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Abstract

Ultrasonic metal welding (UMW) is a promising solid-state joining technol-

ogy that enables innovative and sustainable manufacturing. Despite possessing

numerous advantages, UMW has a narrow operating window and is susceptible

to both internal and external disturbances. As such, industrial scale UMW pro-

duction calls for efficient, effective, and non-destructive joint quality assessment.

To this end, this paper develops a novel hierarchical physics-informed ensemble

learning (PIEL) framework that uses both physical knowledge and online sensing

data for accurate online prediction of UMW joint strength. The PIEL frame-

work decomposes the joint strength variability into a physics-informed global

trend and a data-driven residual. The global trend is attributed to controllable

or measurable welding conditions and is typically perceived as a large-scale vari-

ability. The data-driven residual is observed as a small-scale component when

identical welding conditions are applied and can be captured by online sens-

ing data. Drawing on this decomposition, hierarchical prediction models can

be established to simultaneously account for both types of variabilities. As

an essential component of the PIEL methodology, a highly efficient feature ex-

traction procedure is developed using discrete wavelet transformation (DWT).

The DWT-based feature extraction procedure is able to automatically extract

key low-dimensional information from high-dimensional sensing signals, thus of-
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fering improved efficiency and effectiveness compared to conventional feature

engineering approaches. Two real-world case studies with distinct physical se-

tups are presented to demonstrate the effectiveness of the PIEL framework.

The first case study investigates the influence of tool degradation and uses a

dataset consisting of 200 welding cycles generated under four tool conditions.

In the second case study, welding parameters including time, amplitude, and

pressure are varied to generate 240 welds. When compared against multiple

state-of-the-art baseline methods, PIEL consistently achieves superior predic-

tion accuracy. Further, it is shown that by integrating physical knowledge, PIEL

can effectively avoid overfitting and achieve excellent modeling robustness and

data efficiency. While developed in the context of UMW, the PIEL framework

is readily extensible to various other manufacturing processes.

Keywords: Physics-informed machine learning, Ensemble learning, Ultrasonic

metal welding, Quality control

1. Introduction

Ultrasonic metal welding (UMW) is a solid-state joining technology iden-

tified as a key enabling technology to innovative and sustainable manufactur-

ing [1]. UMW has wide industrial applications including automotive body con-

struction [2, 3, 4], electric vehicle battery assembly [5, 6, 7], electronic packag-5

ing [8, 9, 10], and the assembly of hybrid heat exchangers [11]. Fig. 1 shows the

configuration of a typical UMW system, which consists of generator, transducer,

booster, horn, and anvil. In a welding cycle, UMW utilizes high-frequency ul-

trasonic vibrations to generate oscillating shears, which consequently joins the

metal sheets clamped under pressure [12]. Compared to conventional fusion10

welding techniques, UMW provides various benefits such as energy efficiency,

the ability to join dissimilar materials, environmental friendliness, and short

welding cycles [1, 13].

Notwithstanding having numerous advantages, UMW has a narrow oper-

ating window and is known to be susceptible to both internal and external15

2



Figure 1: Configuration of a typical UMW system [14].

uncontrollable factors [7]. For example, the process physics of UMW is primar-

ily determined by controllable welding parameters (e.g., welding time or welding

energy, pressure, amplitude) and tool conditions [5, 14, 15, 16, 17, 18, 19, 20].

A relatively small set of parameter combinations can yield satisfactory joint

quality for a certain application. Moreover, UMW is influenced by internal and20

external disturbances (e.g., specimen surface contamination [7, 21, 22]), which

lead to substantial variabilities in joint quality. These uncontrollable factors are

widely seen in real-world industrial applications but very challenging to monitor

on the factory floor. As such, monitoring and predicting the quality of UMW

joint are of vital importance in order to ensure the consistent joint quality in25

at-scale industrial productions [21, 22].

Existing works in quality prediction and control of UMW generally rely on

(1) physics-based finite element (FE) simulations , e.g., [23, 24, 25] or (2) data-

driven methods. FE simulations can provide some physical insights into the

welding mechanism but are incapable of online, responsive prediction or ade-30

quately accounting for quality variabilities caused by uncontrollable factors [14].

Therefore, data-driven methods have attracted increasing attention in recent

years. These methods have been mainly applied to response surface model-

ing [5, 14, 26, 27] and online process monitoring [16, 28, 22, 29, 30, 31].

