Lie algebra to act on a classical
field theory (see also [31, Chapter 11] for a related discussion). Let (E, w, S) be a
classical field theory and g a super Lie algebra. We will define g-equivariant local
observables in the classical field theory by introducing g-valued background fields
into our classical field theory and extending the action functional to a functional that
involves these background fields, but still satisfies the classical master equation. We
begin by defining an appropriate version of the Chevalley—Eilenberg cochain complex.

Definition 2.30 The Chevalley-Eilenberg complex for the Lie algebra g, with coeffi-
cients in Q1o (€), is defined as follows. Consider the graded vector space

C*(g, O10c(€)) = @ Hom(A"g, O1oc(€))[ 1]
n
parameterizing multilinear maps f: g®* — Ojoc(€) that satisfy the antisymmetry
property
FOt Xy xigts ) = (DM LG xa e x)

where x; € g. The Chevalley-Eilenberg differential is given, following the sign con-
ventions of [81], by the formula

eI s %) = Y (=) Ep b s i 4171
i<j

(s Ajls 9 0oy b e e g e .
S ([xi x/] X1 Xi » Xj s Xn)

The complex is additionally equipped with a degree +1 BV bracket via the formula

{f,etxn, ..o\ xkq0)
= Z sgn(@) (=D T L Ko (1), -+ s Xo )y 8 Ko (k1) -+« » X (kD) s

oeSk
where Sy ; is the set of (k, [)-shuffles, € is the usual Koszul sign and
k
e1=lglk+ Y x| + 18-
i=1

The operator Oy on O (€) extends C®(g)-linearly to an operator on C*(g,
O10c(€)) by the rule

OBV (X1, ., x0) = OBV f(x1,..., %)
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where f: g®" — Oc(€). The differentials dcg and Qv are compatible in the
sense that (dcg + Opv)? = 0 making C*(g, O1oc(€)) into a cochain complex with
total differential dcg + Qpy. Via the BV bracket, the shift of this cochain complex
C°(g, O10c(€))[—1] is a dg Lie algebra. This shifted cotangent complex will model
equivariant local observables in our classical field theory, but to finish defining the
g action we must define the equivariant version of the classical interaction. This is
defined as follows.

Definition 2.31 Let (E, w, S) be a classical field theory. An action of a super Lie
algebra g on (E, w, S) is an element

Sg = Z Sg‘) € C*(g, O10c(&))
k>0

of cohomological degree zero, where Sék) is a multilinear map g®* — O}c(€), that
satisfies the following three conditions:

(@) S =s.
(b) Foreachk > 1and xy, ..., xx € gthe local functional Sg() (x1, ..., xg)is at least

quadratic in the fields.
(c) Sy satisfies the Maurer—Cartan equation:

1
dceSg + E{Sg’ Sq} =0.

Remark 2.32 We have defined an action of a Lie algebra on a classical field theory
in terms of a Noether current Sy. Such data gives rise to an L, action of g on the
space of fields € in the following way. By the Maurer-Cartan equation, the operator
dcg + {Sg, —} defines a differential on the graded vector space O(g[1] ® €). By
assumption that the Noether current is at least quadratic in the fields, we see that this
differential defines a family of maps

g®k®€®l - &

combining to give € the structure of an L ,-module for g.

Remark 2.33 We have seen that a classical BV theory can also be presented in terms
of a BV differential Opy and an interaction / satisfying the Maurer-Cartan equation

1
QBv1+§{1,1}=0-

One can also formulate actions of a Lie algebra on a classical theory in these terms.
The data of an action of a Lie algebra g on a classical field theory (E, Qpv, ®, S) is
equivalent to the choice of a local interaction functional

Ig =1+ 1 in C*(g, O10c()),
k>0
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satisfying the Maurer-Cartan equation

1
(dCE + QBV)Ig + z{lga Ig} =0.

We may also define actions of supergroups on classical field theories. The action
of a supergroup G is more data than the action of a super Lie algebra g: it includes
the infinitesimal action of the Lie algebra g, along with an action of G on the fields
exponentiating this infinitesimal action. That is, we make the following definition.

Definition 2.34 Let (E, w, S) be a classical field theory, and let G be a supergroup
acting on spacetime M. An action of G on (E, w, S) is given by the following data:

e An action of G on £ compatible with the G-action on M.
e Anaction Sy of its super Lie algebra g with Sék) =0fork >2

These are required to satisfy the following conditions:

e The G-action on € preserves the symplectic pairing w and the action functional S.

e For every x € g, the vector field X () ) On € coincides with the infinitesimal
g

action of g on &.

Remark 2.35 While we allow for L, actions of Lie algebras, we only consider strict
actions of Lie groups.

2.5 From BRST to BV

We will now explain how to build classical BV theories from more traditional data: that
of the usual fields of a classical field theory, together with the usual action functional
and the action of gauge transformations. These data can be packaged into what is
known as a BRST theory, where fermionic fields (referred to as ghosts) are introduced
to generate the infinitesimal gauge transformations, in the following way.

Definition 2.36 A classical BRST theory on a manifold M consists of the following
data:

e A local formal moduli problem JF represented by a local L, algebra L.
e A local functional SgrsT € O1oc(F) of polynomial degree > 2.

Together, these data must satisfy the equation

OBRSTSBRST = 0,

where Oprsr is the Chevalley—Eilenberg differential defined by the local L o, structure
on L.

We call L[1] the space of BRST fields.
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Remark 2.37 We should note here that the formal moduli problem F appearing in the
definition is a local model for the stack of BRST fields before imposing the classical
equations of motion. This is in alignment with Remark 2.20 — where we consider a
classical BV theory and equip it with the additional data of a classical interaction —
but in contrast to the formal moduli problem occurring in Definition 2.16.

Remark 2.38 In the most typical examples, the bundle L[1] is concentrated in Z-
degrees —1 and 0. In this case, sections in degree 0 are thought of as physical fields,
and ghosts — sections in degree —1 — are thought of as generators of the infinitesimal
gauge symmetry. The action of gauge transformations on fields is then encoded by the
Lie structure.

Given a classical BRST theory &, we may consider the cotangent theory 7*[—1]F
whose action functional we denote by Sani. Let us denote the pullback of Sprst
along the obvious projection T*[—1]F — F by the same letter. Then the equation
OBrsTSBRST = 0 in O1oc(F) implies that {Sani, SBrsT} = 0 in Otoc (T*[—11F).

Definition 2.39 Let (F, Sgrst) be a classical BRST theory. The associated classical
BYV theory is the (—1)-shifted cotangent bundle 7*[—1]F equipped with its natural
(—1)-shifted symplectic structure and the action functional SrsT + Santi-

In the case where Sgrst = 0, the associated BV theory is of cotangent type, as in
Example 2.21.

Remark 2.40 In general, multiple BRST theories can give rise to the same BV theory.
A BV theory (E, Opv, w, I) is of cotangent type as long as there is some graded vector
sub-bundle with SgrsT = O producing the given theory using the construction above.
Theories of cotangent type can still have interesting, non-trivial action functionals,
encoded by the L, structure on the sub-bundle.

Remark 2.41 Itis common to refer to coordinates on F as fields and coordinates along
the cotangent direction of 7*[—1]F as antifields. Given a field ¢ the corresponding
antifield will be denoted by ¢*.

2.6 Examples of classical field theories

In this section we give some examples of classical field theories we will use in our
classification of twisted supersymmetric field theories. All theories we consider in this
section are Z-graded.

2.6.1 Generalized BF theory

Our first example will generalize the fundamental example of BF theory to a not
entirely topological context. Ordinarily, BF theory describes the classical BRST theory

on a d-manifold M with fields given by a G-gauge field A and a g-valued (d —2)-form
B, with action functional

S(A, B) = / (B A Fy).
M
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This theory is, in fact, of cotangent type, where the base of the cotangent includes
A and its antifield, and the fiber includes B and its antifield. This basic setup can be
generalized to a setting where M need not be entirely topological, and where g may
be a more general L, algebra, in the following way.

Definition 2.42 Let X and Y be complex manifolds and M a smooth manifold. Fix an
L algebra g. The generalized BF theory is the classical field theory

T*[—11Map(X X Ypol X Mgr, Bg).

Let us unpack the definition. Let d = dimc(X) + 2dimg(Y) 4+ dim(M). Then the
bundle of BV fields is

E=0%"0a)* 0}, glle ™ 9 a0 Q3 ©g*ld - 2I,

where we denote the two fields by A and B. The BV action is

_ — 1
S=/ <BA(ax+ay+ddR,M)A>+ZE/ (BALK(A, ..., A)),
XxXYxM 1 XxYxM

where (—, —) is the natural pairing between g* and g and where ¢; denotes the k'
component of the L, structure on g.

Example 2.43 For X = Y = pt and g an ordinary Lie algebra we recover the usual
topological BF theory with BV action functional

S =/ <B/\ (ddRA—i— l[A/\A]>>.
M 2

We will see many BF theories as the output when we twist supersymmetric gauge
theories. In fact, a special case of the definition above also arises when twisting theories
of matter. We will refer to as this as a generalized 8y system, where the definition
will extend that of the usual 2d By system.

Definition 2.44 Let X and Y be complex manifolds and let M be a smooth manifold.
Fix a complex vector space V. The generalized [y system is the classical field theory

T*[—11Map(X X Ypol X Mgr, V).

The following is obvious from the definition.

Proposition 2.45 Let g be a dg Lie algebra, and consider the generalized BF theory
on R¥M+20+13 for Lie algebra g with the space of BV fields

&€ = T*[—1]Map(C"" x (C™)po x (R™)gr, Bg).
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Then it carries an action of U(n) x U(ny) x O(n3) given by the pullback action on
differential forms on C"' x C"2 x R"3,

Remark 2.46 1n fact, the O(n3)-action given by the previous proposition extends to a
homotopically trivial action in the sense of [42, Section 2.4].

2.6.2 Generalized Chern-Simons Theory

The next class of examples of classical BV theories will be generalizations of Chern—
Simons theory. Unlike the example of the generalized BF theory, these theories are
not generally of cotangent type.

Definition 2.47 Let X and Y be complex manifolds and M a smooth oriented manifold.
Fix an L, algebra g. We assume X is equipped with a holomorphic volume form
Qx e QIM.0(X) and g is equipped with a nondegenerate invariant symmetric
pairing (—, —): g® g — C[dim¢(X) 4+ 2 dimc(Y) + dim(M) — 3]. The generalized
Chern—Simons theory is the classical field theory

Map(X x Ypol X Mdr, Bg),
whose underlying local L, algebra
QYR Q) ®

is equipped with a shifted symplectic structure coming from the nondegenerate pairing
on g and the wedge product of formson X x ¥ x M.

We may also consider a Z/27Z-graded version of the above theory where g is merely
7,/27-graded. If we assume that Bg carries a G, -action, we may define the generalized
Chern—Simons theory without choosing a holomorphic volume form on X (see also
[48]).

Definition 2.48 Let X, Y be complex manifolds and M a smooth oriented manifold.
Fix an integer m and suppose X is equipped with a j-th root of the canonical bundle
K )1(/ /. Let g be an L, algebra equipped with a Z-grading g = €D,, g(n) and equipped
with a symmetric pairing (—, —) as before, which has weight j with respect to the
grading. Then the generalized Chern—Simons theory is the classical field theory

Sect(X x Yo X Mar, Bg xg,, Ky'').

Example 2.49 For X = Y = pt, M a 3-manifold and g an ordinary Lie algebra we
recover the usual 3-dimensional Chern—Simons theory with the BV action

S:/ (l(A/\ddRA)—i-l(A/\[AAA])).
v \2 6
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More generally, if X = Y = pt and M is any d-dimensional manifold where d is odd,
we recover d-dimensional Chern—Simons theory. This has the same BV action, where
now A is a (not necessarily homogeneous) differential form on M. If d is not 3 this
theory is only Z/27Z-graded.

Example 2.50 For Y = M = pt, X a Calabi-Yau 3-fold and g an ordinary Lie algebra
we recover the holomorphic Chern—Simons theory with the BV action

S:f QXA<1<AA§A)+1<AA[AAA]>).
X 2 6

As in the previous example, this still makes sense if X is a Calabi-Yau d-fold with d
odd, as a Z/27Z-graded theory.

Example 2.51 Using Corollary 2.14 we have an isomorphism

T*[—1]Map(X X Ypol X Mgr, Bg) = Map(X x Ypol X Mar, T*[d — 11Bg),
so the generalized BF theory may be considered as a particular example of a generalized
Chern—Simons theory.

Example 2.52 Let X,Y, M be as before and denote d = dimc(X) + 2dimc(Y) +
dim(M). Suppose g is a dg Lie algebra and U is a g-representation equipped with a
(d — 1)-shifted symplectic structure U ® U — C[d — 1]. Then we may consider the
generalized Chern—Simons theory

Map(X x Ypol X Mar, U /9).

Example 2.53 Consider the setting of Example 2.52. The formal moduli problem U /g
carries a natural G,,-action which acts on U with weight 1. With respect to this weight
grading, the (d — 1)-shifted symplectic structure on U /g has weight 2, so we may
define the corresponding generalized Chern—Simons theory with the space of fields

Sect(X X Ypol X Mar, U /g Xg,, K)l(/z)'

We will also use the notation

Sect(X x Ypol X Mgr, (U ® K;l(/z)//g)

for the same theory.

Example 2.54 There is a special case of this, which one might label the “holomorphic
symplectic boson” [79, Definition 4.8] which is the theory

Sect(X, (U ® K¥*)/g).
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As with generalized BF theory, generalized Chern—Simons theory carries a natural
rotation action by linear automorphism groups of spacetime.

Proposition 2.55 Suppose g is a dg Lie algebra equipped with a nondegenerate
invariant symmetric pairing of degree ny + 2ny + n3 — 3. Consider the generalized
Chern—Simons theory

&€ = Map(C"" x (C"*)po1 x (R")gr, Bg).

Then it carries an action of SU(n1) x U(ny) x SO(n3) given by the pullback action
on differential forms on C"' x C"2 x R,

We may slightly enhance the previous proposition if we are in the setting of Defi-
nition 2.48. Define the unitary metalinear group to be

MU ) = U(n) xyy U(D),
where U(n) — U(1) is the determinant map and U(1) — U(1) is the map z > z2.
We denote by det!/2: MU(®n) — U(1) the projection on the second factor; this may be
thought of as a square root of the determinant representation of U(n). The natural U(n)-

action on C” lifts to an MU (n)-action on the bundle of half-densities K é{,z — C".

Proposition 2.56 Suppose g is a dg Lie algebra and U a g-representation equipped
with a (n1 + 2ny + n3 — 1)-shifted symplectic structure. Consider the generalized
Chern—Simons theory

Sect(C" x (C")pgt x (R™)qr. (U ® Ki) /9)-

Then it carries an action of MU (n1) x U(ny) x SO(n3) given by the pullback action
on differential forms on C"' x C"? x R"3.

2.6.3 Generalized Hodge Theory

Generalized BF theories can be naturally deformed to theories which are perturbatively
trivial, but which arise as shadows of non-trivial non-perturbative theories. These will
often appear as topological twists of supersymmetric field theories, the most famous
example being the 2d A-model. By a deformation we will mean a C[t]-family of
classical BV theories which reduce to the given theory at ¢ = 0.

Given an L, algebra g we denote by grog the C[#]-linear L, algebra

gHod = C1]1 ® (g @ g[1])

with the L, brackets coming from the L., brackets on g in the first term, where we
consider g[1] as the adjoint representation of g. The differential is given by the original
differential on g plus the term 7 id from the second summand to the first summand.
We define ggr to be the value of gyoq at ¢ = 1. Note that the underlying complex is
contractible.
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Remark 2.57 The terminology comes from Simpson’s Hodge stack [84]: if X is a
smooth scheme, one can define a derived stack Xyoq over A!, where the fiber at
0 € A! is the Dolbeault stack X Dol Oof X and the fiber at a non-zero point is equivalent
to the de Rham stack Xg4r of X, which has a contractible tangent complex.

If g carries a nondegenerate invariant symmetric pairing of degree d, so does gyod-

Definition 2.58 Let X and Y be complex manifolds and let M be a smooth oriented
manifold. Fix an L, algebra g. We assume X is equipped with a holomorphic volume
form Qx € Q4mX).0(x) and g is equipped with a nondegenerate invariant symmetric
pairing (—, —): g® g — C[dim¢(X) 4+ 2dimc(Y) + dim(M) — 3]. The generalized
Hodge theory is the C[t]-family of classical BV theories, as in Definition 2.22, given
by the generalized Chern—Simons theory

Map(X x Ypol X Mdr, BgHod)-

Proposition 2.59 The t = 0 specialization of the generalized Hodge theory Map(X X
Ybol X MR, Bgtod) is isomorphic to the generalized BF theory T*[—1]Map(X x
Ypol X MyRr, Bg). The specialization of the generalized Hodge theory at t # 0 is
perturbatively trivial.

Proof Att =0 we get

OHodli—0 = 9D gll1 =g g*[d — 1],

where we use the symmetric bilinear pairing on g in the second isomorphism. The
first claim then follows from Example 2.51.
Att # 0 the L algebra gyoq becomes acyclic, which proves the second claim. O

2.7 Dimensional reduction

In this section we formulate the procedure of dimensional reduction of a classical
field theory. Fix a submersion p: M — N equipped with a fiberwise density, i.e.
an isomorphism p*Densy = Densy;. The idea is that the dimensional reduction of a
classical field theory on M along the submersion p is the theory obtained by restricting
to those fields which are constant along the fibers of p. We will begin with an abstract
definition of dimensional reduction, then prove thatif M = N x R¥, and we consider
field theories which are translation invariant along the fiber, then this procedure is
well-defined.

Definition 2.60 We say that a classical field theory (Ey, @y, Sy) on N is a dimen-
sional reduction along p of the classical field theory (E s, wpr, Spr) on a manifold
M if one is given the data of a linear isomorphism p*Ey = Ej; of the bundles of BV
fields satisfying the following conditions:
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e The diagram

PEN @ p*En —2 p*Densy[—1]

h [

Ey ®Ey NN Densy[—1]

is commutative.
e Via the projection map p: M — N we have p*Sy = Sy in Ojoc(E ).

Remark 2.61 The isomorphisms p*Ey = Ej; and p*Densy; = Densy determine the
pullback map

p*: Otoc(EN) = Otoc(Em)

of local functionals used in the last condition. Recall that one also has inclusion
maps O1oc(En) = O(En.c) and O1oc(Epr) — O(E ) allowing us to interpret local
functionals as functionals on compactly-supported fields. Then there is a commutative
diagram

O100(8N) P*> OIOC(EM)

|

OC€nN.e) ——0Cm.c)

where the bottom map is the restriction under the map €y — En . given by inte-
grating fields over the fibers of p: M — N: this uses the fiberwise density provided
by the isomorphism p*Densy = Densy, and this is well-defined due to the compact
support condition.

We have an obvious notion of isomorphisms of dimensional reductions: these are
linear isomorphisms of classical field theories on N which are compatible with the
isomorphisms p* Ey = Ejy. Thus, the collection of dimensional reductions of a given
classical field theory on M forms a groupoid.

Proposition 2.62 Suppose (Ep, wpy, Sy) is a classical field theory on M and
p: M — N is a homotopy equivalence. Then the groupoid of dimensional reduc-
tions of (Ep, wpr, Sym) is either contractible or empty.

Suppose M = N x R and choose a translation-invariant density along the R
direction. If the original classical field theory is translation-invariant along the R
direction, dimensional reductions exist, i.e. the groupoid is non-empty.

Proof Uniqueness. We begin by showing that any two dimensional reductions are
isomorphic and moreover that such an isomorphism is unique if it exists. Since
p: M — N is a homotopy equivalence, the functor p* establishes an equivalence
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between the category of graded vector bundles on N and on M. In a similar way,
p* establishes an equivalence between the category of graded vector bundles Ex on
N equipped with a nondegenerate pairing Ey ® Ey — Densy[—1] and a similar
category for M.

Since Ex — &)y is injective, the condition p*Sy; = Sy uniquely determines Sy .

Existence. Now suppose (Eys, wys, Syr) is translation-invariant along the R direc-
tion. Translation invariance provides the descent datum to construct the bundle of
fields Ey on N equipped with a nondegenerate pairing wy. Moreover, the restriction
of Sy under Ey — &)y is independent of the R factor by translation invariance, so
Sy = p*Sy is again a local functional. |

Remark 2.63 Therefore, it makes sense to talk about “the” dimensional reduction of a
classical field theory along the projection p: N x R — N: there exists a dimensional
reduction which is unique up to a canonical isomorphism.

We will now describe dimensional reductions of some of the previously discussed
BV theories. Throughout this section we let X and Y be complex manifolds and M
be a smooth manifold. We focus on BV theories described as formal mapping spaces
whose sources are formal manifolds of the form

X X Ypol X MgRr. (26)

We first consider the case in which M is of the form M’ x R and we reduce along
the projection

PRR: X XY x (M xR) = X xY x M.

In this case, we will only need to know the dimensional reduction of generalized
Chern—Simons theory.

Proposition 2.64 Fix an Lo, algebra g equipped with a nondegenerate invariant pair-

ing as in Definition 2.47 and consider the corresponding generalized Chern—Simons
theory

Map(X X Ypoi x (M" x R)gr, Bg).

Its dimensional reduction along the projection pgr is equivalent to the generalized
BF theory

T*[—1Map(X x Ypol X M, Bg).
Proof To simplify the notation in the proof, we assume X, Y, M’ = pt, though the
argument in the general case is identical. Then g carries a (—2)-shifted pairing (—, —).
In particular, the generalized BF theory

T*[—1]Map(pt, Bg) = T*[—1]Bg

) Birkhauser



73 Page44of 124 C. Elliott et al.

has the bundle of BV fields g[1] & g*[—2]. We may identify it with g[1] & g, where
the pairing wy pairs the two factors using (—, —).

We may identify p*(g[1] @ g) = Qf ® g[1] as vector bundles on R. Under this
identification the integration pairing wy; on differential forms reduces to the pairing
wy. The de Rham differential vanishes on translation-invariant forms, which shows
compatibility of dimensional reduction with the differentials Qgy. Finally, in both
cases the interaction term comes from the L, structure on g. O

Next, we consider dimensional reduction along a holomorphic direction. First, we
set up some notation.

Let VR be a real vector space equipped with a nondegenerate symmetric bilinear
pairing and an orientation. The symmetric bilinear pairing trivializes det(Vz)®? and
the orientation allows us to obtain a trivialization of det(Vg), i.e. a real volume form.

We denote by V = Vr ®p C its complexification. Note that V inherits a nondegenerate
Hermitian form from the symmetric bilinear pairing on V. Also, since

det(V) = det(Vg) ®r C

the real volume form on Vi determines a complex volume form on V.
Complexification yields a group homomorphism

SO(Vr) —> SU(V) 27
such that the real projection Re: V — Vg is SO(VRr)-equivariant.

As in Eq. (26), we assume that X is a complex manifold of the form X’ x V. We
now consider the dimensional reduction along the map

Py (X' xV)xY xM— X'xY x(Mx Vg)

induced by Re: V — Vg.

Proposition 2.65 Let X, Y, M, g be as before and Vi, V as above. Fix an L~ algebra
g equipped with a nondegenerate invariant pairing as in Definition 2.47 and consider
the generalized Chern—Simons theory

Map((X' x V) x Ypo1 X Mgr, Bg).

Its dimensional reduction along the projection py is equivalent to the generalized
Chern—Simons theory

Map(X' x Ypol x (M x VR)dRr, Bg).

The equivalence is SO(VR)-equivariant.

Proof We may assume X', Y, M = pt as in the previous proof.
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We have an isomorphism of vector bundles on V:
Qy* = Symg(V[-1))
and similarly an isomorphism of bundles on Vg:
Qy, = Symg (Vg[—1]) ®r C.
Under the composition
Q*(Ve: ©) 25 @2 (v) - (V)
defined by pulling back forms along Re: V' — Vg and projecting onto (0, e)-forms,

the map Qy A (—): SZ(‘)," — Q(‘l,im(v)” — chm(v)’dim(v) = Densy given by projec-
dim(V)

tion onto the top component, reduces to the map Q°*(Vgr; C) — Qy, = Densy,
which also projects onto the top component. This shows that the BV pairings of the
original and dimensionally reduced theory are compatible. O

As a corollary of this result we obtain the reduction of generalized Hodge theory.

