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Abstract. Given a homogeneous ideal I in a polynomial ring over afield, onemay record, for
each degree d and for each polynomial f ∈ Id , the set of monomials in f with nonzero coef-
ficients. These data collectively form the tropicalization of I . Tropicalizing ideals induces
a “matroid stratification” on any (multigraded) Hilbert scheme. Very little is known about
the structure of these stratifications. In this paper, we explore many examples of matroid
strata, including some with interesting combinatorial structure, and give a convenient way
of visualizing them. We show that the matroid stratification in the Hilbert scheme of points
(P1)[k] is generated by all Schur polynomials in k variables. We end with an application to
the T -graph problem of (A2)[n]; classifying this graph is a longstanding open problem, and
we establish the existence of an infinite class of edges.

1. Introduction

Let k be a field. The support of a homogeneous polynomial f ∈ k[x1, . . . , xr ] is
the set ofmonomials with nonzero coefficient in f . Let I ⊆ R = k[x1, . . . , xr ] be a
homogeneous ideal. For each degree d, the data of all supports of polynomials in Id
comprise a combinatorial portrait called the tropicalization of Id , denoted Trop(Id).
A matroid (see [13] or Definition 2.5) is the data of a finite set E , together with
a subset of M ⊆ 2E satisfying certain combinatorial conditions. Trop(Id) is an
example of a matroid, where E = Mond is the set of degree d monomials in
x1, . . . , xr .

In this paper, we study I via the infinite sequence of matroids Trop(I ) =
(Trop(Id))d≥0; this sequence is the tropicalization of I . The matroids satisfy a
certain combinatorial compatibility condition, namely the defining condition of a
tropical ideal (Definition 2.8).

A (multigraded) Hilbert scheme is a moduli space parametrizing homogeneous
ideals. The fibers of the function I �→ Trop(I ) define a “matroid stratification”
on any Hilbert scheme, possibly with countably many strata, analogous to, and
generalizing, the more well-known matroid stratification on Gr(m,kn).

We identify the matroid stratification in the case of principal homogeneous
ideals in k[x, y], i.e. in the Hilbert scheme of points (P1)[k]. Note that a symmetric
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polynomial in k variables defines a divisor on (P1)[k] via the identification (P1)[k] ∼=
Symk(P1). Then:

Theorem 3.7. The matroid stratification on (P1)[k] is the stratification generated
by all Schur polynomials sλ in k variables.

We end with an application to the T -graph problem for (A2)[n], which was our
original motivation for the project. Let X be a variety with the action of an algebraic
torus T such that the fixed point set XT is finite. The T -graph of X is a graph with
vertex set XT , and an edge between two fixed points if they are the two limit points
of a 1-dimensional T -orbit. A Hilbert scheme has a T = (C∗)r -action by scaling
the variables x1, . . . , xr .Determining the T -graphs of Hilbert schemes is a difficult
problem that has been studied by Iarrobino, Evain, Altmann and Sturmfels, Hering
and Maclagan, and others [1,4,6,8]. We show:

Theorem 5.11. Let k = C. Let k ≥ 1 and d > k. Let S be the set of 1-dimensional
(C∗)2-orbits in (A2)[dk] whose limit points are the two fixed points (xk, yd) and
(xd , yk). Then S is a finite set, in natural bijection with the set of binary necklaces
with k black and d − k white beads. (In particular, (xk, yd) and (xd , yk) are
connected by an edge in the T -graph of (A2)[dk].)

In Sect, 3.2, we pose some easily-stated questions from combinatorial lin-
ear algebra that we cannot answer. The answers would elucidate the relationship
between Theorems 5.11 and3.7.
Relation to other work. The forthcoming paper [5] of Fink–Giansiracusa–
Giansiracusa is closely related to this one. Motivated by understanding “tropical
Hilbert schemes,” which are moduli spaces of tropical ideals over arbitrary valued
fields, they also investigate the tropicalizations of ideals of points in P

1.Our results
complement each other: this paper considers trivially valued fields, and Hilbert
schemes of arbitrarily many points on P

1, while they consider arbitrary valued
fields, but have results mainly for≤ 2 points in P

1. We hope that these perspectives
can be merged to describe tropical Hilbert schemes of arbitrarily many points in
P
1.
Zajaczkowska’s Ph.D thesis [14] studied the tropical Hilbert schemes of hyper-

surfaces of degrees 1 and 2 in P
1 and P

2. Among other things, the thesis contains
the case k = 2 of Corollary 5.11.

2. Multigraded Hilbert schemes and their matroid stratifications

2.1. Multigraded Hilbert schemes

Multigraded Hilbert schemes are the natural moduli spaces of homogeneous ideals
in a polynomial ring. Let k be a field, and consider the polynomial ring R =
k[x1, . . . , xr ].
Definition 2.1. For b ∈ Z>0, a (positive) Z

b-multigrading1 a = (
a1, . . . , 
ar ) on
R is an assignment of a multidegree 
ai ∈ Z

b≥0 \ {(0, . . . , 0)} to each variable xi . A
multigrading is nondegenerate if the rowspan of a is a rank-b lattice in Z

r .

1 There is a more general notion of multigrading that we will not need, see [7].



The matroid stratification of the Hilbert scheme 175

All multigradings from now on are assumed to be nondegenerate. A Z
b-

multigrading defines a decomposition R = ⊕
d∈Zb≥0

Rd . Any a-homogeneous

ideal I ⊆ R has a multigraded Hilbert function2 h : Z
b≥0 → N, defined by

h(d) = dimk(Rd/(I ∩ Rd)).
Haiman and Sturmfels [7] define a multigraded Hilbert scheme Hilbha(A

r ) that
is a projective finemoduli space for a-homogeneous idealswithmultigradedHilbert
function h. For each d ∈ Z

b≥0, there is a short exact sequence of vector bundles on

Hilbha(A
r ):

0 → Id → Rd → Qd → 0, (1)

where Id is the universal ideal sheaf, Rd denotes the trivial sheaf with fiber Rd ,
and Qd is the rank-h(d) universal quotient sheaf.

Example 2.2. An important special case is when I has finite colength, i.e.
dimk(R/I ) =∑d∈Zb≥0

h(d) < ∞. In this case V (I ) has finite length, and there is

a natural embedding Hilbha(A
r ) ↪→ (Ar )[

∑
d h(d)] into the Hilbert scheme of points

in A
r .

Example 2.3. When r = 2, Hilbha(A
2) is smooth, irreducible, and rational [11], see

also [4,8].

Example 2.4. If b = 1 and
∑

d h(d) is not finite, then Hilbh(a1,...,ar )(A
r ) has a

natural map to a Hilbert scheme of subschemes of the weighted projective space
P(a1, . . . , ar ), cut out by the same ideal.

This map need not be an embedding, essentially due to the fact that I ∈
Hilbha(A

r ) could have (x1, . . . , xr ) as an embedded prime.

2.2. Tropicalizing ideals

Tropical geometry usually takes place over a valued field, but in this paper we will
always assume k is trivially valued. We present the definitions we need only in this
simpler context; see [10] for the general definitions.

