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Abstract

In industrial-scale production applications of ultrasonic metal welding (UMW),

there is a strong need for predicting joint quality quickly, reliably, and non-

destructively. State-of-the-art quality assessment methods such as destructive

tensile testing and binary quality classification cannot meet such requirements.

This paper develops a novel end-to-end online quality prediction method for

UMW based on sensor fusion and deep learning. This method first preprocesses

1-dimensional signals from multiple sensors including an acoustic emission sen-

sor, a linear variable differential transformer, and a microphone, and transforms

them to 2-dimensional images using wavelet transform. Then, these images are

fed into ResNet20, which is a 20-layer convolutional neural network, to automat-

ically generate feature maps and predict joint strength. The proposed method

offers important advantages compared to state-of-the-art approaches, including

automatic feature generation and good robustness to UMW tool conditions. The

effectiveness of the developed method is demonstrated using real-world data gen-

erated from an UMW process with four different tool conditions. Additionally,

we propose three feature fusion strategies (early fusion, middle fusion, and late

fusion) and present a comparative case study to compare their performance. It

is found that the late fusion strategy achieves the best prediction performance.
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Towards interpretability and explainability in deep learning, we perform a cor-

relation analysis to reveal the connection between ResNet-generated features

and features that are manually extracted based on UMW process physics. It is

shown that many manual features are strongly correlated with ResNet features,

proving that ResNet is able to resemble physical knowledge. The proposed on-

line quality prediction method is readily applicable to industrial-scale UMW

processes to enable accurate online quality prediction.

Keywords: ultrasonic metal welding, quality prediction, deep learning,

ResNet, sensor fusion, interpretability
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1. Introduction

Ultrasonic metal welding (UMW) is a solid-state welding process in which

multiple sheets of either similar or dissimilar metal materials are joined using

high-frequency vibrations in plane with the interfaces under pressure [1, 2]. A

typical UMW system is comprised of controller, transducer, booster, horn, and5

anvil. During an UMW cycle, high-frequency vibration is applied to clamped

metals, which undergo material softening, plastic deformation, and fatigue crack

formation, and finally a joint forms [2, 3]. Because of its unique advantages

including the ability to join dissimilar materials, energy efficiency, environmental

friendliness, and short process cycles, UMW is an important joining technology10

with wide industrial applications such as electric vehicle battery assembly [1, 4]

and automotive body joining [2, 5].

In industrial-scale production applications, the consistency and quality of

UMW need to be closely monitored [6–9]. Several key process parameters such

as welding time, amplitude, and pressure have been shown to significantly influ-15

ence the joint quality. Therefore, process optimization is usually performed to

identify the optimal parameter combination [10, 11]. However, even if those pro-

cess parameters are fixed in mass production, the joint quality may still vary

substantially due to uncontrollable factors such as material surface condition
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[1, 6] and tool condition [12–14]. Lee et al. demonstrated that the surface con-20

dition of welding specimens significantly influences joint quality [1]. Drawing on

this finding, Nong et al. developed a control method to detect surface contam-

ination and accordingly adjust welding pressure, which was shown to greatly

improve joint quality [6]. Tool degradation is a major concern in industrial

UMW because tool wear rate is high [12, 13] and tool conditions substantially25

impact joint quality [14]. It was reported that tool maintenance constitutes a

major part of production costs in UMW [13]. Further, accurately monitoring

the changes in tool condition is challenging because of the complicated tool sur-

face geometry [13, 15]. Consequently, it is highly desirable to develop a quality

prediction system that can adequately account for these uncontrollable factors30

and accurately predict the variability in joint quality.

Most existing works on UMW quality prediction fall into three categories,

namely, physics-based simulations [16–18], data-driven response surface model-

ing [10, 11, 19–21], and quality classification using sensing signals [1, 7, 9, 22, 23],

which are briefly reviewed as follows.35

Physics-based simulations typically employ finite element (FE) models to

investigate the joining mechanism or predict joint performance. For example,

Xi et al. [16] developed FE models to predict the mechanical performance of

UMW. Zhou et al. [17] conducted FE analysis to predict weld strength using the

cohesive zone method. Shen et al. [18] developed 3D FE models to simulate the40

complex material response subject to UMW processing conditions and offer im-

portant insights into the design of UMW applications. These simulation models

provide a good physical understanding of the relationship between the welding

processes and joint quality. However, FE simulations are time-consuming, and

thus cannot meet the requirement of online monitoring. Furthermore, process45

variability induced by uncontrollable factors cannot be well captured by such

methods.