Kim et al. [5] used response surface methodology to investigate the influence35

of welding time and pressure on the peel strength in UMW. Zhao et al. [26]

deployed neural networks to construct the response surface for the joint strength

of magnesium-titanium dissimilar welding. In [14], machine learning models are

adopted to study the impact of amplitude and weld time on both peel and shear
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strengths. Most recently, a hybrid multi-task learning model was developed in40

[27] to cost-effectively characterize UMW response surfaces through capturing

the similarities between different material combinations.

Online process monitoring aims to detect process anomalies using in-situ

sensing signals [28]. The first type of online monitoring methods targets on

classifying joint quality into pre-determined classes (e.g., good vs. problematic)45

[21, 22, 28, 22, 29, 32]. For instance, the relationship between the weld attributes

and two online signals including weld power and horn displacement was exam-

ined in [21]. Guo et al. developed an SPC-M online monitoring algorithm to

detect the bad weld and their algorithm achieved almost zero misdetection rate

[22]. Additionally, some studies use in-situ sensing data to predict tool condi-50

tions [16]. For example, Nazir and Shao developed an online sensing system

and applied machine learning to successfully predict the tool conditions in a

real-time fashion [16].

Despite the advancements brought by the abovementioned works, critical re-

search gaps still exist. First, although response surface modeling can establish55

a connection between welding parameters and joint strength, it fails to capture

the intra-variance of each welding parameter combination. This may be a seri-

ous drawback especially in factory-floor applications, where significant quality

variabilities exist due to uncontrollable factors. Second, state-of-the-art online

process monitoring approaches are restricted to classification tasks but fail to60

quantitatively predict the joint strength. The lack of detailed quality assessment

prohibits more effective quality control for UMW.

To overcome these research gaps, this paper develops a hierarchical physics-

informed ensemble learning (PIEL) framework for online joint strength predic-

tion in UMW. The variability in joint strength is decomposed into a large-scale65

term characterizing the influence of physical conditions, such as tool degrada-

tion and welding parameters, and a small-scale residual term that is caused by

uncontrollable factors and can be characterized by online sensing data. In addi-

tion, we develop an automatic feature extraction method using discrete wavelet

transformation (DWT) that is applicable to all types of UMW sensing signals.70
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This method offers significantly improved efficiency compared to traditional fea-

ture engineering methods. Two case studies using different physical setups and

datasets are presented to demonstrate the effectiveness of the proposed frame-

work.

This remainder of this paper is organized as follows. Section 2 presents the75

details of the hierarchical PIEL framework and the modeling methods. Two

case studies are discussed in Section 3. Finally, Section 4 concludes the paper

and suggests future research directions.

2. Methodology

This section introduces details of the proposed hierarchical PIEL modeling80

framework for online joint strength prediction in UMW. Specifically, Section

2.1 presents the modeling framework. A highly efficient DWT-based feature

extraction procedure is introduced in Section 2.2. Section 2.3 discusses the

ensemble learning strategy and base models used in this study.

2.1. Hierarchical PIEL Framework85

The quality variability in UMW can be attributed to two types of factors: (1)

controllable or measurable process conditions and (2) uncontrollable disturbance

factors. As shown by [14], controllable welding parameters lead to a large-

scale variability, and when the same welding parameters are applied, small-scale

variability is observed. As such, we propose a hierarchical modeling framework

for UMW joint strength that is shown by Eq. (1) and illustrated by Fig. 2.

f(r,p) = µ(p) + η(r;p), (1)

where f(·) is a function of the joint strength; p denotes the controllable or

measurable process conditions; r is randomness caused by internal or external

disturbances which are hard to measure; µ(p) is a global trend determined

exclusively by p; and η(r;p) is the residual that relies on both p and r. The

model of Eq. (1) decomposes the joint strength into two terms µ(p) and η(r;p),90

which are discussed in more detail below.

5



Figure 2: The hierarchical PIEL framework.

µ is perceived as a global trend. It is fully determined by controllable or mea-

surable welding conditions that can be informed by physical knowledge on the

UMW process. Examples include controllable welding parameters (e.g., welding

time or welding energy, pressure, amplitude) and measurable tool conditions. It95

is worth noting that depending on the type of factors p, different models should

be used to model µ(p). For instance, if p is a set of welding parameters, µ(p)

can be estimated using response surface methodology and regression models

[5, 26, 14, 27]. If p denotes categorical tool conditions (e.g., new vs. worn),

µ(p) is then a categorical term and can be characterized using a classification100

model [16, 33, 34].

