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Abstract

In industrial-scale production applications of ultrasonic metal welding (UMW),
there is a strong need for predicting joint quality quickly, reliably, and non-
destructively. State-of-the-art quality assessment methods such as destructive
tensile testing and binary quality classification cannot meet such requirements.
This paper develops a novel end-to-end online quality prediction method for
UMW based on sensor fusion and deep learning. This method first preprocesses
1-dimensional signals from multiple sensors including an acoustic emission sen-
sor, a linear variable differential transformer, and a microphone, and transforms
them to 2-dimensional images using wavelet transform. Then, these images are
fed into ResNet20, which is a 20-layer convolutional neural network, to automat-
ically generate feature maps and predict joint strength. The proposed method
offers important advantages compared to state-of-the-art approaches, including
automatic feature generation and good robustness to UMW tool conditions. The
effectiveness of the developed method is demonstrated using real-world data gen-
erated from an UMW process with four different tool conditions. Additionally,
we propose three feature fusion strategies (early fusion, middle fusion, and late
fusion) and present a comparative case study to compare their performance. It

is found that the late fusion strategy achieves the best prediction performance.
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Towards interpretability and explainability in deep learning, we perform a cor-
relation analysis to reveal the connection between ResNet-generated features
and features that are manually extracted based on UMW process physics. It is
shown that many manual features are strongly correlated with ResNet features,
proving that ResNet is able to resemble physical knowledge. The proposed on-
line quality prediction method is readily applicable to industrial-scale UMW
processes to enable accurate online quality prediction.

Keywords: ultrasonic metal welding, quality prediction, deep learning,
ResNet, sensor fusion, interpretability

2010 MSC: 00-01, 99-00

1. Introduction

Ultrasonic metal welding (UMW) is a solid-state welding process in which
multiple sheets of either similar or dissimilar metal materials are joined using
high-frequency vibrations in plane with the interfaces under pressure [1, 2]. A
typical UMW system is comprised of controller, transducer, booster, horn, and
anvil. During an UMW cycle, high-frequency vibration is applied to clamped
metals, which undergo material softening, plastic deformation, and fatigue crack
formation, and finally a joint forms [2, 3]. Because of its unique advantages
including the ability to join dissimilar materials, energy efficiency, environmental
friendliness, and short process cycles, UMW is an important joining technology
with wide industrial applications such as electric vehicle battery assembly [1, 4]
and automotive body joining [2, 5].

In industrial-scale production applications, the consistency and quality of
UMW need to be closely monitored [6-9]. Several key process parameters such
as welding time, amplitude, and pressure have been shown to significantly influ-
ence the joint quality. Therefore, process optimization is usually performed to
identify the optimal parameter combination [10, 11]. However, even if those pro-
cess parameters are fixed in mass production, the joint quality may still vary

substantially due to uncontrollable factors such as material surface condition
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[1, 6] and tool condition [12-14]. Lee et al. demonstrated that the surface con-
dition of welding specimens significantly influences joint quality [1]. Drawing on
this finding, Nong et al. developed a control method to detect surface contam-
ination and accordingly adjust welding pressure, which was shown to greatly
improve joint quality [6]. Tool degradation is a major concern in industrial
UMW because tool wear rate is high [12, 13] and tool conditions substantially
impact joint quality [14]. It was reported that tool maintenance constitutes a
major part of production costs in UMW [13]. Further, accurately monitoring
the changes in tool condition is challenging because of the complicated tool sur-
face geometry [13, 15]. Consequently, it is highly desirable to develop a quality
prediction system that can adequately account for these uncontrollable factors
and accurately predict the variability in joint quality.

Most existing works on UMW quality prediction fall into three categories,
namely, physics-based simulations [16-18], data-driven response surface model-
ing [10, 11, 19-21], and quality classification using sensing signals [1, 7, 9, 22, 23],
which are briefly reviewed as follows.

Physics-based simulations typically employ finite element (FE) models to
investigate the joining mechanism or predict joint performance. For example,
Xi et al. [16] developed FE models to predict the mechanical performance of
UMW. Zhou et al. [17] conducted FE analysis to predict weld strength using the
cohesive zone method. Shen et al. [18] developed 3D FE models to simulate the
complex material response subject to UMW processing conditions and offer im-
portant insights into the design of UMW applications. These simulation models
provide a good physical understanding of the relationship between the welding
processes and joint quality. However, FE simulations are time-consuming, and
thus cannot meet the requirement of online monitoring. Furthermore, process
variability induced by uncontrollable factors cannot be well captured by such
methods.