First we briefly recall the basics ofmatroid theory. See [13] for details, including
how to reconcile the following definition with the allusion in the introduction.

Definition 2.5. A matroid M = (E, r) is the data of a finite set E , called the
groundset, together with a function r : 2E → Z≥0 (where 2E is the power set of
E) called the rank function, such that:

(1) r(∅) = 0,
(2) For all subsets S, S′ ⊆ E, r(S ∪ S′) + r(S ∩ S′) ≤ r(S) + r(S′), and
(3) For every subset S ⊆ E and every element x ∈ E \ S, r(S) ≤ r(S ∪ {x}) ≤

r(S) + 1.

2 Positivity of a is necessary here; otherwise Rd/(I ∩ Rd ) need not be finite-dimensional.
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The rank of M is r(E). A subset S ⊆ E is called dependent if r(S) < |S|, and
independent otherwise. A maximal independent subset is called a basis, and all
bases have cardinality r(E). A minimal dependent subset is called a circuit, and
a union of circuits is called a cycle. A 1-element circuit is called a loop, and an
element of E not contained in any dependent sets is a coloop. The corank function
is r∗(S) = |S| − r(S). A subspace V ⊆ kE gives rise to a matroid Trop(V ) with
groundset E called its tropicalization, with rank function r(S) = dim(kS/V ∩kS)

for S ⊆ E . (Note that this is dual to some definitions in the literature.)

Example 2.6. Ifk is algebraically closed, the tropicalization of a generic dimension-
k subspaceV ∈ Gr(k,kE ) is theuniformmatroid Uk,E , definedby the rank function

r(S) =
{ |S| |S| ≤ k
k |S| ≥ k.

We will use the following two standard facts.

Lemma 2.7. Let V ⊆ kE be a subspace.

• If S ⊆ E is a circuit in Trop(V ), then there exists v = (ve)e∈E ∈ V such that
S = {e ∈ E : ve �= 0}.

• For any v = (ve)e∈E ∈ V , the set S = {e ∈ E : ve �= 0} is a cycle in Trop(V ).

(Over an infinite field, the converse of the second statement holds.)

Now we introduce our main objects of study.

Definition 2.8. Let a = (
a1, . . . , 
ar ) be a positive multigrading on k[x1, . . . , xr ].
Let Mond(a) denote the set of monomials of degree d with respect to the grading
a. A tropical (homogeneous) ideal M = (Md)d∈Zb≥0

with respect to the grading

a (over the Boolean semifield) is the data of, for each d ∈ Z
b≥0, a matroid Md =

(Mond(a), rd), such that
for any circuit S of Md , and any monomial m′ ∈ Mond ′(a), m′S is a cycle in

Md+d ′(a).
The multigraded Hilbert function of a tropical homogeneous ideal M is the

function d �→ rd(Mond(a)).

Just as a subspace of kn gives rise to a matroid (a “tropical linear space over the
Boolean semifield”), a homogeneous ideal with respect to the grading a gives rise
to a tropical homogeneous ideal with grading a:

Definition 2.9. Let I ⊆ k[x1, . . . , xr ] be a-homogeneous. The tropicalization of
I is Trop(I ) = (Trop(I )d)d∈Zb≥0

, where Trop(I )d = Trop(Id).

Observe that Lemma 2.7 implies that Trop(I ) satisfies the condition in Definition
2.8, and that the multigraded Hilbert functions of I and Trop(I ) agree by definition.
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2.3. Pictures of tropical ideals

When r = 2, we visualize a tropical ideal M as follows. We draw a grid whose
boxes representing monomials in two variables x and y, where the bottom-leftmost
square represents the monomial 1. We draw each circuit of M as a line segment
connecting a collection of dots in the grid; these dots correspond to monomials in
the circuit. We also label each degree d by the Hilbert function ofM , evaluated at
d. (For simplicity, all examples shown have the standard grading a = (1, 1).)

To avoid clutter, we may omit a circuit S ofMd if we deem it “uninformative,”
i.e. if S is “forced” to be dependent by the existence of a circuit in lower degree.
Precisely, from now on we omit a circuit S in degree d if there exists a circuit
S′ in degree d ′ < d and a collection T of degree-(d − d ′) monomials such that
S ⊆⋃m∈T mS′ and |S| >

∣
∣⋃

m∈T mS′∣∣− |T | . In this case, S must be dependent,
as follows.

Consider the ordering � on Mond(a) by increasing y-exponent. By Definition
2.8, each setmS′ is a cycle. For eachm ∈ T , select a circuit ofmS′ that contains the
�-minimal element ofmS′. Then a circuit elimination argument, exactly analogous
to matrix row-reduction, shows that the set

⋃
m∈T mS′ has corank at least |T |.

Example 2.10. The ideal I = (x3+ x2y+2xy2+3y3, x5, xy4) has tropicalization
pictured in Fig. 1, where in the left image all circuits are drawn, and in the right
image uninformative circuits are omitted.

2.4. Dependence loci and the matroid stratification

The operation of tropicalization defines a stratification of any multigraded Hilbert
scheme Hilbha(A

r ), as follows. Fix d ∈ Z
b≥0 andU ⊆ Mond(a), with � := |U |. We

give a scheme-theoretic restatement of the condition on I ∈ Hilbha(A
r ) that U be

dependent in Trop(I )d . Consider the tautological sequence (1) on Hilbha(A
r ). The

Fig. 1. Two pictures of Trop(x3 + x2y + 2xy2 + 3y3, x5, xy4). See Notation 4.4 for an
explanation of the colors/shading
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collection U defines, up to sign, an element of
∧� Rd . The wedge power of the

map Rd → Qd gives a global section σU of
∧� Qd . This section vanishes at I if

and only if the monomials in U are linearly dependent modulo Id , i.e. if and only
if U is a dependent set in Trop(Id). Thus we define:

Definition 2.11. The dependence scheme of U is

D(U ) := V (σU ) ⊆ Hilbha(A
r ).

It is immediate that dependence schemes are closed subschemes. Since matroids
are uniquely defined by their dependent sets, we define:

Definition 2.12. Let M be a tropical ideal. The matroid stratum S(M ) ⊆
Hilbha(A

r ) of M is the locally closed subscheme

⋂

d∈Zb≥0

⎛

⎝
⋂

U dependent inMd

D(U ) ∩
⋂

U independent inMd

D(U )C

⎞

⎠ .

Note that each stratum involves an infinite intersection of Zariski-open sets, and
therefore S(M ) may not be Zariski-locally closed. Indeed we will see in Sect. 3
that this does occur! However, if

∑
d∈Zb≥0

h(d) < ∞, then there are no independent

sets in sufficiently large degree—this implies there are finitely many strata in the
matroid stratification of Hilbha(A

r ), and they are Zariski-locally closed.