η is a residual term representing the small-scale variability. This is similar

with the natural or inherent variability in the philosophy of statistical process

control. In other words, η denotes the unexplained variability when all control-

lable/measurable conditions are kept as constant. This type of variability can105

be captured by online sensing signals. A regression model is needed to map the

relationship between sensing signals and η. In some cases, this relationship may

be governed by process conditions p and η should be modeled as a function of

both p and r, i.e., η(r;p). Note that p serves as the hyperparameters of η and

depending on value of p, η may have a different form.110
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2.2. Automatic Feature Extraction Using DWT

This section develops an automatic feature extraction procedure using DWT.

Three critical challenges exist in effectively and efficiently mining the online sens-

ing signals in UMW. First, UMW experiments are costly and time-consuming,

thus posing a high requirement on data efficiency [27]. The limited data size115

makes it extremely challenging to avoid overfitting while maintaining good per-

formance. This also prohibits the application of some advanced machine learning

methods such as deep learning. Second, the dimensionality of the as-received

sensing signals is extremely high. Because UMW involves high-frequency vi-

bration, a high sampling frequency must be used to capture the vibrational120

information. For example, in the case studies reported in Section 3, a sampling

frequency of 250 kHZ was used in UMW experiments. Therefore, a 0.6 s welding

cycle would have 150,000 data points in one single sensing signal. Third, due

to the differences in the lengths of sensing signals, which are caused by differ-

ent welding times, it is difficult to extract a set of features that are universally125

applicable to all welding cycles. For example, Fig. 3 shows three microphone

signals obtained from UMW experiments with different welding times. The

dimensionality varies significantly among the three signals.

To address these challenges, we use DWT to facilitate automatic feature

extraction. While deep learning methods are able to provide an end-to-end so-130

lution and automatically accomplish feature extraction, feature selection, and

model training, they typically require a sufficiently large training dataset, which

is not available in many manufacturing applications. Here, we propose to auto-

matically extract features using DWT for the following reasons. First, UMW has

a high-frequency vibration nature and extracting frequency-domain features has135

been a common practice in the UMW quality monitoring literature. For exam-

ple, frequency-domain analysis using fast Fourier transform was used to extract

monitoring features from acoustic emission (AE) and microphone signals for

UMW quality classification and tool condition monitoring [28, 22, 16]. Second,

in existing works, time-domain features are mainly extracted from power and140

linear variable differential transformer (LVDT) signals. Time-domain features
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that are proven to be effective, e.g., peak power and energy in the power signal,

pre- and post-height in the LVDT signal [28, 21, 22, 16], are reflected by and can

be reconstructed using some DWT features, so the key time-domain information

is preserved in the DWT feature pool.145

Figure 3: Comparison of microphone signals of different welding times.

The wavelet transform (WT) [35] can be described as

Xw(τ, s) =
1√
s

∫ +∞

−∞
x(t)Ψ

(
t− τ

s

)
dt, (2)

where τ is the shift parameter and s is the scale parameter; and Ψ(t) is the

mother wavelet which centers at zero with time support on a specific interval.

One common strategy of using WT is to obtain the spectrogram of the time

series and then apply convolutional neural networks (CNN) or other neural net-

works on such spectrograms [36, 37, 38, 39]. However, deep neural networks

working on images/spectrograms generally have complicated model architec-

tures and require a large dataset for model training and hyperparameter tuning.

As such, this type of strategy is less effective for data-scarce UMW applications.

Here, we use DWT as a filter bank to decompose the signals into detail coeffi-

cients from the high pass filter and approximation coefficients from a low pass
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filter. To do so, Eq. (2) is discretized as:

Xmd,nd
=

∫ +∞

−∞
x(t)Ψmd,nd

(t)dt, (3)

Ψmd,nd
(t) =

1√
2md

Ψ

(
t− nd2

md

2md

)
, (4)

where md is the level of decomposition, and nd is the discretized shift parameter.

In each level, the given time series with the highest frequency are decomposed

into two branches. The resulting coefficients corresponding to high frequency150

are called detail coefficients (DC), whereas the remaining ones corresponding to

low frequency are named as approximation coefficients (AC). This process can

be repeated multiple times, until it reaches the specified decomposition level

Md. The most popularly adopted algorithm for DWT is Mallat algorithm [40],

where the cutoff frequency goes half in levels and only approximation coefficients155

are further decomposed.

Figure 4: Illustration of implementing DWT on a microphone signal for feature extraction.