The second type of approach builds statistical or machine learning-based
response surface models to characterize the relationship between process pa-

rameters and joint quality, which can be used for process optimization. For
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instance, Kim et al. [19] adopted cubic functions to establish a response surface
for the peel strength using welding time and pressure as inputs in UMW of Cu
and Ni-plated Cu sheets. Using artificial neural network and adaptive neuro-
fuzzy inference system, regression models were developed in [20] to predict the
strength for Al-Cu joints. Meng et al. [10] used machine learning models to
study the impact of amplitude and weld time on peel and shear strengths, based
on which a multi-objective optimization method was subsequently developed.
A hybrid machine learning model was developed in [21] to predict the qual-
ity of Al-Al UMW joints from welding parameters and peak power. Yang et
al. [11] developed a hybrid multi-task learning method to efficiently model the
response surfaces of UMW with different material combinations. Those meth-
ods are deterministic and based on the assumption that the welding quality is
mainly decided by the input welding parameters but generally ignore the impact
of uncontrollable factors. The variability in joint quality when identical process
parameters are used cannot be accounted for.

The third type of method aims to classify joint quality online and non-
destructively by exploring the relationship between online sensing signals and
the joint quality. For example, Shao et al. [22] developed an algorithm for
feature selection and parameter tuning in quality classification. Lee et al. [1]
determined the correlation between signal features and joint performance. In
[7], the relationships between the displacement of the sonotrode, the plastic
deformation of materials, and the joint quality were established for process
monitoring purpose. Guo et al. [23] integrated Shewhart-type control chart and
M-distance approach to detect defective welds online. Shi et al. [9] proposed a
monitoring method to detect multiple abnormal welding conditions using power
signals. Nevertheless, most of these works focus on classification but cannot
predict joint strength, i.e., regression. Further, extensive feature engineering is
often required in these methods, which heavily relies on a good understanding
of the process physics and may be tedious.

Most recently, some studies were focused on quantitatively predicting UMW

joint strength [8, 24]. Schwarz et al. [24] extracted quality monitoring fea-
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tures from multiple sensors and then developed linear and multi-layer percep-
tron regression models to predict the tensile shear strength of Cu-sheet welds.
Improved prediction accuracy was achieved compared to standard polynomial
regression models. Meng and Shao [8] developed a physics-informed ensemble
learning framework for UMW joint strength prediction. A feature extraction
procedure based on discrete wavelet transform was proposed to alleviate tedious
feature engineering efforts. Nevertheless, these existing methods still require a
good understanding of the process physics and cannot offer the capability of
automatic, end-to-end online joint strength prediction.

To overcome the aforementioned challenges, we establish an end-to-end on-
line quality prediction method using deep learning and sensor fusion. Here,
“end-to-end” refers to capabilities of bypassing complicated intermediate proce-
dures (e.g., feature extraction, feature selection, model selection, model parame-
ter tuning) and predicting outputs (joint strength) from inputs (sensing signals)
directly. In this method, 1-dimensional (1D) signals from acoustic emission (AE)
sensor, linear variable differential transformer (LVDT), and microphone are first
processed to filter out redundant information. Then, wavelet transform is ap-
plied to convert 1D signals to 2-dimensional (2D) images. We use ResNet to
process the 2D images and build a regression model in an end-to-end fashion.
Specifically, ResNet automatically generates features from 2D images and sub-
sequently uses the features to predict the joint strength. The effectiveness of
the developed method is demonstrated using real-world UMW data. We also
propose three sensor fusion strategies including early fusion, middle fusion, and
late fusion and compare their performance.

The contributions of this paper are summarized as follows:

(1) A novel end-to-end online prediction model is developed for UMW based
on deep learning that offers various benefits, including superior quality
prediction, minimal reliance on prior knowledge of UMW processes (e.g.,
tool conditions), and not involving tedious data preprocessing and feature

engineering.
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(2) We propose three sensor fusion strategies, namely, early fusion, middle
fusion, and late fusion, that can effectively fuse information from multiple

sensing signals for joint strength prediction.

(3) Using experimental UMW data, comprehensive case studies are constructed
to compare (1) the proposed prediction method and traditional feature
engineering-based methods and (2) three sensor fusion strategies. It is
shown that our method achieves higher prediction accuracy. In addition,
the late fusion strategy using displacement and sound signals achieves the

best prediction performance.