Remark 2.13. The number of strata in the matroid stratification of Hilbha(A
r ) is

countable, as follows. A stratum S(M ) is determined by the collection of sets
U such that D(U ) ⊇ S(M ); in particular, S(M ) is the unique stratum whose
Zariski closure is

⋂
d
⋂

U⊆Mond (a)
D(U )⊇S(M )

D(U ). As Hilbha(A
r ) is Noetherian, any such

intersection is actually finite; this defines an injective function from the set of
matroid strata in Hilbha(A

r ) into the set of finite intersections of the countable
collection {D(U )}U of subsets.

Note, however, that this argument does not imply that the number of tropical
idealswith fixed grading and Hilbert function is countable; indeed, we do not know
whether this is the case.

Example 2.14. Wehere introduce a simple, but surprising, example of a dependence
locus, which we will return to repeatedly. Assume k = C. Let r = 2, b = 1, and
a = (1, 1), and suppose there exists k ≥ 1 such that

h(d) =
{
d + 1 d < k
k d ≥ k.

(2)

The corresponding Hilbert scheme is the moduli space of principal homogeneous
ideals in k[x, y] generated in degree k, i.e. the Hilbert scheme (P1)[k] of length-k
subschemes of P

1. Fix d ≥ k, and let U = {xd , yd}. We classify D(U ) ⊆ (P1)[k].
Suppose I = ( f ) ∈ D(U ) ⊆ (P1)[k]. Then ( f ) contains a polynomial of

the form c1xd + c2yd , i.e. there exists a degree-(d − k) polynomial p such that
p f = c1xd +c2yd .Note that V (p f ) consists of the d points {[ζ : 1] : ζ d = c2/c1}
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(as long as c1 �= 0). These are the vertices of a regular d-gon in C centered at the
origin. Since V ( f ) is a length-k subscheme of V (p f ), V ( f ) consists of k of the d
vertices.

Conversely, given a collection of k points z1, . . . , zk ∈ C that are distinct ver-
tices of some regular d-gon centered at 0, the defining polynomial f of {z1, . . . , zk}
satisfies ( f ) ∈ D(U ) (simply by letting p be the defining polynomial of the other
d − k vertices).

To visualize D(U ) further, consider the C
∗-action on regular d-gons centered

at 0. This defines an action on D(U ), and the collection of ratios z2/z1, . . . , zk/z1
defines an orbit; this collection is equivalent to the data of a binary necklace with
k black and d − k white beads. Let Nd,k denote the set of such necklaces. Then
D(U ) is a union of rational curves indexed by Nd,k , all of which intersect at the
two points (xk) (where the d-gon is scaled down to 0) and (yk) (where the d-gon
is scaled out to ∞).

In a rank-k matroid (E, r), a set S ⊆ E with |S| ≤ k is dependent if and only if
S′ is dependent for every S′ ⊇ S with

∣
∣S′∣∣ = k. (This follows from the fact that all

bases have cardinality k.) We have the following scheme-theoretic version of this
fact, which we will use in Sect. 3:

Proposition 2.15. Fix a graded Hilbert function h. Let U ⊆ Mond(a) with |U | ≤
h(d). The dependence scheme D(U ) ⊆ Hilbha(A

r ) satisfies

D(U ) =
⋂

W⊇U
|W |=h(d)

D(W ).

(Note: This also holds if |U | > h(d), in which case both sides are equal to
Hilbha(A

r ).)

Proof. Consider the sequence of maps

|U |∧
Span(U )

ι−→
|U |∧

Qd
w−→

⊕

U ′∈( Mond
h(d)−|U |)

h(d)∧
Qd

p−→
⊕

U ′∈( Mond
h(d)−|U |)

U ′∩U �=∅

h(d)∧
Qd ,

where ι is the inclusion, p is the projection, andw(α) = α∧∧u∈U ′ u. Note thatw is
injective, as it is induced by the nondegenerate pairing

∧|U | Qd ⊗∧h(d)−|U | Qd →
k. Thus V (w(σU )) = V (σU ).

Also, p◦w◦ι is zero, sow◦ι factors through ker(p) =⊕
U ′∈( Mond

h(d)−|U |)
U ′∩U=∅

∧h(d) Qd .

Thus

D(U ) = V (σU ) = V (w(σU )) =
⋂

U ′∈( Mond
h(d)−|U |)

U ′∩U=∅

V (σU∪U ′) =
⋂

U ′∈( Mond
h(d)−|U |)

U ′∩U=∅

D(U ′ ∪U ).

��
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Thematroid stratification ofHilbha(A
r ) satisfies the following straightforward recur-

sivity relation, which implies that when studying strata, we may ignore ideals of
the form I = mI ′, where m is a monomial. There are natural inclusions ι1, . . . , ιr
between a-multigraded Hilbert schemes, defined by ιi (I ) = xi I.

Proposition 2.16. Let U ⊆ Mond(a). Then

ι−1
i (D(U )) = D

(
1

xi
(U \ {m ∈ U : xi � m})

)

.

We omit the proof, as it is straightforward, and we will use the Proposition only to
reduce the number of strata that are of interest.

3. The matroid stratification of (P1)[k]

Let k > 0. In this section, we will describe (Theorem 3.7) the matroid stratification
of Hilbha(A

r ) in the case r = 2, b = 1, a = (1, 1), and let h be as in (2). We write
R = k[x, y]. Note that Hilbha(Ar ) is simply the familiar Hilbert scheme of points
(P1)[k]. Recall that

(P1)[k] ∼= Symk(P1) ∼= P
k,

where [a0 : a1 : · · · : ak] ∈ P
k corresponds the principal ideal I = (a0xk +

a1xk−1y+· · ·+ ak yk) ∈ (P1)[k], and to the set of roots (with multiplicity) V (I ) ∈
Symk(P1).

We will describe the matroid stratification on (P1)[k] via vanishing loci of sec-
tions of line bundles. For convenience, we note that the sheaf O(n) on P

k is iden-
tified with the sheaf Symk(P1) of Sk-symmetric functions in k pairs of variables
x1, y1, . . . , xk, yk , bihomogeneous in each pair of variables of degree n. Also, the
tautological line bundle Ik on (P1)[k] (see (1)) is identified with the bundleO(−1)
on P

k .

3.1. The correspondence between Schur polynomials and subsets of monomials

We introduce the following version of Schur polynomials, bihomogenized in each
variable.

Definition 3.1. Let k ≥ 1. Let λ = (λ1, . . . , λm) be a partition, in nonincreasing
order, with c ≤ k parts. We write λi = 0 for c < i ≤ k. The bihomogeneous Schur
polynomial sλ in k variables is defined by

sλ(x1, y1, x2, y2, . . . , xk, yk) = a(λ1+k−1,λ2+k−2,...,λk+0)(x1, y1, . . . , xk, yk)

a(k−1,k−2,...,0)(x1, y1, . . . , xk, yk)
,

where

a(l1,l2,...,lk )(x1, y1, x2, y2, . . . , xk, yk) = det(xlij y
l1−li
j )
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is the Vandermonde determinant.
Similarly, the bihomogeneous elementary symmetric polynomials e j
are defined by

e j (x1, y1, . . . , xk, yk) =
∑

A⊆[k]
|A|= j

∏

i∈A

xi
∏

i /∈A

yi

Note that sλ is bihomogeneous of degree λ1 and e j is bihomogeneous of degree 1 in
each pair of variables xi , yi . To avoid confusion, we point out that e0 = y1 · · · yk .
Notation 3.2. Schur polynomials in k variables are indexed by partitions with at
most k parts, or alternatively by Young diagrams that fit inside a k × ∞ rectangle.
Since Young diagrams also appear in this paper in relation to monomial ideals, we
distinguish them as follows.We drawYoung diagrams related to Schur polynomials
with the longest row on top (English notation), as opposed the way we have been
drawing monomial ideals (French notation).

