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ABSTRACT

Understanding environmental biodiversity drivers in freshwater systems continues
to be a fundamental challenge in studies of their fish assemblages. The present study
seeks to determine the degree to which landscape variables of Amazonian floodplain
lakes influences fish assemblages in these environments. Fish species richness was
estimated in 15 Amazonian floodplain lakes during the high and low-water phases
and correlated with the areas of four inundated wetland classes: (i) open water,
(ii) flooded herbaceous, (iii) flooded shrubs and (iv) flooded forest estimated in
different radius circular areas around each sampling site. Data were analyzed using
generalized linear models with fish species richness, total and guilds as the
dependent variable and estimates of buffered landscape areas as explanatory
variables. Our analysis identified the significance of landscape variables in
determining the diversity of fish assemblages in Amazonian floodplain lakes. Spatial
scale was also identified as a significant determinant of fish diversity as landscape
effects were more evident at larger spatial scales. In particular, (1) total species
richness was more sensitive to variations in the landscape areas than number of
species within guilds and (2) the spatial extent of the wetland class of shrubs was
consistently the more influential on fish species diversity.

Subjects Aquaculture, Fisheries and Fish Science, Freshwater Biology
Keywords Fish diversity, Spatial environmental variables, Wetlands, Amazon basin

INTRODUCTION

Floodplains are key environments for the health of large river ecosystems (Junk et al.,
2014), as they regulate water flow and nutrients that are essential for the life cycle of many
species (Junk, Bayley ¢ Sparks, 1989; Fernandes, 1997). Floodplains of the Amazon River
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are highly productive, with estimations of total net primary productivity reaching 300
Tg Cyear ' in an area of 1.77 x 10° km* (Melack et al., 2009). The high productivity of
the Amazonian floodplain is driven in part by seasonal changes in water level that can
exceed 15 m and lead to remarkable spatio-temporal changes in the landscape (i.e., flood
pulse, Junk, Bayley ¢ Sparks, 1989). This high spatio-temporal heterogeneity of
habitats across the landscape, including open water, macrophyte meadows, flooded
shrubs, forests and herbaceous regions, and large extensions of ecotones integrated by a
complex chain of connections, influence fishes movement, feeding and reproductive
behaviors as well as their growth and survival rates (Petry, Bayley ¢ Markle, 2003;
Siqueira-Souza & Freitas, 2004; Freitas et al., 2010a; Siqueira-Souza et al., 2016).

While influences of local habitat features in these ecosystems on fishes have been
relatively well studied (e.g., structural or physic-chemical variables measured within lakes)
(e.g., Rodriguez & Lewis, 1997; Tejerina-Garro, Réjean & Rodriguez, 1998; Miranda, 2011;
Freitas et al., 2014), influences of landscape features have been generally overlooked.
The few studies evaluating this issue have found landscape components, such as habitat
heterogeneity (e.g., number or size of habitats) and land cover types (e.g., forest cover)
influence both fish diversity and fish biomass (Yager, Layman & Allgeier, 2011; Siqueira-
Souza et al., 2016; Lobon-Cervia et al., 2015; Arantes et al., 2017; Castello et al., 2017).
Given the magnitude of the Amazonian floodplain, its variety of habitats (Siqueira-Souza
et al., 2016; Freitas et al., 2010b; Hurd et al., 2016) and increasingly anthropogenic-driven
impacts on its landscapes, a continuing understanding of this issue is critically needed.
Particularly, there is a need to understand how fish diversity is influenced by the
flood-pulse driven availability of habitat within the landscape.

Herein, we tested the hypothesis that landscape components, represented by the spatial
extent of four landscape variables (open water, flooded herbaceous, flooded shrub and
flooded forest), significantly influenced fish diversity in Amazonian floodplain lakes, with
the importance of each landscape variable being dependent on the hydrological period
(i.e., high- and low-water). Specifically, we evaluated how taxonomic and functional
species richness, measured in high- and low-water periods, responded to the availability of
landscape features that surrounded the sampled lakes. This evaluation provided an
understanding of the regional species pool and the importance of landscape spatial scales
to the fish assemblages and has significant usefulness for the long-term conservation of
Amazonian floodplains (Freitas et al., 2014).