Corollary 2.66 Let X', Y, M, Vg, V be as before. Fix an Ly, algebra g equipped with
a non-degenerate pairing as in Definition 2.58 and consider the generalized Hodge
theory

Map((X" x V) X Ypol X MR, BgHod)-

Its dimensional reduction along the projection py is equivalent to the generalized
Hodge theory

Map(X' x Ypol X (M x VR)dr, BgHod)-

The equivalence is SO(VR)-equivariant.

We have the following analogs of Propositions 2.64 and 2.65 for the generalized
BF theory.

Proposition 2.67 Let X, Y, M’, g be as in Proposition 2.64. The dimensional reduction
of the generalized BF theory

T*[~11Map(X x Ypol x (M’ x R)dr, Bg)
along the projection pgr is equivalent to the generalized BF theory

T*[—1]1Map(X x Ypoi x Mg, 8/9).
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Proposition 2.68 Let X', Y, M, Vg, V beas in2.65. Fixan Ly, algebra g and consider
the generalized BF theory

T*[—1]Map((X’ x V) x Ypol X Mgr, Bg).

Its dimensional reduction along the projection py is equivalent to the generalized BF
theory

T*[—11Map(X" X Ypol X (M X VR)dr, Bg).

This equivalence is SO(VR)-equivariant.

Finally, we take Y to be a complex manifold of the form Y’ x C, where V is complex
k-dimensional and consider the projection

Ppol: X x (Y xC)x M — X xY' x (M xR)

induced by Re: C — R.

Proposition 2.69 Ler X, M, Y’ be as above. Fix an L, algebra g and consider the
generalized BF theory

T*[~1IMap(X x (Y" x C)pol X Mar, Bg).
Its dimensional reduction along ppo) is equivalent to the generalized BF theory
T*[~1IMap(X X Ypy x (M x R)aR, g/9)

This equivalence is SO(VR)-equivariant.

Proof Note that there is an isomorphism of L, algebras
QW (Y x Crg) = Q" () © 2"*(C) ® gle]

where € is a parameter of degree +1. The result then follows from Proposition 2.68
applied to the L, algebra g[e]. O

3 Supersymmetry

Having set up the formalism behind classical field theories in the BV and BRST
formalisms, we will introduce the other main formal ingredient of this paper: the super-
symmetry action. So, we will discuss the classification of supersymmetry algebras,
the notion of a supersymmetric field theory, and the idea of a twist of a supersym-
metric field theory, extending work of the first two authors in [42]. We will introduce
the classification of supersymmetry algebras using the division algebra perspective of
Baez and Huerta [8], which will be useful for the classification of super Yang—Mills
theories in Sect. 4 below.
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3.1 Spinors
In this paper we will extensively use the theory of spinors. Let V be a complex
vector space equipped with a nondegenerate symmetric bilinear pairing. Recall that

the Clifford algebra CI1(V) is defined to be the quotient of the tensor algebra on V by
the relation

viv2 + v2v1 = 2(vi, v2).
Consider a Z/27Z-graded Clifford module
M=M"®M . (28)
We note that in many examples with extended supersymmetry that M is reducible as
a spin representation. Denote the Clifford action by p(v) € End(M). We assume the

Clifford module is equipped with a nondegenerate pairing (—, —): M* @ M~ — C
such that

(p()Q1, Q2) = (@1, p(v)Q2)

for any Q1, Q2 € M and v € V. From now on we denote MT=Yand M~ = X*.
We define the I'-pairings

I:Sym*(2) — V, TI:Sym*(Z*) — V
by
(p(v)Q1, Q2) = (v, I'(Q1, 02)) (29)

We have a subset Spin(V) C CI(V), so ¥ and X* are representations of the spin
group. Moreover, the Clifford action and the maps I" are Spin(V')-equivariant.
We may identify A%(V) — so(V) via the map

o> (V> —2i),

where v is an element of V and ¢+ is the contraction with the associated element
v* = (v, —) of V* induced by the bilinear pairing. This gives rise to an action map

AMV)®T — %
of two-forms on spinors.
Consider the map ¢g: A°® (V) — CI(V) given by antisymmetrization, so that, for
instance,

q(v1 Av2) = viv2 — (V1, V2). (30)
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The resulting action A>(V) ® £ — X then coincides with the original action of
50(V) on the spinorial representation X, so that so(V)-equivariance of I" gives the
following.

Proposition 3.1 For X € A*(V) and Q1, Q> €  we have

['(Q1, p(X)Q2) + T'(Q2, p(X) Q1) = —2ir(@;,00 X
where 1,: A* (V) — V denotes contraction by an element v € V using the nonde-
generate symmetric pairing.

We may extend the discussion to the case of a Riemannian manifold N, where we
replace V by the vector bundle 7N . Given a bundle of Clifford modules M = ¥ @ X%,
as in (28), we have the associated Dirac operator

d: T(N,T) — T(N, =%).

From (30) we get the following property.
Proposition 3.2 Suppose Q1, Q2 and X are sections of the bundle ¥ on N, and suppose

that Q1 and Q, are covariantly constant. Then

dp(T'(Q1, 1)) Q02 = p(d'(Q1, 1) Q2 + (21, d1) 0>

as sections of ¥ — N.

Finally, we have the following important compatibility between the Clifford action
of differential forms, see (30), and the Dirac operator proved in [85, equation 7.6].

Proposition 3.3 Suppose Q is a covariantly constant section of ¥ and X € QP (N).
Then

d(p(X)Q) = p(dX)Q + (=" P p(xd x X)Q

as sections of M = ¥ @ X* — N.

Note that both Proposition 3.2 and Proposition 3.3 extend to the case when A and
X respectively are twisted by a vector bundle and d is the corresponding twisted Dirac
operator.

3.2 Supersymmetry algebras

In this section we will recall the framework for supersymmetry algebras and their
classification following Deligne [35] and our previous work [42]; we refer there for
more details.

Let Vr be a finite-dimensional real vector space of dimension n = dimpg(VR)
equipped with an orientation and a positive-definite nondegenerate symmetric bilinear
form. Denote by V = Vg ®g C its complexification. Consider the Lie algebra so(V).
Let us recall the following facts:
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e If nis odd, so(V) has a distinguished fundamental representation called the spin
representation S.

e If niseven, so(V) has a pair of distinguished fundamental representations called
the semi-spin representations S and S_.

Definition 3.4 A spinorial representation % is a finite sum of spin or semi-spin rep-
resentations of so(V).

So, in odd dimensions we have ¥ = § ® W and in even dimensions we have
=85, W, & S_ ® W_, where W is a finite dimensional multiplicity space.

We have an embedding U(n) C SO(2n, R) which lifts to an embedding MU (n) C
Spin(2n, R). If we denote by L the standard n-dimensional representation of U(n),
then the semi-spin representations of Spin(2n, R) restrict to MU (n) as

Sy Zdet(L)"V2 QAL S_ = det(L)”/? @ AL,

Definition 3.5 Fix a spinorial representation ¥ and anondegenerate so(V )-equivariant
pairing T': Sym?(X) — V. The supertranslation Lie algebra is the so(V)-
equivariant super Lie algebra 20 = I[1X @ V whose only nontrivial bracket is given by
r.

For a given spinorial representation, the pairing I' is typically unique up to a scale,
so a supertranslation Lie algebra is specified by fixing a spinorial representation. In
turn, a spinorial representation is determined by the dimension of the multiplicity
space, so we will talk about N or (N, N_) supertranslation Lie algebras, where the
numbers are specified as follows.

Ifn=0,1,3,4 (mod 8), we let N = dim(W).
If n =2 (mod 8), we let Nyt = dim(W4.).
Ifn=>5,7 (mod 8), we let 2N = dim(W).
If n =6 (mod 8), we let 2N = dim(W4.).

Fix the following data:

e A spinorial representation X of so(V).

e An so(V)-equivariant nondegenerate pairing I': Sym?(X) — V.

e A Lie group Gpg, the group of R-symmetries, which acts on X by so(V)-
equivariant automorphisms preserving I'.

Note that the supertranslation Lie algebra 2l is a Spin(Vgr) x G g-equivariant super
Lie algebra. We will sometimes want to refer to the infinitesimal version of this action.

Definition 3.6 Let 2l be a supertranslation algebra. The corresponding supersymmetry
algebra is the super Lie algebra (so(V) @ gr) x 2.

We will now define the fundamental notion of a supersymmetric field theory. Con-
sider a spacetime manifold M = Vg. Let ISO(VR) = Spin(VRr) X Vg be the Poincaré
group which acts by affine transformations on M.
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Definition 3.7 A (Euclidean) classical field theory (E, S, w) is supersymmetric if
E — M is an ISO(VR) x G g-equivariant vector bundle and the infinitesimal strict
action of the translation Lie algebra V on the classical theory is extended to a
Spin(Vr) x G g-equivariant L, action of the supertranslation Lie algebra 2 on the
classical theory.

3.3 Composition algebras and minimal supersymmetry

We will now recall a relationship between certain “minimal” supersymmetry algebras
and composition algebras. Our treatment will essentially follow that of Baez and Huerta
[8]. This section provides the representation theoretic underpinning for theories with
minimally supersymmetric matter in dimensions > 3.

Let A be a unital alternative (recall that this means thata b Q¢ — (ab)c—a(bc) is
completely antisymmetric) complex algebra equipped with an antiinvolution ¥: A —
A. We make the following assumptions:

(1) The map Re(x) = x > (x + x7)/2 defines a projector onto the subspace of A
spanned by the unit.

(2) By the previous assumption we have a quadratic form xx": A — C. We assume
that it is nondegenerate.

In fact, the data of the antiinvolution T may equivalently be encoded in the data of
a non-degenerate multiplicative norm x > xx', i.e. A is a real composition algebra
[87, Chapter 1.3].

For a 2 x 2-matrix M with entries in A we define its hermitian adjoint M by
transposing the matrix and applying T to the entries. Let V to be the complex vector
space of 2 x 2 Hermitian matrices with values in A. Note that dim(V) = dim(A) + 2.
The space V carries a nondegenerate quadratic form given by M — —det(M) (even
though A is non-associative, the determinant is well-defined since we are talking about
2 x 2 matrices). Moreover, it carries an orthogonal involution M=M-— Tr(M) - 1.
Let Cly be the resulting Clifford algebra.

If A is associative, we may discuss left and right A-modules. Given a left A-module,
we may turn it into a right A-module via the antiinvolution : A — A. Since A is a
Frobenius algebra, we have the following basic construction.

Lemma 3.8 Suppose A is associative. Let M be a left A-module and N a right A-
module equipped with a nondegenerate pairing (—, —): M @ N — C satisfying
(am,n) = (m, na) foreverya € A, m € M andn € N. Then there is a unique map
(=, )" M®N —> A of (A, A)-bimodules whose real part is (—, —).

Consider ¥ = A @ A equipped with the left A-action and X* = A @ A equipped
with the right A-action. We will equip the sum X @ ¥* with an action of the Clifford

algebra CZy. The action on the two summands X and ¥* will be different, hence the
different notation. Define the action maps

p:VRTL - p: VX" - X
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by
p(M)Q=MQ, p(M)Q=MQ.

The following is proved in [8, Proposition 6].

Proposition 3.9 The action maps V@ X — X* and V @ X* — X satisfy the Clifford
relation

p(M)p(M) = —det(M) - 1.

As aresult, X @ X* forms a Z/2Z-graded Clifford module.
We have a nondegenerate scalar spinorial pairing

r3* —C
given by

(01, 02) =Re(Q] 0).

If A is associative, it satisfies (Q1a’, Q2) = (Q1, Q»2a). Then the extension to an
A-valued pairing provided by Lemma 3.8 is given by

(01, 004 = 01 0s.

By duality we obtain maps I': Sym?(Z) — V and I': Sym?(Z*) — V given,
respectively, by

—_~—

T(Q1,02) = 0105+ 020},  T(Q1,02) = 010} + 020].

We will now state two important properties of I and the spinorial pairing. The
following statement (an analog of the Fierz identity) was proved in [8, Theorem 11]
(see also [82] for the case dim(V) = 10).

Theorem 3.10 For Q1, Q», O3 € X we have

p(T'(Q1, 02))03 + p(T'(Q2, 03))01 + p(T'(Q2, 03))01 = 0.

If we moreover assume A is associative, there is a relationship between the scalar
spinorial pairing and T".

Theorem 3.11 Suppose A is associative. For Q1, Q> € X and Q3 € ™ we have

01(02, 0)* + 02(01, 03)* = p(I'(Q1, 02)) Q5.
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Proof The right-hand side is

(010} + 0,003

which by associativity can be rewritten as

01(0503) + 02(0103)

which is the left-hand side. O

Note that since dim(V') = dim(A) + 2, the above constructions are only valid in
dimensions > 3. We will be interested in the following examples:

(1) Bd N = 1 supersymmetry) A = C. Here, dim(V) = 3 and X is the spin
representation of Spin(3, C).

(2) (4d N = 1 supersymmetry) A = C ®g C = C[x]/(x% + 1) with xT = —x.
Moreover, dim(V) = 4 and ¥ = S; @ S_ is the sum of semi-spin representations
of Spin(4; C).

(3) (6d N = (1,0) supersymmetry) A = H ®g C = End(W,), where W, is
a two-dimensional symplectic vector space with { given by the dual operator.
Moreover, dim(V) = 6 and £ = Sy ® W, is the sum of two copies of a semi-
spin representation of Spin(6; C).

(4) (10d N = (1, 0) supersymmetry) A = O ®gr C. We have dim(V) = 10 and
3 = S is a semi-spin representation of Spin(10; C).

All four examples are alternative, while the first three examples are also associative.

3.4 Two-dimensional chiral supersymmetry

In the previous section we have related composition algebras to minimal supersym-
metry algebras in dimensions 3, 4, 6 and 10. In this section we explain a different
relationship between composition algebras and supersymmetry algebras, this time in
the case of 2d N = (N, 0) supersymmetry.

Recall that in the case dim(V) = 2 we have two one-dimensional semi-spin repre-
sentations Sy, S_. Moreover, we have an isomorphism

V=592 g 582

and a pairing (—, —): S+ ® S_ — C, both of which are so(V)-equivariant. We denote
the embeddings Sf2 C V by I'y, so that

(T4 (s, ), T-(f, /) = 2(s, ). 3D

Let W be a complex vector space of dimension N equipped with a nondegenerate
symmetric bilinear pairing. We consider the spinorial representation

T=S, QW
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and its dual
Tr=S_QW.
The Clifford action p: V @ S4 — S_ is defined so that
p(T—(f, s =2, ) f

and similarly for V.® S_ — S.

Proposition 3.12 Forv,w € V ands € Sy @& S— we have

p)p(w)s + p(w)p(v)s = 2(v, w)s.

Proof 1t is enough to prove the claim for s € Sy, w € Sf%z and v € S%2. Assume
w="T4(s,s)andv =T_(f, f) for f € S_. Then we have
P (s, )p(T-(f, s =2s, HpT4(s, ) f
= 4(s, f)zs.
But by (31) we have
(Ci(s,9), T-(f, ) = 2(s, [)?
which proves the claim. O

The Clifford action V ® S+ — S+ extends in an obvious way to a Clifford action
VY — ¥*and V ® ¥* — X given by the identity on the W component. Thus,
¥ @ ¥* is a Z/2Z-graded Clifford module.

The spaces X, &* are equipped with so(V)-equivariant nondegenerate pairings
I': Sym?(X) — V defined by

I'(s®q1,s ®q2) =T4(s,5)(q1,q2)
and I': Sym?(X*) — V defined similarly.
Proposition 3.13 Forany v € V and Q1, Q2 € X or Q1, Q2 € X* we have
(v, T'(Q1, @2)) = (p(v) 01, Q2).

Proof 1t is enough to prove the claim with Q, Q> € X. Assume v = ['_(f, f) for
some f € S_, Q1 =5 ®gq and Q2 = 5 ® g2. Then the left-hand side is

(C_(f, 1), T4 (s, )1, 92) = 2G5, £)*(q1, q2)-
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The right-hand side is

(@=(f, s ®q1,s @q2) = Q2(s, /) f ®q1,5s q2)
=2(s. )*(q1. q2).

O

An important property of two-dimensional chiral supersymmetry is the following
analog of Theorem 3.10.

Theorem 3.14 For Q1, Q2, O3 € X we have

oI (Q1, 02))03 =0.

Proof Indeed, I'(Q1, O») lies in S%Z C V, but the nonzero Clifford action is given
by

SRS QW) — S_QW.

]

We will now fix a composition algebra A with an antiinvolution f as in Sect. 3.3
and set W = A. The nondegenerate symmetric bilinear pairing a;, ap — Re(alag )
on A endows W with a pairing.

If we additionally assume that A is associative, then both ¥ and X* are right A-
modules and the Clifford actions V ® ¥ — X*and V ® ¥* — X are maps of right
A-modules. By Lemma 3.8 we may extend the scalar spinorial pairing to an A-valued
pairing X ® ¥* — A by

(51 ® g1, 52 ® g2 = (51, 2)q] g2
We now give the analogue of Theorem 3.11 in the 2d chiral setting.

Theorem 3.15 Suppose the composition algebra A is associative. For Q1, Q2 € X
and Q3 € X* we have

01(Q2, 03) + 02(01, 03)* = p(I'(Q1, 02)) Q5.

Proof Pick basis elements s € Sy and f € S_, so that

01 =s5Qq, 02 =5®q2, 03 = f®gqs.
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The right-hand side is

(g1, q2)p(T1(s,9)) f ® g3 = 2(s, f)s @ (q1,92)g3
= (s, /)s ® (q143 + 924])45-

We have

01(02, 09" =5 @ qi(s, /)(giq3),

so the left-hand side is

s(s, ) ® (q1(g393) + 42(q, 43))-

By associativity of A the two expressions are equal. O

3.5 Supersymmetric twisting

The idea of twisting, originally developed by Witten [95], is to modify a classical BV
theory by deforming the differential Qpy by the action of a square-zero fermionic
symmetry.

Definition 3.16 A square-zero supercharge is a nonzero element Q € X such that
I'(Q, Q) = 0. Its number of invariant directions is the dimension of the image of
rQ,—-):x—-Vv.

It is shown in [42, Proposition 3.25] that the number d of invariant directions is at
leastn /2. We will use the following adjectives for square-zero supercharges depending
ond:

e A supercharge Q is topological if d = n.
e A supercharge Q is holomorphic if n is even and d = n/2.
e A supercharge Q is minimal if n isodd andd = (n + 1) /2.

In the intermediate case we refer to Q as a holomorphic-topological (alternatively,
partially topological) supercharge. The collection of all square-zero supercharges in
dimensions 2 through 10 (where one restricts to supersymmetries with at most 16
supercharges) was studied in [42] and [39]. In particular, the orbits of square-zero
supercharges under the R-symmetry group, Spin(V) and the obvious scaling action
of C* are shown in Fig. 1.

Let (E, S, ) be a supersymmetric classical field theory. Recall, this means we have
a Maurer-Cartan element

SQ[ =5+ ngf) € C.(ms Oloc(g))
k>1

where ng) A% 5 910 (€) as in Definition 2.31 and the classical field theory has an
action of the R-symmetry group Gg.
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Definition 3.17 Suppose (E, S, w) is a supersymmetric classical field theory and Q
a square-zero supercharge. The Q-twisted classical field theory is the Z/27-graded
classical field theory with the same bundle of BV fields and symplectic pairing w, but
with the BV action

$€=5+%"540,.... 0.

k>1
Given additional data, we may enhance the classical field theory.

Definition3.18 Let Q € X be a square-zero supercharge. A homomorphism
a: U(l) — Gpg is compatible with Q if Q has weight +1 and the «-weight mod
2 on E coincides with the fermionic grading.

Recall that before twisting the bundle E is Z x Z/2-graded. Given such an o we
may consider a new Z-grading on E given by the sum of the cohomological grading
and the grading given by «. The map Ig( )L ek O10¢(€) is G g-equivariant, so the
element Iéf ) (Q, ..., Q) has a-weight k. But it also has cohomological degree —k. In
other words, the twisted action S€ has total degree zero, so (E, S Q w) is a Z-graded
classical field theory.

Remark 3.19 There is a slight generalization of this regrading procedure where one
only relaces the requirement that the «-weight coincides mod 2 with the fermionic
grading, only requiring that the twisting supercharge Q is of weight +1. Given an
action « of this more general class, one can define a new Z x Z/2-grading on E by
simultaneously shifting the Z and Z/2-gradings by «. This results in a new Z x Z/2-
graded theory for which both the action S and supercharge Q are of bidegree (1, 0).
This is a strict generalization of the situation above: the additional requirement that
the a-weight mod 2 on E agrees with the fermionic grading forces this new Z x Z/2-
grading to be concentrated purely in the even Z/2-degree part.

Definition 3.20 Let Q € X be a square-zero supercharge and suppose t: G —
Spin(VR) is a fixed group homomorphism. A twisting homomorphism is a homo-
morphism ¢: G — Gpg such that Q is preserved under the product (¢, ¢): G —
Spin(Vr) x Gg.

The classical field theory (E, S, w) carries a Spin(Vr) x G g-action. However,
the Q-twisted theory (E, S, w) does not in general carry a Spin(Vg) x G g-action

since the elements Ia(f )(Q, ..., Q) are not in general invariant under Spin(Vg) x Gr.
However, given a twisting homomorphism ¢ we see that Ié{‘ ) (Q, ..., Q) ispreserved

under G, so (E, N2 w) carries a G-action.

3.6 Dimensional reduction of supersymmetric theories

Suppose Vg = R" as before and choose a subspace Wg C Vg, sothat Vg = Wr& Wﬂé.
We denote W = Wi ®r C.
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Fix a spinorial representation ¥ of s0(V), anondegenerate pairing I'y : Sym?(Z) —
V and a group of R-symmetries Gy . This datum generates a supersymmetry algebra,
which we will denote by 2(. We have a natural embedding

s0(W) ® so(WT) C so(V),

so X restricts to a spinorial so(W) representation. We define the dimensionally reduced
I"-pairing as the composite

I'w: Symz(E) 1> V> W,

where the last map is the orthogonal projection onto W. Finally, we have a new R-
symmetry group

Gw = Gy x Spin(Wg).

This datum generates a supersymmetry algebra 2’ in dimension dim(Wg) as defined
in Sect. 3.2.

Recall from Proposition 2.62 that the dimensional reduction of a classical field
theory along the projection p: Vg — Wp exists and is unique. We have the following
generalization of this statement to supersymmetric theories.

Proposition 3.21 Suppose (E, w, S) is an A-supersymmetric classical field theory on
VRr. Then its dimensional reduction along the projection p: Vg — W has a unique
A’ -supersymmetric structure, compatible with the supersymmetry on Vg in the sense
that p*S% = S&,)R.

Proof This follows from the proof of Proposition 2.62 by coupling the theory (E, w, S)
to auxiliary fields generated by the representation X. O

The following proposition is an immediate consequence of Proposition 3.21 and
Definition 3.17.

Proposition 3.22 Fix a square-zero supercharge Q and a compatible homomorphism
o: U(l) — Gg. Then the dimensional reduction of the twist of the classical field
theory E is isomorphic to the twist of the dimensional reduction of E.

4 Supersymmetric Yang-Mills theories

In this section we construct supersymmetry algebra action on super Yang—Mills theo-
ries. We have the following versions of super Yang—Mills theory depending on dim (X):

e (16 supercharges). This theory exists in dimensions 2 through 10 and depends on
a Lie algebra g.

e (8 supercharges). This theory exists in dimensions 2 through 6 and depends on a
Lie algebra g together with a symplectic g-representation U.
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e (4 supercharges). This theory exists in dimensions 2 through 4 and depends on a
Lie algebra g together with a g-representation R.

e (2 supercharges). This theory exists in dimensions 2 through 3 and depends on a
Lie algebra g together with an orthogonal g-representation P.

There are a few additional possibilities that occur in dimension 2.

e (N supercharges, chiral supersymmetry). This theory exists in dimension 2 and
depends on a Lie algebra g.

e (4 supercharges, chiral supersymmetry). This theory exists in dimension 2 and
depends on a Lie algebra g together with a symplectic g-representation U'.

e (2 supercharges, chiral supersymmetry). This theory exists in dimension 2 and
depends on a Lie algebra g together with a g-representation R.

e (1 supercharge, chiral supersymmetry). This theory exists in dimension 2 and
depends on a Lie algebra g together with an orthogonal g-representation P.

