
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022 2433

Attack Resilience of Cache Replacement Policies:

A Study Based on TTL Approximation

Tian Xie , Student Member, IEEE, Namitha Nambiar, Ting He , Senior Member, IEEE,

and Patrick McDaniel , Fellow, IEEE, ACM

Abstract— Caches are pervasively used in communication
networks to speed up content access by reusing previous com-
munications, where various replacement policies are used to
manage the cached contents. The replacement policy of a cache

plays a key role in its performance, and is thus extensively
engineered to achieve a high hit ratio in benign environments.
However, some studies showed that a policy with a higher hit
ratio in benign environments may be more vulnerable to cache
pollution attacks that intentionally send requests for unpopular
contents. To understand the cache performance under such
attacks, we analyze a suite of representative replacement policies
under the framework of TTL approximation in how well they
preserve the hit ratios for legitimate users, while incorporating
the delay for the cache to obtain a missing content. We further
develop a scheme to adapt the cache replacement policy based on
the perceived level of attack. Our analysis and validation on real
traces show that although no single policy is resilient to all the
attack strategies, suitably adapting the replacement policy can
notably improve the attack resilience of the cache. Motivated by
these results, we implement selected policies as well as policy
adaptation in an open-source SDN switch to manage flow rule
replacement, which is shown to notably improve its resilience to
pollution attacks.

Index Terms— Cache replacement, access delay, cache pollu-
tion attack, attack resilience, TTL approximation.

I. INTRODUCTION

A
S ONE of the most widely-applied techniques in com-

puter systems, caching can significantly boost system

performance by storing and reusing previous computation or

communication results. In the networking context, caches can

serve requests close to the users, and thus reduce content

access latency, network traffic load, and server workloads.

Because of these benefits, they have been widely deployed

Manuscript received 11 June 2021; revised 17 October 2021 and 5 March
2022; accepted 16 April 2022; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor Y. Liu. Date of publication 27 May 2022; date
of current version 20 December 2022. This work was supported in part
by the National Science Foundation under Award CNS-1946022, in part by
the U.S. Army Combat Capabilities Development Command Army Research
Laboratory, and in part by the U.S. Army Research Laboratory (ARL)
Cyber Security Collaborative Research Alliance (CRA) under Cooperative
Agreement W911NF-13-2-0045. A preliminary version of this work was
presented at INFOCOM’21 [DOI: 10.1109/INFOCOM42981.2021.9488697].
(Corresponding author: Tian Xie.)

Tian Xie, Ting He, and Patrick McDaniel are with the Department of
Computer Science and Engineering, The Pennsylvania State University,
University Park, State College, PA 16802 USA (e-mail: tbx5027@psu.edu;
tzh58@psu.edu; pdm12@psu.edu).

Namitha Nambiar is with LinkedIn, Sunnyvale, CA 94085 USA (e-mail:
namitha.snambiar95@gmail.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2022.3171720, provided by the authors.

Digital Object Identifier 10.1109/TNET.2022.3171720

in a variety of systems, e.g., World Wide Web (WWW) [2],

Content Delivery Networks (CDNs) [3], Information Centric

Networking (ICN) [4], and Domain Name System (DNS) [5].

In the emerging paradigm of Software Defined Networking

(SDN), caches called flow tables are used to store controller

instructions to alleviate the data-control plane bottleneck.

An attractive property of caches is that they are plug-and-

play components that automatically adapt their contents to

the current needs. At the core of this adaptation is a suite

of replacement policies that decide which contents to evict to

make room for new contents. There is a long series of works

on developing and analyzing cache replacement policies, from

simple First In First Out (FIFO) or Least Recently Used (LRU)

to sophisticated policies involving virtual caches and multiple

stages [6], [7]. However, most existing works only consid-

ered the performance in benign environments, where all the

requests are from legitimate users.

Meanwhile, empirical studies in [8], [9] revealed that a

policy with superior performance in benign environments can

perform poorly under a type of DoS attacks, referred to as

cache pollution attack, that flood the cache with requests for

unpopular contents, thus denying the legitimate users their

chance to receive service from the cache [10]. For example,

the Least Frequently Used (LFU) policy that is known to

be optimal in the benign environment under the Independent

Reference Model (IRM) [7] performs worse than LRU under

such attacks [8], [9], which is in turn worse than FIFO [9].

Motivated by these observations, we perform a compre-

hensive study of the attack resilience of cache replacement

policies in the context of communication networks. As an

important aspect of general network resilience [11], attack

resilience is the ability to maintain an acceptable level of

service in the presence of attacks, where our focus is on

the ability of cache replacement policies to maintain the

hit ratio for legitimate requests in the presence of pollution

attacks. Performance under attacks is important because (i) an

attack can be long-lasting, and (ii) there can be frequent

intermittent attacks, both causing the network to operate under

attacks for a significant fraction of time. To quantify the

attack resilience of cache replacement policies, we analyze

the hit ratios of representative policies using the tool of Time-

to-Live (TTL) approximations while incorporating content

access delays. Such approximations not only allow us to

explain how pollution attacks affect the hit ratio of legitimate

requests, but also shed light on the attack strategies and the

defenses.

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0564-4078
https://orcid.org/0000-0003-1070-7483

2434 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022

A. Related Work

1) Cache Replacement Policies: At a high level, cache

replacement policies can be classified into capacity-driven

policies, where a cached content is only evicted to make room

for new content, and TTL-based policies, where a cached

content is evicted after its TTL expires [12]. Traditionally,

most policies are capacity-driven as they fully utilize the cache

space, which can be further classified into recency-based poli-

cies (e.g., FIFO, LRU), frequency-based policies (e.g., LFU),

randomized policies, and policies based on application-specific

attributes (e.g., sizes, functions) [2]. However, when main-

taining consistency with the origin server is important, e.g.,

in DNS and WWW, TTL-based policies are popular [12].

In cases such as SDN, a combination of both types of policies

is used [13]. The common objective of these policies is to

maximize the cache hit ratio.

The performance of a single cache has been extensively

studied. As exact analysis is difficult [6], various approxima-

tions have been developed, most notably the TTL approx-

imation that models capacity-driven policies by TTL-based

policies [14]. This idea has been used to predict the hit

ratio for a number of capacity-driven policies, including FIFO,

Random, LRU, and their variations [6], [7], [15]. The request

processes under which these approximations apply have also

been generalized from Poisson processes (i.e., IRM) [14] to

renewal processes [7], Markov processes [6], and general

stationary processes [16]. Besides known to be numerically

accurate, TTL approximations are also shown to be asymptot-

ically exact for large caches [6], [16], [17].