We now give a correspondence between Young diagrams and sets of monomials.

Definition 3.3. Fix h, k ≥ 1. Let λ be a partition whose Young diagram fits inside
the k× h rectangle in Z

2. (That is, λ has at most k parts, and λ1 ≤ h.) The width-h,
height-k rim path of λ is the lattice path Ph,k

λ inZ
2 that begins at (h, 0), and follows

the edge of the Young diagram down and to the left until it reaches (0,−k). We
index the steps of Ph,k

λ by i = 0, . . . , h + k − 1.
The width-h, height-k monomial set of λ is the set

Uh,k
λ = {xh+k−1−i yi ∈ Monh+k−1 : i ∈ {0, . . . , h + k − 1}

such that the i th step of Ph,k
λ is vertical}.

The definition is illustrated on the left in Fig. 2. Note that
∣
∣
∣Uh,k

λ

∣
∣
∣ = k.

Remark 3.4. The operation of taking the width-h, height-k monomial set has a clear
inverse, hence gives a bijection between partitions with at most k parts and λ1 ≤ h,
and k-element subsets of Monh+k−1 . Thus Proposition 2.15 implies:

Proposition 3.5. For any subset U ⊆ Monh+k−1,

D(U ) =
⋂

λ:Uh,k
λ ⊇U

D(Uh,k
λ ).

We show how to visualize Proposition 3.5 in an example.

Example 3.6. Let h = 7 and k = 5. Let U = {x11, x6y5, x2y9}. If λ is such that
U ⊆ U 7,5

λ , then the 0th, 5th, and 9th steps of P7,5
λ are vertical. Concretely, this says

precisely that the dashed red segments in Fig. 2 are not in P7,5
λ . (This also disallows

certain other segments from being in P7,5
λ ; we have shown these as dotted lines.)

Then a partitions λ satisfiesU ⊆ U 7,5
λ if and only if P7,5

λ consists of solid segments.

For example, λ = (7, 4, 4, 1) satisfies U ⊆ U 7,5
λ ; P7,5

λ is drawn in bold in Fig. 2.
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Fig. 2. Left: The width-5, height-3 rim path of λ = (4, 1) is drawn in bold, and the monomial
set isU5,3

(4,1) = {x6y, x2y5, y7}. Right: Allowed rim path segments from Example 3.6, with
the example λ = (7, 4, 4, 1) in bold

By Proposition 3.5, the matroid stratification of (P1)[k] is “generated” (via
taking intersections and complements) by the loci D(Uh,k

λ ). Thus the stratification
is entirely determined by the following:

Theorem 3.7. The dependence subscheme D(Uh,k
λ ) ⊆ (P1)[k] is the vanishing

locus of

e0(x1, . . . , yk)
h−λ1sλ(x1, . . . , yk)

(via the isomorphism (P1)[k] ∼= Symk
P
1).

Remark 3.8. A. Fink independently observed a connection between matroid strata
in (P1)[k] and Schur polynomials.

Proof. For notational convenience, in this proof we will write ei for ei (x1, . . . , yk)
and sλ for sλ(x1, y1, . . . , xk, yk).

Recall the tautological sequences (1). Let f be a nonvanishing local section of
the line bundle Ik . Then in terms of the roots [x1 : y1], . . . , [xk : yk], we have

f =
k∏

i=1

(yi x − xi y) = e0x
k − e1x

k−1y + · · · + (−1)kek y
k .

Step 0. Since eh−λ1
0 sλ is homogeneous in y1, . . . , yk , we may instead work with

the negative roots, and write

f =
k∏

i=1

(yi x + xi y) = e0x
k + e1x

k−1y + · · · + ek y
k .

The lack of signs will simplify Step 2.
Step 1.

By definition, D(Uh,k
λ ) is the vanishing locus of the section

σUh,k
λ

∈
∧k Qh+k−1 = Hom

(∧k
Span(Uh,k

λ ),
∧k Qh+k−1

)
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defined as the kth wedge of the chain of maps

Span(Uh,k
λ ) ↪→ Rh+k−1 → Qh+k−1.

By duality, there is a natural isomorphism

Hom

(∧k
Span(Uh,k

λ ),
∧k Qh+k−1

)

→ Hom

((∧k Qh+k−1

)∨
,

(∧k
Span(Uh,k

λ )

)∨)
.

The two exact sequences

0 → Ih+k−1 → Rh+k−1 → Qh+k−1 → 0

and

0 → Span(Uh,k
λ ) → Rh+k−1 → Qh+k−1 → 0

give identifications

(∧k Qh+k−1

)∨ ∼=
∧h Ih+k−1

(∧k
Span(Uh,k

λ )

)∨ ∼=
∧h Rh+k−1/Span(U

h,k
λ ).

ThusσUh,k
λ

is identifiedwith the sectionofHom
(∧h Ih+k−1,

∧h Rh+k−1/Span(U
h,k
λ )

)

defined as the h-th (top) wedge of the chain of maps

Ih+k−1
A−→ Rh+k−1

B−→ Rh+k−1/Span(U
h,k
λ ), (3)

i.e. det(B ◦ A). Note that

Hom

(∧h Ih+k−1,
∧h Rh+k−1/Span(U

h,k
λ )

)

∼= Hom

(∧h
(Rh−1 ⊗ Ik),

∧h Rh+k−1/Span(U
h,k
λ )

)

∼= Hom

(∧h Rh−1 ⊗ I⊗h
k ,

∧h Rh+k−1/Span(U
h,k
λ )

)

∼= (I∗
k )⊗h ∼= O(h),

Step 2. By principality,
there is a natural multiplication isomorphism

Rh−1 ⊗ Ik → Ih+k−1.
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The inclusion A from (3) has the following matrix XA with respect to the basis
{m ⊗ f : monomials m ∈ Rh−1} for Ih+k−1 and the monomial basis for Rh+k−1
(ordered such that larger powers of x appear first):

XA = (eb− j
)0≤ j≤h−1
0≤b≤h+k−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e0 0 · · · 0 0
e1 e0 · · · 0 0

e2 e1
. . . e0 0

...
...

. . . e1 e0

ek ek−1
. . . e2 e1

0 ek
. . .

... e2
...

...
. . . ek

...

0 0 · · · 0 ek

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

The (square) matrix XB◦A of B ◦ A is obtained by deleting the rows corresponding
to elements ofUh,k

λ . Let X ′
B◦A be the matrix obtained by reversing the order of the

rows and the order of the columns in XB◦A. Define b0, . . . , bh−i so that the i-th
row of X ′

B◦A is the bi -th row of XA.