MATERIALS AND METHODS
Study area

Fish assemblages were sampled in 15 lakes on the central Amazon floodplain along the
middle and lower Solimées River, 11 located on the margins of the main channel and four
within fluvial islands. The Solimées is a whitewater river (the color of heavily creamed
coffee) as consequence of the high load of suspended nutrients ( Furch, 1984). It flows
through a geologically recent system (Hoorn et al., 2010) and is geomorphologically
monotonous in its physical structure (Latrubesse ¢» Franzinelli, 2002). The associated
floodplain is an active alluvial system still at work, blanketing and reworking the
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Figure 1 Map of study area at the lower stretch of the Solimées River showing the lakes sampled
during high water season and the buffers of 500, 1,000 and 5,000 m. At this season, the aquatic
environments are expanded and the landscape is mostly aquatic and lakes, river and channels are
connected. Full-size &l DOTI: 10.7717/peerj.5080/fig-1

floodplain deposits ( Latrubesse ¢~ Franzinelli, 2002). All 15 sampled lakes are located
within this floodplain and are in general shallow lakes formed behind scroll bars by the
overbank deposition of fine material.

The spatial extent of landscape features is substantially different between high and
low-water periods (Figs. 1 and 2). The central Amazon floodplain is a dynamic
sedimentary formation that includes both marginal plains and isolated islands that are
continuously re-worked by fluvial erosion and sedimentation (Dunne et al., 1998). The
geomorphological processes result in variations in elevation and inundation, which have a
fundamental effect on the distribution and dynamics of the floodplain vegetation and
habitats (Junk, Bayley ¢ Sparks, 1989; Schongart et al., 2002). As the elevation declines and
inundation period increases, floodplain vegetation and habitats change from alluvial
forest to shrubs, herbaceous vegetation and finally, to open water. These habitats are only
available to fish when flooded and the extent of flooded habitats may vary by a few orders
of magnitude as the Amazon main channel undergoes its annual 10-12 m flood cycle
(Hess et al., 2003).

Landscape component estimates
Hess et al. (2003, 2015) published a dual-season (high and low-water) wetland
classification for the central Amazonian region, derived from 100 m L-band synthetic
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Figure 2 Map of the study area showing the lakes sampled during low water seasons and the buffers
of 500, 1,000 and 5,000 m. Full-size K&l DOT: 10.7717/peerj.5080/fig-2

aperture radar imagery. Nine landscape classes were identified for high and low-water
conditions. Four landscape variables defined by Hess et al. (2003) were used in our
analytical models: Open Water—also called non-vegetated flooded, represents aquatic
habitats without vegetation cover and includes lakes and secondary channels; Flooded
Herbaceous—vegetation dominated by non-woody plants, with <25% trees or shrubs, the
herbaceous cover is usually >25% but may be less if it exceeds that of other vegetation;
Flooded Shrubs—vegetation dominated by low stature (height 0.5-5 m) woody plants,
with individuals or clumps not touching or interlocking, shrub cover is usually >25% but
may be less if it exceeds that of other vegetation; and Flooded Forest—closed canopy
forest dominated by woody plants >5 m in height, with interlocking crowns, generally
forming 60—-100% of crown cover. The thematic wetland maps for high and low-water
periods were downloaded from NASA’s Oak Ridge National Laboratory Distributed
Active Archive Center (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1284) and
imported into ArcMap 10.1, together with fish sampling points digitized from GPS
coordinates. Using the Spatial Analyst—Extract by Circle Tool, we quantified the areas of
landscape variables (m?) in 500, 1,000 and 5,000 m (radius) circular buffers around
each fish sampling site during low and high-water periods (Figs. 1 and 2). The buffer radii
were chosen to allow the characterization of landscape features at different spatial scales:
(i) 500 m radius represents the area immediately surrounding the sampling sites, it
remains completely inundated for most of the year; (ii) 1,000 m radius represents the area
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surrounding the sampling sites and includes some areas inundated during the flood
season; and, (iii) 5,000 m represents the area surrounding the sampling sites plus areas
that are inundated only during the high-water season and includes secondary channels,
other lakes and the main river channel. Further, we adapted the approach employed by
Lobon-Cervia et al. (2015) who defined buffers based on the swimming ability of a
hypothetic fish with pre-defined body size and swimming speed. Our analyses considered
that fishes have diverse swimming and dispersal abilities. Thus, the definition of the
buffers seeks to delimit areas that are potentially explored by these fishes according to their
different ecological strategies, including their different migratory behaviors.