The second type of approach builds statistical or machine learning-based

response surface models to characterize the relationship between process pa-

rameters and joint quality, which can be used for process optimization. For50
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instance, Kim et al. [19] adopted cubic functions to establish a response surface

for the peel strength using welding time and pressure as inputs in UMW of Cu

and Ni-plated Cu sheets. Using artificial neural network and adaptive neuro-

fuzzy inference system, regression models were developed in [20] to predict the

strength for Al-Cu joints. Meng et al. [10] used machine learning models to55

study the impact of amplitude and weld time on peel and shear strengths, based

on which a multi-objective optimization method was subsequently developed.

A hybrid machine learning model was developed in [21] to predict the qual-

ity of Al-Al UMW joints from welding parameters and peak power. Yang et

al. [11] developed a hybrid multi-task learning method to efficiently model the60

response surfaces of UMW with different material combinations. Those meth-

ods are deterministic and based on the assumption that the welding quality is

mainly decided by the input welding parameters but generally ignore the impact

of uncontrollable factors. The variability in joint quality when identical process

parameters are used cannot be accounted for.65

The third type of method aims to classify joint quality online and non-

destructively by exploring the relationship between online sensing signals and

the joint quality. For example, Shao et al. [22] developed an algorithm for

feature selection and parameter tuning in quality classification. Lee et al. [1]

determined the correlation between signal features and joint performance. In70

[7], the relationships between the displacement of the sonotrode, the plastic

deformation of materials, and the joint quality were established for process

monitoring purpose. Guo et al. [23] integrated Shewhart-type control chart and

M-distance approach to detect defective welds online. Shi et al. [9] proposed a

monitoring method to detect multiple abnormal welding conditions using power75

signals. Nevertheless, most of these works focus on classification but cannot

predict joint strength, i.e., regression. Further, extensive feature engineering is

often required in these methods, which heavily relies on a good understanding

of the process physics and may be tedious.

Most recently, some studies were focused on quantitatively predicting UMW80

joint strength [8, 24]. Schwarz et al. [24] extracted quality monitoring fea-
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tures from multiple sensors and then developed linear and multi-layer percep-

tron regression models to predict the tensile shear strength of Cu-sheet welds.

Improved prediction accuracy was achieved compared to standard polynomial

regression models. Meng and Shao [8] developed a physics-informed ensemble85

learning framework for UMW joint strength prediction. A feature extraction

procedure based on discrete wavelet transform was proposed to alleviate tedious

feature engineering efforts. Nevertheless, these existing methods still require a

good understanding of the process physics and cannot offer the capability of

automatic, end-to-end online joint strength prediction.90

To overcome the aforementioned challenges, we establish an end-to-end on-

line quality prediction method using deep learning and sensor fusion. Here,

“end-to-end” refers to capabilities of bypassing complicated intermediate proce-

dures (e.g., feature extraction, feature selection, model selection, model parame-

ter tuning) and predicting outputs (joint strength) from inputs (sensing signals)95

directly. In this method, 1-dimensional (1D) signals from acoustic emission (AE)

sensor, linear variable differential transformer (LVDT), and microphone are first

processed to filter out redundant information. Then, wavelet transform is ap-

plied to convert 1D signals to 2-dimensional (2D) images. We use ResNet to

process the 2D images and build a regression model in an end-to-end fashion.100

Specifically, ResNet automatically generates features from 2D images and sub-

sequently uses the features to predict the joint strength. The effectiveness of

the developed method is demonstrated using real-world UMW data. We also

propose three sensor fusion strategies including early fusion, middle fusion, and

late fusion and compare their performance.105

The contributions of this paper are summarized as follows:

(1) A novel end-to-end online prediction model is developed for UMW based

on deep learning that offers various benefits, including superior quality

prediction, minimal reliance on prior knowledge of UMW processes (e.g.,

tool conditions), and not involving tedious data preprocessing and feature110

engineering.

5



(2) We propose three sensor fusion strategies, namely, early fusion, middle

fusion, and late fusion, that can effectively fuse information from multiple

sensing signals for joint strength prediction.