(4) Towards interpretability and explainability in deep learning, we perform
a correlation analysis to reveal the connection between ResNet-generated
features and manually extracted features. It is found that many manual
features are strongly correlated with ResNet features, which demonstrates

that deep learning is able to resemble physical knowledge.

The remainder of the paper is organized as follows. Section 2 presents the
workflow of the joint strength prediction framework. Section 3 explores the
collected UMW data and conducts an exploratory analysis. In Section 4, case
studies are reported to demonstrate the effectiveness of the proposed method.

Finally, Section 5 concludes the paper and suggests future research directions.

2. End-to-end quality prediction framework

The workflow of the proposed method is shown in Fig. 1. There are mainly
three steps. The first step is signal processing including signal truncation, signal
down sampling, and wavelet transform. The second step is model training. In
this step, a deep learning model is trained to automatically generate feature
maps using processed signals obtained in the first step. The final step is to
predict joint strength. Sections 2.1 and 2.2 will elaborate the signal processing

procedure and the ResNet model used in this study, respectively.
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Fig. 1. Workflow of the end-to-end online quality prediction method.

2.1. Data processing

Our proposed algorithm uses signals from three online sensors including AE,
LVDT, and microphone as inputs. For each UMW process, one sensing signal
consists of more than 200 million data points. Therefore, signal processing is
necessary to remove the noise and irrelevant information in the signals. An
UMW process consists of multiple stages, some of which (e.g., preparation) do
not influence the joint quality significantly [23]. Therefore, we apply signal
truncation to extract the signal segment corresponding to the main vibration
step of the welding process.

After down sampling, the 1D signals are transformed to 2D images using
wavelet transform [25]. Because the joining mechanism of UMW is primarily
determined by high-frequency vibration [26], the vibration pattern impacts the
formation of joints and ultimately determines the joint quality. On the other
hand, different vibration patterns can be sensed by sensing signals. The images
generated by wavelet transform reflect the changes in the vibration pattern over
time, thereby containing useful information about the joint quality.

The discrete wavelet transform can be obtained by:

+oo
Tk = / f)Y, .k (t)dt, (1)

— 00

ok
wiatt) = —=v (5. (2

where (t) is mother wavelet function, f(t) is the original 1D signal (e.g., AE,

LVDT, microphone) and T ; is the coefficient for each wavelet, j is the shift
parameter, and 2% controls the scale of the wavelet. By introducing the shift
and scale parameters, both the occurring time and frequency information of

wave component in raw signals can be revealed. The norm of T} j, reflects the
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energy contained in wavelet ¢; 1 (t).

Fig. 2 shows a wavelet transform example for an AE signal. Fig. 2(b) shows
the distribution of energy in the AE signal in time-frequency domains. In
Fig. 2(b), each horizontal line represents a component for a certain frequency
in the AE signal, while each vertical line shows the energy distribution for each
frequency at a certain time. There are several energy concentration points in
the frequency spectrum, indicating that the vibration of the corresponding fre-
quency plays a dominant role in that specific time during the welding process.
Additionally, it is seen that the energy distribution with respect to frequency
changes over time. Because high-frequency vibration is the main process mech-
anism in UMW, capturing the vibrational information is crucial for joint quality
prediction. As such, the wavelet transform-generated image potentially provides
important insights into the welding process and can be used to predict the joint

strength.
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Fig. 2. A wavelet transform example for an AE signal.

Deep learning models are good candidates to generate useful features and

find the relationship between the 2D images and the joint strength because of
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its strong ability to characterize complex nonlinear input-output relationships.
They also avoid tedious feature engineering efforts that are required if conven-

tional machine learning models are employed for prediction.
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Fig. 3. ResNet20: The architecture of the automatic joint strength prediction framework.

The proposed joint strength prediction framework is shown by Fig. 3. The
input of the model is a 2D wavelet image. We use the ResNet structure [27, 28]
to accomplish self feature generation. A fully connected layer is used to predict

the joint strength based on extracted features. The output of a convolutional

layer is:
oo oo
l -1 .
al(ﬁ; =f Z Z G’Z(Jru,;#v : kTOt(l)j : X(l,]) + b 5 (3)
1=—00 j=—00
x(i,j) = (2a)
0, others
where aﬁlj is the output of Ith convolutional layer, k is an n x n convolutional

kernel, b is the bias and f is the activation function. agl])
(1-1)

.3

can be regarded as
weighted a and be further regarded as weighted input. All outputs of the
convolutional layer can be regarded as features extracted from the input, which
is the 2D wavelet image in this method. Therefore, during training process, the
deep learning model will autonomously find the pattern in the 2D wavelet images

that is related to the joint strength and generate feature maps accordingly. In

this way, our proposed model skips the feature generation and selection process
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that are required by conventional data-driven approaches.