In each case the lower-dimensional theories are obtained by dimensional reduction
from the theory in the highest dimension: for instance, 7d N = 1 super Yang-Mills
(16 supercharges) is obtained by dimensional reduction from 10d N = (1, 0) super
Yang-Mills. So, it will be enough to construct the supersymmetry action in these
highest-dimensional theories.

4.1 Super Yang-Mills theory: Pure Gauge theory

We begin with a description of certain pure supersymmetric Yang—Mills theories. Let
Vr = R” be a real vector space of dimension n equipped with a nondegenerate sym-
metric bilinear pairing and let V be its complexification. Fix a Z/27Z-graded Clifford
module ¥ @ ¥* — C with the associated I"-pairings

r: Sym2(2) -V, I: Symz(E*) -V

defined as in Sect. 3.1. We make the following assumption on this setup.

Assumption 4.1 For Q1, O3, O3 € ¥ we have

p(I'(Q1, 02)) 03+ p(I'(Q2, @3) Q1 + p(I'(Q3, 1)) Q2 = 0.

e (2d N = (N4, 0) supersymmetry) We have dim(V) =2 and ¥ = S; ® W for
some complex vector space W equipped with a nondegenerate symmetric bilinear
pairing. Assumption 4.1 is satisfied by Theorem 3.14.

e (3d N = 1 supersymmetry) We have dim(V) = 3 and X = S. Assumption 4.1
is satisfied by Theorem 3.10.

e (4d N = 1 supersymmetry) We have dim(V) =4 and ¥ = S; & S_. Assump-
tion 4.1 is satisfied by Theorem 3.10.

e (6d N = (1, 0) supersymmetry) We have dim(V) = 6 and ¥ = S; ® Wy
for a two-dimensional complex symplectic vector space W,.. Assumption 4.1 is
satisfied by Theorem 3.10.
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e (10d N = (1, 0) supersymmetry) We have dim(V) = 10 and ¥ = S;. Assump-
tion 4.1 is satisfied by Theorem 3.10.

Let g be a Lie algebra equipped with a nondegenerate symmetric bilinear pairing.
The BRST fields of the Yang—Mills theory are as follows:

e A connection A € Q!(Vg; @) on the trivial bundle.
e Aspinor A € I'(Vg; 1T ® g).
e A ghost field ¢ € QO(Vg: g[1]).

Denote by Fy = dA + %[A A A] the curvature of A and let d 4 be the twisted Dirac
operator obtained from I" (see Sect. 3.1).

Definition 4.2 The BRST theory for classical supersymmetric Yang—Mills theory has
underlying Z x Z/27-graded bundle:

Faauge = Q' (Ve; 9) © T'(Vi; TIZ @ g) @ Q°(Vie: g[1])

whose sections we denote by (A, A, ¢). The dg Lie structure on Fgayge[—1] has differ-
ential given by the de Rham differential d: Q°(Vg; g) — Q!(Vg; g) and bracket

[ —1: (Ve 9) @ (2! (Ve: 9) @ T (Vi: T © 9) @ 2 (Vi )
> Q (Ve g) @I (Ve: 2@ o) © Q" (Ve: 0)

defined by [¢, A + A+ ¢'] = [¢, Al + [¢, A] + [c, ¢']. The BRST action is defined by

SBRST(A, A) = f

dvol 1FF 1/\¢1x
. VO <_é_1( A, A)+§(, A))~

The BV theory of supersymmetric Yang—Mills is the BV theory associated to
this BRST theory. By definition, the fields are identified with sections of the bun-
dle T*[—1]Fgauge = Foauge ® Féauge[—l]. If we denote by (A*, A*, ¢*) the anti-fields,
the full BV action takes the form:

1 1
Sgauge = / dvol <——(FA, Fp)+ (&, dar) + (dac, A¥)
Vi 4 2
1
+([Ca )"]7 )"*) + 5([6" C]a C*)> . (32)

To simplify the notation, the pairing on g from now on will be implicit.

The Poincaré group acts, in the sense of Definition 2.34, on Yang—Mills theory on
R”". Indeed, there is an obvious Poincaré action on fields where we use that X is a
representation of Spin(VRr). The corresponding Hamiltonian is given by

Singe (W) = /V ) dvol ((LyA, A*) — (v.A, A*) — (v.o)c*), (33)
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for v € iso(V), where v.)\ contains both a derivative and the so(V) action on X.
We will now constructan L, action of the super Lie algebra2( on the theory. Follow-

ing Definition 2.31, we have to prescribe a collection of functionals Sé;l)lge, Séil)lge, ey

where Séﬁ?lge S ARk 5 910(8), together satisfying the classical master equation. The

supersymmetry action we construct will extend the Poincaré action from (33), so we
just have to specify the values of Sél;flge on the supersymmetry generators in X. The
action of supersymmetry is given by a linear and a quadratic functional

SO @) = [ dvol (=(T'(Q. 1), A) + ~(p(F) 0, %) (34)
gaug Ve )
1
S2ee(Q1. 02) = / dvol <—(F<Q1, 02), T(A*, 1))
VR 4
1
_E(Ql, A)(Q02, A7) — LF(Q],QZ)AC*> . (35)

The following theorem summarizes the fact that super Yang—Mills theory is indeed
supersymmetric in the sense of Definition 3.7.

. 1 2 .
Theorem 4.3 The functional Sgayge 9t = Sgauge+Seange+Seange € C* (@A, Otoc (€ gauge))
satisfies the classical master equation

1
dce (Sgauge,f?l) + E{Sgaugeﬂla Sgauge,?(} =0.

This result implies that the pure gauge sector of super Yang—Mills theory carries
an L, action by the super Lie algebra 2. We consider coupling to matter in the next
section.

The rest of the section will be devoted to the proof of the above theorem. The
classical master equation decomposes into the following equations:

{Sgaugev Sézllage} =0

gauge gauge’

2 1 2
dCESéaflge + {Séaflge, ngaflge} -0

{82 e S oe} = 0.

gauge’ “gauge

1
{Sgaugev Séi&ge} + dCES(l) + E{S(l) Séeln)lge} =0

Note that the last equation is automatically satisfied since Sgu)lge is independent of
X and c. The rest of the claims will be proved in a sequence of Lemmas. To simplify
the expressions, we drop the integrals from our notation.

Lemma 4.4 For each Q € X, one has {Sgauge, Séelu)lge(Q)} =0.

Proof Let us decompose Sgauge = Zle Sgauge,i into individual summands of Eq.
(32).
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The first term gives

1
(Saauge. 1, Sgange ()} = =7 (daT'(Q, 4), Fa)

1
= —5<—1)"—1<*dA * Fa, T(Q, ).

The second term gives

1 1
(Spauge.2, Sgahge (@)} = =5 (A, p(T(Q, 1NN + S (0 (Fa) @, dah)
1 1
1 1
= =500, 1), T (4, 2) = Z(=1)"(h, pCrda x Fa) 0),

where we have used Proposition 3.3 and the Bianchi identity in the last line.
By (29) and Assumption 4.1 we have (I'(Q,A1),['(A,A)) = 0, so {S] +
$, Sgatge(Q)} = 0.
Finally, {Sgauge,3 + Sgauge,4 + Sgauge, 5, Sg(;)lge( 0)} = 0 due to gauge-invariance of
(1)
Sgauge(Q)~ O

Remark 4.5 The previous Lemma expresses the fact that the pure super Yang-Mills
on-shell action on BRST fields is supersymmetric; this was proven by Baez and Huerta
in [8], and our proof essentially follows the proof in loc. cit.

Lemma 4.6 One has

1
2 1 1 1
{Sgauge’ ngazlge} + dCESéa&ge + E{Séa&ge’ Sfiraflge} =0.

Proof Evaluating the equation

1
2 1 1 1
{Sgauges Séaglge} + dCESéazlge + E{ngal)lge’ Séazlge} =0

on vy, v € is0(V), the claim reduces to the fact that (33) defines a strict Lie action.
Evaluating it on v € is0(V) and Q € X, the claim reduces to the fact that Sé;&ge is

Poincaré-invariant. So, the only nontrivial check is for O, 0> € X.
The individual terms are

ey

1
S8 e Sthhee (1, 02) = = (Sse (Q1). Stide(02))
1
=~ S (PW@AT(Q1,))02,3")
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1
+ 5 T(Q2, p(FA)Q1), AY)

2
1
= 5(P(daT'(Q2,1))01,1%)
1
+3(C(Q1, p(Fa) 02), A7),
2
(AeESianee) (Q1. 02) = Sl (T(Q1. 02))
= (Lr(0,.01)(A), A*) — (T(Q1, Q2).1, ™)
— (T(Q1. 02).0)c”,
3)
(2) _ 1 * *
{Sgaug& Sgauge(Q17 0} =— E(QL A)(Q1, dA)L + [c, A7])
1
- E(Ql» A)(Q2, daX + [c, A*])

1
+ E(F(Qh 02), TG*, dad + [e, A7)

+ (01,0, (dac)c™ = (datr(g,,0,) A, A")
+ (7 tr(01,00) AL A™) = [tr(o,, 00 A, clc™.

The total coefficient in front of A* is
1 1
EF(le p(Fa)02) + EF(Qz, Pp(Fa)01) + Lr(g,,0,)A — datr(g,,0,)A.

Using Proposition 3.1 we get that the sum of the first two terms is —tr(p,, 0,) F'a which
cancels the last two terms.
The total coefficient in front of ¢* is

—I'(Q1, 02).c +ir,,0,)(dac) — [tr(g;,0,) A, c]l = 0.
The total coefficient in front of A* is
1 1
- E,O(dAF(Qh A) Q02 — Ep(dAF(QZ, A) 01 —T(Q1, 02).A
1 1 1
+ E,O(F(Ql, 02))dar — §(Q2’ dar) Q1 — E(Ql, dar) Qs + [1, (T(Q1, 02), A)]

Using Proposition 3.2 the first, second, fifth and sixth terms combine to

1 1
—EdAP(F(le A)Q2 — szp(F(Qz, M) Q1
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which is equal to %d Ap(T'(Q1, Q2))A by Assumption 4.1. Using the Clifford relation
this term cancels the rest of the terms. m]

Evaluating the equation

2 1 2
dCESéazlge + {Séaflge’ Séal)lge} =0

on vy, v2, v3 € iso(V) or on vy, vy € is0(V) and Q € ¥ we automatically get zero.
Evaluating iton v € iso(V) and Q1, Q> € X we get Poincaré-invariance of Sgl)]ge.

Lemma 4.7 One has
{S g SEhee} (Q1. 02, 03) =0
forevery Q1, Q>, Q3 € X.
Proof We have
{Stange (1) Stnge (02, 03)} = = i1 (05,09 (21, M)c*

1
= 3(0(Q2. 03). T(p(AM) Q1. 27))

1
+ E(Qz,p(A*)Q1)(Q3,?»*)

1
+5(Qs, P(A")Q1)(Q2, 1Y).

{Séizlge, Séil)]ge}(Q 1, 02, 03) is obtained by cyclically symmetrizing the above
expression. By Assumption 4.1 the cyclic symmetrization of the term with ¢* is zero.
The Clifford relation implies that

%(F(Qz, 03), L(p(AM) Q1, 1)) = — %(F(Qz, 03), T(p(A")A*, Q1))
+ (T'(Q2, Q3), A")(Q1,27)
=— %(D(F(Qz, 03))Q1, p(A"AY)
+ (C(Q2, 03), A")(Q1, A7).

Therefore, again using Assumption 4.1 we see that the cyclic symmetrization of the
terms with A* vanishes. O

4.2 Coupling to matter multiplets

In this section we describe the coupling of super Yang—Mills theory to matter valued in
a g-representation P, i.e. the supersymmetric gauged linear o -models. Our description
of the supersymmetry of the matter multiplet is inspired by the presentation of the
supersymmetric nonlinear o -models by Deligne and Freed in [36, Chapter 3].
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Consider as before Vi and a Clifford module ¥ @ X* satisfying Assumption 4.1.
In addition, fix a complex associative composition algebra A equipped with an anti-
involution f as in Sect. 3.3. Suppose ¥ @ X* carries a compatible right A-module
structure. Let (—, —)4: £ ® ©* — A be the corresponding A-valued pairing given
by Lemma 3.8. We make the following additional assumption.

Assumption 4.8 For O, 0> € X and Q3 € ¥* we have

01(02, 0)* + 02(01, 03)* = p(I'(Q1, 02)) Q5.

Explicitly, we consider the following examples of theories of matter with minimal
supersymmetry.

The first three examples concern chiral two-dimensional supersymmetry, where
Y= Sid®A, with Sid the one-dimensional positive complex semi-spin representation
of Spin(2; C):

e (2d N = (1, 0) supersymmetry) A = C. Assumption 4.8 is satisfied by Theo-
rem 3.15.

e (2d N = (2, 0) supersymmetry) A = C[x]/ (x2+1). Assumption 4.8 is satisfied
by Theorem 3.15.

e 2d N = (4,0) supersymmetry) A = End(Z) where Z is a 2-dimensional
symplectic vector space. Assumption 4.8 is satisfied by Theorem 3.15.

In dimensions > 3 we have the following examples, where ¥ = A @ A:

e (3d N = 1 supersymmetry) A = C. Assumption 4.8 is satisfied by Theorem 3.11.

e (4d N = 1 supersymmetry) A = C[x]/(x* + 1). Assumption 4.8 is satisfied by
Theorem 3.11.

e (6d N = (1,0) supersymmetry) A = End(Z). Assumption 4.8 is satisfied by
Theorem 3.11.

Let P be a left A-module equipped with a C-valued nondegenerate symmetric
bilinear pairing such that

(av, w) = (v,a’w).

Moreover, assume P carries a g-action commuting with the A-module structure and
preserving the bilinear pairing. Explicitly, for A = C, C ®gr C, H @r C we get the
following data:

e A = C. We are looking for a g-representation P equipped with a nondegenerate
symmetric bilinear pairing.

o A = C[x]/(x?+ 1). A left A-module P splits as P = P, @& P_, where x acts
as £i on Py. Note that with respect to the right A-action x acts as i on P4+. So,
the symmetric bilinear pairing identifies Py = P*. In other words, the data boils
down to a g-representation R, so that P = R & R*.
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e A = End(Z). Aleft A-module is necessarily of the form P = Z® U, where A just
acts on Z. Compatibility of the orthogonal pairing on P with the A-action implies
that it is given by a product of the symplectic pairing on Z and a symplectic pairing
on U. So, the data boils down a symplectic g-representation U.

We are going to construct a theory on Vg describing a matter multiplet valued in
P. The BRST fields are given as follows:

e ascalar ¢ € I'(Vg; P);
e aspinory € ['(Vp; [1X* ®4 P).

As usual, we denote the antifields by ¢* € I'(Vg; [1P) and ™ € T'(Vr; £ ®4 P).

We extend the pairings on P and between ¥ and X * to a pairing between X ® 4 P and
X*®4 P inthe following way. Given ) _, 5; ®v; € £*®4 P and Zj Si@w; € ZR4P,
their pairing is

> Re((vi, w))(sj, )™, (36)

i,j

where we extend both pairings to A-valued pairings using Lemma 3.8. We may also
extend the I"-pairing to a map

I: Symz(E* Qs P)—>V
defined by the property

W, T, ¥2)) = @1, p(0)Y2), veV, ¥ € 2" Q@ P.

The BV action for the matter multiplet is

1
Smauer=fv dvol <§(dA¢, dad)+(, day)+2(1e, ¥) + (c¥, ¥) — (e, ¢*)) ,
R

(37
where we use the pairing (36) in the second term.
It is Poincaré-invariant with the corresponding Hamiltonian
1
Ster (V) = / dvol ((Lug, ") — (0., ¥)). (38)
VR

for v € iso(V).
The action of supersymmetry is given by a linear and quadratic functional:

1
S er (@) = fv dvol <(<Q, V). + 3 (p(d19)Q. w*>> (39)
R
1
Stuer(Q1: 02) = fv dvol(I'(Q1, Q2), T (W™, ¥*)) (40)
R
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where Q, Q1, Q2 € X.
We consider the full action of the super Yang—Mills theory

Ssym = Sgauge + Smatter

where Sgauge is the BV action of the pure gauge sector of super Yang-Mills theory
defined in Eq. (32).

The action by supersymmetry on the full theory is encoded by the 2(-dependent
functionals

SM = 5O e + S 5@ =852 .+

gauge matter? gauge matter

where Sgu)lge, Sgl)]ge are as in Egs. (34) and (35). The following result states that these

functionals encode an off-shell action of the supersymmetry algebra.

Theorem 4.9 The functional Sg = Ssym + S M4 5@ satisfies the classical master
equation

1
dCESQ(—i-E{Sm,SQ(} =0. 41)

Thus, according to Definition 2.31, the functional Sy defines an elliptic L~ action of
the super Lie algebra A on super Yang—Mills theory and so super Yang—Mills theory
is supersymmetric

The rest of this section is devoted to the proof of Theorem 4.9. Notice that when
we take the matter to be valued in a trivial representation for the Lie algebra g, the
result reduces to Theorem 4.3. We may therefore restrict our attention to the terms in
(41) which involve fields of the matter multiplet. Consequently, the classical master
Eq. (41) decomposes into the following set of equations:

{Ssym, ST} =0

{Smateer, P} + dCESr(;zztter + {Séglge’ Sr(nlﬁner} + %{Sr(n]ztter’ Sr(nl;tter} =0
dCESr(I%zztter + {Sr(nla?tter’ Smatter} =0

{Smatter’ Smatter} =0

(42)

The last equation is automatically satisfied since S? is independent of the fields

b, U, A A,

The first equation in (42) states that the classical action is supersymmetric.
Lemma 4.10 One has {Ssym, SV} (Q) =0 forall Q € X.

Proof Let us decompose Spatter = Zle Smatter,; into the individual summands in Eq.
(37).
The first term gives

{Smatter.1, SP(Q)} = —(dag, da(Q, ¥)) + (T(Q, 1), dag)
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= d3dad(Q.¥) + (['(Q. M9, dad).

The second term gives

{Smatter.2, SP(Q)} = —(¥, dap(dag) Q) — (¥, p(T(Q, M)V)
=~ p(FA) Q)¢ — didad (. Q) — (¥, p(T(Q, M),

where we have used Proposition 3.3 in the second line.
The third term gives

{Smatter.3» SV (Q)} = (0(F) Q)¢ ¥) +2(A(Q, ¥), ¥) — (Ao, p(dad) Q)
= ((p(FA)Q)$, ¥) + (0(T(Q, )V, ¥) — (T (A, Q), dadp),

where we have used Assumption 4.8 in the middle term and (29) in the last term. It is
then obvious that

{Smatter,l + Smatter,Z + Smatter,?n S(l)(Q)} =0.

Finally, the terms {Smatter,4 + Smatter,5 + Sgauge,3, S m(Q)} are zero due to gauge-
invariance of S (Q), while the rest of the terms are zero by Lemma 4.4. O

Next, we move on to the second equation in (42).

Lemma 4.11 One has
1
1 1 1 1
{ Smatter» 5(2)} + dCESr(nztter + {Séélu)lge’ Sr(nztter} + E{Slgaztter’ Sr(na)tter} =0. (43

Proof Evaluating expression (43) on vy, vy € iso(V) reduces to the claim that (38)
defines a strict Lie action. Evaluating on v € iso(V) and Q € %, the claim reduces
to the fact that IV is Poincaré-invariant. So, the only nontrivial term to check is the
evaluationon Q1, Q) € X.

The individual terms are:

)
%{sggm, SO e} (01, 02) = — (S0 e (01), S . (02))
=~ 3(01, P@ABI0F" — 3 (02, p(dA) 016"
(@1, ¥ 02 ¥
(@2 )01,
@)

(S hger Shaer} (Q1. 02) = — (S (Q1), SSiaer (02))
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— (S (02). Shinier(QD)
1
=~ S (p(T(Q1. 1)@ Q2). V")

1
= (0T (Q2. 1)@ Q). V),

3)
deeSY ) (01, 02) = Lr(g,.00) (@)¢* — (T(Q1, 02) ., ¥,
(4)
1
{Smatter, S? (01, 02)} = ST(Q1, 0T (", day = 240 + cy™)
—((tr (01,0 AV, ™) + ((tr(0,,0) A9, $¥)

We first collect all terms in Eq. (43) proportional to ¢*:

1 1
—E(Ql, p(dag)Q2) — §(Q2’ p(da9)01) + Lr(g,,0,)9 + (tr(0,,0,)A)9.

By (29) we observe that the first two terms cancel with the last two terms.
Next, we collect all terms in Eq. (43) containing ¥* and :

1 L1 A 1
EdAQZ(QIW) +§¢1AQ1(Q2,31‘¢) —I'(01, Qz)-W-I—EP(F(Ql, 02)day
—(tr(g,00 Y- (44)

Applying Assumption4.8to Q3 = v, the first two terms become %dA,o T(Q1, O)Y).
Finally, by the Clifford identity the sum of this term with the fourth term in (44) is
precisely tr(g,,0,)da which cancels the remaining terms. O

Lemma4.12 One has
1 2
{Sr(na)tter’ anzitter}(Ql’ 0>, Q3) =0

forevery Q1, 02, Q3 € X.

Proof We have

) 6) _ ! .
{Smatter (@1), Spatter (Q2, Q3)} = Z(F(QL 03), (Y™, ¢701))
=", ¢"p(T(Q2, 03))01).

The expression {Sfr};ner, Sr(fgner}(Q 1, @2, Q3) is obtained by cyclically symmetrizing

the above expression. By Assumption 4.1 the cyclic symmetrization is identically zero.
O

W Birkhauser



A taxonomy of twists of supersymmetric yang-mills theory Page690f124 73

Part 2. Classification of Twists

In the following sections we fix a complex Lie algebra g equipped with a symmetric
bilinear invariant nondegenerate pairing, which should be thought of as the complex-
ified Lie algebra of the gauge group. We will refer to the classification of twisting
supercharges from [42] throughout.

5 Dimension 10
The odd part of the 10-dimensional supersymmetry algebra is
=S, W,L,pS5_@W_,

where S, S_ are the 16-dimensional semi-spin representations of Spin(10, C), and
where W, and W_ are complex vector spaces equipped with nondegenerate symmetric
bilinear pairings.

There are supersymmetric Yang—Mills theories with N' = (1,0) or N = (0, 1)
supersymmetry. We concentrate on the first case, the second case being identical. So,
we fix Wy = Cand W_ = 0.

5.1 N = (1, 0) super Yang-Mills theory

We consider N = (1, 0) super Yang—Mills theory on M = R'? with the Euclidean
metric.
This theory admits a unique twist:

e A square-zero supercharge Q # 0 € X has 5 invariant directions and does not
admit a compatible homomorphism «. So, it gives rise to a Z/27Z-graded holo-
morphic theory. Such a supercharge is stabilized by G = SU(5) C Spin(10, C).

5.1.1 Holomorphic twist

Let QO € X be a nonzero square-zero supercharge, which we will fix for the rest of
this section. The image of I'(Q, —): ¥ — V is a complex Lagrangian (i.e. maximal
isotropic) subspace L C V. Denote by o: V — V the complex conjugation induced
by the real structure V = Vg ®p C. Since the bilinear form on Vp is positive-definite,
LNo (L) = 0.Inother words, L defines a (linear) complex structure on V. Moreover,
we may canonically identify o (L) = L*.

Remark 5.1 It is important here that we are working in the complexified setting. While
it makes sense to study a real form of 10d supersymmetric Yang—Mills theory in
Lorentzian signature associated to areal Lie algebra gr, where the fermions are valued
in the Majorana-Weyl spinor bundle, in this real supersymmetry algebra there are no
square-zero supercharges. Indeed, a square-zero supercharge induces a 5-dimensional
isotropic subspace of R'?, which only exists in the split signature 5 + 5 (in which case
there is no real structure for the Weyl spinor representation).
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LetML(L) = ML(5) be the metalinear group of L. Under the embedding ML.(L) C
Spin(V), the semi-spin representation ¥ = S} decomposes as

® =det(L)/? & A’L* @ det(L)/? & L ® det(L)" /2.

Q € X lies in the first summand, so the choice of Q is equivalent to the choice of
a (linear) Kihler structure L on VR together with a complex half-density on L. The
square of this half-density defines a Calabi—Yau structure on M.

We will now rewrite the fields and the action in terms of the Calabi—Yau structure.
Let w € QL1(M) be the Kihler form, @ € (M) the holomorphic volume form
and A: QPHL4TL(M) — QP-9(M) the dual Lefschetz operator. We denote the real
volume form on M by

5

dvol = 2.
5!