(3) Using experimental UMW data, comprehensive case studies are constructed115

to compare (1) the proposed prediction method and traditional feature

engineering-based methods and (2) three sensor fusion strategies. It is

shown that our method achieves higher prediction accuracy. In addition,

the late fusion strategy using displacement and sound signals achieves the

best prediction performance.120

(4) Towards interpretability and explainability in deep learning, we perform

a correlation analysis to reveal the connection between ResNet-generated

features and manually extracted features. It is found that many manual

features are strongly correlated with ResNet features, which demonstrates

that deep learning is able to resemble physical knowledge.125

The remainder of the paper is organized as follows. Section 2 presents the

workflow of the joint strength prediction framework. Section 3 explores the

collected UMW data and conducts an exploratory analysis. In Section 4, case

studies are reported to demonstrate the effectiveness of the proposed method.

Finally, Section 5 concludes the paper and suggests future research directions.130

2. End-to-end quality prediction framework

The workflow of the proposed method is shown in Fig. 1. There are mainly

three steps. The first step is signal processing including signal truncation, signal

down sampling, and wavelet transform. The second step is model training. In

this step, a deep learning model is trained to automatically generate feature135

maps using processed signals obtained in the first step. The final step is to

predict joint strength. Sections 2.1 and 2.2 will elaborate the signal processing

procedure and the ResNet model used in this study, respectively.
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Fig. 1. Workflow of the end-to-end online quality prediction method.

2.1. Data processing

Our proposed algorithm uses signals from three online sensors including AE,140

LVDT, and microphone as inputs. For each UMW process, one sensing signal

consists of more than 200 million data points. Therefore, signal processing is

necessary to remove the noise and irrelevant information in the signals. An

UMW process consists of multiple stages, some of which (e.g., preparation) do

not influence the joint quality significantly [23]. Therefore, we apply signal145

truncation to extract the signal segment corresponding to the main vibration

step of the welding process.

After down sampling, the 1D signals are transformed to 2D images using

wavelet transform [25]. Because the joining mechanism of UMW is primarily

determined by high-frequency vibration [26], the vibration pattern impacts the150

formation of joints and ultimately determines the joint quality. On the other

hand, different vibration patterns can be sensed by sensing signals. The images

generated by wavelet transform reflect the changes in the vibration pattern over

time, thereby containing useful information about the joint quality.

The discrete wavelet transform can be obtained by:

Tj,k =

∫ +∞

−∞
f(t)ψj,k(t)dt, (1)

ψj,k(t) =
1√
2k
ψ

(
t− j2k

2k

)
, (2)

where ψ(t) is mother wavelet function, f(t) is the original 1D signal (e.g., AE,155

LVDT, microphone) and Tj,k is the coefficient for each wavelet, j is the shift

parameter, and 2k controls the scale of the wavelet. By introducing the shift

and scale parameters, both the occurring time and frequency information of

wave component in raw signals can be revealed. The norm of Tj,k reflects the
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energy contained in wavelet ψj,k(t).160

Fig. 2 shows a wavelet transform example for an AE signal. Fig. 2(b) shows

the distribution of energy in the AE signal in time-frequency domains. In

Fig. 2(b), each horizontal line represents a component for a certain frequency

in the AE signal, while each vertical line shows the energy distribution for each

frequency at a certain time. There are several energy concentration points in165

the frequency spectrum, indicating that the vibration of the corresponding fre-

quency plays a dominant role in that specific time during the welding process.

Additionally, it is seen that the energy distribution with respect to frequency

changes over time. Because high-frequency vibration is the main process mech-

anism in UMW, capturing the vibrational information is crucial for joint quality170

prediction. As such, the wavelet transform-generated image potentially provides

important insights into the welding process and can be used to predict the joint

strength.

Fig. 2. A wavelet transform example for an AE signal.

Deep learning models are good candidates to generate useful features and

find the relationship between the 2D images and the joint strength because of175
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its strong ability to characterize complex nonlinear input-output relationships.

They also avoid tedious feature engineering efforts that are required if conven-

tional machine learning models are employed for prediction.

Fig. 3. ResNet20: The architecture of the automatic joint strength prediction framework.

The proposed joint strength prediction framework is shown by Fig. 3. The

input of the model is a 2D wavelet image. We use the ResNet structure [27, 28]

to accomplish self feature generation. A fully connected layer is used to predict

the joint strength based on extracted features. The output of a convolutional

layer is:

a
(l)
i,j = f

 ∞∑
i=−∞

∞∑
j=−∞

a
(l−1)
i+u,j+v · krot(l)j · χ(i, j) + b(l)

 , (3)

χ(i, j) =

 1, 0 ≤ i, j ≤ n

0, others
(2a)

where a
(l)
i,j is the output of lth convolutional layer, k is an n × n convolutional

kernel, b is the bias and f is the activation function. a
(l)
i,j can be regarded as180

weighted a
(l−1)
i,j and be further regarded as weighted input. All outputs of the

convolutional layer can be regarded as features extracted from the input, which

is the 2D wavelet image in this method. Therefore, during training process, the

deep learning model will autonomously find the pattern in the 2D wavelet images

that is related to the joint strength and generate feature maps accordingly. In185

this way, our proposed model skips the feature generation and selection process
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that are required by conventional data-driven approaches.