The sizes of the output feature maps are also shown in Fig. 3. w and h
stand for the width and height of the input image, respectively. If the size of
feature maps is divided by 2, then the number of the convolutional kernel is
doubled. A 3 by 3 convolutional kernel is adapted for all convolutional layers.
As a result, the original reception field of a convolutional kernel is 3 by 3. With
the increase of the depth of the ResNet, the reception field of a kernel also
increases accordingly. These kernels are used to generate potential features in
their reception fields. The final fully connected layer is used to combine all

generated features and generate the prediction of the joint strength.

Input

A
Convolutiona
layer

relu function

Convolutiona
layer

output relu function

Fig. 4. Structure of a ResNet block unit.

We adopt the ResNet block [27, 28] in our deep learning model as shown
in Fig. 4. Every ResNet block contains three residue block units, which can
both accelerate the convergence and ensure good performance. The generated
feature maps from previous convolutional layers can be used with high-level
feature maps, which provide more possible combinations of different features.
Three ResNet blocks are used so there are 18 convolutional layers in the ResNet
blocks. Including the first convolutional layer and the last fully connected layer,
the network has 20 layers in total. As a result, we refer to this architecture as

ResNet20 in the rest of this paper.

10
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3. Data exploration

3.1. Ezperimental setup and preliminary analysis

This research uses the dataset reported in [14] for method validation. The
experimental set-up is shown in Fig. 5. Signals from four sensors, namely,
power, AE, LVDT, and microphone are collected for each welding cycle. Power
signals are directly obtained from the welder controller. Displacement signals
are obtained from the LVDT sensor installed in the welder actuator. Microphone
signals are captured by GRAS 40PP microphone, which is placed close to the
actuator. AE signals are gathered by an external AE sensor R15«a, which is

attached to the anvil.

(@)

. transducer booster

controller ))) |>] o Microphone

Before Tensile Test
Py}
o A

After Tensile Test

Fig. 5. Experimental setup: (a) schematic of DAQ system [14], (b) photo of the UMW
machine and DAQ system, and (c) example photos of weldments before (top) and after tensile

test (bottom).

Copper material C110 was used in the welding experiments. The dimen-
sion of the copper samples is 50.8 mm x 25.4 mm x 0.2032 mm (length x
width x thickness). A Branson Ultra-weld L20 system was used for the weld-
ing experiments. 50 repetitive experiments were carried out with four different
tool conditions, resulting in 200 welding experiments in total. Table 1 shows
the tool conditions used in the experiments. Tool conditions were determined

by measuring the tool surfaces with a 3D laser scanning microscope. See [14]

11
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for details. Welding parameters were fixed for all welding cycles. Specifically,
welding time is 0.5 s, amplitude is 45 pm, and pressure is 45 psi. After welding
experiments, all weldments were subject to T-peel test carried out by a universal
testing machine MTS 810. During the test, load curves of the testing machine
with time were recorded. The joint strength is defined as the maximum load

and indicates the joint quality.

Table 1: Tool conditions

Tool Condition Horn Anvil

1 New  New
2 New  Worn
3 Worn  New
4 Worn Worn

Histograms and kernel density estimation plots of joint strength in four tool
conditions are shown in Fig. 6. Some key statistics for the joint strength of
each tool condition are presented in Table 2. Outliers were removed before the
calculations. Obviously, the statistical distributions for four tool conditions are
different, confirming that tool conditions influence joint quality substantially.
Additionally, it is seen that strong variability exists within each group, which
highlights the necessity for online joint quality prediction. One may notice that
tool condition 4 has the highest mean strength and relatively small variance.
This is because all the welding parameters are predetermined before experiments
and not fine-tuned for any specific tool condition. It is thus possible that the

parameters are more suitable for tool condition 4 than other tool conditions.

12
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Fig. 6. Distribution of joint strength in four tool conditions: (a) histograms and (b) kernel

density estimation plot.

Table 2: Key statistics for joint strength of welded samples produced using four tool conditions.