Fish samplings

Fish assemblages were sampled using 11 standardized floating gillnets 15 m long and 2 m
high with varying stretched mesh sizes (30, 40, 50, 60, 70, 80, 90, 100, 110, 120 and

130 mm). Gillnets were deployed across all representative habitats in each lake system.
Although floating gillnets show selectivity towards pelagic and benthopelagic species, they
are easier to standardize than other fishing gear and were thus chosen. Furthermore, we
note that the varzea lakes are shallow which allows the nets to normally fish across the
majority or all of the water column (depending on the site). Nets were set at 06:00 am and
remained in the water for 12 h in Anand, Araca, Baixio, lauara, Maraca, Poraqué, and
Preto lakes; and for 48 h in Cacauzinho, Calado, Camaledo, Camboa, Central, Padre,
Santo Antonio and Sacambu lakes. The differences in the duration of fishing times
resulted from the inclusion of data from multiple independent research projects.
However, sampling effort can be standardized and in the present study it was defined as
the product of the number of samplings and sampling time (hours; Supplemental
Information 1) and the efficacy of the fish assemblages sampling was evaluated using
rarefaction curves (Supplemental Information 4). Gillnets were inspected every 6 h to
minimize predation on captured fishes. Sampled fishes were euthanized by thermal shock
and were usually identified in the field. Unidentified specimens were fixed in 10%
formalin and identified later in the laboratory. While sampling frequency varied among
lakes, each lake was sampled at least once during both high and low-water periods
(Supplemental Information 1). Fish samplings were done under licenses 30052-1, 50662-1
(Instituto Chico Mendes de Conservagao da Biodiversidade—ICMBio/Brazil).

Data analysis

Generalized Linear Models (GLM) based on a Poisson distribution of probability were
used to evaluate relationships between fish assemblages and landscape area for each buffer
for high and low-water periods. We first modeled total species richness as response
variables and the areas of Open Water, Flooded Herbaceous, Flooded Shrub and Flooded
Forest as explanatory variables. Then, we classified species according to their trophic
guilds, and modeled the richness of carnivorous, omnivorous, and herbivorous species as
response variables, and landscape areas for each buffer as independent variables. Also, we
classified species according to their migratory behavior and modeled the richness of
migrant and resident species as response variables and the same pool of landscape areas as
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independent variables. And finally, we classified species by the preferential position at the
water column as pelagic and benthopelagic to run similar analytical models. Because the
number of fish sampled can be correlated with species richness (Arngermeier ¢ Schlosser,
1989), we included in the model fish abundance as an independent variable. Models fitted
to the low-water data were constrained to the 5,000 m buffer as Flooded Shrubs were
absent in both, 500 and 1,000 m buffers. Scatter-plots with trend-lines were presented for
variables with statistically significant relations. Landscape spatial scales (i.e., different
buffer sizes and associate landscape attributes) were compared at high and low-water
using the explained deviance (pseudo-R?), which was also used to assess model fit.

To minimize the effects of auto-correlation between landscape variables (Dormann et al.,
2013), an aggregate variance inflation factor (VIF) smaller than 2 was used as a criterion for
deciding whether particular variables were included in the models. The Flooded Forest
variable showed strong collinearity in most models and was only included in the high-water
model for the 5,000 m buffer (Supplemental Information 2). As collinearity between
environmental variables was not constant in space, we also used Moran’s I statistic (Fortin,
Drapeau ¢ Legendre, 1989) to test for spatial auto-correlation in model residuals. Models for
richness of carnivorous and omnivores species as function of the landscape variables in the
1,000 m buffer showed significative spatial autocorrelation; therefore, were not presented
(Supplemental Information 2).