The sizes of the output feature maps are also shown in Fig. 3. w and h

stand for the width and height of the input image, respectively. If the size of

feature maps is divided by 2, then the number of the convolutional kernel is190

doubled. A 3 by 3 convolutional kernel is adapted for all convolutional layers.

As a result, the original reception field of a convolutional kernel is 3 by 3. With

the increase of the depth of the ResNet, the reception field of a kernel also

increases accordingly. These kernels are used to generate potential features in

their reception fields. The final fully connected layer is used to combine all195

generated features and generate the prediction of the joint strength.

Fig. 4. Structure of a ResNet block unit.

We adopt the ResNet block [27, 28] in our deep learning model as shown

in Fig. 4. Every ResNet block contains three residue block units, which can

both accelerate the convergence and ensure good performance. The generated

feature maps from previous convolutional layers can be used with high-level200

feature maps, which provide more possible combinations of different features.

Three ResNet blocks are used so there are 18 convolutional layers in the ResNet

blocks. Including the first convolutional layer and the last fully connected layer,

the network has 20 layers in total. As a result, we refer to this architecture as

ResNet20 in the rest of this paper.205
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3. Data exploration

3.1. Experimental setup and preliminary analysis

This research uses the dataset reported in [14] for method validation. The

experimental set-up is shown in Fig. 5. Signals from four sensors, namely,

power, AE, LVDT, and microphone are collected for each welding cycle. Power210

signals are directly obtained from the welder controller. Displacement signals

are obtained from the LVDT sensor installed in the welder actuator. Microphone

signals are captured by GRAS 40PP microphone, which is placed close to the

actuator. AE signals are gathered by an external AE sensor R15α, which is

attached to the anvil.215

Fig. 5. Experimental setup: (a) schematic of DAQ system [14], (b) photo of the UMW

machine and DAQ system, and (c) example photos of weldments before (top) and after tensile

test (bottom).

Copper material C110 was used in the welding experiments. The dimen-

sion of the copper samples is 50.8 mm × 25.4 mm × 0.2032 mm (length ×

width × thickness). A Branson Ultra-weld L20 system was used for the weld-

ing experiments. 50 repetitive experiments were carried out with four different

tool conditions, resulting in 200 welding experiments in total. Table 1 shows220

the tool conditions used in the experiments. Tool conditions were determined

by measuring the tool surfaces with a 3D laser scanning microscope. See [14]
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for details. Welding parameters were fixed for all welding cycles. Specifically,

welding time is 0.5 s, amplitude is 45 µm, and pressure is 45 psi. After welding

experiments, all weldments were subject to T-peel test carried out by a universal225

testing machine MTS 810. During the test, load curves of the testing machine

with time were recorded. The joint strength is defined as the maximum load

and indicates the joint quality.

Table 1: Tool conditions

Tool Condition Horn Anvil

1 New New

2 New Worn

3 Worn New

4 Worn Worn

Histograms and kernel density estimation plots of joint strength in four tool

conditions are shown in Fig. 6. Some key statistics for the joint strength of230

each tool condition are presented in Table 2. Outliers were removed before the

calculations. Obviously, the statistical distributions for four tool conditions are

different, confirming that tool conditions influence joint quality substantially.

Additionally, it is seen that strong variability exists within each group, which

highlights the necessity for online joint quality prediction. One may notice that235

tool condition 4 has the highest mean strength and relatively small variance.

This is because all the welding parameters are predetermined before experiments

and not fine-tuned for any specific tool condition. It is thus possible that the

parameters are more suitable for tool condition 4 than other tool conditions.
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Fig. 6. Distribution of joint strength in four tool conditions: (a) histograms and (b) kernel

density estimation plot.

Table 2: Key statistics for joint strength of welded samples produced using four tool conditions.