As illustrated by Fig. 4, a raw sensing signal is decomposed into several

detail coefficients in levels, based on which the features are extracted. A list
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of features extracted from each sensing signal is provided by Table 1. We note

that extracting the DWT features does not require prior physical knowledge160

on the UMW process but can still effectively preserve both time-domain and

frequency-domain information. Furthermore, the decomposition shown by Fig.

4 is not affected by the length of the raw signal.

Table 1: Definition of the DWT indexes.

Index Definition

Entropy the entropy of the sub-band

Variance the variance of the sub-band

Mean the mean of the sub-band

Median the median of the sub-band

25th Percentile Value the 25th percentile of the sub-band

75th Percentile Value the 75th percentile of the sub-band

RMS root mean square of the sub-band

Zero Crossing Rate the number of times the signal crosses zero

Mean Crossing Rate the number of times the signal crosses average

In UMW, there are mainly four online sensing signals, i.e., power signal,

AE signal, microphone signal, and LVDT signal [16, 28]. The sensing signals165

collected by each sensor are processed individually by DWT and the indexes in

levels are calculated respectively. All the indexes are then concatenated to form

a feature pool. Though the dimensionality is significantly reduced compared to

the raw signals, it is still too large to be directly used by a machine learning

model. The total number of features is 672 when Md = 13 (case study 1) and170

624 when Md = 12 (case study 2). Therefore, a feature selection procedure is

required to further reduce the size of the feature set. Feature selection methods,

typically categorized as wrapper methods, filter methods, and embedded meth-

ods [28, 41], should be selected depending on the scenarios. The specific feature

selection procedure used in this work will be introduced in Section 3. After175

the feature selection, the resulting data will be fed into the ensemble learning
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models. The whole procedure is illustrated by Fig. 5.

Figure 5: DWT-based feature extraction procedure.

2.3. Ensemble Learning

In our framework, ensemble learning along with cross validation (CV) is used

to obtain good prediction accuracy while minimizing overfitting issues. Ensem-180

ble learning has been proven to be one of the most powerful machine learning

methods, which dominates many Kaggle competitions. For example, Erickson

et al. showed that the ensemble learning-based AutoML framework outper-

forms any other parameter tuning AutoML frameworks in most benchmark

datasets [42]. The fundamental idea of ensemble learning is to train multiple185

base models and assemble them to form a more effective model [43, 44, 45].

The base models employed in this study are gradient boosting machines

(GBM), which combines the predictions from multiple weak learners to gen-

erate the final results. The first explicit GBM algorithm was developed by

Friedma [46]. GBM firsts train many weak learners, each of which may perform190

poorly on the task. Let wk(x; θk) be the weak learner family where θk is the

parameter set to be learned. Then given a training set {(xi, yi)}ni=1, a differen-

tiable loss function L(·, ·) and number of iterations K, the algorithm, where Fk

is the output of k-th iteration, can be summarized as follows:

Let

F0 = argmin
γ

n∑
i=1

L(yi, γ), (5)

11



where γ is a constant number.195

Assuming that Fk−1 is already obtained, define

ȳi = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fk−1(x)

, i = 1, 2, ..., n. (6)

The parameter set for a weak learner wk(x; θk) is evaluated by:

θk = argmin
θ

n∑
i=1

L(ȳi, wk(xi; θ)). (7)

The weight coefficient is obtained by:

αk = argmin
α

n∑
i=1

L(yi, Fk−1(xi) + αwk(xi; θk)). (8)

Fk is evaluated iteratively:

Fk(x) = Fk−1(x) + αkwk(xi; θk). (9)

Repeat this until k = K. Finally, the output of the model is FK .

The philosophy of GBM is to train the weak learners iteratively such that

new weak learner can compensate for the error led by all previous learners,

through which the capability of the model is boosted. In UMW, the sensing

signals have high dimensions, the training dataset is usually small, and the200

variability in joint strength is large, resulting in critical challenges for a single

learning model to capture the relationship adequately. GBM can potentially

overcome these challenges. There are many implementations of GBM, such as

XGBoost and CatBoost. In this study, we select XGBoost, CatBoost, and light

GBM with different sizes as the base model for the final ensemble models.205

Fig. 6 shows the training process of ensemble models. Firstly, the dataset is

divided into training and testing sets with the ratio of 7:3. Then k-fold CV is

performed on the training set to train each base model, which is subsequently

evaluated using the validation set. Based on the validation result, the hyper-

parameters of base models are tuned to optimize the validation performance.210

The training-validation-tuning procedure is repeated until the validation per-

formance is optimized.
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Figure 6: Training procedure for ensemble learning.