Model fits were assessed by visual inspections of the residuals and only those that did
not violate the assumptions of the generalized linear models were considered. The
Bonferroni correction was employed to adjust for the effect of multiple statistical tests
performed on the significance of explanatory variables (Shaffer, 1991).

All statistical analyses were conducted using R Statistical Software (R Core Team, 2013).
GLM were fitted using the MASS Package (Ripley et al., 2013). VIF were estimated using
the CAR Package (Fox ¢ Weisberg, 2011) and Moran’s I estimates were calculated using the
APE Package (Paradis, Claude ¢ Strimmer, 2004).

RESULTS

A total of 178 species was collected. Characiformes was the most diverse group with 73
species, followed by Siluriformes with 64 species. A total of 32 and 52 species were present
in more than 75 and 50% of lakes, respectively (Supplemental Information 3). Species
richness varied between 52 in Santo Antonio Lake and 89 in Maraca Lake. Species richness
was consistently higher during low than in high-water periods. Trophic guilds richness
was generally constant among lakes in high and low-water seasons, but the number of
resident species was generally higher than the number of migrant species in all lakes
(Table 1).

During the high-water season, flooded shrub area was the only significant landscape
variable (Table 2). Total species richness tended to be greater where shrub cover was
greater in different buffer scales (500 m and 1,000 m) (Table 2; Figs. 3A and 3B). This
pattern also was observed for resident species (Table 2; Figs. 3C and 3D). Omnivorous
species richness was, again, positively related with shrub cover but just in the small-scale
(buffer of 500 m) (Table 2; Fig. 3E).
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Table 1 Ecological measures for each lake and hydrological season.

Lake S SC SO SH M R P B
HW IwW HW IW HW IW HW IW HW IW HW IW HW IW HW LW
Anana 65 74 18 21 18 17 65 74 24 26 31 32 22 23 43 50
Araga 63 73 16 16 18 18 63 73 20 21 29 35 17 21 46 52
Baixio 59 75 18 19 17 17 59 75 20 20 26 34 18 19 39 56
Cacauzinho 60 62 14 14 16 17 60 62 20 21 23 26 17 18 43 44
Calado 63 62 15 14 17 17 63 62 19 18 23 24 22 21 40 40
Camaledo 79 57 21 20 19 18 79 57 23 20 32 27 23 20 55 36
Camboa 66 72 18 18 16 16 66 72 23 24 31 34 23 25 43 47
Central 57 65 11 13 14 15 57 65 23 23 25 28 22 22 35 43
Jauara 59 80 16 16 17 17 59 80 18 18 26 36 17 22 42 58
Maraca 89 62 22 21 29 20 89 62 29 28 33 29 26 17 62 45
Padre 54 82 12 12 11 12 54 82 23 22 25 34 14 27 40 55
Poraqué 58 55 10 10 11 11 58 55 23 23 25 26 21 12 37 43
Preto 62 55 13 13 19 18 62 55 23 21 22 17 16 15 46 40
Sacambu 61 74 11 12 15 16 61 74 24 25 27 36 20 28 41 46
Santo 52 69 14 14 11 12 52 69 29 20 25 33 22 24 30 43
Antonio
Note:

HW, high-water; LW, low-water (LW); S, species richness; SC, carnivorous richness; SO, omnivorous richness; SH, herbivorous richness; M, migrant richness; R, resident
richness; P, pelagic richness; B, benthopelagic richness.

During the low-water season, flooded herbaceous had the strongest relationship with
fish diversity (Table 2). Flooded herbaceous was positively related to total species richness
for the larger (5,000 m) and medium (1,000 m) buffers (Table 2; Figs. 4A and 4B). A
second influential landscape variable was open water that positively affected total species
richness and resident species richness (Table 2; Figs. 4C and 4D). The number of fish
sampled positively influenced total species richness at the largest buffer, and showed a
slightly positive, but not statistically significant, relation with carnivorous richness
(p <0.10) (Table 2; Fig. 4E).