Tool Condition
Mean

(N)

Standard

Deviation (N)

Minimum

(N)

Maximum

(N)

1 104.8 14.7 73.98 138.40

2 109.4 17.0 73.58 140.39

3 97.7 16.4 78.11 143.98

4 115.5 13.5 69.69 134.92

It is worth noting that the variation in tool conditions leads to a significant240

challenge in predicting joint quality. In UMW, tool degradation occurs in the

form of knurl height reduction and/or knurl breakage [12, 13, 15]. The knurls
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of worn tools have non-uniform height across the tool surfaces [15]. Coupled

with the complicated working mechanism of UMW, this non-uniformity leads

to significant challenges for studying the influence of tool degradation. Theoret-245

ical investigation of how tool degradation influences joint quality is still largely

lacking. The literature on joint quality classification and prediction seldom con-

siders this factor. Among the existing works on joint strength prediction, i.e.,

[8, 24], tool condition is fixed in the experiments in [24]; and a hybrid model-

ing architecture was developed in [8] to first classify tool conditions and then250

use a different regression model for each tool condition. In this paper, we aim

to develop an end-to-end framework that can account for the influence of tool

conditions and perform the regression task automatically.

3.2. Signal visualization and processing

In the UMW experiments, the sampling time for sensors was set to 2 seconds255

while the welding time was set to 0.5 seconds. To extract the useful segments

from the original signals, we use the power signal to find the start and end points

for the welding cycle and keep the 0.5-second segment for subsequent analysis.

All signal pieces are downsampled using a sampling rate of 1/101.

Wavelet transform is applied to each processed signal to obtain the char-260

acteristics of signals in the time-frequency domain. The sensing signals and

their wavelet transforms for three representative samples from the low-strength,

medium-strength, and high-strength groups are shown in Fig. 7–9. The y axis of

frequency spectrum is from 50 Hz to 500 Hz. We perform the wavelet transform

for 20 scales to get 19 lines of frequency spectrum. The frequency spectrum265

matrix is visualized with a color scale. A lighter color means more energy of

the frequency at corresponding time in the signal. The dark blue background

color indicates limited energy. Three groups of signals are different in both time

and frequency domains. Such differences imply that the 2D images generated

by wavelet transform contain useful information about joint quality and can be270

used for predicting joint strength. Yet, due to the high complexity of the weld-

ing process, it is very challenging to mine such information and devise effective

14



monitoring features manually. Therefore, we use the ResNet model to find the

relationship between the 2D images and joint quality automatically.

Fig. 7. Downsampled signals and their wavelet transforms for AE signals: (a) low joint

strength (69.69 N) with worn horn and worn anvil, (b) medium joint strength (101.44 N) with

new horn and new anvil, and (c) high joint strength (134.05 N) with new horn and new anvil.

Fig. 8. Downsampled signals and their wavelet transforms for LVDT signals: (a) low joint

strength (69.69 N) with worn horn and worn anvil, (b) medium joint strength (101.44 N) with

new horn and new anvil, and (c) high joint strength (134.05 N) with new horn and new anvil.
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Fig. 9. Downsampled signals and their wavelet transforms for microphone signals: (a) low

joint strength (69.69 N) with worn horn and worn anvil, (b) medium joint strength (101.44

N) with new horn and new anvil, and (c) high joint strength (134.05 N) with new horn and

new anvil.

4. Results and discussion275

This section presents comparative case studies to demonstrate the effective-

ness of the proposed method. Implementation details are introduced in Section

4.1. The performance comparison of (2) the proposed method and conventional

machine learning models and (3) three sensor fusion strategies are presented in

Sections 4.2 and 4.3, respectively.280

4.1. Implementation details

A 16 GB Nvidia Tesla P100 GPU is used to train ResNet models. The basic

ResNet model contains 100 Kb (822993) trainable variables. For each training

process, the model is trained for 200 epochs. For each training epoch, the batch

size is set to 20. All ResNet models use the same fixed learning rate of 0.000003.285

All ResNet models are trained from the scratch. The batch normalization layer

is used after each convolutional layer.

In all case studies, we use a 4:1 training-test random split for model per-

formance evaluation and repeat the process five times to avoid contingency.

Hyperparameters of all prediction models are carefully tuned and the results290

from best-performing models are reported. Root mean square error (RMSE)

is used to evaluate the prediction performance. The unit of RMSE is N. The
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means of both training and test RMSEs over five repeats are calculated and

compared.