Mean Standard Minimum Maximum
Tool Condition
(N) Deviation (N) (N) (N)
1 104.8 14.7 73.98 138.40
2 109.4 17.0 73.58 140.39
3 97.7 16.4 78.11 143.98
4 115.5  13.5 69.69 134.92
240 It is worth noting that the variation in tool conditions leads to a significant

challenge in predicting joint quality. In UMW, tool degradation occurs in the
form of knurl height reduction and/or knurl breakage [12, 13, 15]. The knurls

13
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of worn tools have non-uniform height across the tool surfaces [15]. Coupled
with the complicated working mechanism of UMW, this non-uniformity leads
to significant challenges for studying the influence of tool degradation. Theoret-
ical investigation of how tool degradation influences joint quality is still largely
lacking. The literature on joint quality classification and prediction seldom con-
siders this factor. Among the existing works on joint strength prediction, i.e.,
[8, 24], tool condition is fixed in the experiments in [24]; and a hybrid model-
ing architecture was developed in [8] to first classify tool conditions and then
use a different regression model for each tool condition. In this paper, we aim
to develop an end-to-end framework that can account for the influence of tool

conditions and perform the regression task automatically.

8.2. Signal visualization and processing

In the UMW experiments, the sampling time for sensors was set to 2 seconds
while the welding time was set to 0.5 seconds. To extract the useful segments
from the original signals, we use the power signal to find the start and end points
for the welding cycle and keep the 0.5-second segment for subsequent analysis.
All signal pieces are downsampled using a sampling rate of 1/101.

Wavelet transform is applied to each processed signal to obtain the char-
acteristics of signals in the time-frequency domain. The sensing signals and
their wavelet transforms for three representative samples from the low-strength,
medium-strength, and high-strength groups are shown in Fig. 7-9. The y axis of
frequency spectrum is from 50 Hz to 500 Hz. We perform the wavelet transform
for 20 scales to get 19 lines of frequency spectrum. The frequency spectrum
matrix is visualized with a color scale. A lighter color means more energy of
the frequency at corresponding time in the signal. The dark blue background
color indicates limited energy. Three groups of signals are different in both time
and frequency domains. Such differences imply that the 2D images generated
by wavelet transform contain useful information about joint quality and can be
used for predicting joint strength. Yet, due to the high complexity of the weld-

ing process, it is very challenging to mine such information and devise effective

14



monitoring features manually. Therefore, we use the ResNet model to find the

relationship between the 2D images and joint quality automatically.
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Fig. 7. Downsampled signals and their wavelet transforms for AE signals: (a) low joint
strength (69.69 N) with worn horn and worn anvil, (b) medium joint strength (101.44 N) with

new horn and new anvil, and (c) high joint strength (134.05 N) with new horn and new anvil.
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Fig. 8. Downsampled signals and their wavelet transforms for LVDT signals: (a) low joint
strength (69.69 N) with worn horn and worn anvil, (b) medium joint strength (101.44 N) with

new horn and new anvil, and (c) high joint strength (134.05 N) with new horn and new anvil.
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N) with new horn and new anvil, and (c) high joint strength (134.05 N) with new horn and

new anvil.

4. Results and discussion

This section presents comparative case studies to demonstrate the effective-
ness of the proposed method. Implementation details are introduced in Section
4.1. The performance comparison of (2) the proposed method and conventional
machine learning models and (3) three sensor fusion strategies are presented in

Sections 4.2 and 4.3, respectively.

4.1. Implementation details

A 16 GB Nvidia Tesla P100 GPU is used to train ResNet models. The basic
ResNet model contains 100 Kb (822993) trainable variables. For each training
process, the model is trained for 200 epochs. For each training epoch, the batch
size is set to 20. All ResNet models use the same fixed learning rate of 0.000003.
All ResNet models are trained from the scratch. The batch normalization layer
is used after each convolutional layer.

In all case studies, we use a 4:1 training-test random split for model per-
formance evaluation and repeat the process five times to avoid contingency.
Hyperparameters of all prediction models are carefully tuned and the results
from best-performing models are reported. Root mean square error (RMSE)

is used to evaluate the prediction performance. The unit of RMSE is N. The
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means of both training and test RMSEs over five repeats are calculated and

compared.

4.2. Performance comparison: single sensor case

We compare our method with conventional approaches in single-sensor cases,
i.e., only one type of sensing signal is used for joint strength prediction. Con-
ventional prediction models are built following feature engineering, feature se-
lection, and model training. The details of feature generation and selection are
provided in the appendix. The selected features are used to train three classical
regression models, i.e., support vector regression (SVR) with radial basis func-
tion (RBF) kernel, k-nearest neighbors (KNN), and linear regression (LR). Our
method is trained following the workflow of Fig. 1. The comparative results are
summarized in Table 3. The lowest average test RMSE (15.42 N) is obtained
when SVR and microphone features are used.