The best models with respect to the scale of analysis varied depending on the season
and fish group analyzed. During high-water, the small and medium sized buffers (500 m
and 1,000 m buffers, respectively) explained more variability in the relationship between
total species richness and landscape variables (pseudo-R* > 0.4, Table 2). During this
season, models with omnivorous and herbivorous species richness as response variables,
showed better fits for the small (500 m) buffer (pseudo—R2 > 0.45) than larger buffer sizes,
although the results for herbivores was not significant at any scale. Models for carnivorous
and migrant species richness during high-water showed weak relationships with the
landscape variables at all scales of analysis (pseudo-R* < 0.40, Table 2).

During low-water, best fits were observed for the 500 and 1,000 m buffers (Table 2).
During this season, the best-fitted model was observed for the medium buffer when using
resident species as the response variable (1,000 m buffer, pseudo-R* = 0.66).
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Table 2 Summary of general linear models.

Model i  ow FH FS FF N Pseudo-R’
Total species richness
500 m/high water 11 Ns Ns 0.02* ex Ns 0.47
500 m/low water 11 Ns 0.07# Ni Ns Ns 0.39
1,000 m/high water 12 Ns Ns 0.01* ex Ns 0.47
1,000 m/low water 11 0.001°* 0.02" Ni ex Ns 0.56
5,000 m/high water 11 Ns Ns Ns ex Ns 0.37
5,000 m/low water 11 Ns 0.003 " Ns ex 0.001* 0.52
Carnivorous richness
500 m/high water 11 Ns Ns Ns ex Ns 0.35
500 m/low water 12 Ns Ns Ni —0.018# Ns 0.46
1,000 m/high water 11 Ns Ns Ns ex Ns 0.36
1,000 m/low water 12 Ns Ns Ni ex Ns 0.18
5,000 m/high water 11 Ns Ns Ns ex Ns 0.42
5,000 m/low water 11 Ns Ns Ns ex Ns 0.32
Omnivorous richness
500 m/high water 10 Ns Ns 0.04" Ns Ns 0.46
500 m/low water 11 Ns Ns Ni Ns Ns 0.20
1,000 m/high water 11 Ns Ns 0.01* ex Ns 0.48
1,000 m/low water 12 Ns Ns Ni ex Ns 0.12
5,000 m/high water 11 Ns Ns Ns ex Ns 0.18
5,000 m/low water 11 Ns Ns 0.001# ex Ns 0.34
Herbivorous richness
500 m/high water 11 Ns Ns Ns ex Ns 0.59
500 m/low water 11 Ns Ns Ni Ns Ns 0.07
1,000 m/high water 11 Ns Ns Ns ex Ns 0.35
1,000 m/low water 12 Ns Ns Ni ex Ns 0.02
5,000 m/high water 11 Ns Ns Ns ex Ns 0.34
5,000 m/low water 11 Ns Ns Ns ex Ns 0.50
Migrant richness
500 m/high water 11 Ns Ns Ns ex Ns 0.33
500 m/low water 11 Ns Ns Ni Ns Ns 0.15
1,000 m/high water 11 Ns Ns Ns ex Ns 0.40
1,000 m/low water 12 Ns Ns Ni ex Ns 0.23
5,000 m/high water 11 Ns Ns Ns ex Ns 0.55
5,000 m/low water 11 Ns Ns Ns ex Ns 0.22
Resident richness
500 m/high water 11 Ns Ns 0.03* ex Ns 0.39
500 m/low water 12 0.04+# Ns Ni ex Ns 0.56
1,000 m/high water 11 Ns Ns 0.01"* ex Ns 0.34
1,000 m/low water 12 0.01" Ns Ni ex Ns 0.66
5,000 m/high water 11 Ns Ns Ns ex Ns 0.19
5,000 m/low water 11 Ns Ns Ns ex Ns 0.35
Carvalho Freitas et al. (2018), PeerdJ, DOI 10.7717/peerj.5080 8/16
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Table 2 (continued).