Note that rows of X ′
B◦A correspond to rightward steps in the reversed width-h,

height-k rim path of λ—that is, to columns in the Young diagram of λ. The i-th
row of X ′

B◦A (starting with i = 0) has entries e�i , e�i+1, . . . , e�i+h−1, where

�i = k − i − #{b ≤ bi : xb yh+k−1−b ∈ Uh,k
λ }.

Since elements of {b ≤ bi : xb yh+k−1−b ∈ Uh,k
λ } correspond to upward steps in

the reversed rim path, we see that �i + i = k − #{b ≤ bi : xb yh+k−1−b} is the
i-th entry of the conjugate partition λ′. (Here λ′ is taken to have exactly h entries,
some of which may be zero.) Thus X ′

B◦A = (eλ′
i+ j−i )

h−1
i, j=0. Note that �i + i = 0

for λ1 < i ≤ h. Expanding the determinant along the last h − λ1 rows gives

det(XB◦A) = eh−λ1
0 det((eλ′

i+ j−i )
λ1
i, j=0).

By the second Jacobi-Trudi formula, det(XB◦A) = ± det(X ′
B◦A) = ±eh−λ1

0 sλ.
��

Remark 3.9. If λk > 0, then expanding the Jacobi-Trudi formula gives

sλ = eλk
k s(λ1−λk ,λ2−λk ,...,λk−1−λk )(x1, . . . , yk).

In particular, Theorem 3.7 now implies that

D(Uh,k
λ ) = V (eh−λ1

0 eλk
k s(λ1−λk ,λ2−λk ,...,λk−1−λk )(x1, . . . , yk)).

This is a manifestation of Proposition 2.16.

Remark 3.10. Theorem 3.7 reduces all questions about the matroid stratification to
questions about the intersection theory of Schur polynomials – however, it appears
that intersection theory of Schur polynomials has not been actively studied.
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Remark 3.11. If k = C (or more generally if k is uncountable and algebraically
closed), it follows from Theorem 3.7 that for a very general point I ∈ (P1)[k],
Trop(Id) is the uniform matroid of the appropriate rank, for all d. This is a special
case of a forthcoming result byMaclagan and the author, which states that under the
same assumptions onk, a very general point I ∈ Hilbh(a,b)(A

2) satisfies Trop(Id) =
Uh(d),Mond (a,b) for all d, where (a, b) is any positive grading and h is any Hilbert
function. (Recall Example 2.6.)

Example 3.12. We continue Example 2.14. Fix k ≥ 1 and d ≥ k. By Proposition
3.5 and Theorem 3.7, there is a certain set of Schur polynomials in k variables
whose common vanishing locus is a collection of rational curves indexed by the set
Nd,k of binary necklaces with k black and d − k white beads. One may also show
this directly, as follows.

By the analysis in Example 3.6, the Schur polynomials in question are precisely
those sλ such that λ has at most k − 1 parts, and λ1 = d − k + 1. The vanishing
of these polynomials is highly non-transverse; however, calculations using the first
Jacobi-Trudi formula show that the ideal they generate is in fact equal to the ideal
J = (hd−k+1, hd−k+2, . . . , hd−1), where hi is the i-th (bihomogeneous) complete
symmetric polynomial, i.e.

hi =
∑

i1,...,ik≥0
i1+···+ik=i

k∏

j=1

x
i j
j y

i−i j
j .

By [2], these polynomials form a regular sequence, so V (J ) ⊆ (P1)[k] is 1-
dimensional, as desired.

Onemay show directly that if z1, . . . , zk ∈ CP
1 are distinct vertices of a regular

d-gon centered at 0, then the polynomials hd−k+1, . . . , hd−1 vanish at (z1, . . . , zk).
This shows that D(U ) contains the collection of rational curves in Example 2.14.
One may then show by a degree calculation that the D(U ) does not contain any
other points.

3.2. An open problem interlude: the tropical ideal associated to a necklace

Following Examples 2.14 and 3.12, we now pose a natural combinatorial question,
to which we do not know the answer. Let γ ∈ Nd,k be a necklace with k black beads
and d − k white beads. There is a corresponding curve Cγ

∼= C
∗ inD({xd , yd}) ⊆

(P1)[k]. In fact, as Cγ is a torus orbit (see Sect. 4), it has the property that any
I ∈ Cγ has the same tropicalization Trop(γ ) := Trop(I ). (In other words, Cγ is in
a single matroid stratum; we will see that it may not be an entire matroid stratum.)
For example, see Figs. 3 and4.

Question 3.13. Is there a combinatorial algorithm to compute the function γ �→
Trop(γ )?

We do not have a full answer to this question, but we now discuss it further.
Let γ ∈ Nd,k . We know that {xd , yd} is dependent in Trop(γ ). Note that for any
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Fig. 3. The three elements of N6,2 and their tropicalizations. Each equation defines (the
closure of) the corresponding stratum in (P1)[2] ∼= Sym2

P
1

Fig. 4. The ten elements of N8,4 and their tropicalizations

d ′ ≥ k, {xd ′
, yd

′ } is dependent in Trop(γ ) if and only if the black beads of γ are a
subset of the vertices of a regular d ′-gon. Rephrasing this:

Proposition 3.14. Let γ ∈ Nd,k, and let α be the gcd of the k distances between
consecutive beads in γ . (Since the sum of these distances is d, d is divisible by α.)
Then {xd ′

, yd
′ } is dependent in Trop(γ ) if and only if d ′ is a multiple of d/α.

Note that this explains all circuits in Fig. 3. We also note the following condition,
which implies certain necklaces have the same tropicalization.

Proposition 3.15. Let γ ∈ Nd,k, and let a ∈ (Z/dZ)×. We define aγ to be the

necklace obtained by traversing γ by jumps of length a. (For example, if γ = ,

then 3γ = = ). Then Trop(γ ) = Trop(aγ ).

Proof. The independence of any k-element setUg,k
λ in Trop(γ ) is determined by the

nonvanishing of an element of C obtained by field operations applied to a primitive
dth root of unity ζ (namely, the determinant of the associated Schur matrix). This
nonvanishing is preserved by the field automorphism that sends ζ �→ ζ a, which
determines the independence of Ug,k

λ in Trop(γ ). ��
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Question 3.16. Does the converse of Proposition 3.15 hold? That is, can there exist
γ1, γ2 ∈ Nd,k such that Trop(γ1) = Trop(γ2), but γ2 �= aγ1 for a ∈ (Z/dZ)×?
Observe that no counterexamples appear in Figs. 3 or 4.