4.2. Performance comparison: single sensor case295

We compare our method with conventional approaches in single-sensor cases,

i.e., only one type of sensing signal is used for joint strength prediction. Con-

ventional prediction models are built following feature engineering, feature se-

lection, and model training. The details of feature generation and selection are

provided in the appendix. The selected features are used to train three classical300

regression models, i.e., support vector regression (SVR) with radial basis func-

tion (RBF) kernel, k-nearest neighbors (KNN), and linear regression (LR). Our

method is trained following the workflow of Fig. 1. The comparative results are

summarized in Table 3. The lowest average test RMSE (15.42 N) is obtained

when SVR and microphone features are used.305

On the other hand, the lowest average test RMSE from our method is 15.44

N, which is comparable to that of conventional methods. Moreover, it is impor-

tant to note that conventional approaches require extensive feature engineering.

Over 300 features are manually extracted, and feature selection is then carried

out to select the most important features for regression model training. Our310

method permits a significantly more efficient procedure by using deep learning

to generate features automatically.

Table 3 also sheds some light on the efficacy of sensing signals used in the

online monitoring system. It is shown that the models using microphone or

displacement signals for prediction generally achieve lower RMSEs than AE315

signals. This indicates that microphone and displacement signals may be more

effective in predicting joint strength than AE signal. One possible reason is that

the AE sensor was mounted on the anvil. The wave propagation through the

specimens and anvil might introduce irrelevant information to the AE signals.

On the other hand, the microphone and LVDT sensor are able to directly mea-320

sure the vibrations of horn and specimens. In addition, AE sensors are known

to be effective in micro-defects of solids [29]. Nevertheless, it is unclear if and
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Table 3: Comparative results for the single-sensor case

Model Features Training Average Test Average

(N) (N)

SVR Microphone 16.80 15.42

KNN Microphone 14.94 16.62

LR Microphone 16.32 15.96

SVR Displacement 17.24 15.44

KNN Displacement 17.12 16.12

LR Displacement 16.88 16.04

SVR AE 16.52 15.48

KNN AE 15.30 17.14

LR AE 16.28 16.08

ResNet20 Microphone 15.24 15.44

ResNet20 Displacement 15.60 15.68

ResNet20 AE 16.20 15.80

how micro-scale changes in materials influence the joint strength. This is worth

further investigation.
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4.3. Fusion strategy325

Fig. 10. Illustration of different sensor fusion strategies: (a) early fusion, (b) middle fusion,

and (c) late fusion.

We explore three different fusion strategies, namely, early fusion, middle

fusion, and late fusion, to fuse signals in the joint strength prediction model.

The model structures for these fusion strategies are illustrated by Fig. 10. In

the early fusion strategy, three signals are first stacked and then sent to the

convolutional layer. Since the dimension of one wavelet transform image is330

1×500×19, the dimension of the stacked input is 3×500×19. In the middle

fusion strategy, three wavelet transform images go through different branches

and the feature maps are extracted separately for different signals. The output
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feature maps of the second ResNet block are stacked together by a concatenation

layer and sent to the third ResNet block for extracting feature maps after fusion.335

In the late fusion strategy, separate branches are used to extract feature maps

from three different signals. Different from the middle fusion strategy, the fusion

happens after the third ResNet block. After fusion, the combined feature map

is sent to the fully connected layer to predict the joint strength. We use an

additional convolutional layer with a 1×1 kernel to guarantee that the output340

channel matches with the previous network structure. It is worth noting that

all three fusion strategies are flexible and can work with any number of signals.

Here, we explore all possible combinations of signals used for fusion. For

each combination, we train and test three sensor fusion models (early, middle,

and late). For conventional machine learning approaches, we perform feature345

selection for a feature pool that contains all features from all signals. The

comparative results are summarized in Table 4.

The following observations can be drawn from Table 4. First, the best so-

lution for UMW strength prediction is to fuse displacement and microphone

signals using the late fusion strategy. It has the lowest average test RMSE350

(14.42 N) among all models. Second, deep learning models generally bene-

fit from sensor fusion, because the test RMSEs generally reduce compared to

single-sensor cases (see Table 3). However, conventional methods do not ben-

efit from sensor fusion since their test RMSEs do not change much and even

increase in some cases. This shows that deep learning model fuses data more355

effectively and is capable of extracting complementary information from differ-

ent signals. Third, using fusion strategies properly is important. After applying

fusion strategies, prediction models achieve lower test RMSEs in most cases.