Application of cache replacement policies have also been

studied in various systems, e.g., WWW [2], CDN [3], ICN [4],

and DNS [5]. Many of these systems employ a network of

interconnected caches, for which analytical results have been

obtained under TTL approximations [5], [12], [18].

Most works on cache performance analysis assumed that

a content is immediately available at the cache after a

miss, which causes modeling error when the cache has non-

negligible content access delays. This problem was first real-

ized in [19], where new TTL approximations incorporating

such delays were derived for FIFO, Random, and LRU.

We will extend such analysis to a larger set of policies.

2) Attacks on Caches and Defenses: Caches have been

the common targets of malicious attacks. In the networking

context, caches can be used to extract private information

[9], [20], [21], but the focus has been on degrading the cache

performance by overwhelming its capacity [20], [22]–[25] or

occupying it with unpopular contents [8], [9], [20], [26], both

effectively denying service to legitimate requests.

As for defenses, existing works mostly focused on

using system-specific countermeasures to prevent/mitigate

attacks (e.g., [27] for DNS, [28], [29] for ICN, [21]–[25] for

SDN) or detecting attacks [8], [30], [31]. In contrast, we aim

at understanding the attack resilience of the cache itself.

Although attack resilience of caches has been briefly discussed

in [26], [32], [32] only considered one attack strategy (similar

to mice-flow attack considered in Section IV-A), and [26]

only considered one replacement policy (FIFO), leaving open

important questions such as: (i) How do popular replacement

policies compare in terms of attack resilience? (ii) How does

this comparison depend on the attack strategy? (iii) Is there

a policy that is resilient to all the attack strategies? We will

develop a tool (TTL approximation) to answer these questions

analytically and provide explicit answers for representative

policies and attack strategies.

B. Summary of Contributions

Our contributions are five-fold:

1) We extend the TTL approximation to incorporate the

delays for the cache to obtain missing contents for a set

of policies known to have superior performance in benign

environments [7]. We further discuss the impact of idle/hard

timeouts on TTL approximation and extend our analysis to

capture such impact. These results advance the state of the art

on TTL approximation, which is of independent interest.

2) We use the obtained formulas to analyze the optimal

attack strategy under a fixed total attack rate and its impact

on the cache performance for legitimate requests.

3) Observing that the best policy under different attack

strategies can be different, we propose a scheme to adapt the

replacement policy based on coarse parameters of the attack.

4) Treating the flow table in an SDN switch as the cache of

interest, we perform a simulation-based performance evalua-

tion. Besides confirming the accuracy of our analysis and the

efficacy of the proposed policy adaptation scheme, our results

also reveal relatively good resilience of two-staged policies,

especially the one with FIFO eviction rule.

5) We implement selected policies as well as runtime policy

adaptation to manage flow rule replacement in Open vSwitch.

Our experiments in a virtual SDN based on real traces show

that the added policies have notably better resilience than the

original rule replacement policy under certain attacks, and

the proposed policy adaptation scheme can further improve

the resilience to time-varying attacks.

Roadmap. We will formulate our problem in Section II,

present our TTL approximation results in Section III, analyze

the optimal attack strategy and its impact in Section IV, present

our attack-aware policy selection scheme in Section V, present

our simulation results in Section VI and our experiment results

in Section VII, and conclude the paper in Section VIII.

All appendices can be found in the supplementary file.

II. PROBLEM FORMULATION

A. Request Arrival Model

Let F denote the set of all possible contents requested from

the cache. Among these, a subset Fl contains the contents of

interest to legitimate users, and its complement Fa contains

the contents requested by the adversary during a pollution

attack. We assume that Fl∩Fa = ∅ as an intelligent adversary

will never request anything of interest to legitimate users.

We will use the Independent Reference Model (IRM) to obtain

closed-form results, and discuss the generalization to arbitrary

renewal processes when applicable.

Under IRM, the requests for each content f ∈ F arrive

according to an independent Poisson process with rate λf .

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ATTACK RESILIENCE OF CACHE REPLACEMENT POLICIES: STUDY BASED ON TTL APPROXIMATION 2435

Under the renewal model, the requests for each f ∈ F arrive

according to an independent renewal process with inter-arrival

distribution Gf (y), i.e., the i-th inter-arrival time Yi satisfies

Pr{Yi ≤ y} = Gf (y) for all y ≥ 0. Let G̃f (y|t) denote the

distribution function of the excess life at time t, i.e., if Γt is the

time from t to the next arrival, then Pr{Γt ≤ y} = G̃f (y|t) for

all y ≥ 0. Let mf (t) denote the renewal function, defined as

the expected number of arrivals in (0, t]. In the sequel, we will

simply use “flow” to refer to a sequence of requests for the

same content. Accordingly, we also refer to F as the set of all

the incoming flows to the cache, Fl as the subset of legitimate

flows, and Fa as the subset of attack flows.

B. Cache Model

Suppose that the cache under consideration has size C,

measured in the number of distinct contents it can store.

We adopt the common assumption that all contents are of

equal size, as variable-sized contents can be split into equal-

sized chunks for caching. When the cache is full, the cached

contents are dynamically updated by its replacement policy.

We consider a set of such policies as follows:

• FIFO: The First In First Out (FIFO) policy makes room

for a new content by evicting the oldest cached content.

• Random: This policy evicts a randomly selected cached

content to make room for a new content.

• LRU: The Least Recently Used (LRU) policy makes room

for a new content by evicting the cached content that has

not been requested for the longest time.

• q-LRU: This is a variation of LRU that only inserts a

newly requested content into the cache with probability q.

• LRU-2: This is a two-staged policy that maintains a vir-

tual cache (cache 1) storing content IDs and a real cache

(cache 2) storing the actual contents, both employing

the eviction rule of LRU. Each requested content ID not

already in the virtual cache will be inserted into the virtual

cache, but a requested content not already in the real

cache will be inserted into the real cache if and only if

its ID is already in the virtual cache. This policy can

be extended to k > 1 caches, known as LRU-k, where

caches 1, . . . , k − 1 are virtual caches and cache k is a

real cache.

• FIFO-2: This is a two-staged policy similar to LRU-2,

except that the eviction rule at each cache is FIFO.

• Random-2: This is another two-staged policy, except that

the eviction rule at each cache is Random.

These policies can all be considered traffic-oblivious

approximations to the Least Frequently Used (LFU) policy

that statically stores the most popular contents, as LFU

requires prior knowledge of content popularity. In a benign

environment, LFU is known to have superior performance

(optimal under IRM) [7], and some of the above policies

can approximate LFU without requiring prior knowledge.