On the other hand, the lowest average test RMSE from our method is 15.44
N, which is comparable to that of conventional methods. Moreover, it is impor-
tant to note that conventional approaches require extensive feature engineering.
Over 300 features are manually extracted, and feature selection is then carried
out to select the most important features for regression model training. Our
method permits a significantly more efficient procedure by using deep learning
to generate features automatically.

Table 3 also sheds some light on the efficacy of sensing signals used in the
online monitoring system. It is shown that the models using microphone or
displacement signals for prediction generally achieve lower RMSEs than AE
signals. This indicates that microphone and displacement signals may be more
effective in predicting joint strength than AE signal. One possible reason is that
the AE sensor was mounted on the anvil. The wave propagation through the
specimens and anvil might introduce irrelevant information to the AE signals.
On the other hand, the microphone and LVDT sensor are able to directly mea-
sure the vibrations of horn and specimens. In addition, AE sensors are known

to be effective in micro-defects of solids [29]. Nevertheless, it is unclear if and

17



Table 3: Comparative results for the single-sensor case

Model Features Training Average Test Average
(N) (N)

SVR Microphone 16.80 15.42
KNN Microphone 14.94 16.62
LR Microphone 16.32 15.96
SVR Displacement 17.24 15.44
KNN Displacement 17.12 16.12
LR Displacement 16.88 16.04
SVR AE 16.52 15.48
KNN AE 15.30 17.14
LR AE 16.28 16.08
ResNet20  Microphone 15.24 15.44
ResNet20 Displacement 15.60 15.68
ResNet20 AE 16.20 15.80

how micro-scale changes in materials influence the joint strength. This is worth

further investigation.
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Fig. 10. Illustration of different sensor fusion strategies: (a) early fusion, (b) middle fusion,

and (c) late fusion.

We explore three different fusion strategies, namely, early fusion, middle
fusion, and late fusion, to fuse signals in the joint strength prediction model.
The model structures for these fusion strategies are illustrated by Fig. 10. In
the early fusion strategy, three signals are first stacked and then sent to the
convolutional layer. Since the dimension of one wavelet transform image is
1x500%19, the dimension of the stacked input is 3x500x19. In the middle
fusion strategy, three wavelet transform images go through different branches

and the feature maps are extracted separately for different signals. The output
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feature maps of the second ResNet block are stacked together by a concatenation
layer and sent to the third ResNet block for extracting feature maps after fusion.
In the late fusion strategy, separate branches are used to extract feature maps
from three different signals. Different from the middle fusion strategy, the fusion
happens after the third ResNet block. After fusion, the combined feature map
is sent to the fully connected layer to predict the joint strength. We use an
additional convolutional layer with a 1x1 kernel to guarantee that the output
channel matches with the previous network structure. It is worth noting that
all three fusion strategies are flexible and can work with any number of signals.

Here, we explore all possible combinations of signals used for fusion. For
each combination, we train and test three sensor fusion models (early, middle,
and late). For conventional machine learning approaches, we perform feature
selection for a feature pool that contains all features from all signals. The
comparative results are summarized in Table 4.

The following observations can be drawn from Table 4. First, the best so-
lution for UMW strength prediction is to fuse displacement and microphone
signals using the late fusion strategy. It has the lowest average test RMSE
(14.42 N) among all models. Second, deep learning models generally bene-
fit from sensor fusion, because the test RMSEs generally reduce compared to
single-sensor cases (see Table 3). However, conventional methods do not ben-
efit from sensor fusion since their test RMSEs do not change much and even
increase in some cases. This shows that deep learning model fuses data more
effectively and is capable of extracting complementary information from differ-
ent signals. Third, using fusion strategies properly is important. After applying
fusion strategies, prediction models achieve lower test RMSEs in most cases.
However, the late fusion strategy often has the lowest test RMSE among the
three fusion strategies, which implies that fusing features that are processed by
earlier network layers is beneficial for joint strength prediction. This could be
attributed to the fact that the sensing signals used in the monitoring system
are heterogeneous and may require different processing procedures. In the late

fusion strategy, different sensing signals go through separate ResNet branches
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Table 4: Comparative results for the sensor fusion case

Model Features Training Average Test Average
() ()