However, the late fusion strategy often has the lowest test RMSE among the

three fusion strategies, which implies that fusing features that are processed by360

earlier network layers is beneficial for joint strength prediction. This could be

attributed to the fact that the sensing signals used in the monitoring system

are heterogeneous and may require different processing procedures. In the late

fusion strategy, different sensing signals go through separate ResNet branches
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Table 4: Comparative results for the sensor fusion case

Model Features Training Average Test Average

(N) (N)

SVR All features 14.64 15.38

KNN All features 12.90 16.54

LR All features 14.50 17.06

Early fusion Disp + Mic 15.76 15.36

Middle fusion Disp + Mic 14.88 15.40

Late fusion Disp + Mic 11.96 14.42

Early fusion AE + Mic 14.28 15.92

Middle fusion AE + Mic 14.28 15.82

Late fusion AE + Mic 12.94 15.32

Early fusion Disp + AE 12.58 15.10

Middle fusion Disp + AE 13.36 15.60

Late fusion Disp + AE 15.10 15.58

Early fusion All signals 10.70 14.94

Middle fusion All signals 13.76 15.72

Late fusion All signals 12.22 14.78

(see Fig. 10), thus permitting different treatments of the signals. On the other365

hand, the early fusion strategy stacks wavelet images from three signals as in-

puts in the beginning and then the stacked images go through the same network

layers including one convolutional layer and three ResNet blocks. Such process-

ing cannot recognize the differences of different signals and may not be optimal.

The middle fusion strategy uses separate branches to process wavelet images up370

to the second ResNet block and then fuses the intermediate outputs before the

third ResNet block. This type of processing does not fully recognize differences

between signal types either.

Fig. 11 shows the scatter plots of predicted vs. true joint strengths for the

worst-performing and best-performing models. For the best-performing model,375
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all predictions are close to the ground truth, indicating good prediction accuracy.

The scatter plot of the worst-performing model depicts a random pattern instead

of a linear trend. Some predictions deviate greatly from the true values. The

worst model predicts more low-strength joints (e.g., <90 N) as high-strength

(e.g., >110 N) than the best model. Likewise, the worst model also predicts380

more high-strength joints as low-strength than the best model.

Fig. 11. Scatter plots showing predicted vs. true values in one test procedure for (a) the

worst-performing model, i.e., LR with AE features (R2 = −0.50) and (b) the best-performing

model, i.e., the late fusion model using LVDT and microphone signals as inputs (R2 = 0.43).

4.4. Correlation analysis of ResNet-generated and manual features

While deep learning has proven to be successful in a variety of fields, its

interpretability and explainability still need investigation [30], especially in sci-

entific, engineering, and manufacturing applications [31]. Since there is a lack of385

systematic methods for interpretable and explainable deep learning, we attempt

to build a connection between RetNet-generated features and features extracted

using physical knowledge with correlation analysis. In our ResNet20 model (see

Fig. 3), the fully connected layer before “prediction” can be viewed as a set

of 64 features. We calculate the Pearson’s correlation coefficient between each390

pair of manual and ResNet-generated features. The results of the correlation

analysis are reported by Figs. 12 and 13.
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Fig. 12. A heatmap showing the correlations between the top 10 manual features selected

by the conventional feature engineering method and 64 features automatically generated by

ResNet.

Fig. 13. A heatmap showing the correlations between the top 10 manual features with

strongest correlations with 64 ResNet-generated features and corresponding correlations.

Fig. 12 displays a correlation heatmap for top 10 selected features by con-

ventional machine learning methods (see Appendix for the implementation de-

tails). These 10 features are extracted using physical knowledge and selected395

according to their importance. As seen from Fig. 12, most of these fea-

tures are highly correlated with at least one ResNet feature. Some features

such as “1 fft f13000 value,” “4 fft f23000 portion,” and “3 fft f20000 value” are

strongly correlated with many ResNet features. This indicates that despite per-

forming an end-to-end analysis of the input wavelet images, ResNet is able to400

resemble most physics-based features in an automatic fashion. Moreover, like

other deep learning models, our ResNet20 model integrates feature extraction,

feature selection, and regression modeling in a single architecture. This design

enables an improved global solution. On the contrary, due to the extremely

large solution space, most conventional machine learning methods perform fea-405

ture extraction, feature selection, and regression modeling in a sequential way, so

it is very challenging to find the optimal combination of features and regression

models.
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Another interesting observation is that most of the top 10 selected features

are extracted from fast Fourier transform (FFT) of sensing signals and reflect410

vibration patterns. This validates our rationale that vibration patterns impact

the joint formation and determine joint quality. As such, adopting wavelet

transform to process sensing signals is a reasonable approach. Interested readers

are referred to [14] for detailed descriptions of the manual features.