After each base model is trained separately, they are aggregated together

to generate the final ensemble prediction model using the following weighted

average aggregating rule:

M =
N∑
i=1

viMi, (10)

where M is the ensemble model, Mi is the ith base model, vi is the weight as-

signed to base modelMi, i = 1, . . . , N , and N is the number of base models. The

weights vi’s are obtained according to each base model’s learning performance

using

vi =
exp(−ri)∑N
i=1 exp(−ri)

, (11)

where ri is the validation RMSE for base model Mi. In other words, in the

training and validation stage, base model Mi receives a score ri indicating its

performance. In this research, we use the RMSE value as a performance indica-215

tor, i.e., ri = RMSEi. This weighted averaging strategy can effectively alleviate

overfitting issues. Note that there are other ensemble techniques such as blend-

ing, as well as other aggregating methods such as majority voting and averaging

[47].
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3. Case Studies220

In this section, two case studies with different physical setups are investigated

to demonstrate the effectiveness of the proposed PIEL framework. The first

case study uses a dataset consisting of 200 UMW weld cycles, for which tool

conditions are varied while the welding parameters are the same. This case study

mimics an industrial scenario where the welding parameters have been optimized225

but tool degradation occurs during production. The second case study aims to

predict the UMW joint strength when welding parameters are changed. This

scenario refers to a practical application where the optimal welding parameters

need to be determined and online monitoring is required to account for small-

scale variability.230

In both case studies, four sensors, namely, power, LVDT, AE, and micro-

phone signals, are employed to collect the online sensing signals. Fig. 7 is a

schematic of the online monitoring system used to generate the datasets. Fig. 8

shows examples of four sensing signals. The sampling rate was set as 250 kHZ in

signal acquisition and the data collection duration was set as 2 s. Depending on235

the welding time selected, the segment corresponding to the vibration process

will be different. The welding specimens were made of 110-copper and had a

dimension of 50.8 mm × 25.4 mm × 0.2032 mm. After welding, all the joints

were subjected to T-peel test [14] to measure the maximum peel load, which is

defined as the joint strength. To rigorously examine the performance of PIEL,240

both case studies use various machine learning models such as random forest,

support vector machine (SVM), CNN, and AdaLR as baseline methods. All the

models are run on an Intel i9-7960X CPU @ 2.80GHz.

3.1. Joint Strength Prediction with Different Tool Conditions

In this case study, the PIEL framework is applied to predict the strength245

of joints made using the same welding parameters but the tool conditions are

different. Table 2 shows the detailed welding configurations.

Fig. 9 shows the distributions of joint strength under different tool con-

ditions. It is clear that tool conditions significantly influence the statistical
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Figure 7: Schematic of the online UMW monitoring system. Adapted from [16].

Table 2: List of candidate machine learning models used in case study 1.

Tool Condition

Label

Horn

Condition

Anvil

Condition

Welding

Time

Welding

Amplitude

Welding

Pressure
Replicates

0 New New

0.5 45 40 50
1 New Worn

2 Worn New

3 Worn Worn

distributions in terms of both mean and standard deviation. It is also worth250

noting that even under the same tool condition and welding parameters, the

variability of joint strength is substantial, highlighting the necessity of online

monitoring.

We adapt the hierarchical PIEL framework shown by Eq. (1) to obtain

Eq. (12) for this case study.

f(r, ptool) = µ(ptool) + η(r; ptool), (12)

where ptool represents the tool condition and r is the disturbance. In real-world

industrial applications, the tool condition is usually unknown. As such, it is

desirable to establish a model which can predict the strength exclusively using

online sensing signals. For this purpose, we obtain the following equation by

assuming ptool unknown

f(r, ptool) = η(r; ptool). (13)

Since η(r; ptool) is captured by online sensing signals, Eq. (13) raises the

requirement that tool condition ptool be inferred first by sensing signals and then255
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(a) AE signal (b) LVDT signal

(c) Power signal (d) Sound signal

Figure 8: Demonstration of typical sensing signals.

η(r; ptool) can be obtained based on value of ptool. To this end, the prediction

process can be decomposed into two steps: (i) establishing a classification model

to predict the tool condition based on sensing signals; and (ii) constructing

ensemble models per each tool condition to predict the joint strength. Here,

a multilayer perceptron (MLP) with features extracted by DWT as input is260

adopted for (i). We note that other classification models can be used for tool

condition classification. In this study, we demonstrate an efficient way that does

not require tedious feature engineering. The prediction procedure is illustrated

by Fig. 10.