SVR All features 14.64 15.38
KNN All features 12.90 16.54
LR All features 14.50 17.06
Early fusion  Disp + Mic 15.76 15.36
Middle fusion Disp + Mic 14.88 15.40
Late fusion  Disp + Mic 11.96 14.42
Early fusion  AE + Mic 14.28 15.92
Middle fusion AE + Mic 14.28 15.82
Late fusion AE + Mic 12.94 15.32
Early fusion  Disp + AE 12.58 15.10
Middle fusion Disp + AE 13.36 15.60
Late fusion Disp + AE 15.10 15.58
Early fusion All signals 10.70 14.94
Middle fusion  All signals 13.76 15.72
Late fusion All signals 12.22 14.78

(see Fig. 10), thus permitting different treatments of the signals. On the other
hand, the early fusion strategy stacks wavelet images from three signals as in-
puts in the beginning and then the stacked images go through the same network
layers including one convolutional layer and three ResNet blocks. Such process-
ing cannot recognize the differences of different signals and may not be optimal.
The middle fusion strategy uses separate branches to process wavelet images up
to the second ResNet block and then fuses the intermediate outputs before the

third ResNet block. This type of processing does not fully recognize differences

between signal types either.

Fig. 11 shows the scatter plots of predicted vs. true joint strengths for the

worst-performing and best-performing models. For the best-performing model,
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all predictions are close to the ground truth, indicating good prediction accuracy.
The scatter plot of the worst-performing model depicts a random pattern instead
of a linear trend. Some predictions deviate greatly from the true values. The
worst model predicts more low-strength joints (e.g., <90 N) as high-strength
(e.g., >110 N) than the best model. Likewise, the worst model also predicts
more high-strength joints as low-strength than the best model.
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Fig. 11. Scatter plots showing predicted vs. true values in one test procedure for (a) the

worst-performing model, i.e., LR with AE features (R? = —0.50) and (b) the best-performing

model, i.e., the late fusion model using LVDT and microphone signals as inputs (R? = 0.43).

4.4. Correlation analysis of ResNet-generated and manual features

While deep learning has proven to be successful in a variety of fields, its
interpretability and explainability still need investigation [30], especially in sci-
entific, engineering, and manufacturing applications [31]. Since there is a lack of
systematic methods for interpretable and explainable deep learning, we attempt
to build a connection between RetNet-generated features and features extracted
using physical knowledge with correlation analysis. In our ResNet20 model (see
Fig. 3), the fully connected layer before “prediction” can be viewed as a set
of 64 features. We calculate the Pearson’s correlation coefficient between each
pair of manual and ResNet-generated features. The results of the correlation

analysis are reported by Figs. 12 and 13.

22



395

400

405

4_fft_f14000_value -

Spsd_f9 -
_fft_f13000_value -
4_fft_f23000_portion -

stat_Astd -

Manually generated features

ResNet generated features

Fig. 12. A heatmap showing the correlations between the top 10 manual features selected
by the conventional feature engineering method and 64 features automatically generated by

ResNet.
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Fig. 13. A heatmap showing the correlations between the top 10 manual features with

strongest correlations with 64 ResNet-generated features and corresponding correlations.

Fig. 12 displays a correlation heatmap for top 10 selected features by con-
ventional machine learning methods (see Appendix for the implementation de-
tails). These 10 features are extracted using physical knowledge and selected
according to their importance. As seen from Fig. 12, most of these fea-
tures are highly correlated with at least one ResNet feature. Some features
such as “1_fft_f13000_value,” “4_fft_23000_portion,” and “3_fft_f20000_value” are
strongly correlated with many ResNet features. This indicates that despite per-
forming an end-to-end analysis of the input wavelet images, ResNet is able to
resemble most physics-based features in an automatic fashion. Moreover, like
other deep learning models, our ResNet20 model integrates feature extraction,
feature selection, and regression modeling in a single architecture. This design
enables an improved global solution. On the contrary, due to the extremely
large solution space, most conventional machine learning methods perform fea-
ture extraction, feature selection, and regression modeling in a sequential way, so
it is very challenging to find the optimal combination of features and regression

models.
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Another interesting observation is that most of the top 10 selected features
are extracted from fast Fourier transform (FFT) of sensing signals and reflect
vibration patterns. This validates our rationale that vibration patterns impact
the joint formation and determine joint quality. As such, adopting wavelet
transform to process sensing signals is a reasonable approach. Interested readers
are referred to [14] for detailed descriptions of the manual features.