The vector representation decomposes as
o' = e on e % ),
the semi-spin representation S; decomposes as
QOM:; s = QM e Q¥ (M) @ Q0 (M)
and the semi-spin representation S_ decomposes as
QOM; s-) = QM) @ Q20(m) @ Q°(M).

Under this decomposition the scalar pairing S4 ® S— — C corresponds to the
wedge product of individual components post-composed with A. Under the above
decompositions the Clifford multiplication of a vector A = A1 0 + Ao,1 and a spinor
A=p+ B+ x € S; is given by

P(AA = (Ao, 1x + A(A10AB), A1o A p+*(Ag1 ABAQ), A(Aog1 Ap)) €5—.

Fields: The BRST fields are given by:

e Gauge fields A1 o € QUO(M; g), Ag.1 € Q¥ (M; g).
e Fermions p € Q"9(M; Ig), B € Q¥2(M; Ig), x € QU(M; Ig).
e A ghost field ¢ € QU(M; g)[1].

We denote their antifields by A7 . Ag 1, 0%, B*, x*, c*.

The BV action of the theory is obtained from (32) by decomposing it in terms of
the above fields. To write it out we will need an expression for the Hodge star operator
on Kihler manifolds, see [54, Proposition 1.2.31].
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Proposition 5.2 Let (M, w) be a Kdhler d-fold and decompose

Q2(M) = @2 (M) @ Q"2(M) @ (Co @ Q' (M)).

Then
1

(1) The spaces Q> (M) ® Q*2(M), Cw and QJ_’I (M) are mutually orthogonal.
(2) Foraforma e Q*>°(M) @ QU2(M) we have

* = ﬁ(x Afd2,
(3) Forua € Qj_’l(M) we have
= _(d _1 2)!04 Awd2,
(4) For a € Cw we have
1 d—2'

o = (d_l)'oz/\a)

Corollary 5.3 Let M be a Kéihler d-fold and F = F> 0+ F1,1 + Fo 2 a two-form. Then

FAsF4—  FAFA d—2_(4(F Fo2) + (AF )2>wd
—_— 0] = , —.
(d—2)! 20702 L)

Since we are working near the trivial connection, the topological term [ F A F A ’

is exact, so we will drop it. The BV action of the twisted theory Siwist is then the sum

of the following terms:

1 _
SBRST = /dvol <—(F2,0, Fo2) — Z(AFl,l)z + xA@4y,0) + (B, 3A1,0,0)>

1 =
+ 3B ADa BAR (45)

Santi = / dVOl ((aAlv()C’ AT’O) + (gA()_lCa A(#;’]) + ([105 C]a 10*)

1
+[X9C]X* + ([B,C], B*) + E[c’ C]C*> (46)
1
s ) = / dvol <—<p, T0) + (Foo, BY) + EAF1,1X*> 47)
s@0) = —% / dvol(x*)2. (48)
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The first two terms comprise the action of supersymmetric Yang—Mills theory Ssym =
Sgauge of Definition 4.2 written with respect to the ML(L) = ML(5) decomposition.
The last two terms arise from the twisting procedure.

Theorem 5.4 The holomorphic twist of 10d N = (1, 0) super Yang—Mills on M = R0
is perturbatively equivalent to holomorphic Chern—Simons theory on M = C> with
the space of fields Map(M, Bg). Moreover, the equivalence is SU(5)-equivariant.

Proof First, we may eliminate x and x* using Proposition 2.25. So, the above theory
described by Siwist 1s perturbatively equivalent to the theory without the fields x and
x* with the BV action

1 _
S_y = / dvol (—(Fzy(), Fop) + (B, 3A1,o,0)) + EB N dag, B A2
+ f dvol ((9a,4¢, AT o) + 94y, €. AG 1) + (o, cl. p¥)
* 1 *
+(B,cl, BY) + 5[& clc )
—|—/dvol(—(,o, 10) + (Fo.2, B)).

Next, we have a term f dvol p A AT,O in the action, i.e. (p, A o) is a trivial BRST
doublet, so by Proposition 2.27 we may remove it. The above theory described by S_,
is perturbatively equivalent to the theory without fields p, p*, A1,0, A7 ( and with the
BV action

1 - _
So = / EB A g, B A Q4+ dvol ((BAOYIC, Ap.1) + ([B,cl, BY)
1 k k
+§[C’ C]C + (F0,25 B )
Up to rescaling of the antifields by the rule
o > Q7 e (a”)

the fields and action coincide precisely with those of holomorphic Chern—Simons
theory (see Sect. 2.6.2). O

Remark 5.5 A similar claim was previously proved by Baulieu [14] by adding an
auxiliary field to 10d N = (1, 0) super Yang—Mills.

6 Dimension 9
The odd part of the 9-dimensional supersymmetry algebra is
T=S5W,
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where S is the 16-dimensional spin representation of Spin(9, C) and W is a complex
vector space equipped with a nondegenerate symmetric bilinear pairing.

There is a supersymmetric Yang—Mills theory with N = 1 supersymmetry, so we
fix W =C.

6.1 N = 1 super Yang-Mills theory

We consider N = 1 super Yang—Mills theory on M = R equipped with the Euclidean
metric.
This theory admits a unique twist:

e A square-zero supercharge Q # 0 € X has 5 invariant directions and does not
admit a compatible homomorphism «. So, it gives rise to a Z/27Z-graded holo-
morphic theory. Such a supercharge is stabilized by G = SU(4) C Spin(9, C).

We may identify the odd part of the 9d N = 1 supersymmetry algebra with the
odd part of the 10d N = (1, 0) supersymmetry algebra. Under this identification a
supercharge Q squares to zero in 9d if and only if it squares to zero in 10d (we refer
to the discussion in [42, Section 4.8—4.10] for details on the spaces of square-zero
spinors).

6.1.1 Minimal twist

Let QO € X be a square-zero supercharge. Denote the image of I'(Q, —): ¥ —
V by L+ C V. Its orthogonal complement L is maximal isotropic and Lt/L is
one-dimensional. Since the bilinear form on VR is positive-definite, L N o (L) = O.
Moreover, N = Lt No (LJ‘) C V is a o-stable one-dimensional subspace, we let N
be the o -invariants of N. Therefore, we get a decomposition

V=L®oc(L)®N,

where L- = L& N.
Under the embedding ML(L) C Spin(V) the spin representation ¥ = § decom-
poses as

¥ = A°L ®det(L)"1/?

and the supercharge Q lies in the one-dimensional subspace det(L)!'/> C ¥. Therefore,
the choice of Q is equivalent to the choice of a one-dimensional subspace Nr C VR
and a complex structure on Vr /N together with a complex half-density.

It will be convenient to perform a computation of the twist in a slightly more general
setting which will be useful for lower-dimensional computations.

Suppose L is a complex vector space equipped with a Hermitian structure and a
complex half-density. Suppose Ng = R>~4m(©) equipped with a Euclidean metric
and a spin structure. Denote by N = Nr ®p C its complexification which carries a
complex half-density. Let Vg = L x N (a 10-dimensional real vector space). By the
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results of Sect. 5.1.1, there is a canonical square-zero supercharge Q € X determined
by the complex structure on L x N and a complex half-density.

The dimensional reduction of 10d super Yang—Millson L x N alongRe: N — Np
is by definition the (5+dim(L))-dimensional super Yang—Mills on L x Ng. Since N =
NRr @ i NR, this theory carries an action of the R-symmetry group G g = Spin(NR).
We consider a twisting homomorphism ¢: SU(L) x Spin(Ngr) — Gr = Spin(NR)
given by the projection onto the second factor under which Q is preserved.

Theorem 6.1 The twist of (5 + dim(L))-dimensional super Yang—Mills on L x Ny by
Q is perturbatively equivalent to the generalized Chern—Simons theory with the space
of fields Map(L x (Nr)dr, Bg). Moreover, the equivalence is SU(L) x Spin(NR)-
equivariant.

Proof By Theorem 5.4 the twist of 10d N = 1 super Yang-Mills on L x N by
Q is perturbatively equivalent to the holomorphic Chern—Simons theory. Moreover,
the equivalence is SU(L) x SU(N)-equivariant. By Proposition 2.65 we get that the
dimensional reduction of holomorphic Chern-Simons on L x N along Re: N —
Ng is isomorphic to the generalized Chern—Simons theory with the space of fields
Map(L x Ng, Bg) and this isomorphism is SU(L) x SO(NR)-equivariant, where
SO(NR) acts on N via the homomorphism (27).

Therefore, we just need to establish that the Spin(Ng)-action on the twisted
(5 4+ dim(L))-dimensional super Yang—Mills obtained using the twisting homomor-
phism coincides with the Spin(/Ng)-action on the generalized Chern—Simons theory.
The Spin(Ng)-action on the fields of (5 4+ dim(L))-dimensional super Yang—Mills is
obtained via the homomorphism

diagonal

Spin(Ng) ——— Spin(NR) x Spin(Nr) — Spin(Nr & Ng),
where the diagonal embedding comes from the identity map to the partial Lorentz
group Spin(Ng) and the twisting homomorphism, i.e. the identity map, to the R-
symmetry group G g = Spin(NRr). The SO(NR)-action on the fields of the generalized

Chern—Simons theory is given by the composite

SO(Ng) 22 SUN) —> SO(Ng @ Ng)

The claim then follows from the commutativity of the diagram

diagonal

SO(Ng) —————+ SO(NRr) x SO(Ng)

- |

SU(N) —— s SO(Ng @ Ng).

We will now concentrate on the 9-dimensional case.
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Theorem 6.2 The minimal twist of 9d N = 1 super Yang—Mills on M = C* x R is
perturbatively equivalent to the generalized Chern—Simons theory with the space of
fields Map(C* x Rqr, Bg). Moreover, the equivalence is SU(4)-equivariant.

Proof Any square-zero supercharge in the 9-dimensional supersymmetry algebra is
square-zero in the 10-dimensional supersymmetry algebra. The claim follows from
Theorem 6.1 applied to L = C*. O

7 Dimension 8

The odd part of the §-dimensional supersymmetry algebra is
=S QWS- QW

where S, S_ are the 8-dimensional semi-spin representations of Spin(8, C) and W is
acomplex vector space. The semi-spin representations carry nondegenerate symmetric
bilinear pairings S+ ® S+ — C.

There is a supersymmetric Yang—Mills theory with N = 1 supersymmetry, so we
fix W =C.

7.1 N = 1 super Yang-Mills theory

We consider N = 1 super Yang—Mills theory on M = R? with the Euclidean metric.
It admits R-symmetry group G g = Spin(2; C) which acts with weight 1/2 on W and
weight —1/2 on W*.

This theory admits three twists by the following supercharges.

e Supercharges (Q,0) and (0, Q) with (Q, Q)s, = 0. These are holomorphic.
Moreover, we have an embedding «: U(1) < Spin(2, C) under which they have
weight 1, so they give rise to a Z-graded holomorphic theory. Such a supercharge
is stabilized by G = SU(4) C Spin(8, C). We have a twisting homomorphism

12
¢: MU®4) dL> U(l) %G R, SO the twisted theory carries an action of MU (4).

e Supercharges (Q, 0) and (0, Q) with (Q, Q)s, # 0. These are topological. As
before, we may choose a compatible homomorphism «, so they give rise to a
Z-graded topological theory. Such a supercharge is stabilized by Spin(7, R) C
Spin(8, C).

e Square-zero supercharges (Q4, Q_) where both Q4 are nonzero. These have 5
invariant directions and do not admit a compatible homomorphism «, so they give
rise to a Z/27Z-graded theory. We have (Q+, O+)s, = 0. The supercharges O
and Q_ are each stabilized by copies of SU(4) C Spin(8, R). The intersection of
these copies of SU(4) is isomorphic to SU(3) C Spin(8, R). We have a twisting
homomorphism ¢: SU(3) x Spin(2, R) — Gz = Spin(2, C) given by projection
onto the second factor, so the twisted theory in fact carries an action of SU(3) x
Spin(2, R).
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7.1.1 Holomorphic twist

Suppose Q € Sy such that (Q, Q)s, = 0. As in Sect. 5.1.1, the data of such Q is
equivalent to the data of a Kéhler structure L on VR together with a complex half-
density on L.

We consider the twisting homomorphism det!/?: MU@4) — Spin(2, C) under
which Q becomes scalar. Moreover, we have an embedding « : U(1) C Spin(2, C), so
the theory is Z-graded and carries an MU (4)-action. In fact, this action will manifestly
factor through U(4).

Fields: The BRST fields are given by:

Gauge fields A1 o € Q10(M; g) and Ag; € Q%1 (M; g).

Scalar fields a € Q*0(M; g)[2] and @ € QO*(M; g)[—2].

Fermions x € QO(M; g)[—11, B € QO2(M; g9)[—11, ¥ € Q"*M; g)[—1], p €
Q'O(M; g)[1] and C € Q30(M; g)[1].

A ghost field ¢ € QO(M; g)[1].

Theorem 7.1 The holomorphic twist of 8d N = 1 super Yang—Mills on M = RS is
perturbatively equivalent to the holomorphic BF theory on M = C* with the space of
fields T*[—1]Map(M, Bg). Moreover, the equivalence is U(4)-equivariant.

Proof 8d N = 1 super Yang—Mills theory is obtained by dimensionally reducing 10d
N = 1 super Yang—Mills theory. Under dimensional reduction the 10d fields from
Sect. 5.1.1 decompose as follows:

Ao~ Aro+a
Ap,1 ~ Ap,1 t+a
p~p+X
B~ B+C.

The claim about the underlying Z/27Z-graded theories follows by applying dimen-
sional reduction (Proposition 2.64) to the computation of the minimal twist of 9d
N = 1 super Yang-Mills (Theorem 6.2). We are left to check that the equivalence
respects the gradings and the U(4)-action. Indeed, the equivalence given by Theo-
rem 6.2 eliminates fields Aj o, d, p, x, X and hence the underlying local L, algebra
after the twist becomes

QU(CH g)e — QUI(CH )y, — QO2(CH g)p — QV3(CH; g)er — QUHCH; g)o
©®

QHCH 9o — Q(CH g — QM(CH g — @V (CH gy, — QYT g)

concentrated in cohomological degrees —1,...,4. These fields have the same
degrees as in the holomorphic BF theory. O
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7.1.2 Topological twist

Next we discuss the case of the topological twist. We are going to prove that it is
perturbatively trivial. In fact, it will be useful to study a degeneration of the topological
twist to a holomorphic twist and describe the corresponding family of twisted theories.

Let Vg = R® and V = Vg ®g C. Fix a Kihler structure on R® and denote by
L C V the i-eigenspace of the complex structure. Moreover, fix a complex volume
form on L. Under SU(L) C Spin(V) the semi-spin representation S; decomposes as

S+ = (CQ() (&) /\2L (o) C@O
The scalar spinorial pairing S1 ® S; — C is given by pairing the outer terms with

each other and A” L with itself using the complex volume form on L. Consider a family
of square-zero supercharges

Or=Qo+10p €Syt (49)

for t € C. We have

(01, 01) =1,

so at t = 0 we have a holomorphic supercharge and ¢ # 0 we have a topological
supercharge.

We will use the notation for fields of 8d N = 1 super Yang—Mills from Sect. 7.1.1.
Using the Calabi—Yau structure we will regard C as an element of Qo1 ((C4; o, X
as an element of Q0(C*; @)[—1], and a as an element of Qo g). First, we are going
to write the functionals (34) and (35) in terms of these fields.

Proposition 7.2 The functionals [V and I1® (see (34) and (35)) in terms of the fields
of 8d N = 1 super Yang—Mills are

sDQ) = /dvol (—(p, AT ) = 1(C, AG ) — (X + 1)@
+(Fo2, BY) + (49,4, C*))
+ | dvol{ (104, 0@, p7) + SAF1A (T —1X7) + 5la. al(x™ +1X7)
+ IQ_IFZ’() A B*
~ 1 ~ t
s@,) = /dvol <t)(*)(* - Z(x* +157% + tac*) + EQ_IB* A B*.
The action of the twisted 8d super Yang—Mills theory is given by
So, = Ssym + 5V(Q0) + $@(Q)).
where SgrsT and Sang are given by (45) and (46) respectively.
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We have a homomorphism «: U(1) — Gr = Spin(2, R) with respect to which
0O; has weight 1, so the Q;-twisted theory will have a Z-grading.

Theorem 7.3 The twist of 8d N = 1 super Yang—Mills with respect to the family Q;
of square-zero supercharges is perturbatively equivalent to the holomorphic Hodge
theory Map((C4, Bgnoa)- Moreover, this equivalence is SU(4)-equivariant.

Proof The proof proceeds as in the proof of Theorem 5.4 with slight modifications.

Observe that the quadruple of fields {x*, x, X*, X} has the same Poisson brackets
as the quadruple {x* — tX™*, x, X*, X + tx}. Therefore, we may eliminate the fields
x* —tX*, x using Proposition 2.25. We then have trivial BRST doublets {} + 7, a}
and {p, A1 0} which may be eliminated using Proposition 2.27. We are left with the
action

t
S + / dvol (—1(C, A} ) + tac*) + Esz—IB* A B¥,

where SgF is the action functional of the holomorphic twist at t = 0. Since the extra
terms are quadratic in the fields, the claim is reduced to a comparison of the underlying
local L, algebra of the twisted theory and that of the holomorphic Hodge theory. The
former is given by (cf. the proof of Theorem 7.1)

QT g)e — QUN(CH g)a,, — QVA(CH gl — Q3T g)er — Q4T g)a
A 2 P P P
a7 rid 7 tid 7 ria 7 vid 7
Ve pe 7 7 Ve
b e 7 7 7
7 ;e 7 7 7

QT g)y — QVI(CH g)c ——> QOA(CH g)pe —> QU3(CH g 4y, —> QT )

0.1

which is exactly the local L, algebra of the holomorphic Hodge theory. O

Corollary 7.4 The topological twist of 8d N = 1 super Yang—Mills is perturbatively
trivial.

Proof The topological twist of 8d N = 1 super Yang—-Mills is the twist by Q; with
t # 0. By Theorem 7.3 it is equivalent to the r # O specialization of the holomorphic
Hodge theory which by Proposition 2.59 is perturbatively trivial. O

7.1.3 Partially topological twist

Finally we discuss the case of the partially topological supercharge (Q+, Q) € £.We
consider the twisting homomorphism ¢: SU(3) x Spin(2, R) - G = Spin(2, C)
given by projection on the second factor.

Theorem 7.5 The partially topological twist of 8d N = 1 super Yang—Mills is pertur-
batively equivalent to the generalized Chern—Simons theory with the space of fields
Map((C3 X ]R(%R, Bg). Moreover, the equivalence is SU(3) x Spin(2, R)-equivariant.

Proof Since Q4 and Q_ satisty (Q+, O+)s, = O, they lift to a square-zero
supercharge in the 10-dimensional supersymmetry algebra. The claim follows from
Theorem 6.1 applied to L = C>. O
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8 Dimension 7
The odd part of the 7-dimensional supersymmetry algebra is
=S W

where S is the 8-dimensional spin representation of Spin(7, C), and W is a complex
symplectic vector space. The spin representation carries a nondegenerate symmetric
bilinear pairing S ® S — C.

There is a supersymmetric Yang—Mills theory with N' = 1 supersymmetry, so we
fix W = C2.

8.1 N = 1 super Yang-Mills theory

We consider N' = 1 super Yang-Mills theory on M = R’ with the Euclidean metric.
It admits R-symmetry group Gr = Spin(3, C) acting on W by its two-dimensional
spin representation.

This theory admits three twists, by the following classes of supercharge.

e Rank 1 supercharges Q = ¢ @ w € S ® W, where (¢, v)s = 0. These are
minimal, i.e. the number of invariant directions is 4. We have a homomorphism
a: U(l) > Gg = Spin(3, C) under which they have weight 1. We also have a

1/2
twisting homomorphism ¢: MU(3) dL) U(l) — Spin(3, C), so the twisted

theory is Z-graded and carries an action of MU(3).

e Rank I supercharges O = a®@w € SQ W, where («, @)s 7# 0. These are topologi-
cal and stabilized by G, C Spin(7, C). We have ahomomorphismea: U(1) - Gg
under which they have weight 1.

e Square-zero supercharges Q of rank 2. These have 5 invariant directions and do not
admit a compatible homomorphism «, so they give rise to a Z/27Z-graded theory.
We have a twisting homomorphism ¢ : SU(2) x Spin(3, R) = Gg = Spin(3, C)
given by projection onto the second factor, so the theory carries an action of
SU(2) x Spin(3, R).

8.1.1 Minimal twist

Denote the image of I'(Q, —): ¥ — V by L', so that its orthogonal complement
L C V is a 3-dimensional isotropic subspace. As in Sect. 6.1.1, the data of a partially
topological supercharge is equivalent to the choice of a one-dimensional subspace
Nr C Vr and a complex structure on Vg /NR together with a half-density.

It will be convenient to perform a computation of the twist in a slightly more
general setting which will be useful for lower-dimensional computations, similarly to
Theorem 6.1.

Suppose L is a complex vector space equipped with a Hermitian structure. Suppose
Ng = R*4m@) equipped with a Euclidean metric and a spin structure. Denote
by N = Nr ®g C its complexification, which carries a complex half-density. Let
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Vr = L x N (an 8-dimensional real vector space). We set W8 = det(L)"'/? as a

representation of MU (L). By the results of Sect. 7.1.1, there is a canonical square-zero
supercharge Q € X determined by the complex structure on L x N and a complex
half-density on N.

The dimensional reduction of 83d N = 1 super Yang-Millson L x N alongRe: N —
Nr is by definition the (4+dim(L))-dimensional super Yang—Mills on L x N with 16
supercharges. Since N = Ng @ i NR, this theory carries an action of the R-symmetry
group Gg = Spin(2, C) x Spin(Nr). We consider the Z-grading «: U(1) — Gpg
given by the embedding into the first copy of U(1) and a twisting homomorphism

x id

12
¢: MU(L) x Spin(Ng) ="M G — Spin(2, R) x Spin(Ng).

Theorem 8.1 The twist of (4 + dim(L))-dimensional super Yang—Mills on L x Ng by
Q is perturbatively equivalent to the generalized BF theory with the space of fields
T*[—1]Map(L x (NRr)dr, Bg). Moreover, the equivalence is MU(L) x Spin(NR)-
equivariant.

Proof By Theorem 7.1 the twist of 8d N = 1 super Yang-Mills on L x N by Q is
perturbatively equivalent to the holomorphic BF theory. Moreover, the equivalence
is MU(L) x SU(N)-equivariant. By Proposition 2.68 we get that the dimensional
reduction of holomorphic BF theory on L x N along Re: N — Np is isomorphic
to the generalized BF theory with the space of fields 7*[—1]Map(L x N, Bg) and
this isomorphism is MU(L) x SO(NR)-equivariant, where SO(NR) acts on N via the
homomorphism (27). O

The 7-dimensional result immediately follows.

Theorem 8.2 The minimal twist of 7d N = 1 super Yang—Mills on M = C3 x R
is perturbatively equivalent to the generalized BF theory with the space of fields
T*[—1] Map((C3 X Rar, Bg). Moreover; the equivalence is U(3)-equivariant.

8.1.2 Topological twist

Next we study the topological twist. As in the case of the minimal twist, we will
perform a computation applicable in lower dimensions as well.

Let L be a complex vector space equipped with a Hermitian structure and a complex
half-density. Suppose Ng = R*~4m(L) equipped with a Euclidean metric and a spin
structure. Denote by N = Nr ®pg C its complexification which carries a complex
half-density. Let Vg = L x N, a real 8-dimensional vector space equipped with a
complex structure and a complex half-density. Using results of Sect. 7.1.2 we obtain
a family Q; of 8d square-zero supercharges.

The dimensional reduction of 83d N = 1 super Yang-Millson L x N alongRe: N —
Nr gives (4+dim(L))-dimensional super Yang—Mills on L x N with 16 supercharges.
The R-symmetry groupis G g = Spin(Ng ®R?) and we consider the grading given by
the homomorphism «: U(1) < Spin(2, R) x Spin(Nr) C G given by embedding
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into the first factor. We consider the twisting homomorphism given by Spin(Ngr) —
Spin(2, R) x Spin(Nr) C Gg given by embedding into the second factor.

Theorem 8.3 The twist of (4 + dim(L))-dimensional super Yang—Mills on L x N
by Q; is perturbatively equivalent to the generalized Hodge theory with the space of
fields Map(L x (NRr)dr, BgHod). Moreover, the equivalence is SU(L) x Spin(NR)-
equivariant.