Following the training procedure of Fig. 6, 30% of data in each tool condition265

is selected as the test dataset. k-fold CV (k = 5), which divides the dataset

as training and validation sets, is then performed on the remaining 70% data.
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Figure 9: Kernel density plots for joint strength under different tool conditions.

Figure 10: Prediction procedure for case study 1.

In total, 140 (35 per tool condition) and 60 (15 per tool condition) joints are

included in the training and test sets. The ’rbio’ wavelet family is selected as

mother wavelet and 13 levels of decomposition are adopted for feature genera-270

tion. The total number of candidate features is 672. The correlation is used for

feature screening. Only the DWT features, whose absolute correlation coeffi-

cient with respect to the joint strength are greater than 0.35, are used by MLP

and the ensemble models. The MLP used for tool condition classification has

three fully connected layers with rectifier linear unit (ReLU) as the activation275

function and a batch normalization per-layer. The weak learners for base models

are decision trees. The training algorithm follows the following procedure.
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1. With DWT features, MLP is trained to predict the tool condition. Hy-

perparameters of MLP are tuned by validation scores.

2. Per each tool condition, feature selection is performed to obtain the DWT280

feature subset S0, S1, S2, and S3.

3. With input of Si, the base models and ensemble models are trained for

tool condition i (i = 0,1,2,3) independently, following the procedure of

Fig. 6. Ensemble models for each tool condition are then obtained.

We construct baseline models by varying three conditions: (i) whether to285

classify tool conditions first, (ii) whether to use DWT features, and (iii) whether

to use manual features. We denote S = S0 ∪S1 ∪S2 ∪S3, which is the union of

feature sets selected for all four tool conditions. Manual features are extracted

using conventional feature engineering methods. Two types of time-domain

features are extracted from the power and LVDT signals. The first type is290

extracted using domain knowledge. Examples include welding energy and the

change in horn displacement. The second type is generated using signal statistics

such as mean, median, standard deviation, kurtosis, skewness, root mean square,

maximum, and minimum. Because AE and microphone signals are periodic,

frequency-domain features, such as peaks from the power spectral density, are295

mainly used for these two signals. A detailed description of the manual feature

engineering process can be found in [16]. We denote S′
i as the manual feature

subset obtained for tool condition i, i = 0, 1, 2, 3. S′ = S′
0 ∪S′

1 ∪S′
2 ∪S′

3 is then

the union of manual features selected for all tool conditions. Table 3 lists the

size of feature subsets after feature selection.300

A list of the constructed joint strength prediction models is provided by Ta-

ble 4. PIEL-MF, PIEL-DWT, and PIEL-Comb use the same hyperparameters

for ensemble models. Gradient-boosted tree is used as the weak learner of (1)

XGBoost with a maximal depth of 6 and learning rate of 0.1, (2) lightGBM with

learning rate of 0.05, and (3) CatBoost with a maximal depth of 6 and learning305

rate of 0.05. The number of weak learners is tuned by k-fold CV. XGBoost,

lightGBM, and CatBoost models form the final ensemble prediction model fol-
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Table 3: Size of the feature sets after feature selection.

Feature Set Size Feature Set Size

S0 51 S′
0 41

S1 26 S′
1 27

S2 26 S′
2 21

S3 25 S′
3 23

S 117 S′ 65

lowing Eqs. (10) and (11). GlobAvg is selected as a baseline model because

online joint strength prediction is generally unavailable in most UMW systems

and an average strength estimated from training phase is used to evaluate joint310

quality. When tool condition monitoring is available, one is able to obtain av-

erage joint strength per each tool condition, thus leading to ClassAvg, which is

also selected as a baseline model.

Table 4: List of candidate machine learning models used in case study 1.

Model Name Tool Condition

Classification

Features Used Description

PIEL-MF Yes S′ PIEL model using manual features only.

PIEL-DWT Yes S PIEL model using DWT features only.

PIEL-Comb Yes S ∪ S′ PIEL model using both manual and DWT features.

GlobAvg No None The average strength of training set.

ClassAvg Yes None The average strength in each tool condition of

training set.

Random Forest No S ∪ S′ Random forest with 100 estimators, minimal

samples split of 2 and minimal samples leaf of 1.

SVM No S ∪ S′ SVM with radial basis function (RBF) kernel.