In order to fully characterize Trop(γ ), we need to know not only which sets
{xd ′

, yd
′ } are dependent, but which sets Ug,k

λ are dependent.
Let γ ∈ Nd,k . Given λ a partition with at most k parts, let ηd,k(λ) =

{ζ λi+k−i−1
d : i = 1, . . . , k}. Let ζ

a1
d , . . . , ζ

ak
d be a set of points representing γ,

and note that

sλ(ζ
a1
d , . . . , ζ

ak
d ) = det

(
(ζ

a j (λi−i−1+k)
d )ki, j=1

)
/V,

where V is a Vandermonde determinant (which is guaranteed to be nonzero
at ζ

a1
d , . . . , ζ

ak
d ). If λ is such that two elements of ηd,k(λ) coincide, then

sλ(ζ
a1
d , . . . , ζ

ak
d ) = 0 since two rows of the defining matrix are equal.

On the other hand, if ηd,k(λ) contains k distinct elements, then ηd,k(λ) naturally
corresponds to a necklace with k black beads and d − k white beads. In particular,
reordering and scaling ηd,k(λ) corresponds to reordering and scaling the rows of
the matrix in the definition of sλ(ζ

a1
d , . . . , ζ

ak
d ), which does not affect its rank –

hence, the question of whether γ ∈ D(Ug,k
λ ) for some γ ∈ Nd,k depends only on

the necklace ηd,k(λ), not λ itself. This dependence is, interestingly, commutative
in the following sense.

Proposition 3.17. Let γ ∈ Nd,k such that γ = γ (λ). Then γ ∈ D(Ug,k
λ′ ) if and

only if γ (λ′) ∈ D(Ug,k
λ ).

Proof. This follows immediately from det(A) = det(AT ). ��
Answering Question 3.13 now boils down to:

Question 3.18. Let γ1 and γ2 be necklaces. We choose identifications of γ1 and γ2
with k-element subsets {γ1,i } and {γ2, j } ofZ/dZ. Is there a combinatorial algorithm

to determine whether the determinant D(γ1, γ2) := det
(
(ζ

γ1,iγ2, j
d )ki, j=1

)
vanishes?

Remark 3.19. Experimentally, one may find sufficient conditions for the vanishing
of the above determinant. In particular, one may prove a statement of the follow-
ing form: if a divides d, and the k black beads of γ1 are distributed “sufficiently
unequally” among the μa-orbits of the dth roots of unity, and the k black beads of
γ2 are distributed “sufficiently unequally” among theμd/a-orbits of the dth roots of
unity, then D(γ1, γ2) = 0. However, we do not know of any necessary conditions;
an additional idea would be needed to prove that any determinants are nonzero.

4. Equivariant structure of Hilbha (A
r) and the T -graph problem

In this section, we rephrase some of the precedingmaterial in terms of torus actions.
Let k be algebraically closed in this section. The condition of a-homogeneity for
an ideal I is equivalent to the invariance of I under the action of a certain subtorus
of T := (k∗)r—specifically, the image of the homomorphism (k∗)b → (k∗)r
defined by the matrix of exponents a.
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Example 4.1. The ideal (x2y+z6) ⊆ k[x, y, z] is homogeneous with respect to the
grading ((3, 0), (0, 6), (1, 1)). This ideal is invariant under elements of T = (k∗)3
of the form (λ31, λ

6
2, λ1λ2),which act on the polynomial x2y+ z6 by multiplication

by λ61λ
6
2.

The torus T acts on Hilbha(A
r ) with stabilizers isomorphic to T/(k∗)b, so the

dimension of any T -orbit T · I is at most r − b (by nondegeneracy). There is a
stratification of Hilbha(A

r ) by T -orbit dimension; it is easy to check that the (finite
set of) monomial ideals with graded Hilbert function h are the T -fixed points.

If b = r − 1, then for every h and a, every T -orbit in Hilbha(A
r ) is either

a monomial ideal or is isomorphic to T/(k∗)b ∼= k∗. Each 1-dimensional orbit
T · I has two “endpoints;” these are initial monomial ideals of I with respect to
appropriate term orders. (When r = 2, the two term orders are x > y and y > x .
See [6].)

Observation 4.2. Since Trop(I ) is defined in terms of supports of polynomials,
and T acts by multiplying coefficients by nonzero scalars, we always have Trop(T ·
I ) = Trop(I ). In particular, every dependence locus and stratum of the matroid
stratification is T -invariant. As initial ideals in≺(I ) are defined via supports of
polynomials, they are recoverable from Trop(I ), as in the following definition.

Definition 4.3. Let M = (E, r) be a matroid, and let � be a total ordering on E .
The initial matroid of M with respect to � is the matroid in�(M) = (E, r ′) whose
circuits are {min�(c) : c a circuit of M}. (It is a straightforward exercise to check
that these circuits define a matroid. In fact, in�(M) is a discrete matroid, i.e. every
element of E is either a loop or a coloop of in�(M).)

If M is a tropical ideal, and � is a monomial order, then the initial tropical
ideal of M is defined by in�(M )d = (in�(Md)).

Notation 4.4. When r = 2, there is a natural term order x � y. When drawing a
tropical ideal M , we color-code each monomial m as follows:

• Blue and horizontally striped if m is not a circuit of in�(M ), and
• Red and vertically striped if m is not a circuit of in�(M ).

More simply, a box is blue if it does not contain the bottom-right-most dot of any
line segment, and red if it does not contain the top-left-most dot of any line segment.

The T -graph problem (see [1]) asks which pairs of T -fixed points in Hilbha(A
r )

are endpoints of a 1-dimensional T -orbit. The problem has been studied extensively
[1,3,4,6,8]. An algebraic algorithm via Gröbner theory for generating the T -graph
was given in [1] and later implemented as the TEdges Macaulay2 package [9];
given two monomial ideals M1 and M2, the algorithm produces equations that cut
out the “edge scheme” E(M1, M2) ⊆ Hilbha(A

r ) consisting of ideals I such that
M1 and M2 are the endpoints of T · I. By the observation above, E(M1, M2) is a
union of matroid strata.

Recall (Example 2.2) that if h has finitely many nonzero entries, there is an
(equivariant) embedding Hilbha(A

r ) ↪→ (Ar )[
∑

d h(d)]. In particular, (Ar )[n] con-
tains every multigraded Hilbert scheme Hilbha(A

r ), where
∑

d h(d) = n and a is
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Fig. 5. The T -graphs of Hilb(1,2,2,1,1,0,...)
(1,1) and (A2)[7]

arbitrary, as a closed subscheme. If r = 2, then any non-monomial ideal is homo-
geneous with respect to at most one positive grading. Thus the T -graph problem for
(A2)[n] is equivalent to the T -graph problem for every multigraded Hilbert scheme
Hilbha(A

2), where
∑

d h(d) = n.

Example 4.5. In Fig. 1, the colored boxes signify that the two endpoints of T · I
are (x5, x3y2, y3) and (x3, xy4, y5). Thus I is a point of the edge scheme

E
(

,
)

⊆ Hilb(1,2,3,3,3,1,0,...)
(1,1) (A2) ⊆ (A2)[13].