Specifically, q-LRU tends to LFU as q → 0, and LRU-k
tends to LFU as k → ∞, with much of the performance gain

achieved at k = 2 [7].

While traditional cache performance analysis assumes that a

content is immediately available at the cache after a miss,1 we

consider a scenario more practical for network caches, where

before inserting a missing content, the cache must first obtain

the content from its origin server, which incurs a (possibly

random) delay D referred to as the access delay. During the

access delay, new requests of this content will incur misses

but not generate further requests to the origin server. Let D̄
denote the mean access delay.

C. Objective

Our primary objective is to quantify the attack resilience

of existing replacement policies in terms of how well they

can preserve the hit ratios for legitimate users under pollution

attacks, and develop new policies with better attack resilience.

Our secondary objective is to advance the state of the art

on TTL approximation by incorporating access delays and

timeouts.

III. TTL APPROXIMATION WITH ACCESS DELAY

Traditional TTL approximation formulas [7] are based on

the assumption that the requested content is immediately

available to the cache after a miss, which is too simplistic

for network caches due to the access delay. It has been

shown [19] that the existence of access delay causes notable

deviation between the traditional TTL approximation and the

actual hit ratio, where new TTL approximation formulas were

developed to incorporate the impact of access delay for simple

replacement policies including FIFO, Random, and LRU.

Below, we will extend this study to a list of more sophisticated

state-of-the-art replacement policies, by providing closed-form

formulas under IRM (i.e., Poisson request arrivals) and gen-

eralizations under arbitrary renewal arrivals.

A. Review of Existing Results

In the presence of access delays, the following TTL approx-

imations have been developed by [19]:

• FIFO: A FIFO cache can be modeled as a TTL cache with

constant non-reset timers of timeout T [33]. Under Poisson

arrivals, the hit ratio and the occupancy probability for content

f are

hFIFO
f = oFIFO

f =
λfT

1 + λf (D̄ + T)
. (1)

Under renewal arrivals, the hit ratio is

hFIFO
f =

E[mf (D + T)] − E[mf (D)]

1 + E[mf (D + T)]
, (2)

and the occupancy probability is

oFIFO
f =

T

D̄ + T + E[Γf (D + T)]
, (3)

where

E[Γf (D + T)] = E

�
Z ∞

0

�

1 − G̃f (t|D + T)
�

dt

�

(4)

1Equivalently, each missing content will be available at the cache before
the next request arrives.

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

2436 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022

is the expected excess life for the arrival process of requests

for content f at time D + T . The expectations in (2) and (4)

are over D.

• Random: A Random cache can be modeled as a TTL

cache with exponentially distributed non-reset timers with

mean timeout T̄ [33]. Under Poisson arrivals, the hit ratio

and the occupancy probability for content f are

h Random
f = o Random

f =
λf T̄

1 + λf (D̄ + T̄)
, (5)

which is identical to (1) except that T is replaced by T̄ . Under

renewal arrivals, the hit ratio and the occupancy probability

are the same as (2) and (3), respectively, except that the

expectations are over both D and T (which is exponentially

distributed with mean T̄).

• LRU: An LRU cache can be modeled as a TTL cache

with constant reset timers of timeout T [33]. Under Poisson

arrivals, the hit ratio and the occupancy probability for content

f are

hLRU
f = oLRU

f =
eλf T − 1

λf D̄ + eλf T
. (6)

Under renewal arrivals, this hit ratio is

hLRU
f =

E[G̃f (T |D)]

(1 − Gf (T))(1 + E[mf (D)]) + E[G̃f (T |D)]
,

(7)

and the occupancy probability is

oLRU
f =

λf E[Γf (D)] + E[Nf] − λfE[Γf (Te)]

1 + E[mf (D)] + E[Nf]
, (8)

where E[Γf (D)] and E[Γf (Te)] are defined similarly as (4)

(Te: the content eviction time from the beginning of a renewal

period), and

E[Nf] =
E[G̃f (T |D)]

1 − Gf (T)
(9)

is the expected number of hits per renewal period. The

expectations are over D and Te.

Here, the parameter T (or T̄), known as the characteristic

time, can be computed from the characteristic equation:
X

f∈F

of = C. (10)

B. TTL Approximation for q-LRU

The basic observation is that under renewal arrivals, the

responses of the cache form renewal periods that are statis-

tically identical to each other, and thus it suffices to analyze

the hit ratio within a single renewal period. Below we will

focus on a single content f as the analysis is identical for all

contents.

As illustrated in Fig. 1, each renewal period starts when the

cache forwards a request to the origin server and ends right

before the next request that is forwarded to the origin server.

Each period contains three stages: (i) stage 1 is the time D
when the cache is waiting for the requested content from the

Fig. 1. Renewal period under q-LRU.

origin server, during which all incoming requests will incur

misses, (ii) stage 2 is from the arrival of the content to (right

before) the next miss, during which all incoming requests will

incur hits, and (iii) stage 3 is from this miss to (right before)

the next request from the cache to the origin server, during

which all incoming requests will again incur misses. In the

sequel, let Xi (i = 1, 2, 3) denote the number of incoming

requests in stage i. The hit ratio for f is thus

hf =
E[X2]

E[X1] + E[X2] + E[X3]
. (11)

Furthermore, let Yi,j denote the inter-arrival time between

the j-th request in stage i and the next request. By definition

of the renewal period, its duration equals D + Γf(D) +
P3

i=2

PXi

j=1 Yi,j , during which content f is cached for time

Γf (D) +
PX2

j=1 Y2,j − Γf (Te), where Γf (D) denotes the

time from the arrival of the requested content to the first hit

(i.e., the excess life at time D, if the period starts from time 0),

and Γf (Te) denotes the time from the eviction of the content

to the next request (i.e., the excess life at the eviction time Te).

The occupancy probability is thus

of =
E[Γf (D) +

PX2

j=1 Y2,j − Γf (Te)]

E[D + Γf(D) +
P3

i=2

PXi

j=1 Yi,j]

=
E[Γf (D)] + 1

λf
E[X2] − E[Γf (Te)]

D̄ + E[Γf (D)] + 1
λf

E[X2] +
1

λf
E[X3]

, (12)

where we have applied Wald’s identity to
PX2

j=1 Y2,j and
PX3

j=1 Y3,j as X2 is a stopping time for {Y2,1, Y2,2, . . .}

(X2 ≤ n if and only if ∃1 ≤ j ≤ n such that Y2,j > T)

and X3 is independent of {Y3,1, Y3,2, . . .}.