Proof By Theorem 7.3 the twist of 8d N' = 1 super Yang—Mills on L x N by Q; is
perturbatively equivalent to the holomorphic Hodge theory. Moreover, the equivalence
is SU(L) x SU(N)-equivariant. The claim then follows from Corollary 2.66. O

Now let L = C3 and Ng = R. Dimensionally reducing the family Q; along
L x N — L x Nr we obtain a family of supercharges which are topological for ¢ # 0
and has 4 invariant directions for = 0. In other words, at r = 0 we get the minimal
twist and at ¢ # O the topological twist.

Theorem 8.4 The twist of 7d N = 1 super Yang—Mills with respect to the family Q;
of square-zero supercharges is perturbatively equivalent to the generalized Hodge
theory Map((C3 X R4Rr, B@Hod). Moreover, this equivalence is SU(3)-equivariant.

Corollary 8.5 The topological twist of 7d N = 1 super Yang—Mills is perturbatively
trivial.

8.1.3 Partially topological twist

Finally, we discuss the case of a partially topological twist. We consider the twisting
homomorphism ¢ : SU(3) x Spin(3, R) - Gr = Spin(3, C) given by projection on
the second factor.

Theorem 8.6 The partially topological twist of 7d N = 1 super Yang—Mills is pertur-
batively equivalent to the generalized Chern—Simons theory with the space of fields
Map((C2 X RgR, Bg). Moreover, the equivalence is SU(2) x Spin(3, R)-equivariant.

Proof Any partially topological supercharge in the 7-dimensional supersymmetry
algebra lifts to a square-zero supercharge in the 10-dimensional supersymmetry alge-
bra. The claim follows from Theorem 6.1 applied to L = C2. O

9 Dimension 6
The odd part of the 6-dimensional supersymmetry algebra is

=S, WLpS5_QW_
where S, S_ are the 4-dimensional semi-spin representations of Spin(6, C) =
SL(4, C), and W, W_ are complex symplectic vector spaces. We have Spin(6; C)-
invariant isomorphisms S = S*.

There are Yang—Mills theories with N = (1, 0) and N = (1, 1) supersymmetry,
which we consider separately.
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9.1 N = (1, 0) super Yang-Mills theory

The general setup for N = (1, 0) super Yang—Mills is described in Sect. 4 which we
now recall. Let U be a complex symplectic g-representation. We consider N = (1, 0)
super Yang—Mills theory on M = R® with the Euclidean metric. We fix W_ = 0 and
W, = C? equipped with a symplectic structure. The R-symmetry group depends on
the type of the representation U':

e In general, the theory admits an R-symmetry group G g = SL(2, C) with W the
two-dimensional defining representation.

e If U = T*R = R & R* for a g-representation R, then the theory admits an R-
symmetry group Gg = SL(2, C) x GL(1, C), where GL(1, C) acts trivially on
W, with weight 1 on R and with weight —1 on R*.

This theory admits a unique twist:

e A square-zero supercharge Q # 0 € X has 3 invariant directions, so it gives rise
to a holomorphic theory. If the representation U is of cotangent type, we have a
compatible homomorphism «: U(1) — Gz = SL(2, C) x GL(1, C) given by
a diagonal embedding, so in this case we get a Z-grading. Such a supercharge
is stabilized by G = SU(3) C Spin(6, C). We have a twisting homomorphism

172
¢: MU(3) dL> U(l) — SL(2, C), so the twisted theory carries an MU(3)-

action.
9.1.1 Holomorphic twist

Consider a nonzero Q € Sy ® Wy which we fix for the remainder of this section.
Since A%(S4) = V, the square-zero condition is equivalent to the condition that Q
has rank 1, i.e. Q = g+ ® w1 € S4 @ Wy. We will also fix wo, € W, such that
(w1 , wz) =1.

Asin Sect. 5.1.1, the data of g is equivalent to the data of a Kéhler structure L on
VR together with a complex half-density on L.

Under the embedding MU(L) C Spin(VR), the semi-spin representations S, S—
decompose as

Sy =det(L)'? @ L @det(L)" V2, S_ =det(L)""? @ L* @ det(L)"/?,
where g4 € Sy lies in the first summand.

We fix an embedding U(1) € SL(2, C) under which w; € W, has weight 1. Under
the composite

6 MUG) 2% U(1) € SL@. ©)

we obtain that Wy = det(L)™ /2w @ det(L)"/?w».

We will now rewrite the fields using the twisting homomorphism ¢ from MU(3),
where we denote by K the canonical bundle of L = C3.
Fields: The BRST fields are given by:
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Gauge fields A1 o € Q1O(M; g), Ag1 € Q%1(M; g).

Gauge fermions x € QO(M; Ig), &¢ € Q3O(M; Ig), B € QU2(M; Tlg), p €
QLO(M; Tg).

Matter bosons v € QU(M; U @ K~1/?), ¢ € QUM; U @ K'/?).

Matter fermions ¢ € QU1 (M; U @ K'/?),v € QO(M; TIU @ K~1/?).

A ghost field ¢ € QO(M; g)[1].

Let w € QU1(M) be the Kihler form. We denote the real volume form on M by

3
dvol = 2.
6

Using Corollary 5.3, the BV action Siyis; of the Q-twisted theory consists of the
sum of the following terms:
Seauge = / dvol <7(F2.0, Fo2) — %(AF1,1)2> +
45 (008 704,00 + P XA @10, — 00 A B0 B) + 50, B)
Smatter = f (dvol((aAl_Ov, 49,1 ®) + (34,00, Dy, 1))
+20° A (04, 0¥) + ¥ ADag, Y+
+ 2 dvol(([§, v1. V) + ([x. ¢], 3)))
Santi :/dvol ((aAmc, AT ) 4 04y, ¢, AG ) + [E, IE* + [x, clx™ + [p, clp™+
+ %[c, clc + v, cv* + [, clp™ + [¥, cly™ + [V, c]i*) +[B,c] A B*
50 (@) = [ avo (—(p, Afo)+ 5oz B+ 3 (Fit x*))
St (@) = [ dvol ((7, RO z/r*))

1
520se(@) =~ [ avol( )

Theorem 9.1 The holomorphic twist of 6d N = (1, 0) super Yang—Mills on M = R®
with matter valued in a symplectic g-representation U is perturbatively equivalent
to the holomorphic Chern—Simons theory on M = C3 with the space of fields
Sect(M, (U ® K}VI/Z)//g). Moreover, the equivalence is MU (3)-equivariant.

Proof The proof of this theorem is very similar to the proof of Theorem 5.4. First,
we eliminate the fields y and x* using Proposition 2.25. We then observe that the
action includes the terms f dvol(p, AT,O) and f dvol(V, v*). In other words, the pairs
(p, A1,0) and (v, V) form trivial BRST doublets, which can be eliminated using Propo-
sition 2.27. The twisted theory Sywig: i therefore perturbatively equivalent to the theory
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with the BV action
a a9 1 * 1~ *
$8A0‘18+1/f/\8A0111/f + dvol E(FO’Q,B )+§(3A011¢),1/f )

_ 1
+/dV01 <(8Ao.1cs Ap )+ (8. cl.E9) + Sle clc” + (¢, clop™ + (Y. cl, W))

+[B,c] A B*.

Up to rescaling the antifields, this is the action functional of the required theory. O

If U = T*R = R @ R*, the R-symmetry group is enhanced to Gg = SL(2, C) x
GL(1, C). We have a homomorphism «: U(1) — Gr = SL(2, C) x U(1) given by
the diagonal embedding which is compatible with the holomorphic supercharge. We
may also use a new twisting homomorphism

-~ 12
¢ MUB) X5 Uy S Gy

With these modifications the BRST fields are given by:

Gauge fields A1 o € Q10(M; g), Ag1 € Q%1 (M; g).

Gauge fermions y € QO(M; g)[—11, & € Q>O(M; TIg)[1], B € Q*2(M; g)[—1],

p € QM0(M; ig)[1].

Matter bosons v € QU(M; R*® R ® K~ '[-2]), ¢ € QU(M; R ® R* ® K[2]).

e Matter fermions ¥ € Q' (M; R[—1]1® R* @ K[1]),V € QU(M; R*[11® R ®
K=[—1).

e A ghost field c € QO(M; g)[1].

Note that the MU (3)-action on the fields factors through U(3) since only integer

powers of K occur. By comparing the degrees and the transformation rules of the
fields in Theorem 9.1 we obtain the following statement.

Theorem 9.2 The holomorphic twist of 6d N = (1, 0) super Yang—Mills on M = R®
with matter valued in a g-representation U = T*R = R @ R* is perturba-
tively equivalent to the holomorphic BF theory on M = C3 with space of fields
T*[—1]Map(M, R/g). Moreover, the equivalence is U(3)-equivariant.

9.2 N = (1, 1) super Yang-Mills theory

The 6dN = (1, 1) super Yang—Mills theory is obtained by dimensional reduction from
the 10d N = (1, 0) super Yang—Mills. It admits R-symmetry group G g = Spin(4, C)
under which W, W_ are the two semi-spin representations.

Given anelement Q € S, ® W @ S_ ® W_ we denote by Wai C S+ the images
of 0. We classify square-zero supercharges according to the ranks of these spaces:

e Rank (1, 0) and (0, 1). These automatically square to zero and are holomorphic.
Such supercharges factor through a copy of the N = (1, 0) (respectively, N =
(0, 1)) supersymmetry algebra. They admit a twisting homomorphism from MU (3)
and a Z-grading «: U(1) — Gg.
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e Rank (1, 1) and (Wa+, Waj = 0. These automatically square to zero and have 4
invariant directions. There is a Z-grading  : U(1) — G = SL(2, C) xSL(2, C)
given by the diagonal embedding and a twisting homomorphism ¢: MU(2) x

Spin(2, B) X Gy % G,

e Rank (1, 1) and (W5+, WEJ # 0. These automatically square to zero and are
topological. Such supercharges are stabilized by SU(3) C Spin(6, C) and have
a Z-grading o: U(1) - Gr = SL(2,C) x SL(2, C) given by the diagonal
embedding.

e Rank (2, 2). The square-zero supercharges have 5 invariant directions and give
rise to a Z/27Z-graded theory. The twisting homomorphism is given by the obvious
embedding ¢: Spin(4, R) — G = Spin(4, C), so the twisted theory carries a
Spin(4, R)-action.

9.2.1 Holomorphic twist

The 6d N = (1, 1) super Yang—Mills theory viewed as a N = (1, 0) supersym-
metric theory coincides with the 6d N = (1, 0) super Yang-Mills with matter in
the representation U = T*g = g & g*. Under this isomorphism the R-symmetry
group SL(2,C) x GL(1,C) of 6d N = (1, 0) super Yang-Mills is a subgroup of
the R-symmetry group SL(2, C) x SL(2, C) of 6d N = (1, 1) super Yang—Mills. In
particular, from Theorem 9.2 we obtain the following statement.

Theorem 9.3 The holomorphic twist of 6d N = (1, 1) super Yang—Mills on M = R®
is perturbatively equivalent to the holomorphic BF theory on M = C3 with the space
of fields T*[—1]Map(M, g/g). Moreover, the equivalence is U(3)-equivariant.

9.2.2 Rank (1, 1) partially topological twist

Let L = C? equipped with a Hermitian structure, Ng = R? equipped with a Euclidean
structure and N = N ®p C its complexification. Consider the 8-dimensional space-
time Vﬂg = L x N and the 6-dimensional spacetime V¢ = L x Ng. Under the projection
Vﬁ — VI§ a holomorphic square-zero supercharge Q in 8 dimensions dimensionally
reduces to arank (1, 1) partially topological square-zero supercharge in 6 dimensions.
Therefore, from Theorem 8.1 we obtain the following statement.

Theorem 9.4 The rank (1, 1) partially topological twist of 6d N = (1, 1) super Yang—
Mills is perturbatively equivalent to the generalized BF theory with the space of fields
T*[—1]Map(C? x R(ZIR, Bg). Moreover, the equivalence is MU(2) x Spin(2, R)-
equivariant.

9.2.3 Topological twist
Let L = C? equipped with a Hermitian structure and a complex half-density, Ng =

R? equipped with a Euclidean structure and N = Ng ®g C its complexification.
Consider the §-dimensional spacetime Vﬂg = L x N and the 6-dimensional spacetime
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Vﬂg = L x Ngr. Under the projection Vﬂg — Vﬂg the family Q; of 8-dimensional square-
zero supercharges given by Eq. (49) dimensionally reduces to a family of square-zero
supercharges which are topological for ¢ # 0 and have 4 invariant directions at t = 0.
So, we getarank (1, 1) partially topological twistat f = 0 and arank (1, 1) topological
twist at # # 0. Therefore, from Theorem 8.3 we obtain the following statement.

Theorem 9.5 The twist of 6d N = (1, 1) super Yang—Mills with respect to the family
Q; of square-zero supercharges is perturbatively equivalent to the generalized Hodge
theory Map((C2 X RﬁR, BgHod). Moreover, this equivalence is SU(2) x Spin(2, R)-
equivariant.

Corollary 9.6 The topological twist of 6d N = (1, 1) super Yang—Mills is perturba-
tively trivial.

9.2.4 Rank (2, 2) twist

We consider L = C equipped with a Hermitian structure and a complex half-density.
From Theorem 6.1 we obtain the following statement.

Theorem 9.7 The rank (2, 2) twist of 6dN = (1, 1) super Yang—Mills is perturbatively
equivalent to the generalized Chern—Simons theory with the space of fields Map(C x
RgR, Bg). Moreover, the equivalence is Spin(4, R)-equivariant.

10 Dimension 5
The odd part of the 5-dimensional supersymmetry algebra is
TESQW

where S is the 4-dimensional spin representation of Spin(5, C) = Sp(4, C) and W isa
complex symplectic vector space. The spin representation carries a symplectic paring
S®S— C.

There are Yang—Mills theories with N = 1 or N = 2 supersymmetry, where
2N = dim(W), which we consider separately.

10.1 N = 1 super Yang-Mills theory

We fix W = C? equipped with a symplectic structure. Let U be a symplectic g-
representation. The 5d N = 1 super Yang—Mills theory is obtained by a dimensional
reduction from the 6d N = (1, 0) super Yang—Mills theory.

The R-symmetry group coincides with the R-symmetry group in 6 dimensions:

e For a general U the R-symmetry group is Gg = SL(2,C) with W the two-
dimensional defining representation.

e For U = T*R the R-symmetry group is Gg = SL(2,C) x GL(1, C), where
GL(1, C) acts trivially on W, with weight 1 on R and with weight —1 on R*.
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The theory admits a unique twist:
e A square-zero supercharge Q # 0 € Z has 3 invariant directions. There is a

twisting homomorphism ¢ : MU(2) U(l) < SL(2,C), so the twisted
theory carries an MU (2)-action.

10.1.1 Minimal twist

A square-zero supercharge Q hasrank 1,1i.e. Q = g+ ® w; for some w; € W. Choose
a complementary element wo € W such that (wy, w2) = 1. We have a twisting
homomorphism

¢ MU(2) U(l) C SL(2,C)

such that W = det(L)~Y2w; @ det(L)'/2w,.

As in Sect. 6.1.1, the data of g is equivalent to the choice of a one-dimensional
subspace Ng C Vg and a complex structure on Vr/Ng together with a complex
half-density.

We will perform a computation of the twist in a more general setting which will be
useful for lower-dimensional computations.

Suppose L is a complex vector space equipped with a Hermitian structure. Suppose
Ng = R374m©) equipped with a Euclidean metric and a spin structure. Denote by
N = Ngr ®r C its complexification which carries a complex half-density. Let Vg =
L x N (a6-dimensional real vector space). We set W?r = det(L) 12w, ®det(L) 2w,
as arepresentation of MU(L). By the results of Sect. 9.1.1, there is a canonical square-
zero supercharge 0 = g4 ® w; € X determined by the complex structure on L x N
and a complex half-density on N.

The dimensional reduction of 6d super Yang—Mills on L x N along Re: N — Np
is by definition the (3 4+ dim(L))-dimensional super Yang—Mills on L x Nr with 8
supercharges. Since N = N @ i N, this theory carries an action of the R-symmetry
group Gg = SL(2, C) x Spin(Ngr). We consider a twisting homomorphism

¢: MU(L) x Spin(Ng) — Gr = SL(2, C) x Spin(Ng)

whose first component is MU(L) — SU(2) as before and the second component is
the identity.

Theorem 10.1 The twist by Q of (3 4+ dim(L))-dimensional super Yang—Mills on
L x Np with 8 supercharges and matter valued in a symplectic g-representation U
is perturbatively equivalent to the generalized Chern—Simons theory with the space
of fields Sect(L x (Nr)dr, (U ® Kl/z)//g). Moreover, the equivalence is MU(L) X
Spin(NR)-equivariant.

Proof By Theorem 9.1 the twist of 6d N = (1, 0) super Yang-Mills on L x N by
Q is perturbatively equivalent to the holomorphic Chern—Simons theory with the
space of fields Sect(L x N, (U ® Kl/z)//g). By Proposition 2.65 we get that the
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dimensional reduction of holomorphic Chern—-Simons on L x N along Re: N —
NR is isomorphic to the generalized Chern—Simons theory with the space of fields
Sect(L x Nr, (U® Kz/z)//g) and this isomorphism is MU (L) x SO(NR)-equivariant,
where SO(NR) acts on N via the homomorphism (27). O

We will now concentrate on the 5-dimensional case.

Theorem 10.2 The minimal twist of 5d N = 1 super Yang—Mills on M = C> x R
with matter valued in a symplectic g-representation U is perturbatively equivalent to
the generalized Chern—Simons theory with the space of fields Sect(C* x Ryr, (U ®

1/2
K(C/2

If U is of cotangent type, we may enhance the R-symmetry group to Ggr =
SL(2, C) x GL(1, C) x Spin(Nr). We have a homomorphism o : U(1) — SL(2, C) x
GL(1, C) x Spin(NR) given by the diagonal embedding into the first two components.
We also use a new twisting homomorphism

)/ 8). Moreover, the equivalence is MU (2)-equivariant.

~ 12 o .
&: MU(L) x Spin(Ng) =294 U(1) x Spin(Ng) 2% Grp.

Theorem 10.3 The minimal twist of 5d N = 1 super Yang—Mills on M = C? x R with
mattervalued in the g-representation U = T*R = R® R* is perturbatively equivalent
to the generalized BF theory with the space of fields T*[—1]Map(C? x Rar, R/g).
Moreover; the equivalence is U(2)-equivariant.

10.2 N = 2 super Yang-Mills theory

The 5d N = 2 super Yang—Mills theory is obtained by dimensional reduction from
the 10d N = (1, 0) super Yang—Mills. It admits R-symmetry group G g = Spin(5, C)
under which W is the 4-dimensional spin representation equipped with a symplectic
pairing.

An element Q € S ® W gives rise to maps S* — W and W* — S. Both S and
W are 4-dimensional symplectic vector spaces and the classification of supercharges
will use their relative position.

This theory admits twists by the following four classes of supercharge.

e Rank 1. These automatically square to zero and have 3 invariant directions. Such
supercharges come from the N = 1 supersymmetry algebra. They admit a twisting
homomorphism from MU(2) and a Z-grading «: U(1) — Gg.

e Rank 2, where the image of W* — § is Lagrangian. These automatically square
to zero and have 4 invariant directions. There is a Z-grading «: U(1) — G and
a twisting homomorphism ¢ : Spin(2, R) x Spin(3, R) — G = Spin(5, C).

e Rank 2, where the image of W* — S is symplectic. These automatically square
to zero and are topological. There is a Z-grading «: U(1) — G and a twisting
homomorphism ¢ : Spin(4, R) < Gz = Spin(5, C).

e Rank 4. These are topological and do not admit a compatible homomorphism c.
There is the obvious twisting homomorphism ¢ : Spin(5, R) — Spin(5, C).
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10.2.1 Minimal twist

The 5d N = 2 super Yang—Mills viewed as a N = 1 supersymmetry theory coincides
with the 5d N = 1 super Yang—Mills with matter valued in the representation U =
T*g = g ® g*. From Theorem 10.3 we obtain the following statement.

Theorem 10.4 The minimal twist of 5d N = 2 super Yang—Mills on M = C* x R
is perturbatively equivalent to the generalized BF theory with the space of fields
T*[—1] Map((C2 X R4r, g/8). Moreover, the equivalence is U(2)-equivariant.

10.2.2 Rank 2 partially topological twist

Let L = C equipped with a Hermitian structure, Ng = R? equipped with a Euclidean
structure and N = Nr ®g C its complexification. Consider the 8-dimensional space-
time Vﬂg = L x N and the 5-dimensional spacetime V7 = L x Ng. Under the projection
Vﬂg — Vﬂg a holomorphic square-zero supercharge Q in 8 dimensions dimensionally
reduces to a rank 2 partially topological square-zero supercharge in 5 dimensions.
Therefore, from Theorem 8.1 we obtain the following statement.

Theorem 10.5 The rank 2 partially topological twist of 5d N = 2 super Yang—Mills
is perturbatively equivalent to the generalized BF theory with the space of fields
T*[—1]Map(C x RgR, Bg). Moreover; the equivalence is Spin(2, R) x Spin(3, R)-
equivariant.

10.2.3 Rank 2 topological twist

Let L = C equipped with a Hermitian structure and a complex half density, Ng = R3
equipped with a Euclidean structure and N = N ®g C its complexification. Consider
the 8-dimensional spacetime Vg = L x N. Under the projection Re: N — Np the
family Q; of 8-dimensional square-zero supercharges given by (49) dimensionally
reduces to a family of 5-dimensional square-zero supercharges, which at ¢ # 0 are
topological at and + = 0 have 4 invariant directions. Since they admit a compatible
Z-grading, at t = 0 we obtain the rank 2 partially topological twist and at ¢ # 0
we obtain the rank 2 topological twist. Therefore, from Theorem 8.3 we obtain the
following statement.

Theorem 10.6 The twist of 5d N = 2 super Yang—Mills with respect to the family
Q; of square-zero supercharges is perturbatively equivalent to the generalized Hodge
theory Map(C x RSR, BgHoa). Moreover, this equivalence is Spin(3)-equivariant.

Corollary 10.7 The rank 2 topological twist of 5d N = 2 super Yang—Mills is pertur-
batively trivial.

10.2.4 Rank 4 twist
We consider Vg = R’ equipped with a Euclidean structure and, as before, let

V = Vg ®r C be its complexification. V carries a Hermitian structure and a half-
density, so by the results of Sect. 5.1.1 we obtain a square-zero supercharge Q. Under
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the projection Re: V. — VR the supercharge Q dimensionally reduces to a rank 4
supercharge in 5 dimensions. Therefore, from Theorem 6.1 we obtain the following
statement.

Theorem 10.8 The rank 4 twist of 5d N = 2 super Yang—Mills is perturbatively equiv-
alent to the topological Chern—Simons theory with the space of fields Map(RgR, Byg).
Moreover, the equivalence is Spin(5, R)-equivariant.

11 Dimension 4

The odd part of the 4-dimensional supersymmetry algebra is
TES, QWS- QW

where Sy, S_ are the 2-dimensional semi-spin representations of Spin(4, C) =
SL(2,C) x SL(2,C) and W is a complex vector space. The semi-spin representa-
tions carry symplectic pairings S+ ® Sy — C.

There are Yang—Mills theories with N = dim(W) = 1, 2, 4 supersymmetry, which
we consider separately.

11.1 N = 1 super Yang-Mills theory

The general setup for N = 1 super Yang—Mills is described in Sect. 4, which we now
recall. Let R be a complex g-representation. We consider N = 1 super Yang-Mills
theory on M = R* with the Euclidean metric. The theory admits an R-symmetry
group G g = GL(1, C) which acts on W = C with weight 1.

Fields: The BRST fields are given by:

Gauge field A € Q' (M g).

Gauge fermions (A, A_) € QU(M; 1S, ® g @ 1S_ ® g).
Matter bosons (¢, ¢) € QU(M; R & R*).

Matter fermions (_, 1) € QU(M; 1S, @ R* ® [1S_ ® R).
A ghost field Ag € QO(M; g)[1].