Fig. 13 shows 10 manual features with strongest correlations with ResNet
features. These manual features contain information of time, energy, and fre-
quency, and most of them are strongly correlated with multiple ResNet features.
It demonstrates that ResNet can extract critical information reflecting physical

knowledge of the UMW process.

4.5. Model convergence and computational cost

Common concerns for deep learning models, including ResNet, are the con-
vergence in model training and expensive computational cost. Fig. 14 shows
examples of one training loss curve and the RMSE curve calculated on the test
set. During the training process, the test RMSE tends to converge to approxi-
mately 11 N as the training loss drops. It shows our model do not suffer from

overfitting issues.
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Fig. 14. Example training loss and test RMSE curves for ResNet training.

The deep learning models have different training time due to different model

sizes. However, the training time for all deep learning models is below 10 minutes
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and the test time is below 1 second. The training time for other machine
learning models is no more than 10 seconds and their test time is no more than 1
second. Despite being more computational expensive than conventional machine
learning models, the proposed ResNet model can be conveniently trained with

low computational resources, indicating its excellent accessibility.

5. Conclusion and future work

This paper presents an end-to-end online quality prediction method for
UMW based on sensor fusion and deep learning. As shown by a case study
using experimental data collected from an UMW process with four different tool
conditions, the proposed approach outperforms conventional feature engineering
and machine learning methods in terms of prediction accuracy. In addition, our
method has the advantage of automatic feature generation/selection and offers
an end-to-end solution for online UMW joint strength prediction. We present
three lightweight sensor fusion strategies that can be conveniently incorporated
into the prediction architecture. It is found that late fusion has the best pre-
diction accuracy. We also observe that the proposed deep learning method is
more effective than conventional feature engineering approaches in fusing data
from multiple sensors.

Drawing on this work, several future research directions may be worth ex-
ploring. First, this study employs ResNet with 20 convolutional layers. The
hyperparameters may be further tuned to improve the prediction performance.
Some key parameters such as the number of convolutional layers, choices of ac-
tivation layers, choices of loss function and learning rate can be carefully tuned
to further optimize the network. Other neural networks may also be explored.
Second, analyzing the feature maps generated by the ResNet in different welding
stages may advance the physical understanding of the UMW process. Moreover,
applying wavelet transform to the original signals instead of the truncated sig-
nals can preserve the high-frequency information contained in sensing signals,

which may help improve the prediction performance. Third, as discussed in Sec-
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tion 4.4, interpretable and explainable deep learning is particularly important
in manufacturing applications, but such methods are still lacking. As seen from
the presented correlation analysis, ResNet is able to resemble important physics-
based features. Future research efforts may be invested to reveal the underlying
mechanism for how ResNet automatically generates features that preserve phys-
ical information. Physics-informed machine learning is also worth studying to
enable the fusion of physical knowledge with data-driven approaches. Finally,
though improvements are achieved compared to state-of-the-art methods, the
prediction performance can be further improved by incorporating more variables
that influence the joint quality (e.g., surface condition of specimens) as inputs.
Such information will account for some variations in joint quality, thus helping

improve the prediction accuracy.

6. Acknowledgments

This research has been supported by the National Science Foundation under

Grant No. 1944345.

Appendix A. Feature extraction and selection in conventional ma-

chine learning methods

All the features developed in [14] are adopted by the conventional machine
learning models in Section 4. In addition, we extract more features based on the
observation reported in Section 3. It is seen that the energy for microphone and
displacement signals is concentrated on frequencies that are multiples of 1000
between 5 kHz and 50 kHz. We calculate the total energy and corresponding
energy proportion compared to the total energy in the signal every thousand
from 5 kHz to 50 kHz. In total, more than 300 features are calculated from
the sensing signals. However, not all all features are related to the joint quality
and too many features may lead to overfitting. Most of the commonly used fea-

ture selection methods can be conveniently implemented using Python’s sklearn
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library. Here, we use forward selection algorithm along with the mutual in-

formation calculation between features and joint strength residue. The feature

selection procedure is briefly summarized as follows.

1)

All 200 groups of experimental data are randomly divided into training
and test sets by a ratio of 4:1. Then we use the training set for feature

selection.

SVM with the RBF kernel is used as the regression model in the feature
selection process. The feature subset is used as the input to train an SVM
regression model. RMSE calculated using the current feature subset is

used as the evaluation index.

In each iteration of feature selection, the feature minimizing RMSE is
selected as a new feature and added to the feature subset. The procedure

is stopped when the RMSE is lower than a predetermined threshold.
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