1) Poisson Arrivals: For stage 1, it is easy to see that

E[X1] = 1+λf D̄, where the ‘1’ accounts for the arrival at the

beginning of the period. For stage 2, since q-LRU behaves the

same as LRU under hits and an LRU cache behaves like a TTL

cache with reset timers and a constant timeout T [33], each

new request generates a hit if and only if it arrives no later than

T after the previous request, which occurs with probability

1 − e−λf T . Thus,

Pr{X2 = n} = (1 − e−λf T)ne−λf T , n = 0, 1, . . . ,

(13)

and E[X2] = eλf T − 1. For stage 3, we know that by

its definition, a q-LRU cache will only request the missing

content from the origin server (to insert it into the cache) with

probability q upon a miss, and thus the number of consecutive

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ATTACK RESILIENCE OF CACHE REPLACEMENT POLICIES: STUDY BASED ON TTL APPROXIMATION 2437

misses before the cache requests the content from the origin

server is distributed as

Pr{X3 = m} = (1 − q)mq, m = 0, 1, . . . , (14)

and E[X3] = (1−q)/q. Plugging these results into (11) yields

hq−LRU
f =

eλf T − 1

λf D̄ + eλf T + 1−q
q

, (15)

which reduces to (6) as q → 1 as expected. The parameter T
in (15) can be solved from

P

f∈F hq−LRU
f = C as oq−LRU

f =

hq−LRU
f under Poisson arrivals.

2) Renewal Arrivals: Without loss of generality, assume

that t = 0 at the beginning of the renewal period under

consideration. For stage 1, it is easy to see that E[X1] =
1 + E[mf (D)], where the expectation is over D. For stage 2,

each new request generates a hit if and only if it arrives no later

than T after the timer resets, and the time between an arrival

and the most recent timer reset is the excess life at D for the

first arrival in stage 2 and an inter-arrival time thereafter. Thus,

Pr{X2=n|D}=

(

1 − G̃f (T |D) ifn = 0,

G̃f (T |D)Gf (T)n−1(1−Gf (T)) o.w.,

(16)

and hence E[X2] = E[G̃f (T |D)]/(1 − Gf (T)), where the

expectation is over D. For stage 3, we still have E[X3] =
(1 − q)/q, as the number of consecutive misses before a

q-LRU cache requests the content from the origin server

(i.e., X3) does not depend on the arrival process. Plugging

these results into (11) yields

hq−LRU
f =

E[G̃f(T |D)]
1−Gf (T)

1 + E[mf (D)] +
E[G̃f (T |D)]
1−Gf (T) + 1−q

q

, (17)

where the only unknown parameter is T . Based on (12),

T can be obtained by solving (10) for

oq−LRU
f =

E[Γf (D)] +
E[G̃f (T |D)]

λf (1−Gf (T)) − E[Γf (Te)]

D̄ + E[Γf (D)] +
E[G̃f(T |D)]

λf (1−Gf (T)) + 1−q
λf q

. (18)

Discussion: Predicting the hit ratio using the TTL approx-

imation for general renewal processes is mainly complicated

by the need of computing the expected excess life. In par-

ticular, E[Γf (Te)] in general depends on the distribution of

the eviction time Te, which is not analytically tractable as

Te = D + Γf (D) +
PX2−1

j=1 Y2,j + T . Therefore, as in the

literature, closed-form formulas have only been obtained for

Poisson processes.

C. TTL Approximation for LRU-2

For a multi-staged policy such as LRU-k, the cache at each

stage has its own renewal periods that are approximately inde-

pendent across stages due to the vastly different characteristic

times at different stages [7]. Below, we give detailed analysis

for k = 2, and defer the general case to Appendix.A.

As illustrated in Fig. 2, each renewal period of cache 2

(the real cache) is the time between consecutive requests

Fig. 2. Renewal period under LRU-2.

to the origin server, and consists of three stages defined as

in Section III-B. The difference is that an incoming request

triggers an outgoing request to the origin server if and only if

it results in a miss in cache 2 and a hit in cache 1 (the virtual

cache).

1) Poisson Arrivals: The analysis for stages 1 and 2 remains

the same as in Section III-B1, as the real cache behaves the

same in these stages. That is, E[X1] = 1+λfD̄ and E[X2] =
eλf T2 − 1, where T2 is the characteristic time of cache 2. For

stage 3, we see by the definition of LRU-2 that X3 is the

number of consecutive misses in cache 1 before the next hit,

which will trigger an outgoing request to the origin server and

the starting of a new period. Since cache 1 is an LRU cache

without access delay (as it only stores content IDs), we know

from [33] that it behaves like a TTL cache with constant reset

timers T1, which denotes its characteristic time. Moreover,

as long as T2 ≥ T1, which holds when the two caches have

the same size [7], [34], the first request in stage 3 must result

in a miss in cache 1 because it arrives later than T2 after

the previous request (which is why stage 3 has started) and

T2 ≥ T1. Thus,

Pr{X3 − 1 = m} = e−mλf T1(1 − e−λf T1), m ≥ 0,

(19)

and hence E[X3] = 1/(1 − e−λf T1). Plugging these results

into (11) yields

hLRU−2
f =

eλf T2 − 1

λf D̄ + eλf T2 + 1

1−e
−λf T1

. (20)

Here, T1 is the solution to the characteristic equation of

cache 1:
P

f∈F hLRU
f = C1 (C1: size of cache 1), where there

is no access delay, and T2 is the solution to the characteristic

equation of cache 2:
P

f∈F hLRU−2
f = C, where we have

used the PASTA property of Poisson processes.

2) Renewal Arrivals: By similar arguments, we see from

Section III-B2 that E[X1] = 1 + E[mf (D)] for stage 1, and

E[X2] = E[G̃f (T2|D)]/(1−Gf (T2)) for stage 2, where both

expectations are over D. For stage 3, the above analysis shows

that X3 − 1 is the number of consecutive inter-arrival times

in this stage that are greater than T1, the timeout value of the

TTL approximation of cache 1. Thus,

Pr{X3 − 1 = m} = (1 − Gf (T1))
mGf (T1), m ≥ 0,

(21)

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

2438 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022

Fig. 3. Renewal period under FIFO-2.

and hence E[X3] = 1/Gf(T1). Plugging these results into (11)

yields

hLRU−2
f =

E[G̃f (T2|D)]
1−Gf (T2)

1 + E[mf (D)] +
E[G̃f (T2|D)]
1−Gf (T2)

+ 1
Gf (T1)

,

(22)

where T1 and T2 are the characteristic times of cache 1 and

cache 2, respectively.