Example 4.6. One may compute using TEdges that Hilb(1,2,2,1,1,0,0,...)
(1,1) (A2) is

equivariantly isomorphic to P
1 × P

1 with the diagonal action of k∗. On the left in
Fig. 5 is its T -graph, drawn in thick black lines, and on the right is the T -graph
of (A2)[7], with the corresponding edges thickened. The gray curves on the left
are intended to depict the 1-dimensional family of T -orbits that correspond to the
single diagonal edge in the T -graph. (The edges of the outer rectangle correspond
to single 1-dimensional T -orbits.) There are ten matroid strata:

• The four monomial ideals,
• The four black edges of the outer rectangle,
• The red curve, representing ideals of the form (x2 − c2y2, xy2 + cy3, y5), and
• The open stratum, representing ideals of the form (x2 + c1xy + (c1c2 −
c22)y

2, xy2 + c2y3, y5) with c1 �= 0.

By viewing T -orbit-closures as rational curves in Hilbha(A
r ), and usingmachin-

ery of unbroken stable maps [12], one may associated to each multigraded Hilbert
scheme (or edge scheme, or intersection of dependence loci) a moduli space

Mh
a(A

r ), which roughly parametrizes T -orbit-closures and their degenerations.
(More specifically, the moduli space parametrizes T -invariant maps f : C →
Hilbha(A

r ), possibly ramified, from nodal rational curves to Hilbha(A
r ), such that f

is locally T -equivariantly smoothable at every node of C .)

Example 4.7. In Example 4.6, M(1,2,2,1,1,0,...)
(1,1) (A2) ∼= P

1, with two points corre-
sponding to the two degenerations of orbits into nodal rational curves (unions of

orbits). Another example is M(1,2,1,0,...)
(1,1) (A2) ∼= P(2, 1), a weighted projective

stack. The orbifold point corresponds to a family of 1-dimensional orbits whose
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limit is a doubled line. (In fact, Hilb(1,2,1,0,...)
(1,1) is equivariantly isomorphic to P

2

with the k∗-action λ · [x : y : z] = [λx : λ−1y : z]. The orbits are conics xy = cz2,
and the doubled line above is the limit c → ∞.)

Example 4.8. Consider again Example (2). and let γ ∈ Nd,k . Suppose γ has order

d ′ rotational symmetry,where d ′|d.. Then the element ζ d/d ′
d ∈ C

∗ = T acts trivially
on the T -orbit in D({xd , yd}) ⊆ (P1)[k] associated to γ , and T acts with weight
d ′ on this orbit. It follows that the moduli space M associated to D({xd , yd})
contains a single orbifold point with isotropy group Z/d ′

Z corresponding to γ.

Altogether,M is isomorphic (as a stack) to the moduli space of necklaces Nd,k =[({1,...,d}
k

)
/(Z/dZ)

]
.

Example 4.9. Using TEdges, we compute that the moduli space associated to the

E
(

,
)
is a single point.

However, thismoduli spacehas “empty interior,” in the sense that E
(

,
)

is actually empty, and the point in question corresponds to the nodal union of two
T -orbits, with the node mapping to .

Question 4.10. The moduli spaces defined above have essentially not been studied.

We ask, for example: Is Mh
a(A

2) smooth (as a stack) for all a and h? Rational?
What about the moduli spaces associated to edge schemes? (From Example 2.14,
these may be disconnected.)

Note that in light of Mnëv’s universality theory, the moduli spaces associated
to arbitrary matroid strata-closures are expected to be arbitrarily badly-behaved.

5. Applications to finite-length Hilbert schemes

Finally, we give a way to apply Theorem 3.7 to the T -graph problem for Hilbha(A
2).

First we need the following, which is quite useful for working with initial ideals.

Lemma 5.1. Let M = (E, rM ) be a matroid, and let � be a total order on E.
Let B�(M) be the set of coloops of the (discrete) initial matroid in�(M) (in other
words, B�(M) is the unique basis for in�(M)), and let B�(M) be the set of coloops
of in�(M).

Let m ∈ E, and suppose
∣
∣{m′ ∈ B�(M) : m′ � m}∣∣− ∣∣{m′ ∈ B�(M) : m′ � m}∣∣

≤ ∣∣{m′ ∈ B�(M) : m′ � m}∣∣
− ∣∣{m′ ∈ B�(M) : m′ � m}∣∣ . (5)

Then m is either a loop or a coloop of M.

Proof. The following are easy to check using matroid contraction and deletion
operations:

∣
∣{m′ ∈ B�(M) : m′ � m}∣∣ = r({m′ ∈ E : m′ � m})
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Fig. 6. Tropicalizations of I = (x2 − y2) (left) and I + (x3) (right)

∣
∣{m′ ∈ B�(M) : m′ � m}∣∣ = r(E) − r({m′ ∈ E : m′ � m})
∣
∣{m′ ∈ B�(M) : m′ � m}∣∣ = r(E) − r({m′ ∈ E : m′ ≺ m})
∣
∣{m′ ∈ B�(M) : m′ � m}∣∣ = r({m′ ∈ E : m′ � m}).

Note that r({m′ ∈ E : m′ � m})+ r({m′ ∈ E : m′ � m}) ≥ r(E), with equality if
and only if M is the direct sum of matroids on the groundsets {m′ ∈ E : m′ � m}
and {m′ ∈ E : m′ � m}. Similarly, r({m′ ∈ E : m′ ≺ m}) + r({m′ ∈ E : m′ �
m}) ≥ r(E), with equality if and only if M is the direct sum of matroids on the
groundsets {m′ ∈ E : m′ ≺ m} and {m′ ∈ E : m′ � m}. Thus the left side of
(5) is nonnegative, the right side is nonpositive, and both are zero if and only if
M is a direct sum of matroids on the groundsets {m′ ∈ E : m′ ≺ m}, {m}, and
{m′ ∈ E : m′ � m}. Thusm is either a loop (if the summand on {m} has rank zero),
or a coloop (if that summand has rank 1). ��
We apply Theorem 3.7 via the observation that one can obtain a finite-colength
ideal from a principal ideal by adding an appropriate monomial ideal: if I is a-
homogeneous, and N is a monomial ideal, then I + N is also a-homogeneous. (Of
course, not all finite-colength ideals can be obtained this way, e.g. (x2 − xy, xy −
y2, x3) cannot.)

Example 5.2. Consider I = (x2 − y2) ∈ (P1)[2]. If N = (x3), then I + N =
(x2−y2, x3) is an ideal of colength 6, with tropicalization shown in Fig. 6. Note that
adding N does not commutewith taking initial ideals; for example, inx<y(I )+N =
(x2) + (x3) = (x2), while inx<y(I + N ) = (x2, xy2, y4).

Definition 5.3. A homogeneous ideal I ⊆ R is PPM (short for principal plus
monomial) if I = ( f ) + N for some f ∈ R homogeneous, and some monomial
ideal N .

The analogous operation of matroids is the “looped contraction.” (We do not know
of a standard term for this operation.)

Definition 5.4. Let M = (E, r) be a matroid, and let S ⊆ E . The contraction
M/S of M at S is the matroid with groundset E \ S whose circuits are the minimal
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elements of {S′ ∩ (E \ S) : S′ a circuit of M}. In other words, for T ⊆ E \ S,

rM/S(T ) = rM (S ∪ T ) − rM (S).