The R-symmetry acts with weight =1 on A, 4.
The theory admits a unique twist:

e Elements Q € S; & S_ of rank (1, 0) or rank (0, 1). Such supercharges are
automatically square-zero and are holomorphic. We have a compatible twisting
homomorphism

6 MUQ@ 2% Uy < G

with the second arrow the natural embedding. The twist is Z-graded with homo-
morphism «: U(1) < G given by the natural embedding.
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11.1.1 Holomorphic twist

Choose a complex structure L on Vg. Under the embedding MU(L) = MU(2) C
Spin(VRr), the semi-spin representations decompose as

Sy =det(L) V2 @ det(L)'/?, S_ =L ®det(L)""%.

Consider the twisting homomorphism ¢: MU(2) — Gpg under which W =
det(L)~!/2. Then the spinorial representation becomes

T =(COo®ddet(L)y HoL.

The embedding «: U(1) < G g makes Q weight 1.
We first decompose the fields of the 4-dimensional N = 1 theory with respect to
MU(2). Fields: The BRST fields are given by:

Gauge fields A1 o € Q10(M; g), Ag1 € Q*1(M; g).

Gauge fermions Ap € QV(M; ol—1], Ap2 € Q%2 (M; ol—11, A0 €
QMOM; g)[1].

Matter bosons ¢ € Q0(M; R*), yo € Q°(M; R).

Matter fermions o € QO(M; R"[1], Bro € Q>OM;RH[1], yo1 €
QY1 (M; R)[-1].

e A ghost field Ag € QU(M; g)[1].

Let w € Q"1 (M) be the Kihler form. We denote the real volume form on M by

2
dvol = a)_.
2

Using Corollary 5.3, the BV action Spy of the Q-twisted theory consists of the sum
of the following terms:

1
Soauge = /dvol (—(Fz,o, Fo2) — Z(AFI,I)Z)

+ = ((A1,0 A 34, gA02) + @ (A0 Adag, 20))

| =

Smatter = / dvol ((aAw(f’, 949, 70) + (34,070, 040, 9) + ([A0,2. B2,0], ¢>))

+ /32,05140,1 7/0,1+
+ 2(@ A ([A1,0, Y0.11, ¥0)) + @ (P04, 4¥0.1)

Sami = /dVOl ((aA1_0A09 T’O) + (5A0,1A07 Aal))—i_
+ dvol ([Ao, )u()])»g + [Ao, AO,Z]A3,2>
1
+ [A1,0, Aol A A7 o + dvol 5[40, AplAg
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+ dvol ([4), Aolg™ + [yo, Aolyg + [¥o, Aol¥g + [B2.0, Ao]ﬁ;o)
+ [v0.1, Aol A v3

1
Séellflge = /dVO] —(X]yoAT’O) + 5 (FO,Z A Aaz +oAN Fl‘l)ts)

1~
1
Smater = / dvol (woqs* + 5 @010, y&,l))
1
2 2
SSge = -1 / dvol(A§)>.

Notice that a priori the theory is only MU (2)-equivariant, but manifestly descends
to a U(2)-equivariant theory.

Theorem 11.1 (See also [80]) The holomorphic twist of 4d N = 1 super Yang—Mills
with matter valued in a g-representation R is perturbatively equivalent to holomorphic
BF theory with the space of fields T*[—1]1Map(C?, R/g). Moreover, the equivalence
is U(2)-equivariant.

Proof The proof of this theorem is very similar to the proof of Theorem 5.4. First, we
eliminate the fields Ao and Ajj using Proposition 2.25. We then observe that the action
includes the terms [ 110 A At and J wo¢*. Thus, the two pairs (A1, Aj,0) and
(¢, Y¥o) form trivial BRST doublets, which can be eliminated using Proposition 2.27.

The twisted theory is therefore perturbatively equivalent to the theory with BV
action

Spv = /dVOI ((AS,lng,le) + (349,70, Vdﬁﬁ) + Foa A A + B2,0949, 70,1
1
+ dvol ([A(), AO,Q]AE;’z + E[AO, Ao]Ag + [Ao, VO]V(T
+ [Ao, v0.11¥5 1 + [Ao, ﬂio]ﬂz,o)

Up to rescaling the antifields, this is the action functional of the required theory,
where A o, Aa. comprise the fields of holomorphic BF theory with By o = Aa., and
the remaining fields comprise the fields of the By system with 8, | = )/6‘"1 B2 =y,

and yp2 = B3 . O
11.2 N = 2 super Yang-Mills theory

The 4d N = 2 super Yang—Mills theory is obtained by a dimensional reduction from
the 6d N = (1, 0) super Yang—Mills theory with matter valued in a symplectic g-
representation U. Let W be a two-dimensional complex vector space. The theory
admits the R-symmetry group Gg = SL(2; C) x GL(1, C), where GL(1, C) acts on
W with weight 1.

Fields: The BRST fields are given by:
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Gauge field A € QI(M; g).

Scalar fields a, @ € QY(M; g).

Gauge fermions (A, A_) € QUM IS, @ W@ gD IS @ W* ® g).
Matter boson ¢ € QU(M: U @ W).

Matter fermions (_, 1) € QU(M; T1S, @ U @ T1S_ Q@ U).

A ghost field ¢ € QO(M; g)[1].

The subgroup GL(1, C) C G has the following action on fields: weight 2 on «,
weight —2 on @ and weight 1 on Ay, ¥t.

If the representation U is T*R = R & R*, the R-symmetry group is enhanced to
Gr = SL(2) x GL(1, C) x GL(1, C), where the last GL(1, C) acts with weight 1 on
R and weight —1 on R*.

There are three classes of square-zero supercharge in the 4d N = 2 supersymmetry
algebra, distinguished by the ranks of the two summands (Q4+, 0_) € S @ W &
S_® W*

e Rank (1, 0) and (0, 1) supercharges automatically square to zero. The correspond-
ing twists are holomorphic. Such twists factor through a copy of the N = 1
supersymmetry algebra. As before, they admit a Z-grading and a twisting homo-
morphism from MU (2).

e Rank (2,0) and (0, 2) supercharges also automatically square to zero. The cor-
responding twists are topological (the Donaldson twist). There is a twisting
homomorphism from MU (2) and a compatible homomorphism «: U(1) — Gg.

e Rank (1, 1) square-zero supercharges have three invariant directions. There is
a twisting homomorphism from Spin(2, R) x Spin(2, R) C Spin(4, R). For a
general U there is no compatible homomorphism «: U(1) — Gg.

11.2.1 Holomorphic twist
Choose a basis for W given by {w;, w»}, where (w1, wz) = 1, and for concreteness
we take QO = g4+ ® wj for some nonzero vector g4+ € S4. Denote by L C V the image

of I'(Q,—): S— — V. Under the embedding MU(L) C Spin(VRr), the semi-spin
representations decompose as

S, =det(L)"'"? @ det(L)/?, S_ =L ®det(L)" /.

Recall that the R-symmetry group is Gg = SL(2, C) x GL(1, C). For any integer
n € Z consider the homomorphism

a,:U(l) - SL2,C) x GL(1,C)
z > (diag(z?, z72"), 272" )

under which w; has weight 1 and w; has weight —4n + 1.
We consider the twisting homomorphism

12
¢ MUQ) E5 U() - Gg
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under which we have an MU (2)-identification W = det(L) /2w, @ det(L)'/2w», so
that

SL QW =ZCQ@det(L)” & C @ det(L).

Fields: The BRST fields are given by:

e Gauge fields A; o € Q"9(M; g) and Ao ; € Q¥'(M; g).

e Scalar fields @ € QO(M; g)[4n — 2] and a € QO(M; g)[—4n + 2]

e Gaugefermions x € QO(M; g)[—1],& € Q>O(M; g)[4n—1], B € QO2(M; g)[—1],
b e QM(M; g)[—4n+ 11, p € Q10M; g)[1], X € QUM; g)[4n — 1].

e Matter bosons v € QU(M; U ® KA_,[I/Z)[—Zn], peQM;U® K,lw/z)[Zn].

e Matter fermions ¥ € Q'(M;U ® K]}f)[zn -1, ¢ € Q*°M;U ®
Ky A=2n+11,7 € Q¥2(M; U ® K,,")[—2n + 11.

o A ghost field ¢ € Q(M; g)[1].

Theorem 11.2 Fix the homomorphism o = «on. The holomorphic twist of 4d
N = 2 super Yang—Mills with matter valued in a symplectic g-representation
U is perturbatively equivalent to the holomorphic BF theory with the space of
fields T*[—1]Sect(M, (U ® KI{,I/Z[Zn])//g). Moreover, the equivalence is MU (2)-
equivariant.

Proof 4d N = 2 super Yang—Mills theory is obtained by dimensionally reducing 6d
N = (1, 0) super Yang—Mills theory. Under dimensional reduction the 6d fields from
Sect. 9.1.1 decompose as follows:

Ao~ Aro+a
Ao,1 ~ Ap1 +a
B~ B+b
p~p+X
(2Rl e

The claim about the underlying Z/27Z-graded MU (2)-equivariant theories follows
by applying dimensional reduction (Proposition 2.64) to the minimal twist of 5d N = 1
super Yang—Mills theory (Theorem 10.2).

Next, we check that the equivalence respects the gradings. Indeed, the equivalence
given by Theorem 10.2 eliminates the fields A g, d@, p, x and X. The rest of the fields
organize into the following collections:

c+ Ao+ B e Q¥ M g)l]
B* + A} | +c* € Q¥ (M g)
a+b+& e QV(M; )2 — 4n)
E+b"+a* e Q¥ (M; g)[4n — 1]
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p+v+ct et MUK,

CHY +¢* e QP MUK

)[2n]
SO0 = 2n]

These fields have the same degrees as in the holomorphic BF theory. O

11.2.2 Rank (2, 0) topological twist

Next we discuss the case of the topological twist. As in Sect. 7.1.2 it will be useful to
consider a family of topological supercharges degenerating to a rank (1, 0) holomor-
phic supercharge.

Consider the same twisting homomorphism ¢: MU(2) — Gpg as in Sect. 11.2.1
anda = ap: U(1) — Gp. Withrespect to the MU (2)-action we have a decomposition

S, ®W = CQo®det(L)"' & CQOy @ det(L).
Consider a family of supercharges
01 =Qo+10Q (50)

where t € C. When ¢t # 0, this supercharge is of rank (2, 0), while at # = 0 it reduces
to the holomorphic supercharge from the previous section.

Remark 11.3 Withrespecttoa, : U(1) — G g the supercharge Qo has weight 1, while
Qo has weight —4n + 1. So, requiring Q, to have weight 1 forces us to choose n = 0.

We will use the notation for fields from Sect. 11.2.1. First, we are going to write
the functionals (34), (35), (39), (40) in terms of these fields.

Proposition 11.4 Suppose Q; is the rank (2, 0) supercharge of 50. The MU (2) decom-

position of the functionals Iigsge, I iers Tinges Lioner (s€€ (34), (35), (39), (40)) in

terms of the fields of 4d N = 2 super Yang—Mills theory are
X000 = [ V0l (~(p, A1) = 10, 47 = X+ 107)
_ 1 _
+/dvol((Fo,z, B*)+ (4,4, b*)+§A(F1,1+[a,a])x*+[¢, d)]E*)
+ / dvol <tQ_1F2,0 A B* + (tda, ya, p*))
~ t 1 ~
Stange(Q1) =/dvol <zx*x* + 8B -+ X + m*)
(1) ~ x oy 1= . .
Smatter (@1) = | dvol [ (v, v") +1(g, ¢™) + §(3A0,1</>»1/f )+ [v,als

SO (o) = f avol 3, )
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Theorem 11.5 The twist of 4d N = 2 super Yang—Mills with respect to the fam-
ily Q: of square-zero supercharges is perturbatively equivalent to the holomorphic

Hodge theory Sect ((CZ, ((U ® K(lc/zz)//g)H d)' Moreover, this equivalence is MU (2)-
equivariant. ’

Proof The proof proceeds as in the proof of Theorem 5.4 with slight modifications.

Observe that the quadruple of fields {x*, x, X*, X} has the same Poisson brackets
as the quadruple {x* — tX™*, x, X*, X + tx}. Therefore, we may eliminate the fields
x* —tX*, x using Proposition 2.25. We then have trivial BRST doublets {x +x, a},
{v, v} and {p, Ay o} which may be eliminated using Proposition 2.27. We are left with
the action

SBF +1 / dvol <—(b, App) +act + %5*3* + (g, ¢™) + 4_11(1#*’ Iﬁ*)) , (BD

where Spr is the action functional of the holomorphic twist at + = 0 found in the
previous section. Since the extra terms are quadratic in the fields, the claim is reduced
to a comparison of the underlying local L, algebra of the twisted theory and that of
the holomorphic Hodge theory. The former is given by (cf. the proof of Theorem 11.2)

QU(C% g)e — QV(C% @)y, — QOH(C )
rul/>{ nd/ )
- ~

e ~ ~

QUC% gy — QNC gy —— QT g

rid

QC: @y —— QN (C @)y, — (T @)
~ ~ fid >~ id > ~ fid
~ ~ ~

>
Q20(C?; g)e — Q21T @) —> Q2T @)

LECUBK'P)y — QNCHUSK )y » Q2 (C UK
wa_ 7 wa_ ia_

— — —
— — —

QZ~O(CZ; U® K—I/Z);> QZJ((CZ; U® K7|/2)¢*> QZ‘Z(CZ; U® K71/2)¢*

which is exactly the local L, algebra of the holomorphic Hodge theory. O

Corollary 11.6 The rank (2, 0) topological twist of 4d N = 2 super Yang—Mills is
perturbatively trivial.

Proof The topological twist of 4d N = 2 super Yang—Mills is the twist by Q; with

t # 0. By Theorem 11.5 itis equivalent to the ¢ # 0 specialization of the holomorphic
Hodge theory which by Proposition 2.59 is perturbatively trivial. O
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11.2.3 Rank (1, 1) twist

We finally consider the twist with respect to a rank (1, 1) supercharge. In this case,
the twist is compatible with the group G = Spin(2, R) x Spin(2, R). We denote each
factor by Spin(2, R);, i = 1, 2. The twisting homomorphism is

é: Spin(2, R); x Spin(2, R), — G = SL(W) x GL(1, C),

where on the first factor Spin(2, R); = U(1) — SL(2, C) is given by the diago-
nal embedding and on the second factor Spin(2, R); — GL(1, C) is the obvious
inclusion. If we denote by S+ ;, i = 1, 2 the semi-spin representations of the factor
Spin(2, R);, we have

W=S,8+1®5-1).

The semi-spin representations of Spin(4, R) decompose with respect to Spin(2, R); x
Spin(2, R), C Spin(4, R) as

St =8511Q842®S-1®5-2, S-=S511Q52DS-1®S542.

So, both S ® W and S_ ® W* contain a trivial one-dimensional subspace and
hence we obtain a rank (1, 1) square-zero supercharge.

Theorem 11.7 The rank (1, 1) partially topological twist of 4d N = 2 super Yang—
Mills theory is perturbatively equivalent to the generalized Chern—Simons theory
with space of fields Sect(C x RﬁR, U ® K((lz/z)//g). Moreover, this equivalence is
U(1) x Spin(2, R)-equivariant.

Proof Any square-zero supercharge of rank (1, 1) lifts to a rank 1 supercharge in the
5d N = 1 supersymmetry algebra. The result then follows from Theorem 10.1 applied
toL =C. O

If U = T*R is of cotangent type, we may enhance the R-symmetry group to
Gr = SL(W) x GL(1, C) x GL(1, C). The last GL(1, C) acts trivially on W, by
weight +1 on R and weight —1 on R*.

We have a homomorphism «: U(1) — SL(W) x GL(1, C) x GL(1, C) given by
the diagonal embedding into the first and the third components. We also use a new
twisting homomorphism ¢7 : Spin(2, R) x Spin(2, R), — G given by composing ¢
with the obvious homomorphism from the first factor Spin(2, R); to the last GL(1, C)
factor in G (cf. the definition of « and 5 in Sect. 9.1.1).

Theorem 11.8 The minimal twist of 4d N = 2 super Yang—Mills on M = C x R? with
matter valued in the g-representation U = T*R = R® R* is perturbatively equivalent
to the generalized BF theory with the space of fields T*[—1] Map(C x R(ZIR, R/9).
Moreover, the equivalence is U(1) x Spin(2, R)-equivariant.
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11.3 N = 4 super Yang-Mills theory

The 4d N = 4 super Yang—Mills theory is obtained by dimensional reduction from the
10d N = (1, 0) super Yang-Mills. It admits R-symmetry group G g = Spin(6; C) =
SL(4, C) under which W = S?r is the positive semi-spin representation of Spin(6; C)
and W* = 5.

Let us decompose the rotation group as Spin(4, R) = SU(2); x SU(2)_. The
classification of orbits of square-zero supercharges in the 4d N = 4 supersymmetry
algebra is the most interesting among the examples we consider in this paper. We have
the following classes.

e Rank (1, 0) and (0, 1) supercharges automatically square to zero. The correspond-
ing twists are holomorphic. Such twists factor through a copy of the N = 1
supersymmetry algebra. As before, they admit a Z-grading and a twisting homo-
morphism from MU(2).

e Rank (2,0) and (0, 2) supercharges automatically square to zero. The corre-
sponding twists are topological. Such twists factor through a copy of the N = 2
supersymmetry algebra. They admit the following twisting homomorphisms:

(1) The half twisting homomorphism ¢1,2: SU(2)+ x SU(2)_ — SL(4, C) given
by (A, B) +— diag(A, 1, 1). This is the twisting homomorphism that comes
from the N = 2 supersymmetry algebra.

(2) The Kapustin—Witten twisting homomorphism ¢xw: SU2);+ x SU2)_- —
SL(4, C) given by (A, B) +— diag(A, B).

(3) The Vafa—Witten twisting homomorphism ¢yw: SU2)L x SUQ2)- —
SL(4, C) given by (A, B) +— diag(A, A).

e Rank (1, 1) supercharges. Such supercharges have three invariant directions. They
factor through a copy of the N = 2 supersymmetry algebra. As before, they admit
a twisting homomorphism from Spin(2, R) x Spin(2, R) and admit a Z-grading.

e Rank (2, 1) and (1, 2) supercharges. Such supercharges are topological, compati-
ble with a twisting homomorphism from MU(2) and admit a Z-grading.

e Rank (2, 2) square-zero supercharges are topological. They correspond to a choice
of an exact sequence

0—>S_T_—>W—>S_—>O.

Since S4, S— and W all carry volume forms, the space of such square-zero super-
charges is parametrized by a continuous parameter s € C* given by the ratio of
the isomorphism det(W) = det(S4)* ® det(S—) induced by Q and the isomor-
phism induced by the volume forms. These supercharges admit a Z-grading and
are compatible with the twisting homomorphism ¢gw : Spin(4, R) — Gr.
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11.3.1 Holomorphic twist

Let L be a complex structure on V. Consider a twisting homomorphism MU(L) —
G r = Spin(6; C) under which W decomposes as

W =L ®det(L)"/? @ det(L)""?w; @ det(L)"?wy.
In particular,
S;@W=L&L"®det(L)®CaCadet(L)”

and we consider the supercharge O € Sy ® W of rank (1, 0) contained in the scalar
summand which spans the subspace Cw; C W.

We consider a homomorphism «: U(1) — G g under which L ® det(L)y V2 cw
has weight —1 and w;, w, have weight 1. In particular, Q has o-weight 1.
Fields: In the notation of Sect. 11.2.1, the BRST fields are given by:

e gauge bosons Ay o € QVO(M; g)and Ao € Q¥1(M; g),d € QO(M; g)[—2] and
a € QY(M; g)[2];

e gauge fermions x € QO(M; g)[—1], & € Q>0(M; g)[—1], B € Q¥2(M; g)[—1],
beQ(M; )], p € QM0M; g)[1], ¥ € QO(M: g)[—1].

e matter bosons v € QU1 (M; g), ¢ € QVO0(M; g).

e matter fermions y € QM ol—1], ¢ € QMO 91, v e QO (M o[l].

e a ghost field ¢ € QU(M; g)[1].

Note that the MU (2)-action on fields factors through a U(2)-action.
Theorem 11.9 The holomorphic twist of 4d N = 4 super Yang—Mills on M = R* is

. . . 2
perturbatively equivalent to the BF theory with the space of fields T*[—1] Map(C, |, Bg).
Moreover, the equivalence is U(2)-equivariant.

Proof The 4d N = 4 super Yang-Mills theory viewed as a N = 2 theory is 4d
N = 2 Yang-Mills theory with matter valued in U = T*g. Under this correspon-
dence a: U(l) — Gy defined above coincides with o« from Sect. 11.2.1. From
Theorem 11.2 we obtain that the twist is given by 7*[—1]Map(C2, (T*g ® K(é/zz)//g)
as a Z-graded theory.

Note, however, that the twisting homomorphism used in Sect. 11.2.1 differs from
the twisting homomorphism defined above. In particular, this equivalence is not U(2)-
equivariant. In the present case the fields organize into the following collections:

¢+ Aoy + B e Q" (M; g)[1]
¢+¥+c et (M:g)
£+ b +a* € Q¥ (M; g)[—1]

a+b+&* e (M; g2
SHYF +o* e QM (M; g1
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B + A} | +c* € Q¥ (M; g)
These are exactly the fields in T*[—1] Map((CzDol, Byg). m|

11.3.2 Rank (2, 0) topological twist

Next we look at the case of the twist by a rank (2, 0) supercharge. As in Sect. 11.2.2,
it will be useful to consider a family of topological supercharges which degenerate to
the rank (1, 0) supercharge we just discussed.

We use the same twisting homomorphism ¢: MU(2) — Spin(6; C) and twisting
datum «: U (1) — Gp asin Sect. 11.3.1. Then, S+ ® W decomposes under MU (2)
as

S,QWELBL ®det(L)dC- Qo ®C-Qydet(L)".

Consider the family of supercharges Q; = Qo 4+ tQ € S; ® W of rank (1, 0)
contained in the scalar summands above.

Theorem 11.10 The twist of 4d N = 4 super Yang—Mills with respect to the family Q,
of square-zero supercharges is perturbatively equivalent to the holomorphic Hodge
theory Map((f%ol, Bgnod). Moreover, this equivalence is MU (2)-equivariant.

Proof The 4d N = 4 super Yang-Mills theory viewed as a N = 2 theory is 4d
N = 2 Yang-Mills theory with matter valued in U = T*g. Under this identification
o: U(l) — Gpg defined above coincides with o« from Sect. 11.2.1. From Theo-

rem 11.5 we obtain that the twist is Sect ((Cz, ((T*g ® K([l:/f)//g)H d) as a Z-graded
(o]
theory.

The twisting homomorphism used in Sect. 11.2.1 differs from the twisting homo-
morphism defined above. In particular, this equivalence is not U(2)-equivariant. In the
present case the fields decompose in the same fashion as in the proof of Theorem 11.9
which are precisely the fields of Map((C%)ol, BgHoa)- O

11.3.3 Rank (1, 1) partially topological twist
Next we consider the twist with respect to arank (1, 1) supercharge. As in Sect. 11.2.3
the twist is compatible with the group G = Spin(2, R) x Spin(2, R). However, we
will use a different twisting homomorphism. We denote each factor by Spin(2, R);,
i = 1,2, and by S4 ; the semi-spin representations of the factor Spin(2, R);.

The twisting homomorphism is

¢: Spin(2, R); x Spin(2, R), - Gg = SL(W),

under which W splits as

WES+19081285-1905-2)DS+1 Q052D 51 ®S4+2). (52)
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Inthiscase S ®@W and S_® W* have two-dimensional trivial G-subrepresentations.
Any scalar rank (1, 1) supercharge is square-zero. We choose a homomorphism
o: U(l) = Gp under which the first two summands in (52) have weight 1 and the
last two summands have weight —1. This makes the chosen rank (1, 1) supercharge
have weight 1.

Theorem 11.11 The rank (1, 1) twist of 4d N = 4 super Yang-Mills on M = R*
is perturbatively equivalent to the generalized BF theory with the space of fields
T*[—1]Map(Cpe) x RSR, Bg). Moreover, the equivalence is Spin(2, R) x Spin(2, R)-
equivariant.

Proof The 4d N = 4 super Yang—Mills theory viewed as a N = 2 theory is4d N = 2
Yang-Mills theory with matter valued in U = T*g. By Theorem 11.7 we obtain that
the twist is equivalent to 7*[—1] Map(C x R(%R, g/9) as a Z-graded theory. Let us
now analyze the Spin(2, R) x Spin(2, R)-action.