Furthermore, by similar arguments as in Section III-B, the

occupancy probability in cache 2 equals

oLRU−2
f =

E[Γf (D)] + 1
λf

E[X2] − E[Γf (Te)]

D̄ + E[Γf (D)] + 1
λf

E[X2] + 1
λf

E[X3]
(23)

=
E[Γf (D)] +

E[G̃f(T2|D)]
λf (1−Gf (T2))

− E[Γf (Te)]

D̄ + E[Γf (D)] +
E[G̃f(T2|D)]

λf (1−Gf (T2))
+ 1

λf Gf (T1)

,

(24)

where we can apply Wald’s identity because X2 is a stopping

time for {Y2,1, Y2,2, . . .} as in Section III-B and X3 is a

stopping time for {Y3,1, Y3,2, . . .} (X3 ≤ n if and only if

∃1 ≤ j ≤ n such that Y3,j ≤ T1). We can solve T1 by

plugging the occupancy probability in cache 1, given by (8)

for D = 0, into
P

f∈F oLRU
f = C1. We can then solve

T2 by plugging (24) (which now only has T2 as an unknown

parameter) into (10).

D. TTL Approximation for FIFO-2

Our analysis in Section III-C extends naturally to other two-

staged policies employing different eviction rules. Specifically,

FIFO-2, as illustrated in Fig. 3, has renewal periods and three

stages per renewal period that are defined in the same way as

in Section III-C. The difference is that each cache follows the

FIFO eviction rule.

1) Poisson Arrivals: For stage 1, we again have E[X1] =
1+λf D̄. For stage 2, as cache 2 behaves the same as a FIFO

cache upon hits, which in turns behaves like a TTL cache

with constant non-reset timers [33], this stage has a fixed

duration T2 (the characteristic time of cache 2), during which

the expected number of incoming requests is E[X2] = λfT2.

For stage 3, again by the definition of two-staged policies,

the number of requests X3 in this stage is the number of

consecutive misses in cache 1. Here, cache 1 is a FIFO

cache without access delay, which behaves like a TTL cache

with constant non-reset timers T1 (the characteristic time of

cache 1) [33]. Different from LRU-2, the first request in stage 3

may result in a hit in cache 1 (which triggers a request to the

origin server and starts a new period), as there is no guaranteed

gap between the last arrival in stage 2 and the first arrival

in stage 3. Under the assumption that the two caches are

independent (because T2 is usually much larger than T1) [7],

this occurs with a probability equal to the hit ratio of cache 1,

which is λfT1/(1 + λfT1) by (1). Conditioned on the first

request in stage 3 incurring a miss in cache 1, each subsequent

request incurs a miss in cache 1 if and only if the time between

it and the previous request is greater than T1, which occurs

with probability e−λf T1 . Thus,

Pr{X3 = m}=

(λf T1

1+λf T1
ifm = 0,

e
−(m−1)λf T1(1−e

−λf T1)
1+λf T1

ifm > 0,
(25)

and hence E[X3] = 1/[(1 + λfT1)(1 − e−λf T1)]. Plugging

these results into (11) yields

hFIFO−2
f =

λfT2

1 + λf (D̄ + T2) + 1

(1+λf T1)(1−e
−λf T1)

. (26)

Here, T1 is solvable from cache 1’s characteristic equation:
P

f∈F hFIFO
f = C1 (C1: size of cache 1), and T2 is solvable

from cache 2’s characteristic equation:
P

f∈F hFIFO−2
f = C,

both based on the PASTA property of Poisson processes.

2) Renewal Arrivals: Under renewal arrivals, similar argu-

ments show that E[X1] = 1 + E[mf (D)] for stage 1, and

E[X2] = E[mf (D+T2)]−E[mf (D)] for stage 2, both expec-

tations over D. For stage 3, the arguments in Section III-D1

show that

Pr{X3 = m}=















mf (T1)

1 + mf(T1)
ifm = 0,

1

1+ mf (T1)
(1− Gf (T1))

m−1Gf (T1) o.w.,

(27)

where mf (T1)/(1 + mf (T1)) is the hit ratio of cache 1

obtained from (2) (where D = 0). Thus, E[X3] = 1/[(1 +
mf (T1))Gf (T1)]. Plugging these results into (11) yields

hFIFO−2
f =

E[mf (D + T2)] − E[mf (D)]

1 + E[mf (D + T2)] + 1
(1+mf (T1))Gf (T1)

,

(28)

where T1 and T2 are characteristic times of cache 1 and

cache 2, respectively.

To computer the characteristic times, we note that the

expected duration of a renewal period equals

E



D + T2 + Γf (D + T2) +

X3
X

j=1

Y3,j





= D̄ + T2 + E[Γf (D + T2)] +
1

λf

E[X3], (29)

where we have applied Wald’s identity. During each period,

the content occupies cache 2 for time T2. Thus, the occupancy

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ATTACK RESILIENCE OF CACHE REPLACEMENT POLICIES: STUDY BASED ON TTL APPROXIMATION 2439

probability in cache 2 is given by

oFIFO−2
f =

T2

D̄+ T2+ E[Γf (D + T2)]+
1

λf
E[X3]

(30)

=
T2

D̄+ T2+ E[Γf (D + T2)]+
1

λf (1+mf (T1))Gf (T1)

.

(31)

We can first solve T1 from
P

f∈F oFIFO
f = C1, where

oFIFO
f = T1/ (T1 + E[Γf (T1)]) is the occupancy probability

in cache 1, and then solve T2 by plugging (31) into (10).

E. TTL Approximation for Random-2

The analysis for Random-2 is very similar to that for

FIFO-2, as both a FIFO cache and a Random cache behave

like TTL caches with non-reset timers [33]. The difference,

however, is that the timeout values for a Random cache

are exponentially distributed (instead of being a constant as

for FIFO), with a mean that equals the cache characteristic

time. Specifically, each renewal period of Random-2 is still

structured as in Fig. 3, except that T2 and T1 are exponential

random variables,2 with means T̄2 and T̄1 that are the charac-

teristic times of cache 2 and cache 1, respectively.