Model i  ow FH FS FF N Pseudo-R’
Pelagic richness
500 m/high water 11 Ns Ns Ns ex Ns 0.53
500 m/low water 11 Ns Ns Ni Ns Ns 0.06
1,000 m/high water 11 Ns Ns Ns ex Ns 0.47
1,000 m/low water 12 Ns Ns Ni ex Ns 0.24
5,000 m/high water 10 Ns Ns Ns Ns Ns 0.18
5,000 m/low water 11 Ns 0.001+# Ns Ex Ns 0.33
Benthopelagic richness
500 m/high water 11 Ns Ns 0.02# ex Ns 0.45
500 m/low water 12 Ns 0.09+# Ni ex Ns 0.47
1,000 m/low water 12 Ns Ns Ni ex Ns 0.41
5,000 m/high water 11 Ns Ns Ns ex Ns 0.39
5,000 m/low water 11 Ns Ns Ns ex Ns 0.34
Notes:

Species richness is the response variable and open water area (OW), flooded herbaceous area (FH), flooded shrubs area
(FS), flooded forest area (FF) and number of sampled fish (n) were explanatory variables. Model coefficients are
exhibited when they are significant at least for p < 0.10.

Obs: df, residual degrees of freedom; ex, previously excluded by collinearity; Ni, not included in the model; Ns, not
significant.

#0.10 < p < 0.05.

005 < p<0.01.

DISCUSSION

Our results demonstrated that fish assemblages in the Amazon basin respond to changes
in the spatial extent of landscape components and that these responses vary depending on
the ecological strategies of the fish and on the stage of the hydrological cycle. It is evident
that fish species richness is related to the extent of shrub vegetation found in surrounding
floodplain lakes during high-water, and to the extent of herbaceous and open water
regions during low-water periods. Within this framework though, omnivorous and
resident species, regardless of season, showed stronger correlations with these categories
than carnivorous and migratory species. The results support the view that degradation of
Amazonian floodplain landscapes can impact fish diversity (Lobon-Cervia et al., 2015),
with certain groups being more vulnerable than others (Arantes et al., 2017).
Furthermore, our results support the contention that seasonal variations in landscape
components impact different groups of fishes at different times, and thus drive cross-
habitat migration within floodplains driven by flood-pulses (Fernandes, 1997; Castello,
2008). The observed rise in resident species (e.g., Osteoglossum bicirrhosum, Cichla
monoculus) richness with increasing shrub cover, could reflect the lateral migration of
these species into these flooded habitats. It is likely that the flooded shrubs represent
suitable regions for reproduction, feeding and/or refuge. An observation that is also true
for omnivorous species richness (e.g., Triportheus spp). It is also possible that there is a
direct association between the spatial extent of shrub cover and the extent of flooding
during the high-water periods, that is, the observed extent of this habitat class is
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Figure 3 Scatter-plots by buffer and high-water season. At 500 m—(A) total species richness vs.
flooded shrub; (B) omnivorous richness vs. flooded shrub; (C) resident richness vs. flooded shrub; 1,000
m—(D) Total sp vs. flooded and (E) resident richness vs. flooded shrub. Tendency lines for the models
with significative independent variables, where points are observed values of species richness per site, full
lines are fitted lines and dotted lines are confidence intervals at 95%.

Full-size kal DOTI: 10.7717/peerj.5080/fig-3

maintained by the annual flooding regime (Silva, Costa ¢ Melack, 2010; Hess et al., 2015).
Should this be true, then we can hypothesize that the regional abundance of shrubs

together with their structural complexity are responsible for seasonality in fish diversity.