The looped contraction M ÷ S is the matroid M ÷ S = M/S ⊕ U0,S, where
U0,S is the uniform matroid from Example 2.6. Note M ÷ S has groundset E and
rank r(M) − r(S), and elements of S are loops in M ÷ S. The rank function is
given, for T ⊆ E, rM÷S(T ) = rM (S ∪ T ) − rM (S).

LetM be a tropical ideal, and let N be amonomial ideal. The looped contraction
M ÷ N ofM at N is the tropical ideal defined by (M ÷ N )d = Md ÷ Sd , where
Sd is the set of monomials in Nd . It is straightforward to check that M ÷ N is a
tropical ideal.

A tropical ideal M is tropically principal if it has the Hilbert function of a
principal ideal, i.e. if there exists c ∈ Z

b≥0 such that

rk(Md) = |Mond(a)| − |Mond−c(a)|
for all d ∈ Z

b≥0. (We sayM is generated in degree c.) A tropical idealM is PPM
if there exists a tropically principal tropical idealM ′ and a monomial ideal N such
that M = M ′ ÷ N .

A straightforward calculation using the rank function in Definition 5.4 yields:

Proposition 5.5. For any homogeneous ideal I and any monomial ideal N ,
Trop(I + N ) = Trop(I ) ÷ N .

Corollary 5.6. Let M be a tropically principal tropical ideal, and let N be a
monomial ideal. Then I �→ I + N defines a morphism S(M ) → S(M ÷ N ).
(Note that S(M ÷ N ) lies in a single multigraded Hilbert scheme.)

Corollary 5.7. Let J ⊆ R be an ideal. If J is PPM, then Trop(J ) is PPM.

The converse of Corollary 5.7 does not hold:

Example 5.8. Let k = C. The tropical ideal M in Fig. 7 is PPM, since M =
Trop(( f ) + N ), where f = x3 + x2y + 2xy2 + y3 and N = (x4, x3y2, x2y3, y4).
(It is straightforward to check that the roots of f do not differ by 4th roots of unity,
hence f /∈ D({x4, y4}). This implies that Trop(( f )+N )4 has rank 1, as shown.) On
the other hand,we also haveM = Trop(((x−y)(x−iy)(x+y), x3y+2x2y2)+N ),

as follows. Since ((x−y)(x−iy)(x+y)) ∈ D({x4, y4}), Trop(((x−y)(x−iy)(x+
y)) + N )4 has rank 2, and adding x3y + 2x2y2 reduces the rank to 1. (It is again
easy to check that neither ideal contains any extra monomials in degree 4.)

Lastly, we observe that ((x − y)(x − iy)(x + y), x3y+2x2y2)+N is not PPM.
If it were, it would necessarily be generated in degree 4 by {x(x − y)(x − iy)(x +
y), y(x − y)(x − iy)(x + y), x4, y4}; these span too small a subspace.

The following is the key observation for applying Sect. 3 to Hilbert schemes of
finite-length subschemes.

Lemma 5.9. Let I = ( f )+ N be a PPM ideal. Let U ⊆ Nd be a set of monomials
such that |U | > rTrop(( f ))(Mond(a1, a2)) − rTrop(I )(Mond(a1, a2)). Then ( f ) ∈
D(U ).
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Fig. 7. A tropical ideal that is the tropicalization of both a PPM ideal and a non-PPM ideal

Proof. By Proposition 5.5,

rTrop(I )(Mond(a1, a2)) = rTrop(( f ))(Mond(a1, a2)) − rTrop(( f ))(Nd).

By assumption,

|U | > rTrop(( f ))(Mond(a1, a2)) − rTrop(I )(Mond(a1, a2))

= rTrop(( f ))(Nd) ≥ rTrop(( f ))(U ),

so U is dependent. ��
Remark 5.10. One can apply Lemma 5.9 as follows. Often, it can be argued that
a given matroid stratum (or edge scheme) S must consist only of PPM ideals.
In this case, recording the nonmonomial generator (where monomials in N are
given coefficient zero) defines a natural embedding from S to a Hilbert scheme
Hilbha(P

r−1) ∼= P
N of principal ideals. Lemma 5.9 then says that the embedding

factors through
⋂

U D(U ) ⊆ Hilbha(P
r−1), where U runs over sets satisfying the

condition in the hypothesis.

We conclude by illustrating this method in our running example, Example 2.14.

Theorem 5.11. Let k ≥ 1 and d0 > k. Let M1 (resp. M2) be the partition whose
Young diagram is an d0 × k (resp. k × d0) rectangle. Then the edge scheme
E(M1, M2) ⊆ (A2)[d0·k] is isomorphic to D({xd0 , yd0}) ⊆ (P1)[k], i.e. it consists
of a collection of rational curves, indexed by necklaces with k black and d0 − k
white beads, all of which meet at two points.

Proof. First, we argue that any ideal I in the edge scheme E(M1, M2) is PPM,
with nonmonomial generator in degree k. Note that the Hilbert function of M1 and
M2 with respect to the grading (1, 1) is

(1, 2, . . . , k, k, . . . , k
︸ ︷︷ ︸

d0−k+1

, k − 1, . . . , 1, 0, 0, . . .)

=

⎧
⎪⎪⎨

⎪⎪⎩

d + 1 0 ≤ d ≤ k − 1
k k ≤ d ≤ d0 − 1
d0 + k − 1 − d d0 ≤ d ≤ d0 + k − 1
0 d > d0 + k − 1.
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For d ≤ k − 1, dim Id = 0. For k ≤ d ≤ d0 − 1, dim Id = d + 1 − k, which
implies Id is spanned by the d + 1 − k linearly independent monomial multiples
of the generator of Ik .

For d0 ≤ d ≤ d0 + k − 1, Id contains the d + 1 − k monomial mul-
tiples of the generator of Ik , as well as the d − d0 + 1 consecutive monomi-
als xd , xd−1y, . . . , xd0 yd−d0 , by Lemma 5.1. Since d − d0 < k, by an upper-
triangularity argument, these (d + 1 − k) + (d − d0 + 1) vectors are all linearly
independent. On the other hand,

dim Id = 2d − k − d0 + 2 = (d + 1 − k) + (d − d0 + 1).

In particular, if f is a generator of Ik , we have shown that I = ( f ) + (xd0), hence
is PPM. (This is from the case d = d0.)

Next, we apply Lemma 5.9. Again by Lemma 5.1, yd0 ∈ I, so we may as well
write I = ( f ) + (xd0 , yd0). Let U = {xd0 , yd0}, and note that

2 = |U | > rTrop(( f ))(Mond0) − rTrop(I )(Mond0) = k − (k − 1) = 1.

ByLemma 5.9, f ∈ D(U ).This shows thatM(M1, M2) ⊆ Nd0,k , and the opposite
inclusion follows immediately from counting ranks in each grade. ��

Theorem 5.11 immediately generalizes, with the same proof, to the case where
M1 andM2 are both “cut off” in some degree d1 > d0.For example,M(M1, M2) ∼=
N6,4, where

M1 = M2 = .
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