1) Poisson Arrivals: Similar to Section III-D1, we have

E[X1] = 1 + λf D̄, and E[X2] = λf T̄2. However, the analysis

of X3 is different. Under the independence assumption of the

two caches [7], the first request in stage 3 results in a hit in

cache 1 (i.e., X3 = 0) with probability λf T̄1/(1 + λf T̄1),
i.e., the hit ratio of cache 1 according to (5). Otherwise, each

subsequent request results in a miss in cache 1 if and only

if its inter-arrival time from the previous request is greater

than the TTL of the content ID inserted into cache 1 by the

previous request. Since the inter-arrival time and the TTL of

cache 1 are both exponentially distributed with means 1/λf

and T̄1, respectively, the inter-arrival time is greater than the

TTL with probability 1/(1 + λf T̄1). Thus,

Pr{X3 = m}=

�

1

1 + λf T̄1

�m�

λf T̄1

1 + λf T̄1

�

, m ≥ 0,

(32)

which implies that E[X3] = 1/(λf T̄1). Plugging these results

into (11) yields

h Random-2
f =

λf T̄2

1 + λf (D̄ + T̄2) + 1
λf T̄1

, (33)

where T̄1 is the solution to
P

f∈F h Random
f = C1 (C1: size

of cache 1), and T̄2 is the solution to
P

f∈F h Random-2
f = C.

In the special case of exponentially distributed access delays,

a more accurate TTL approximation can be computed without

the independence assumption; see details in Appendix.A.

2More precisely, the TTL of each arrival into cache i (i = 1, 2) is an
independent exponential random variable with mean T̄i.

2) Renewal Arrivals: Similar to Section III-D2, we have

E[X1] = 1 + E[mf (D)] for stage 1, and E[X2] = E[mf (D +
T2)] − E[mf (D)] for stage 2, except that the second expec-

tation is over both D and T2. For stage 3, the arguments

in Section III-E1 show that X3 = 0 with probability

E[mf (T1)]/(1 + E[mf (T1)]) (expectation over T1), which is

the hit ratio of cache 1. Otherwise, for m ≥ 1,

Pr{X3=m}=
E[Gf (T1)]

1 + E[mf (T1)]
(1 − E[Gf (T1)])

m−1
,

(34)

where 1 − E[Gf (T1)] (expectation over T1) is the probability

for an inter-arrival time to be greater than the TTL of cache 1.

Thus, E[X3] = 1/((1 + E[mf (T1)])E[Gf (T1)]). Plugging

these results into (11) yields

h Random-2
f =

E[mf (D + T2)]− E[mf (D)]

1 + E[mf (D + T2)]+
1

(1+E[mf (T1)])E[Gf(T1)]

,

(35)

where the only unknown parameters are the means T̄i of Ti

for i = 1 and 2.

Moreover, by similar arguments as in Section III-D2, the

occupancy probability in cache 2 equals

oRandom−2
f (36)

=
T̄2

D̄ + T̄2 + E[Γf (D + T2)] + 1
λf

E[X3]

=
T̄2

D̄ + T̄2 + E[Γf (D + T2)] + 1
λf (1+E[mf (T1)])E[Gf(T1)]

.

(37)

We can solve T̄1 from
P

f∈F o Random
f = C1, where o Random

f =

T̄1/
(

T̄1 + E[Γf (T1)]
)

is the occupancy probability in cache 1.

We can then solve T̄2 by plugging (37) into (10).

Remark: Although seemingly similar, (28) and (35) (or (31)

and (37)) differ subtly in that Ti (i = 1, 2) is treated as a

constant for FIFO-2 but a random variable for Random-2,

which implies that generally FIFO-2 and Random-2 perform

differently in terms of hit ratio. They perform differently even

under IRM, as seen from (26) and (33). This result is in

contrast to the previous result that FIFO and Random have

the same hit ratio under IRM [7].

F. TTL Approximation with Explicit Timeouts

In some application scenarios (e.g., SDN), cached contents

are subject to explicit hard/idle timeouts, in addition to evic-

tions caused by newly inserted contents. Hereby we discuss the

impact of such explicit timeouts on the TTL approximation.

Denote the idle timeout by τI and the hard timeout by τH .

A cached content will be evicted if (i) it has been in the

cache for τH time, (ii) it has not been requested for τI time,

or (iii) it is selected to make room for a new content by the

replacement policy, whichever occurs first. We will focus on

the case of Poisson arrivals, which is already challenging to

analyze as explained below.

Recall that the hit ratio for a given content f can be

computed by (11) based on the expected number of arrivals

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

2440 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022

E[Xi] in stage i = 1, 2, 3 in each renewal period. By def-

inition, E[X1] only depends on the access delay and the

arrival process, and is thus invariant to the timeouts. For a

Poisson request process of rate λf , E[X1] = 1 + λf D̄ as

analyzed before (including the arrival at the beginning of the

renewal period). Meanwhile, E[X3] only depends on when the

replacement policy decides to cache the missing content. For

FIFO, Random, and LRU, E[X3] = 0 (recall that X3 is the

number of misses before the cache requests the missing content

from the origin server). For q-LRU, E[X3] only depends on the

parameter q of the policy, and thus remains E[X3] = (1−q)/q.

For the two-staged policies (LRU-2, FIFO-2, and Random-2),

E[X3] only depends on when there is a hit in the virtual cache.

As the virtual cache is part of the replacement policy and not

subject to externally-imposed timeouts, our previous analysis

of E[X3] remains valid. Thus, the only value in (11) affected

by explicit timeouts is E[X2].
Under the TTL approximation, the explicit timeouts τI and

τH turn the (real) cache into a hybrid TTL cache with both a

reset timer τ̃I and a non-reset timer τ̃H . Under FIFO/Random

eviction (i.e., FIFO, Random, FIFO-2, Random-2), τ̃H =
min(T, τH) and τ̃I = τI . Under LRU eviction (i.e., LRU,

q-LRU, LRU-2), τ̃H = τH and τ̃I = min(T, τI). Let ti
denote the i-th interarrival time since the beginning of stage 2.