Studies have demonstrated that during low-water, many fish species migrate from

flooded habitats to lakes and secondary channels (Fernandes, 1997). Our observation that

during this season species richness is related to the amount of open water, is consistent
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Figure 4 Scatter-plots by buffer during low-water season. At 1,000 m—(A) total species richness vs.
open water, (B) resident richness vs. open water, and (C) total species richness vs. flooded herbaceous;
and 5,000 m—(E) total species richness vs. flooded herbaceous and (F) total species richness vs. number
of individuals. Tendency lines for the models with significative independent variables, where points are
observed values of species richness per site, full lines are fitted lines and dotted lines are confidence
intervals at 95%. Full-size kal DOI: 10.7717/peerj.5080/fig-4

with previous studies showing that fish seek out lakes with greater water
volumes (e.g., deep lakes) possibly to avoid the effects of extreme droughts
(Arantes et al., 2013).

A strong positive correlation is often expected between sample number and species
richness (Angermeier ¢ Schlosser, 1989). However, in our results the number of
individuals was only related to species richness in the low-water model. It is possible
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that this result is derived from high populational densities and consequently higher catch
rates of our sampling gears during these periods of water retraction.

Our results showing differential influences of landscape components on fish diversity
across scales are consistent with previous studies in the Amazon floodplain areas (Freitas
et al., 2014; Siqueira-Souza et al., 2016) and support the view that spatial scale of investigation
on the processes affecting biodiversity matters (Chase ¢ Leibold, 2002; Willis & Whitaker,
2002; Rahbek, 2004). The medium scale buffer (500 m) explained high variability in the
relationships between fish diversity and landscape components for both seasons (low and
high-water) and, therefore, may represent an appropriate scale of analysis. However, further
understanding of the scales of processes driving spatial fish diversity patterns could be
achieved by exploring other scales, including different buffer sizes along with a local
catchment (i.e., lake system sensu Arantes et al., 2017; Castello et al., 2017).

The large amount of variation that remained unexplained by the landscape variables in our
results is likely related to the high spatial-temporal heterogeneity and variability of these
floodplain habitats and associated local environmental variables ( Freifas et al., 2014; Siqueira-
Souza et al., 2016; Junk, Bayley ¢ Sparks, 1989; Ropke et al., 2016; Hurd et al., 2016). The large
dimensions and heterogeneity of the Amazon floodplain coupled with strong temporal
variations result in a complex ecosystem whose structure and dynamics are governed by
deterministic and stochastic mechanisms operating across a broad range of temporal and
spatial scales ( Freitas et al., 2014; Hess et al., 2015). Yet a large set of variables including several
that we did not include in our models, have been found to influence populations and
assemblage dynamics in these floodplains (e.g., depth, transparency, dissolved oxygen,
connectivity, Rodriguez ¢ Lewis, 1997; Freitas et al., 2014; Kemenes & Forsberg, 2014; Siqueira-
Souza et al., 2016; Hurd et al., 2016; Lobon-Cervia et al., 2015). Habitat variations between
high- and low-water may, therefore, represent only part of the variations affecting fish
community structure in this system. Including these variables along with landcover
components may reveal stronger spatial patterns of fish diversity across the hydrological cycle.

Understanding the importance of landscape components in structuring freshwater fish
assemblages is a core question in biological conservation, especially in light of the
increasing loss of aquatic habitats and the threat it poses to freshwater fish diversity
globally (Dudgeon et al., 2006). Our results demonstrate that fish species richness is closely
linked to habitat composition at the landscape scale and suggest that increasing losses of
aquatic habitats in the Amazon due to deforestation and river impoundment (Kahn,
Freitas & Petrere, 2014; Lees et al., 2016; Lobon-Cervia et al., 2015; Arantes et al., 2017;
Castello et al., 2017; Forsberg et al., 2017) could disrupt these complex relationships with
unpredictable consequences on Amazonian fish diversity.

CONCLUSIONS

We conclude that the total species richness was more sensitive to variations in the
landscape areas than number of species within guilds and the spatial extent of the wetland
class of shrubs was consistently the more influential on fish species diversity. In synthesis,
our results highlight the importance of the geospatial extent of landscape variables
surrounding Amazonian lakes systems in the maintenance of their fish diversity.
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