AdaDT No S ∪ S′ AdaBoost with 50 decision trees having a maximal

depth of 3. Exponential loss function is used.

All the models are trained and tested on same training-testing split for five

times. Benefiting from the efficient DWT-based feature extraction, all models315

can be trained in a fast manner—the training time of PIEL models is between

14 s and 20 s; and the training time of random forest, SVM, and AdaDT is
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Table 5: Comparison of model performance for case study 1.

Model Training RMSE Test RMSE Test R2 Value

PIEL-MF 14.95 16.46 0.13

PIEL-DWT 13.95 15.84 0.21

PIEL-Comb 14.04 15.40 0.24

GlobAvg NA 18.32 0

ClassAvg NA 17.54 0.04

Random Forest 5.92 16.40 0.14

SVM 16.18 17.40 0.06

AdaDT 7.90 16.26 0.15

less than 1 s. Table 5 reports the comparative results. In classification, MLP

with DWT features achieves 100% accuracy for training, validation, and test

sets, demonstrating the effectiveness of DWT features in distinguishing tool320

conditions. PIEL-DWT and PIEL-Comb achieve the best prediction accuracy

and significantly outperform the baseline models GlobAvg and ClassAvg. PIEL-

Comb permits a 15.9% and 12.2% reduction in test RMSE compared to GlobAvg

and ClassAvg, respectively. PIEL-DWT and PIEN-Comb have very close per-

formance, indicating that automatic DWT-based feature extraction is highly325

effective and the generated DWT features are sufficient to ensure good perfor-

mance. Additionally, all PIEL models have comparable training and test RM-

SEs, so they do not suffer from overfitting. On the contrary, random forest and

AdaDT have severe overfitting issues. This demonstrates that by incorporating

physical knowledge (tool condition classification in this case study), the model330

generalizability is greatly improved. One may notice that the R2 values are

small for all models. This is because the total sum of squares are small. While

tool degradation leads to significant variability in joint strength, the variability

is considerably smaller than that caused by changing process parameters, which

is investigated in the second case study (Section 3.2). The small total sum of335

squares result in small R2 values.
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3.2. Joint Strength Prediction with Varied Process Parameters

The second case study focuses on a scenario where PIEL is used to simul-

taneously account for the influence of welding parameters and natural/inherent

variability in UMW. 80 different welding parameter combinations were used to340

generate the UMW joints. Welding parameters and replicates are shown in Ta-

ble 6. It should be noted that the signal length varies owing to different welding

times. DWT-based feature extraction is used to accommodate this situation.

Table 6: UMW process parameters used in case study 2.

Parameter Values

Welding Time 0.2 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s

Welding Amplitude 30 µm, 35 µm, 40 µm, 50 µm

Welding Pressure 25 psi, 40 psi, 55 psi, 70 psi

Replicates 3

Fig. 11 visualizes the influence of welding parameters on the joint strength.

It is seen that the joint strength has large intra-variance even when identical345

welding parameters are used, which again proves that it is imperative to account

for such variabilities.

In this case study, Eq. (1) is modified to become

f(r,p) = µ(p) + η(r), (14)

where p represents the welding parameters, i.e., welding time, amplitude and

pressure; and r represents the randomness that is captued by online sensing

signals.350

Similar to case study 1, 30% of total data is used as the test dataset. The

training-validation-test framework depicted in Fig. 6 is used to train and tune

the hyperparameters of ensemble models. Here, ‘rbio’ is used as mother wavelet

and a DWT feature pool is established by decomposing data into 12 levels of

approximation and detail coefficients. Feature importance [48] is employed to355

select the top 50 features from the feature pool. The ensemble learning models
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(a) Pressure = 25 psi (b) Pressure = 40 psi

(c) Pressure = 55 psi (d) Pressure = 70 psi

Figure 11: Distributions of joint strength under different welding parameters.

use the same hyperparameters as those in case study 1. The global trend model

and residual model are trained in sequence. The training algorithm is briefly

summarized as follows.

1. An ensemble learning model with input p is first trained to estimate joint360

strength f , where k-fold CV is performed to tune the hyperparameters.

The µ(p) model is obtained in this step.

2. Define residual as η = f − µ(p), and preliminary ensemble models pre-

dicting the residual with input of all DWT features are estimated using

the training set.365

3. By applying feature importance ranking, top 50 important features of the

preliminary ensemble model are obtained.

4. With the feature set acquired from step 3, ensemble models are re-trained,
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following the procedure of Fig. 6. The final η(r) model is then obtained.