As X2 denotes the number of hits, i.e., the number of

consecutive arrivals before either timer expires, we have

Pr{X2 = n} = Pr

�

(t1, . . . , tn ≤ τ̃I) ∧ (
n

X

i=1

ti ≤ τ̃H)

∧(tn+1 > τ̃I ∨
n+1
X

i=1

ti > τ̃H)

�

, (38)

where “∧” denotes AND and “∨” denotes OR. By the

Bayesian rule, (38) can be decomposed into

Pr{X2 = n} = Pr{A} · Pr{B|A} ·

�

Pr{tn+1 > τ̃I |A, B}

+ Pr{
n+1
X

i=1

ti > τ̃H , tn+1 ≤ τ̃I |A, B}

�

, (39)

where A := t1, . . . , tn ≤ τ̃I , B :=
Pn

i=1 ti ≤ τ̃H . For a

Poisson request process of rate λf , Pr{A} = (1 − e−λf τ̃I)n,

and Pr{tn+1 > τ̃I |A, B} = e−λf τ̃I (since tn+1 is independent

of t1, . . . , tn). Define Mf (τ) as the counting process of a

renewal process with truncated exponential interarrival times

with PDF λfe−λf t/(1 − e−λf τ̃I) for 0 ≤ t ≤ τ̃I and zero

elsewhere. Then Pr{B|A} = Pr{Mf(τ̃H) ≥ n}, and

Pr{
n+1
X

i=1

ti > τ̃H , tn+1 ≤ τ̃I |A, B}

= Pr{tn+1 ≤ τ̃I |A, B}

·Pr{
n+1
X

i=1

ti > τ̃H |tn+1 ≤ τ̃I , A, B} (40)

= (1 − e−λf τ̃I) · Pr{Mf(τ̃H) < n + 1|Mf(τ̃H) ≥ n}.

(41)

Plugging these into (39) yields

Pr{X2 = n} = (1 − e−λf τ̃I)ne−λf τ̃I Pr{Mf(τ̃H) ≥ n}

+(1 − e−λf τ̃I)n+1 Pr{Mf(τ̃H) = n}, (42)

which can then be used to compute E[X2].
Remark: While TTL cache with both a reset timer and a

non-reset timer has been considered in [12], its characteriza-

tion of the hit ratio is in terms of characteristics of the miss

process, e.g., expected number of requests per miss (Lemma 1)

and rates of generating misses (Lemma 4), which are unknown

to begin with. Additionally, [12] did not consider access delays

or multi-staged policies. As shown in (42), the existence of

both timers causes E[X2] and hence the hit ratio to have a

non-closed form even under Poisson arrivals, which is in sharp

contrast to the closed-form results in the presence of only

one timer. We leave to future work the derivation of a TTL

approximation under both timers that is easier to compute.

IV. PERFORMANCE UNDER CACHE POLLUTION ATTACK

We now apply the TTL approximation formulas obtained in

Section III to analyze the performance of these policies under

pollution attacks. Assuming that the cache cannot distinguish

requests sent by the attacker from those sent by legitimate

users (otherwise it can simply filter out requests from the

attacker), we measure the performance of a given replacement

policy under attack by its average hit ratio for the legitimate

users. Under the TTL approximation, the hit ratios of different

contents are only related through the characteristic time of the

cache. Therefore, attack flows affect the hit ratios of legitimate

flows by affecting the characteristic time.

Specifically, let hπ(λf , T) denote the TTL approximation

of the hit ratio of a content with request rate λf at a cache

with policy π and characteristic time T . Given legitimate flows

of individual rates (λf)f∈Fl
and a total rate Λl :=

P

f∈Fl
λf ,

we measure the performance of π by

X

f∈Fl

λfhπ(λf , T)

Λl

, (43)

where T implicitly depends on the attack rates (λf)f∈Fa
in

addition to the legitimate flow rates (λf)f∈Fl
. We will focus

on IRM in the rest of this section for explicit insights, although

our approach is extensible to more general cases.

A. Optimal Attack Strategy

To understand the fundamental performance limit under

pollution attacks, we first identify the optimal attack strategy

against each policy. In particular, while a higher attack rate

will always bring more damage, it also incurs a higher cost

to the attacker. Therefore, the optimal attack strategy should

make the best use of a given total attack rate.

1) Attack Rate Allocation: Given the total attack rate Λa,

let A ⊆ {(λf)f∈Fa
: λf ≥ 0,

P

f∈Fa
λf = Λa, |Fa| = Ca}

be the set of candidate rate allocations among Ca attack flows.

The following holds (see proof in Appendix.B).

Theorem 1: If the characteristic time T is constant for all

(λf)f∈Fa
∈ A, and hπ(λf , T) is an increasing function of T

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ATTACK RESILIENCE OF CACHE REPLACEMENT POLICIES: STUDY BASED ON TTL APPROXIMATION 2441

Fig. 4. Verifying conditions of Theorem 1 (parameters of legitimate flows as in Section VI-A1, Λa = 1000, Ca = 1000).

and a concave function of λf , then the optimal attack strategy

in A that minimizes (43) is to equally allocate the total attack

rate, i.e., λf = Λa/Ca for all f ∈ Fa.

Some of the assumptions in Theorem 1 are guaranteed to

hold under certain conditions (see proof in Appendix.B).

Lemma 2: Under IRM, we have that:

1) hπ(λf , T) for every policy π considered in Section III

is increasing in T ;

2) for π = FIFO and Random, hπ(λf , T) is concave in λf ;

3) for π = LRU and q-LRU, hπ(λf , T) is concave in λf

if D̄ is sufficiently small and eλf T ≥ (1 − q)/q.

While the remaining assumptions are not proved to hold

exactly, we have verified numerically that they hold approx-

imately for all the considered policies under IRM and rate

allocations of interest. Specifically, while analyzing the con-

cavity of the hit ratio wrt the request rate is intractable

for the two-staged policies, we have verified the concavity

numerically (Fig. 4 (c)). Moreover, while the characteristic

time generally depends on the attack rate allocation, it remains

largely constant for a wide range of skewness that corresponds

to potentially good attack strategies (Fig. 4 (d)). Similar obser-

vations have been obtained under other parameter settings.

2) Optimal #Attack Flows: Under a fixed total attack rate

and equal rate allocation, the attack strategy is fully determined

by the number of attack flows Ca. In theory, we can plug the

rates of legitimate and attack flows into the TTL approximation

formulas to write (43) as a function of Ca, which can then

be minimized to choose the optimal Ca. However, as the

characteristic time T is the solution to a high-order polynomial

or transcendental equation that cannot be solved in closed

form, (43) cannot be written as a closed-form function of Ca.

Instead, we use other means to obtain insights, starting with

the following observation (proved in Appendix.B).

Proposition 3: Under FIFO, Random, and LRU, Ca = ∞
is optimal in minimizing (43) under IRM.

For the more advanced policies that perform selective inser-

tion upon misses, we resort to numerical analysis. Specifically,

as we have verified that the hit ratio is an increasing function

of the characteristic time, it suffices to examine what value

of Ca will minimize the characteristic time under each policy.

Results under a sample parameter setting is shown in Fig. 5,

but similar observations hold under other settings.

These results imply the following attack strategies:

1) Mice-flow attack, which sends as many attack flows as

possible, each with a small rate, is most effective under

the policies covered by Proposition 3.