By construction the twisting homomorphism Spin(2, R) x Spin(2, R) — Gp
defined by (52) factors as Spin(2, R) x Spin(2,R) ¢ MU®2) — Gg, where
the latter map is the twisting homomorphism used in Sect. 11.3.1. Therefore, we
have to restrict the fields used in that section to Spin(2, R) x Spin(2, R). But by
Theorem 11.9 the fields belong to T*[—1]Map(Cpo x Cpol, Bg) whose under-
lying graded Spin(2, R) x Spin(2, R)-equivariant bundle coincides with that of
T*[—1]1Map(Cpol x R3y, Bg). o

11.3.4 Rank (2, 1) topological twist

Next we look at the case of the twist by a rank (2, 1) supercharge. As in many cases
so far, it will be useful to consider a family of supercharges which are generically of
rank (2, 1). Consider the twisting homomorphism ¢ : Spin(2; R) x Spin(2; R) — Gr
from Sect. 11.3.3.

Consider a family of scalar square-zero supercharges

Qs =Qo0+1t01+ 502, (53)

where Qo, Q1 arerank (1, 0) supercharges and Q5 is arank (0, 1) supercharge, so that
Qo +1 Q1 is the family of square-zero supercharges from Sect. 11.3.2 and Q¢ + Q3 is
the rank (1, 1) square-zero supercharge from Sect. 11.3.3. We will now calculate the
twist with respect to the family Qo + Q1 + Q>.

Theorem 11.12 The twist of the 4d N = 4 super Yang—Mills theory with respect to
the family Q1 of square-zero supercharges of Eq. (53) is perturbatively equivalent
to the theory Map ((CDOl X R(%R, B gHod). Moreover, this equivalence is Spin(2; R) x
Spin(2; R)-equivariant.

Proof The idea of the proof will be to eliminate fields as in the proof of Theorem 11.5,
but keeping track of the s-dependence.

) Birkhauser



73 Page 102 of 124 C. Elliott et al.

Let S(s, ) be the action functional of the 4d N = 4 super Yang-Mills theory
twisted by Qg + Q1 + s Q>. Then we have

S(s.1) = S65,0) + (SV @) +25%(Q0 +101) + 5P Q)
+252 (101 +502), (54)
where S = Sé;llflge, S? = Sg,)]ge are the functionals from Sect. 4.1 encoding the
infinitesimal actions by supersymmetry. Here the middle three terms in the parentheses
are the -dependent terms in Proposition 11.4 and S® (r Q| + s Q>) is proportional to
X"
We will now repeat the simplifications performed in the proof of Theorem 11.5. We
first perform a change of variables sending { x *, x, X™, X} to {)*—tX*, x, X*, X +tx}.
Then we perform the following field eliminations:

Using Proposition 2.25 we set x = 0 and x* — 7™ to a certain value.

Using Proposition 2.27 we set p* =0, A; o = 0 and p, AT,O to certain values.
Using Proposition 2.27 we seta = 0, x* = 0 and X + £ x, a* to certain values.
Using Proposition 2.27 we set v* = 0, v = 0 and D, v* to certain values.

The last term S@ (1 Q1 +sQ7) in Eq. (54) is proportional to x*, therefore it disap-
pears upon applying the third step above. Applying all the remaining steps, the first
term S(s, 0) becomes the action functional of the (1, 1) twist upon setting s = 1, see
Theorem 11.11. Finally, the term in parentheses in Eq. (54) agrees with the 7-dependent
terms of in Eq. (51), (where now the fields are adjoint valued). We have already seen
that the 7-dependent terms give rise to the desired Hodge family, so this completes the
proof. O

11.3.5 Rank (2, 2) topological twist

Consider a rank (2, 2) supercharge Q € S+ @ W @ S_ ® W*. It defines embeddings
S§% < W and §* < W* and the square-zero condition is that their images pair to
zero. In other words, we have a short exact sequence

0— S —W—S —0.

The semi-spin representations S4 carry volume forms induced by scalar spinorial
pairings. Moreover, W has a canonical volume form since it is the semi-spin repre-
sentation of Spin(6, C) = SL(4, C). Comparing these volume forms under the above
exact sequence gives an invariant s € C* of a rank (2, 2) square-zero supercharge.
Moreover, Spin(6, C)-orbits of rank (2, 2) square-zero supercharges are parametrized
by this invariant.

Let Ng = R* equipped with a Euclidean structure and N = Ng ®g C its complex-
ification. We consider the 8-dimensional Euclidean vector space N which carries a
complex half-density. By the results of Sect. 7.1.2 we obtain a family Q, of 8d square-
zero supercharges. Its dimensional reduction to 4 dimensions also gives a family of 4d
square-zero supercharges. Then from Theorem 8.3 we obtain the following statement.
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Theorem 11.13 The twist of 4d N = 4 super Yang—Mills with respect to the family
Q; of square-zero supercharges is perturbatively equivalent to the topological Hodge
theory Map(]RﬁR, BgHod)-

Let us now rewrite the family Q; in 4-dimensional terms. Consider the Kapustin—

Witten twisting homomorphism ¢gw: Spin(4, R) C Spin(4, R) x Spin(2, R) C
Spin(6, C) under which W decomposes as

WS oS .
In this case the spinorial representation becomes
L=+ Q5)D S+ @)D (S-®51) @ (S-1® 5-).

In particular, there are two scalar supercharges Q1 and Q_ given by the volume forms
on S; and S_ respectively. We may then consider a family of supercharges

Q0 =uQ4+ivQ_

foru,v € C.If u, v # 0 we obtain a rank (2, 2) supercharge. In this case the map
Q: 87 =S, — W is given by multiplication by u and the map Q: W — S_ is
given by multiplication by iv. Therefore, its s-invariant is

u2

§=——.
2

Remark 11.14 The family u QO +iv Q_ of square-zero supercharges is the same family
studied by Kapustin and Witten, see [59, Section 3.1].

These supercharges are related to Q, as follows. Let Sf_ be the semi-spin repre-
sentation of Spin(8, C) and S the semi-spin representations of Spin(4, C) as before.
Under the embedding

Spin(4, C) c Spin(4, C) x Spin(4, C) C Spin(8, C)
Si splits as
8= (5, ®80)D(S-®S),
so Q4+, 0_ € Si. We then obtain
Q=0++0-, Qp=0+-0-.

Therefore, the s-invariant of the family Q; is

a0’
s = a—2

(55)
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Corollary 11.15 The rank (2,2) twist of 4d N = 4 super Yang—Mills for s = 1 is
perturbatively equivalent to the topological BF theory T*[—1] Map(RﬁR, Byg).

Proof The supercharge Qg has s-invariant s = 1. By Theorem 11.13 the twist by
Qy is perturbatively equivalent to the specialization of the theory Map(RﬁR, Bgtod)
at t = 0. By Proposition 2.59 the latter is isomorphic to the topological BF theory
T*[—1]Map(Riy, Bg). O

Corollary 11.16 The rank (2, 2) twist of 4d N = 4 super Yang—Mills for s # 1 is
perturbatively trivial.

Proof For any s # 1 we may find # # 0 solving (55). But by Proposition 2.59
the specialization of the topological Hodge theory Map(RflR, BgHoa) at t # 0 1is
perturbatively trivial. O

12 Dimension 3
The odd part of the 3-dimensional supersymmetry algebra is
T=S5W,

where S is the two-dimensional complex spin representation of Spin(3; C), and where
W is a vector space equipped with a bilinear pairing.

The maximal supersymmetric gauge theory has N = dim(W) = 8. Thereare N = 4
super Yang—Mills theories for every choice U of a complex symplectic representation
of the gauge group, and N = 2 super Yang-Mills theories for every choice R of
arbitrary complex representation of the gauge group. Finally, there are N' = 1 super
Yang—-Mills theories in 3 dimensions, but there are no square-zero supercharges with
that amount of supersymmetry. In dimension 3, much like we saw in dimensions 5
and 7, all twisted theories can be obtained by dimensional reduction from theories one
dimension higher.

12.1 N = 2 super Yang-Mills theory

Fix a gauge group G and a representation R. The 3d N = 2 super Yang—Mills theory
arises by dimensional reduction from 4d N = 1 super Yang—Mills theory with an
R-valued chiral multiplet. In this case, W = C? equipped with a nondegenerate
symmetric bilinear pairing. The R-symmetry group is Gg = C*, acting on W with
weights 1 and —1.

This theory admits a unique twist up to equivalence:

e A square zero supercharge Q # 0 € X has two invariant directions. There is
a twisting homomorphism ¢ = MU(1) = U(1) — Gg, so the twisted theory
carries a U (1)-action. The twist is Z-graded.
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12.1.1 Minimal twist

A square-zero supercharge Q has rank 1, i.e. Q = ¢ ® w for some w € W. We use

the twisting homomorphism ¢ : MU(1) dLl/Z) U(l) < Gg.

As in Sect. 6.1.1, the specification of g is equivalent to the choice of a one-
dimensional subspace Nr C VR and a complex structure on Vg /NR together with a
complex half-density. Note that in one dimension the choice of a complex half-density
is equivalent to a choice of spin structure.

Theorem 12.1 The minimal twist of the 3d N = 2 super Yang—Mills theory with Lie
algebra g with matter valued in a g-representation R is perturbatively equivalent to the
generalized BF theory with the space of fields T*[—1]1Map(C x Rqr, R/g). Moreover,
this equivalence is U(1)-equivariant.

Proof By Theorem 11.1 the twist of 4d N = 1 super Yang-Mills on L x N by
Q is perturbatively equivalent to the holomorphic BF theory with the space of fields
T*[—1]Map(L x N, R/g). By Proposition 2.68 we get that the dimensional reduction
of the holomorphic BF theory on L x N along Re: N — Np is isomorphic to the
holomorphic BF theory with the space of fields T*[—1] Map(L x Ng, R/g). O

12.2 N = 4 super Yang-Mills theory

Next, consider the 3d N = 4 supersymmetric Yang—Mills theory with matter valued
in a symplectic G-representation U. The R-symmetry group is Gg = Spin(4; C),
acting on W by the vector representation.

In the N = 4 supersymmetry algebra there are now three non-trivial orbits of
square-zero supercharges. An element Q € S ® W gives rise to a map S* — W; Q
squares to zero if its image is totally isotropic. The classification of orbits includes the
rank of this map.

e Rank 1. In this case Q is minimal, with 2 invariant directions. Such supercharges
lie in a subalgebra isomorphic to the N = 2 supersymmetry algebra and are unique
up to equivalence. They admit a twisting homomorphism and a Z-grading.

e Rank 2. Such supercharges are topological. A rank 2 supercharge defines a
Lagrangian subspace of W, and therefore an orientation. The Gg = Spin(4; C)-
action factors through an SO(4) action on W, and so preserves orientation, so
there are two G g orbits corresponding to the two choices of orientation. We refer
to these as the A twist and the B twist, distinguished by whether they admit a
Z-grading:

(1) An A-twist supercharge admits a twisting homomorphism ¢: U(1) — Gpr
and a Z-grading o : U(1) — Gg.

(2) A B-twist supercharge admits the diagonal twisting homomorphism ¢’ : SU(2)
— SU(2) x SU(2) — Gg. This twist is only Z/27Z-graded.

The distinction via twisting homomorphisms and Z-gradings follows by identifying
the twists as dimensional reductions from 4d N = 2.
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Lemma 12.2 A rank (2, 0) square-zero supercharge in the 4d N = 2 supersymmetry
algebra restricts to an A-twisting supercharge in 3d N = 4. Likewise, a rank (1, 1)
square zero supercharge in 4d N = 2 restricts to a B-twisting supercharge in 3d
N=4.

Proof Let Wy be the complex two-dimensional auxiliary space of the 4d N = 2 super-
symmetry algebra. The projection from the 4d N = 2 supertranslation algebra to the
3d N = 4 supertranslation algebra induces an isomorphism W4 & W; — W of repre-
sentations of the group Spin(3; C). This splits the fundamental representation W into
the sum of two Lagrangians, defining an orientation on W. A rank (2, 0) supercharge
induces the Lagrangian subspace W4 € W, which is oriented. This supercharge admits
a compatible homomorphism «: U(1) - Gr = SL(2; C) x SL(2; C) given by the
embedding into the second factor. This is the A-twist in our classification above.
Arank (1, 1) supercharge induces a Lagrangian subspace of the form L@ L* C W,
where L is a 1-dimensional subspace of Wy. This subspace has the opposite orientation,
so corresponds to the B-twist in our classification above. O

12.2.1 Minimal twist

There is a unique twisting homomorphism ¢ : MU(1) — Spin(4; C) given by the
restriction of the 4d N' = 2 twisting homomorphism for the minimal twist as in
Theorem 11.2 to the subgroup MU(1) C MU(2).

To incorporate the Z-grading, we use the homomorphism «: U(1) — SU(Q2)4 x
SU(2)— = Gg. This homomorphism coincides with the dimensional reduction of o
from Sect. 11.2.1. The corresponding U(1)-action on the 3d auxiliary space W under
« coincides with the U(1)-action on the 4d auxiliary space W4 under the isomorphism
W=E=WwW,0 Wj‘. Indeed, both have weights (1, 1, —1, —1). Therefore, our equivalence
is compatible with the Z-grading in Theorem 11.2 induced by «g.

Theorem 12.3 The minimal twist of 3d N = 4 super Yang—Mills on C x R is perturba-
tively equivalent to the generalized BF theory with the space of fields T*[—1]Sect(C x
Rgr, (U ® K((l:ﬂ)//g)). Moreover, the equivalence is U(1)-equivariant.

Proof The statement follows by applying the dimensional reduction (Theorem 2.68)
to Theorem 11.2 calculating the holomorphic twist of the 4d N = 2 super Yang—Mills
theory on C x C, where we dimensionally reduce along the projection Re: C — R
in the second factor. O

12.2.2 Topological A-Twist

Let L = C equipped with a Hermitian structure and a complex half density, Ng = R
equipped with a Euclidean structure and N = Ny ®g C its complexification. Consider
the 4-dimensional spacetime Vg = L x N. Under the projection Re: N — Np the
family Q; of 4-dimensional square-zero supercharges given by (50) dimensionally
reduces to a family of 3-dimensional square-zero supercharges which at ¢ # 0 are
topological at and + = 0 have 2 invariant directions. Since they admit a compatible
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Z-grading, at t+ = 0 we obtain the holomorphic twist and at ¢+ # 0 we obtain the
topological A-twist. Therefore, from Theorem 11.5 we obtain the following statement.

Theorem 12.4 The twist of the 3d N = 4 super Yang—Mills theory with respect to the
family Q; of square-zero supercharges is perturbatively equivalent to the generalized
Hodge theory Sect(C x Rgr, (U ® K(flz/z)//g)HOd). Moreover, this equivalence is
U(1)-equivariant.

Corollary 12.5 The topological A-twist of the 3d N = 4 super Yang—Mills theory is
perturbatively trivial.

12.2.3 Topological B-Twist

We consider Vg = R3 equipped with a Euclidean structure and as before let V =
Vr ®r C be its complexification. V carries a Hermitian structure and a half-density,
so by the results of Sect. 9.1.1 we obtain a square-zero supercharge Q. Under the
projection Re: V — VR the supercharge Q dimensionally reduces to the topological
B-supercharge in 3 dimensions. Therefore, from Theorem 10.1 we obtain the following
statement.

Theorem 12.6 The rank 2 B-twist of the 3d N = 4 super Yang—Mills theory is pertur-
batively equivalent to the generalized Chern—Simons theory with the space of fields
Map(RgR, U /g). Moreover, the equivalence is Spin(3; R)-equivariant.

12.3 N = 8 super Yang-Mills theory

Finally, consider the maximally supersymmetric Yang—Mills theory in dimension
3. This theory is the dimensional reduction of 10d N = (1,0) supersymmetric
Yang-Mills theory. The R-symmetry group is Gg = Spin(7; C), where W is the
8-dimensional spin representation.

In the N = 8 supersymmetry algebra the classification of twists is the same as we
saw in 3d N = 4. There are three orbits: one consisting of rank 1 supercharges, and
two orbits of rank 2 supercharges. We can see this in the following way.

Lemma 12.7 There are two distinct Spin(3; C) x G g-orbits of square-zero super-
charges of rank 2 in the 3d N = 8 supersymmetry algebra: the generic orbit and the
special orbit.

Proof Choose a symplectic basis (s, s’) for S, andlet Q = s @ w + s’ ® w’ be a
square-zero rank 2 element of S ® W. Let V7 denote the fundamental representation
of Gg. As in Sect. 6, the element w € W is equivalent to the data of a maximal
isotropic subspace L C V7, together with a choice of a half-density. This element w
is stabilized, in particular, by a copy of the metalinear group ML(L). Under the group
ML(L) the auxiliary space W decomposes as

= ((C OLoALG /\3L> ® det(L)"/2,
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(see also [42, Section 4.7]), with w lying in the last summand. Under this decompo-
sition, split the remaining element w’ = (v, vy, v2, v3). Then

e vy = 0, because the square-zero condition implies, in particular, that (w, w’) = 0
with respect to the scalar spinor pairing on W, here given by the wedge pairing.

e Without loss of generality v3 = 0, since under the action of Spin(3; C), s ® w +
SQUW ~sQuw+s QW —w).

e If vy = 0 then vy # 0, and all choices of non-zero v; are in the same orbit under
SL(L) C Stab(w) C Gg.

e If v; # O then without loss of generality v, = 0, using the action by wedge
product of L C Stab(w) € Gg. Finally all choices of non-zero v are likewise
in the same orbit under SL(L) C Stab(w) C Gg. The stabilizer of w acts on the
space vy # 0, so these latter two cases comprise two inequivalent orbits.

The classification of twists therefore takes the following form.

e Rank 1. In this case Q is minimal, with 2 invariant directions. Such supercharges
come from the N = 2 supersymmetry algebra. They admit a twisting homomor-
phism from U(1) and a Z-grading.

e Rank 2 twists. These twists are topological, and come from the N = 4 super-
symmetry algebra. They admit a twisting homomorphism from Spin(3, R) and a
Z-grading. There are two such:

(1) A-twist (the generic rank 2 orbit).
(2) B-twist (the special rank 2 orbit).

12.3.1 Minimal twist

The 3d N = 8 supersymmetric Yang-Mills theory is obtained by a dimensional
reduction of the 4d N = 4 supersymmetric Yang—Mills theory. Therefore, from The-
orem 11.9 we obtain the following statement.

Theorem 12.8 The minimal twist of the 3d N = 8 super Yang—Mills theory on M =
C x R is perturbatively equivalent to the generalized BF theory with space of fields
T*[—1]Map(Cpe; x Rar, g/8). Moreover, the equivalence is U(1)-equivariant.

12.3.2 Topological twists

Consider the dimensional reduction of the family Q; of rank (2, 2) square-zero super-
charges in the 4d N = 4 supersymmetry algebra from Sect. 11.3.5. Since this is a
family of topological supercharges in 4 dimensions, it dimensionally reduces to a
family of topological supercharges in 3 dimensions.

Theorem 12.9 The twist of the 3d N = 8 super Yang—Mills theory with respect to
the family Q; of square-zero supercharges is perturbatively equivalent to the theory
T*[—-1] Map(RgR, Bgtoa). Moreover, the equivalence is Spin(3, R)-equivariant.

W Birkhauser



A taxonomy of twists of supersymmetric yang-mills theory Page 1090f 124 73

Proof The claim follows by dimensional reduction (Proposition 2.64) from the corre-
sponding statement in 4 dimensions (Theorem 11.13) which calculates the twist of the
4d N = 4 super Yang—Mills theory with respect to that family to be Map (RﬁR , BaHod)-

O

As we see from Theorem 12.9, at ¢ # 0 the twist is perturbatively trivial while at
t = 01itis not. By Lemma 12.7 there are only two orbits of topological supercharges,
sothe case t # 0 (the generic orbit) must be the A-twist and the case ¢ = 0 (the special
orbit) must be the B-twist.

Corollary 12.10 The topological A-twist of the 3d N = 8 super Yang—Mills theory is
perturbatively trivial.

Corollary 12.11 The topological B-twist of the 3d N = 8 super Yang—Mills theory
is perturbatively equivalent to T*[—1] Map(RgR, 9/9). Moreover, the equivalence is
Spin(3, R)-equivariant.

13 Dimension 2

The odd part of the 2-dimensional supersymmetry algebra is
=5, W, S5_QW_,

where W are complex vector spaces equipped with symmetric nondegenerate bilin-
ear pairings. The complex semi-spin representations S+ are 1-dimensional, where
Spin(2; C) = C* acts with weight :I:%. There is an independent pairing 'y : Sﬁ?z —
Vo = Cy @ C_; for each chirality, where Spin(2; C) acts on C;, C_; with weights
1, —1 respectively.

There are two classes of twisted supersymmetric gauge theory that we will consider
in two dimensions. First, we have theories with (N, N) supersymmetry corresponding
to N = dim(Wy) = dim(W_); these arise via dimensional reduction from super-
symmetric gauge theories in higher dimensions. Namely, we have the 2d N = (1, 1),
2d N = (2,2),2d N = (4,4) and 2d N = (8, 8) super Yang-Mills theories. The
2d N = (1, 1) supersymmetry algebra does not admit square-zero supercharges, so
we will not consider it. We additionally have gauge theories with chiral, i.e. (N, 0)
supersymmetry, which we have constructed in Sects. 3.4 and 4. We will address twists
for these two classes of theories in turn.

13.1 N = (2, 2) super Yang-Mills theory

First, consider the 2d N = (2, 2) supersymmetric Yang—Mills theory. The R-symmetry
group is

Gg = Z/2Z x (Spin(2; C) x Spin(2; C)) = Z/2 x (C* x C)
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with the Spin(2; C)-factors acting by their vector representation on W, = C? and
W_ = C? respectively, and with Z/27 acting on both W and W_ by (a, b) >
(—a, —b).

Fields: We can describe the BRST fields of N = (2, 2) super Yang—Mills by restricting
the fields in dimension 3 from Sect. 12.1, or equivalently the 4d fields from Sect. 11.1,
to representations of the group Spin(2; C). In any case, the fields we obtain are

gauge bosons A_e Ql(R2; g), and a pair of scalars (a, a) € QO(R2; gD g).
matter bosons (¢, ¢) € QO(R%; R & R*).

gauge fermions (A4 Qu i, A_ Qu_) € QR% (S, QWL B S @ W) R g).
matter fermions (¥, v F, v, v2) € QQR%L TI(S; ®S_)@ROI(S+ B S_)®
R*).

e a ghost field ¢ € QO(R?; g)[1].

Inthe N = (2, 2) supersymmetry algebra there are three classes of non-trivial orbits
of square-zero supercharges.

e Square-zero supercharges of rank (1, 0) or (0, 1), which are holomorphic. There
is a compatible twisting homomorphism from U(1), and a compatible twisting
datum «: U(1) — Spin(2; R) acting with weight 1 on S and weight —1 acting
on S_.

e Square-zero supercharges of rank (1, 1) are topological, and split into four orbits
under the action of Spin(2; C) x (C* x C*). Indeed, we can identify a square-zero
supercharge of rank (1, 1) as a pair of vectors
(A, £iX), (u, £ipn)) € Wy @& W_ with A, u # 0. By acting by Gg we
can set A = pu = 1, leaving four orbits, represented by the supercharges
04 = (D). (1)), Qy = (1, =), (1,=i), Qs = ((1,4),(1,—0)) and
QI; = ((1, —i), (1,7)). The Z/2Z-action swaps the two A supercharges and the
two B supercharges, leaving two orbits under Spin(2; C) x Gg.

(1) The A-twistis compatible with the twisting homomorphism ¢4 : Spin(2; C) —
Spin(2; C) x Spin(2; C) with weights (1, 1).

(2) The B-twistis compatible with the twisting homomorphism ¢p : Spin(2; C) —
Spin(2; C) x Spin(2; C) with weights (1, —1).

Moreover, the A-supercharges admit a compatible homomorphism oy =
¢p: U(l) — Grp, and the B-supercharges admit a compatible homomorphism
ap = ¢4: U(l) > Gpg.

The calculation of the twists here is similar to what we saw in 4d N = 2 super-
symmetry. The holomorphic twist and the B-twist arise by a dimensional reduction
from twists of the 3d N = 2 supersymmetric Yang—Mills theory. On the contrary, the
A-twist as a deformation of the holomorphic twist does not arise as a dimensional
reduction.