Fig. 13 shows 10 manual features with strongest correlations with ResNet415

features. These manual features contain information of time, energy, and fre-

quency, and most of them are strongly correlated with multiple ResNet features.

It demonstrates that ResNet can extract critical information reflecting physical

knowledge of the UMW process.

4.5. Model convergence and computational cost420

Common concerns for deep learning models, including ResNet, are the con-

vergence in model training and expensive computational cost. Fig. 14 shows

examples of one training loss curve and the RMSE curve calculated on the test

set. During the training process, the test RMSE tends to converge to approxi-

mately 11 N as the training loss drops. It shows our model do not suffer from425

overfitting issues.

Fig. 14. Example training loss and test RMSE curves for ResNet training.

The deep learning models have different training time due to different model

sizes. However, the training time for all deep learning models is below 10 minutes
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and the test time is below 1 second. The training time for other machine

learning models is no more than 10 seconds and their test time is no more than 1430

second. Despite being more computational expensive than conventional machine

learning models, the proposed ResNet model can be conveniently trained with

low computational resources, indicating its excellent accessibility.

5. Conclusion and future work

This paper presents an end-to-end online quality prediction method for435

UMW based on sensor fusion and deep learning. As shown by a case study

using experimental data collected from an UMW process with four different tool

conditions, the proposed approach outperforms conventional feature engineering

and machine learning methods in terms of prediction accuracy. In addition, our

method has the advantage of automatic feature generation/selection and offers440

an end-to-end solution for online UMW joint strength prediction. We present

three lightweight sensor fusion strategies that can be conveniently incorporated

into the prediction architecture. It is found that late fusion has the best pre-

diction accuracy. We also observe that the proposed deep learning method is

more effective than conventional feature engineering approaches in fusing data445

from multiple sensors.

Drawing on this work, several future research directions may be worth ex-

ploring. First, this study employs ResNet with 20 convolutional layers. The

hyperparameters may be further tuned to improve the prediction performance.

Some key parameters such as the number of convolutional layers, choices of ac-450

tivation layers, choices of loss function and learning rate can be carefully tuned

to further optimize the network. Other neural networks may also be explored.

Second, analyzing the feature maps generated by the ResNet in different welding

stages may advance the physical understanding of the UMW process. Moreover,

applying wavelet transform to the original signals instead of the truncated sig-455

nals can preserve the high-frequency information contained in sensing signals,

which may help improve the prediction performance. Third, as discussed in Sec-
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tion 4.4, interpretable and explainable deep learning is particularly important

in manufacturing applications, but such methods are still lacking. As seen from

the presented correlation analysis, ResNet is able to resemble important physics-460

based features. Future research efforts may be invested to reveal the underlying

mechanism for how ResNet automatically generates features that preserve phys-

ical information. Physics-informed machine learning is also worth studying to

enable the fusion of physical knowledge with data-driven approaches. Finally,

though improvements are achieved compared to state-of-the-art methods, the465

prediction performance can be further improved by incorporating more variables

that influence the joint quality (e.g., surface condition of specimens) as inputs.

Such information will account for some variations in joint quality, thus helping

improve the prediction accuracy.
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Appendix A. Feature extraction and selection in conventional ma-

chine learning methods

All the features developed in [14] are adopted by the conventional machine475

learning models in Section 4. In addition, we extract more features based on the

observation reported in Section 3. It is seen that the energy for microphone and

displacement signals is concentrated on frequencies that are multiples of 1000

between 5 kHz and 50 kHz. We calculate the total energy and corresponding

energy proportion compared to the total energy in the signal every thousand480

from 5 kHz to 50 kHz. In total, more than 300 features are calculated from

the sensing signals. However, not all all features are related to the joint quality

and too many features may lead to overfitting. Most of the commonly used fea-

ture selection methods can be conveniently implemented using Python’s sklearn
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library. Here, we use forward selection algorithm along with the mutual in-485

formation calculation between features and joint strength residue. The feature

selection procedure is briefly summarized as follows.

(1) All 200 groups of experimental data are randomly divided into training

and test sets by a ratio of 4:1. Then we use the training set for feature

selection.490

(2) SVM with the RBF kernel is used as the regression model in the feature

selection process. The feature subset is used as the input to train an SVM

regression model. RMSE calculated using the current feature subset is

used as the evaluation index.

(3) In each iteration of feature selection, the feature minimizing RMSE is495

selected as a new feature and added to the feature subset. The procedure

is stopped when the RMSE is lower than a predetermined threshold.
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