Table 7: List of candidate machine learning models used in case study 2.

Model Name Description

PIEL PIEL model using Eq. (14).

CNN 1-D CNN, including 2 convolutional layers with max pooling and

3 fully connected layers. ReLU is adopted as the activation

function. Dropout and batch normalization are implemented

per-layer.

Random Forest Random forest with 100 estimators, minimal samples split of 2

and minimal samples leaf of 1.

AdaDT Decision tree based AdaBoost. 50 decision trees with a maximal

depth of 3 are selected as weak learners. Exponential loss

function is used.

AdaLR AdaBoost with 50 linear functions as weak learners. Squared

loss function is used.

SVM SVM with linear kernel and 0.9 as the regularization coefficient.

Table 8: Comparison of model performance in case study 2.

Model Training RMSE Test RMSE Test R2 Value

PIEL 13.19 16.60 0.80

CNN 23.25 28.06 0.41

Random Forest 6.96 23.59 0.68

AdaDT 5.55 23.07 0.61

AdaLR 4.03 23.97 0.42

SVM 15.75 19.18 0.73

The performance of the PIEL model is compared with state-of-the-art base-370

line models. As shown in Section 3.1, DWT features can preserve important in-

formation about quality. To investigate the effectiveness of the hierarchical PIEL

model, we only use DWT features but not manual features in this case study.
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Table 7 shows the definition of the models used in this case study. All models use

both process parameters and DWT features as inputs, but only PIEL employs375

the hierarchical modeling structure given in Eq. (14). Five random training-test

splits are generated to evaluate the performance of each model. Similarly with

case study 1, the training of all models is computationally efficient—the training

time for PIEL is ∼11 s; the training time for CNN is ∼1 min; and the training

of random forest, AdaDT, AdaLR, and SVM takes less than 1 s. The training380

and test results are documented in Table 8. PIEL outperforms all the other

models in terms of training RMSE, test RMSE, and test R2 value. The poor

performance of SVM reveals the curse of dimensionality, meaning that a model

performs dramatically worse on high dimensional data (50 in this case). In con-

trast, PIEL shows excellent robustness to high dimensionality, further proving385

the advantage of integrating physical knowledge with ensemble learning.

4. Conclusion and Future Directors

Online joint strength prediction is critically needed in UMW production but

has been an extremely challenging task. This paper presents a new hierarchi-

cal PIEL framework that enables efficient, accurate, and non-destructive online390

joint strength prediction. PIEL models the large-scale influence of physical fac-

tors and small-scale natural variability as a global trend and a residual, respec-

tively. We also adopt a highly efficient feature generation method using DWT,

which saves tedious feature engineering efforts and works with high-dimensional

but small datasets. Two real-world case studies mimicking realistic production395

scenarios are reported. The first case study simulates a common production

setting where welding parameters have been optimized but tool degradation is

present and affects the joint quality. It is shown that PIEL can accurately pre-

dict both the tool conditions and the joint strength. PIEL achieves a 15.9%

reduction in RMSE compared to the baseline method. The second case study400

investigates a complicated production setting where 80 different welding param-

eter combinations are used in UMW. PIEL outperforms all baseline methods and
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permits a 13.5%–40.8% reduction in RMSE. Further, it is demonstrated that

PIEL offers excellent generalizability, robustness, and data efficiency, owing to

the integration of physical knowledge.405

The developed hierarchical PIEL framework can be expanded to more com-

plicated UMW production scenarios. In some production environments, there

may exist more tool conditions induced by multiple levels or types of degrada-

tion in the horn and anvil [15]. Then we will need to extend the tool condition

classification model such that it can recognize these tool conditions. Another410

interesting and important production scenario arises when both tool conditions

and welding parameters are varying. In such cases, we can extend the PIEL

model developed for case study 2 (Eq. (14)) by adding a hierarchy of tool con-

dition monitoring. Then a hierarchical model can be used as the global trend

model [49, 50, 51]. Despite that the PIEL framework is more data-efficient than415

state-of-the-art methods, the scalability may become a major challenge in these

complicated scenarios. Hence, it is important to further improve the data effi-

ciency and cost-effectiveness. Transfer learning of multiple production settings

determined by different materials, tool conditions, etc. [52, 53, 54, 27, 55] may

be a promising solution. We can also improve data efficiency by developing420

sampling design (aka active learning or intelligent design of experiment) algo-

rithms to guide cost-effective data collection during the model building process

[18, 20, 56].
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