13.1.1 Holomorphic twist

First, we record the holomorphic twist of the 2d N = (2, 2) supersymmetric Yang—
Mills theory. The holomorphic twist is Z-graded using & = ¢4.
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Theorem 13.1 The holomorphic twist of the 2d N = (2, 2) super Yang—Mills theory
with matter valued in a complex g-representation R is perturbatively equivalent to the
holomorphic BF theory with the space of fields T*[—1]Map(C, T[1](R/g)). Moreover,
this equivalence is U(1)-equivariant.

Proof The statement follows by applying dimensional reduction (Proposition 2.67)
to Theorem 12.1 calculating the minimal twist of 3d N = 2 super Yang—Mills on
C x Rgr, where we dimensionally reduce along the projection R — pt. O

13.1.2 Topological A-Twist

To deform the holomorphic twist to the topological A-twist, obtaining a Hodge defor-
mation, we use similar techniques to those of Sect. 11.2.2. We first analyze the
supersymmetry action. Consider the 1-parameter family of supercharges

0r=Qo+10Q', (56)

where Qg = (1,i) € Sy is a holomorphic supercharge, and Q' = (1,i) € S_.
This family of supercharges is compatible with the twisting homomorphism ¢4 — the
map U(1) — Spin(2; C) x Spin(2; C) with weights (1, 1). They admit a compatible
homomorphism « = ¢p: U(l) — G with weights (1, —1). Let us first decompose
our fields according to the twisting homomorphism ¢4:

e gauge bosons A1 € Q9(C;g), Ag1 € Q¥N(C; ), a € QUC; 9)[2], @ €
QU(C; g)[2].

e gauge fermions 19 € Q(C; g)[—1], xo0.1 € Q%1(C; @11, 110 € Q10(C; @11,
*o € Q(C; g)I31.

e matter bosons yy € Q°(C; R), ¢ € Q(C; R*).

e matter fermions g1 € 2%1(C; R)[—1], %o € QU(C; R)[1], B1.o € R"2(C; R*)
[—11, ¥ € QY(C; RH[1];

e a ghost field ¢ € QO(R?; g)[1].

Proposition 13.2 Suppose Q; is the rank (1, 1) supercharge of (56). The U(1) decom-

position of the functionals Sihger Stuers Semges Seoter (s€€ (34), (35), (39), (40)) in

terms of the fields of 2d N = (2, 2) super Yang—Mills theory are
~ _ 1 _
Sézllzlge(Ql) = /dV()l <_()"1,09 AT’O) - ()"01 Cl*) + _(Fl,l)\?; + (aA()Y]av X&])))
+ / dvol ¢ ( (x0.1, Ay, ) — (ko @%) + = (F1 g+ (DA oG, AT o)))
(2) * Tk 1 * T2 *
gauge(Q,) = [ dvol | t(Ag, Ay) — Z(AO +1thy)” +t(a, cv)
M w 1= «
Smatter (@) = | dvol Yo~ + E(aAo,l Y0, VO,I)
~ 1
+t <(1//0s )/(Sk) + 5(8A1.0¢s IBT’O)>>
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) t
Sner(00) = [ avol & (8. 75).

Theorem 13.3 The twist of the 2d N = (2, 2) supersymmetric Yang—Mills theory with
matter valued in a complex g-representation R with respect to the family of square-
zero supercharges Q; is perturbatively equivalent to the Hodge family with the space
of fields T*[—1]1Map(C, (R/g)Hoq). This equivalence is U(1)-equivariant.

Proof Observe that the quadruple of ﬁelds {XO, 2o, AS, Ao} has the same Poisson brack-
ets as the quadruple {A5— tk* 105 Ags o +140}. Therefore, we may eliminate the fields
Ay — tk* X using Proposmon 2.25. We then have trivial BRST doublets {Ao +tro, d},
{)\1,0, Al,o}, {v0, ¢} which may be eliminated using Proposition 2.27. We are left with
the action

* * i * 1 * *
SBF+ dvol ¢ —(XO’],A0,1)+(G,C )+(¢07 J/O)_'—E(ﬂ])O’ J/O)])

Here Sgr is the action functional of holomorphic BF theory as in the result of the
minimal twist of N = (2, 2), see Theorem 13.1, obtained by setting t = 0.
We can identify the linearized BV complex with the following diagram:

=2 =1 0 1 2 3
Q(C; @)e — QON(Cs @)ay, QLT g%y, = QMG g
21 > > ’ _ P
- ~ ~ -
- ~ ~ -
QUC; 9)a = QNC; 9)y, QM(C; g4z, — QT g

QC; RYy — Q1 (C; RY)g:
~ ~

~ ~

> -
QUC: RY)yy — Q21 (C: Ry,

QG Ry, — V(T R
" i
~ ~

3 b
QT Rypy — QM (C R

Here, the solid arrows represent the linearized BV operator of the minimal twist, and
the dotted arrows represent the 7-dependent terms. This is exactly the deformation to
T*[—1Map(C, (R/g9)Hod)- o

Corollary 13.4 The topological A-twist of the 2d N = (2, 2)-supersymmetric Yang—
Mills theory is perturbatively trivial.

13.1.3 Topological B-Twist

Finally, there is the B-twist of 2d N = (2, 2) supersymmetry. This twist arises from
the twist of 3d N' = 2 via dimensional reduction along the holomorphic direction.
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Indeed, let W3 be the two-dimensional auxiliary space in the 3d N = 2 supertransla-
tion algebra. As a Spin(2; C)-representation, the 3d N = 2 spinorial representation
decomposes as S+ ® W3 & S_ ® W3. Generically, rank one square zero elements in 3d
N = 2 supersymmetry define rank (1, 1) square zero elements in the 2d N = (2, 2)
supersymmetry algebra. There is a square-zero supercharge in 3d N = 2 compatible
with the identity twisting homomorphism Spin(2; C) — Spin(2; C). This becomes
the B-twisting homomorphism of Spin(2; C) — Spin(2; C) x Spin(2; C) of weight
(1, =1) in the 2d N = (2, 2)-algebra.

Theorem 13.5 The topological B-twist of the 2d N = (2, 2) super Yang—Mills theory
with matter valued in a g-representation R is perturbatively equivalent to the topo-
logical BF theory with the space of fields T*[—l]Map(]RﬁR, R/g). This equivalence
is SO(2)-equivariant.

Proof The theory is obtained as the dimensional reduction of the minimal twist of 3d
N = 2 supersymmetric Yang—Mills theory along the holomorphic direction. Combin-
ing Theorem 12.1 and Proposition 2.68 we obtain the desired result. O

13.2 N = (4, 4) super Yang-Mills theory

Next, we consider N = (4, 4) supersymmetric Yang—Mills theory. This theory is
obtained as the dimension reduction of 3d N = 4 supersymmetric Yang—Mills theory.
No new twists arise, i.e. every square-zero supercharge sits inside an N = (2,2)
subalgebra.

The R-symmetry group is Gg = SU(2) x Spin(4; C) whose actionon ¥ = S; ®
Wi @ S— ® W_ can be described as follows. We can identify Wi = Si ® WS, where
W_(; is the auxiliary space of 6d N = (1, 0) supersymmetry, and Si are the semi-spin
representations of Spin(4; C). The group Spin(4; C) acts on Si in the natural way,
and SU(2) acts on Wﬁ 2 (2 as the fundamental representation.

In addition to rank (1, 0) supercharges, which are holomorphic, there are square-
zerorank (1, 1) supercharges. Asin Sect. 13.1, these supercharges split into two orbits.

Proposition 13.6 There are two G g-orbits in the space of rank (1, 1) square-zero
supercharges in the N = (4, 4) supersymmetry algebra. The generic orbit consists of
A-supercharges and the special orbit consists of B-supercharges.

Proof Decompose the 6d semi-spin representation Si into Si @ S* as arepresentation
of Spin(4; C). A rank (1, 1) square-zero supercharge can be identified with the data
of a null vector in Si, a null vector in S*, and a pair of null vectors in W9, all non-
zero. There are only two G g-orbits in this space of quadruples of null vectors: either
the two null vectors in W?r are colinear, or they are distinct. These are the B- and
A-supercharges respectively. O

Upon dimensional reduction from 3d N = 4, the B-supercharge reduces to the 2d
N = (4, 4) B-supercharge. Indeed, the 3d B-supercharge squares to zero as an element
of the 6d N = (1, 0) supersymmetry algebra, which means that in this 6d algebra it
has rank 1. Therefore the two vectors in Wi discussed above must be colinear.
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13.2.1 Holomorphic twist

The holomorphic twist is obtained as the dimensional reduction of the minimal twist of
3d N = 4 supersymmetric Yang—Mills theory. By Theorem 12.3 and Proposition 2.64
we have the following.

Theorem 13.7 The holomorphic twist of 2d N = (4, 4) super Yang—Mills theory with
matter valued in a symplectic g-representation U is perturbatively equivalent to a
holomorphic BF theory, with moduli space given by T*[—1]Map(C, T[1](U /g)).
This equivalence is U(1)-invariant.

13.2.2 Topological twists

Let Vg = R? equipped with a Euclidean structure and V = Vg ®g C its complexifica-
tion. By the results of Sect. 11.2.2 we obtain a family Q, of square-zero supercharges in
the 4-dimensional supersymmetry algebra. Dimensionally reducing this family along
Re: V — VR, we obtain a family of square-zero supercharges in the 2-dimensional
supersymmetry algebra. It is easy to see that it is a family of topological supercharges.

Theorem 13.8 The twist of the 2d N = (4, 4) super Yang—Mills theory with matter
valued in a symplectic g-representation U with respect to the family Q, of square-
zero supercharges is perturbatively equivalent to the theory Map(RgR, (U J9)Hod)-
Moreover, the equivalence is SO(2, R)-equivariant.

Proof The claim follows by dimensional reduction (Proposition 2.65) from the cor-
responding statement in 4 dimensions (Theorem 11.5) which calculates the twist
of the 4d N = 2 super Yang-Mills theory with respect to that family to be

Sect(C?, (U ® K(lcé2)//9)Hod)- o

As we see from Theorem 13.8, at # 0 the twist is perturbatively trivial while att =
0 it is not. By Proposition 13.6 there are only two orbits of topological supercharges,
so the case t # 0 (the generic orbit) must be the A-twist and the case ¢ = 0 (the special
orbit) must be the B-twist.

Corollary 13.9 The topological A-twist of the 2d N = (4, 4) super Yang—Mills theory
is perturbatively trivial.

Corollary 13.10 The topological B-twist of the 2d N = (4, 4) super Yang—Mills the-
ory is perturbatively equivalent to the theory T*[—1] Map(R?jR, U/ g). Moreover, the
equivalence is SO(2, R)-equivariant.

13.3 N = (8, 8) super Yang-Mills theory

Next we consider the N = (8, 8) supersymmetric Yang—Mills theory. No new twists
arise, i.e. every square-zero supercharge sits inside an N = (2, 2) subalgebra.

The R-symmetry group in the N' = (8, 8) case is Gg = Spin(8; C), acting on
W, and W_ by its two semi-spin representations. The classification of square-zero
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supercharges is identical to the classification we saw in the N = (4, 4) case. Rank
(1, 0) square zero supercharges, and rank (1, 1) square zero supercharges split into
two orbits in the following way.

Proposition 13.11 There are two G g-orbits in the space of rank (1, 1) square-zero
supercharges in the N = (8, 8) supersymmetry algebra. The generic orbit consists of
A-supercharges and the special orbit consists of B-supercharges.

Proof We classify Spin(8; C)-orbits in the space of pairs of non-zero null-vectors
wy € Wi and w_ € W_. Since Spin(8; C) acts transitively on the possible choices of
w., it remains for us to understand the action of the stabilizer Stab(w,) € Spin(8; C)
on the space of null vectors w_. The element w, is equivalent to the data of a
Lagrangian subspace L C Vg, along with a half-density. As a representation of the
subgroup ML(L) of Stab(w.), the two semi-spin representations decompose as

Wy = (Co® AL A'L) @ det(L)~1/?
W_ = (LA L) ®det(L)" /2,

with wy € A*L. With respect to this decomposition, say w_ = (v1, v3). If v # 0,
then we can act by AL C Stab(w) to make vz = 0. Under the action of SL(L) all
such non-zero v; are in the same orbit. Likewise if v = 0 then v3 # 0 and we can act
by SL(L) to see that all such non-zero vz are in the same orbit. There are, therefore,
two orbits once again, with one degenerating to the other. O

The 2d N = (8, 8) super Yang-Mills theory may be considered as a 2d N =
(4, 4) super Yang—Mills theory with matter valued in the symplectic g-representation
U = T*g. So, all the computations in this section follow from the corresponding
computations in Sect. 13.2.

13.3.1 Holomorphic twist

From Theorem 13.7 we obtain the following statement.

Theorem 13.12 The holomorphic twist of the 2d N = (8, 8) super Yang—Mills theory
is perturbatively equivalent to a holomorphic BF theory with the space of fields given
by T*[—1]Map(C, T[1]1T*(g/g)). This equivalence is U(1)-equivariant.

13.3.2 Topological twists
Consider the family of topological supercharges Q; from Sect. 13.2.2. From Theo-
rem 13.8 we obtain the following statement.

Theorem 13.13 The twist of the 2d N = (8, 8) super Yang—Mills theory with respect
to the family Q; of square-zero supercharges is perturbatively equivalent to the theory
Map(RﬁR, T*(g/9)Hod). Moreover, the equivalence is SO(2, R)-equivariant.

Corollary 13.14 The topological A-twist of the 2d N = (8, 8) super Yang—Mills theory
is perturbatively trivial.
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Corollary 13.15 The topological B-twist of the 2d N = (8, 8) super Yang—Mills theory
is perturbatively equivalent to the theory T*[—1] Map(RﬁR, T*(g/@8)). Moreover, the
equivalence is SO(2, R)-equivariant.

13.4 N = (2, 0) super Yang-Mills theory

We turn to the N = (2, 0) supersymmetric Yang—Mills theory. In the supersymmetry
algebra, we have W_ = (0 and W is acomplex two-dimensional vector space equipped
with a symmetric pairing. The supersymmetric matter consists of the N = (2, 0)
chiral multiplet with values in a g-representation R. The R-symmetry group is G =
SO(2; C) which acts on W by the defining representation.

The fields of the untwisted theory are:

a gauge boson A € Q' (R?; g).

gauge fermions A € C®(R?; T1S, ® W4 ® g).

matter bosons ¢ € C®°(R?; R) and ¢ € C®(R?; R*);

matter fermions ¥ € C®(R?; I1S_ ® R*) and ¥ € C®(R?; [1S_ ® R).
a ghost field ¢ € QO(R?; g)[1].

The field A transforms in the defining representation of Gg = SO(2; C). The fields
¥, ¢ have weights —1, 41 respectively.
The theory admits a unique twist by the following class of supercharge.

e Elements O € S ® W, of rank 1. Such supercharges are automatically square-
zero and are holomorphic. We take o : U (1) < G g to be the standard embedding.
There is a compatible twisting homomorphism

12
¢: MU(D) L5 U(1) < Gg.

13.4.1 Holomorphic twist

Choose a complex structure L C V. Under the embedding MU (1) — Spin(2; C),
the semi-spin representations decompose as

Sy =det(L)'/? | S_ =det(L)""/2.

Note that under the twisting homomorphism ¢ = det!/?, we have W, =
det(L)Y/? @ det(L)~ /2.
The fields decompose under the twisting homomorphism as:

gauge bosons Aj o € Qlo; 9), Ao.1 € QYI(C; 9)-

gauge fermions Ag € QO((C; ol—1L o € QI’O(C; oll].
matter bosons ¢ € Q°(C; R*), yp € QY(C; R).

matter fermions ¥ € Q°(C; R*)[1], Y0.1 € Q%L(C; g)[—11.
a ghost field Ag € Q°(C; g)[1].
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The action functional decomposes as follows:
2,0 70,2 1 2 | o
Soauge = dvol | — (F~", F"%) — Z(AFl,l) + 5()\07 aA()Yl)\l,O)
Smatter = /dVOI ((3A1,0<I_5, ng.l VO) + (8A1.0 Y0, 5140,15)
+ (Y0, 94,910,1) + (21,0, Yol Vo,1)>
Santi = / dvol ((aAlﬁvo, )+ @ag, Ao, A+ (A0, Aol AT )+ [ho, Aolr

1 — _
+5 140, AolA§+[yo. Aolyg +1e. Aold” +1yo.1. Aolyg+[vo, AoWJ)

Stinge = / dvol ( — (A0 A’{,O)>

n - 1= .
Smateer = [ dvol | (Yo, ¢ ) + 5(3AO,IV0, Y0.1)
1

Siiee = / dvol ( — Z(,\g)z).

Theorem 13.16 The minimal twist of 2d N = (2, 0) super Yang—Mills with matter
valued in a g-representation R is perturbatively equivalent to holomorphic BF theory
coupled to the holomorphic By system with moduli space T*[—1]Map(C, R/g). This
equivalence is U(1)-equivariant.

Proof First, we eliminate the field Ao using Proposition 2.25. We then observe that the
action includes the terms [(A1,0, A7 ;) and [ (¢, ¥). Thus, the two pairs (11,0, A1,0)
and (¢, ¥o) form BRST doublets, which can be eliminated using Proposition 2.27.

The twisted theory is therefore perturbatively equivalent to the theory with BV
action

/ (5/“0‘1‘40 A A’6,1 + (5'40,] Yo A V(;k,l))
1
+ dvol (E[AO’ AolAg + [yo, Aolyg + ([vo.1, Aol V&l))

This is the action functional of the required theory, where B o = Aa B = AS dvol
comprise the anti-fields of holomorphic BF theory and 81 ¢ = ij 1» B1.1 = v dvol
comprise the anti-fields of the 8y system. O

13.5 N = (4, 0) super Yang-Mills theory

Next, we consider the N = (4, 0) supersymmetric Yang—Mills theory. In the super-
symmetry algebra, we have W_ = 0 and W is a complex four-dimensional vector
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space equipped with a nondegenerate symmetric bilinear pairing. The supersymmetric
matter consists of the N = (4, 0) hypermultiplet with values in a complex symplectic
g-representation U . The R-symmetry group is Gg = SL(2; C) x GL(1; C). Asa G-
representation, W, = W & W where W is the defining representation of SL(2; C)
and where GL(1; C) acts by weight (1, —1) with respect to this decomposition.

a gauge boson A € Q!(R?; g). o

gauge fermions (A_, A1) € CP(R* S; @ (W & W) ® g).
matter bosons ¢ € C*°([R?; W Q U);

matter fermions (y_, ¥4) € CP(R%*; S_ @ (U @ U));

a ghost field ¢ € QU(R?; g)[1].

Under GL(1; C) C Gg, the pairs of fields (A_, A+) and (¥_, ¥ ;) have weights
(=1, +1) The field ¢ has weight zero.
The theory admits a unique twist:

e Elements O € Sy ® W of rank 1. Such supercharges are automatically square-
zero and holomorphic. There is a twisting homomorphism ¢ : U(1) — G and
twisting datum «: U(1) — Grg.

13.5.1 Holomorphic twist

Choose a complex structure L C V. Under the embedding MU (1) < Spin(2; C),
the semi-spin representations decompose as

S =det(L)'/? |, S_ =det(L)"'/2,

We choose a twisting homomorphism ¢: U(1) — G g under which W= det(L)'? @
det(L)~1/2 so that

S, @W,.=CoaCeq L®.

The Z-grading is induced by a natural embedding «: U(1) — GL(1; C) — Gg.
Further, fields decompose under the twisting homomorphism as:

e gauge bosons A1 o € Q(C; g), Ag1 € Q¥1(C; g);
o gauge fermions At € QO(C; g)[—1], A, € QM(C; g)[—11, A~ € QU(C: g)[1],
10 € QNC gl
0. grl/2 0. p—1/2 .
e matter bosons y € Q7(C; K" ®U),veQ (C; K-""®U);
e matter fermions y_ € Q0(C; K> @ U)[1], 1 € Q%C; K.'* @ U)[—1];
e a ghost field ¢ € QU(C; g)[1].

The action functional decomposes as follows:
1 _ _ -
Seauge = /dvol ( — (F?0 F02y _ Z(AFm)z) +Ag 00, M0 + Ao - Dag Ao
Smatter = / dvol ((aAl_()Vs 5140,17/) + (3A1,0V7 gA().lV) + (Y/f—, 3A1,o)/) + (w-ﬁ aAl.ov)
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+ (vl o) + (g v ¥o) + 7 v ] ) + (g, ] 1#))

Santi = /dVOI ((8A1_069 AT’O) + (5A011C» A(ﬂ;,l)
+ (M e ATD) + (Ao €l AT + A g™ + A clrg ™

1
+5le, cle* +ly.cly™ + v, cv* + [¥*, cly® + [y, C]llfi)

Sé;gge = / dvol(— (Lo 1"0))

1 —
Stnaer = / dvol ((w_, V) 5@y, 7. wb)

L. _
Sgu)lge = deOl ( - Z()\ *)2>-

Theorem 13.17 The holomorphic twist of the 2d N = (4, 0) super Yang—Mills theory

with matter valued in a symplectic g-representation U is perturbatively equivalent to
the holomorphic BF theory with the space of fields T*[—1]Sect(C, (U ® K(é/z)//g).

This equivalence is U(1)-equivariant.

Proof First, we eliminate the field 2~ using Proposition 2.25. We then observe that the
action includes the terms f(k;o, AT’O) and f(w_, v*). Thus, the two pairs (A1.0- A1,0)
and (v, Y¥_) form BRST doublets, which can be eliminated using Proposition 2.27.

The twisted theory is therefore perturbatively equivalent to the theory with BV
action

/ (5140.1" A AS,I + )‘+5A0,1)‘1_,0 + 5140.1 VA w—T—)

1
+ dvol <§[c, cle* + (Mgl ATg) + AT el + [y, cly™ + [y, c]tﬁi).
This is the action functional of the required theory. O

13.6 N = (N4, 0) super Yang-Mills theory
We consider pure N = (N, 0) super Yang—Mills for a Lie algebra g, where Ny > 2.
The spinorial representation is ¥ = Sy ® Wy where W, is the N -dimensional

auxiliary space equipped with a nondegenerate symmetric bilinear pairing.

e g-valued bosons: a gauge field A € Q' (R?; g).
e g-valued fermions: a spinor A € C*(R?; S; ® W4 ® g).

The theory admits a unique twist by the following class of supercharge.
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e Elements O € Sy ® W, of rank 1. Such supercharges are automatically square-
zero, holomorphic, and lieina N = (2, 0) subalgebra. We take the twisting datum
o and twisting homomorphism ¢ to factor through those of Sect. 13.4.

13.6.1 Holomorphic twist

Choose a complex structure L C V. Under the embedding U (1) — Spin(2; C), the
semi-spin representations decompose as

Sy =det(L)'? | S_ = det(L)" /2.

Note that under the twisting homomorphism ¢ = det!/2, we have W, =
det(L)'/? @ det(L)~1/? @ CN+-2,
The fields decompose under the twisting homomorphism as:
e gauge bosons A g € Q10(C; g), Ag.1 € Q¥1(C; g);
e gauge fermions 19 € Q(C; g)[—1], 41,0 € 10(C; g)[11, % € Q(C; K(é/2 ®9);
e a ghost field Ag € QO(C; g)[1].

The action functional decomposes as follows:
2,0 70,2 1 2 1 5 l~e =
Sgauge = dvol( — (F=", F"°) — Z(AFl‘l) + 5()\0’ aAo_l)Ll,O) + E()h aAo,l)\)
Santi = /dvol ((3A1_0A0, AT o) + (04, Ao, Af ) + ([h1,0. Aol AT 0)

~ ~ 1
+ [2o, Aolrg + [, AglA™ + E[AO’ AO]A$>

Stinge = /dvol(— (A0, AT’O))
1
SPhee = / dvol ( - Z(AZ;)Z).

Theorem 13.18 The holomorphic twist of 2d N = (N4, 0) super Yang—Mills is
perturbatively equivalent to the holomorphic BF theory with the space of fields
T*[—1]Sect(C, (g™N+ 2 ® K(é/z)/g). This equivalence is U(1)-equivariant.
Proof First, we integrate out the field A using Proposition 2.25. We then observe that
the action includes the term f(M,o, AT,0)~ Thus, the pair (11,0, A1,0) forms a BRST
doublet, which can be eliminated using Proposition 2.27.

The twisted theory is therefore perturbatively equivalent to the theory with BV
action

_ — o~ ~ 1 ~ ~
/ dvol ((aAo,. Ao, A5 1) + @9, 7. 1) + Ao, Aol AG + [X. Ao]x*>.
This is the action functional of the required theory. O
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