Fig. 5. Optimizing #attack flows (parameters in Section VI-A1, Λa = 1000).

2) Elephant-flow attack, which sends fewer attack flows

such that each of them has a sufficiently high rate

(relative to the legitimate flows), is most effective under

policies with selective insertion and discriminate evic-

tion rules (e.g., q-LRU, LRU-2).

3) Medium-flow attack, with an intermediate number of

attack flows, is most effective under policies with

selective insertion but indiscriminate eviction rules

(e.g., FIFO-2, Random-2).

For example, under the setting in Fig. 5, the optimal Ca for

q-LRU and LRU-2 is around 1000, which makes the rates

of attack flows comparable to that of the largest legitimate

flow, hence suggesting an elephant-flow attack; the optimal

Ca for FIFO/Random-2 is around 6000, leading to much

smaller attack flows (smaller than the top 6 legitimate flows),

suggesting a medium-flow attack; under FIFO, Random, and

LRU, the attack becomes more effective as Ca increases,

as predicted by Proposition 3, suggesting a mice-flow attack.

Remark: Although we use the average hit ratio as the

performance metric, the optimal attack strategy will remain

the same even if the adversary only targets at a specific flow

or a subset of flows, as the hit ratio of every flow is increasing

in the characteristic time.

B. Impact on Cache Performance

Given the optimal attack strategies, we can now plug them

into the TTL approximation formulas of various policies to

analyze the impact of the attacks on the hit ratios for legitimate

users. Below, we only show the predicted hit ratio according

to (43); validation based on actual hit ratios will be presented

later in Section VI.

As the optimal attack will allocate equal rate to all the

attack flows, it suffices to parameterize an attack by the total

attack rate Λa and the number of attack flows Ca. We start

by confirming our previous observations regarding the optimal

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

2442 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022

Fig. 6. Predicted performance under pollution attack (parameters of legiti-
mate flows as in Section VI-A1, under which λf ∈ [0.0002, 1] for f ∈ Fl).

design of Ca under a fixed total attack rate λaCa in Fig. 6 (a).

As in Fig. 5, we see that the policies divide into three groups:

(i) FIFO, Random, and LRU are most vulnerable to mice-

flow attacks corresponding to large Ca, (ii) q-LRU and LRU-2

are most vulnerable to elephant-flow attacks corresponding to

relatively small Ca (≈ 1000), and (iii) FIFO-2 and Random-2

are most vulnerable to medium-flow attacks corresponding to

an intermediate Ca (≈ 6000).

While the behaviors of FIFO, Random, and LRU have

been explained by Proposition 3, the behaviors of the other

policies also have intuitive explanations. Specifically, we know

that q-LRU and LRU-2 closely approximate LFU [7], which

only serves the largest C flows. Hence, these policies will

effectively preserve the hit ratio for legitimate users if the

largest C flows do not include attack flows, but severely

degrade this value as more and more of the largest C flows

become attack flows. To illustrate this point, we fix the rate

per attack flow at λa and vary the number of attack flows

Ca, as shown in Fig. 6 (b–d). We have also added the curve

for LFU. The results confirm that LFU and its approximations

(e.g., LRU-2) are resilient to mice-flow attacks but vulnerable

to elephant-flow attacks; in contrast, simple indiscriminate

policies (e.g., FIFO, Random) are resilient to elephant-flow

attacks by treating all the flows equally, but vulnerable to

mice-flow attacks as they tend to generate more attack flows.

Under medium-flow attacks, LFU and its approximations still

guarantee service for the largest few legitimate flows, thus

achieving an intermediate performance. Moreover, we see that

which policy performs the best will vary based on the attack

strategy and the number of attack flows.

V. ATTACK-AWARE POLICY SELECTION

We further exploit the use of attack-resilient replacement

policies as a second line of defense, in scenarios where efforts

to prevent/detect attacks have failed and the cache cannot

distinguish legitimate requests from malicious requests.

The results from Section IV-B suggest that no single

replacement policy can maximize the hit ratio for legitimate

users in all the attack scenarios. Therefore, the policy needs

to be adapted based on the current level of attack, where the

TTL approximations can provide valuable information.

Specifically, while the exact rates of attack flows (λf)f∈Fa

are hard to estimate (because the cache does not know which

flows are attack flows), it is often possible to estimate coarse

parameters of the attack, such as the number of attack flows

Ca and their total rate Λa. For example, by comparing

the current number and total rate of flows to the expected

values from the history, we can use the surplus (if any) to

estimate these parameters for a suspected pollution attack.

From Section IV-A, we know that the optimal attack strategy

under these estimated parameters is to send Ca flows of equal

rate λa := Λa/Ca. Therefore, we can obtain a conservative

estimate of the legitimate users’ average hit ratio by identifying

Ca of the current flows with rates around λa and a total

rate around Λa as “attack flows” and considering the rest as

legitimate flows.

Let F denote the current set of flows and Fa the estimated

subset of attack flows. Let Π denote the set of candidate

policies. We can use the TTL approximations to select the

best policy in Π as follows:

1) for each candidate policy π ∈ Π, solve the characteristic

equation
P

f∈F hπ(λf , T) = C for the characteristic

time T under policy π;

2) based on the calculated characteristic times, estimate the

average hit ratio h̄π of the legitimate flows under each

π ∈ Π by (43), where Fl := F \ Fa;

3) select the policy π∗ with the maximum h̄π.

Remark 1: The above method of estimating attack flows

is not meant to accurately detect the attack flows; instead,

we only use it to compute a conservative estimate of the hit

ratio for legitimate flows, while the actual hit ratio can only

be higher if the attack flows are different from our estimate

(as long as there are no more than Ca attack flows of a total

rate no more than Λa). Moreover, when the cache cannot

maintain the exact flow rates (λf)f∈F (e.g., due to memory

limitation), we can use approximations, e.g., computed by

sketching [35].

Remark 2: As TTL approximations only describe the cache

performance in the steady state, the above policy selection

scheme is only designed to maximize the (worst-case) average

hit ratio of the legitimate flows in the steady state. We leave

the design of new policies or policy selection schemes that

accounts for transient behaviors to future work.

VI. SIMULATIONS

We evaluate the proposed solutions via simulations in the

scenario where the cache represents a flow table at an SDN

switch. Functioning as a cache of flow rules from the con-

troller, the flow table is particularly vulnerable to pollution

attacks due to its small size as shown in [9], [22]–[26]. In this

context, a “request” is an incoming packet, a “content” is a

flow rule, and the access delay is the time for the switch to

query the controller and install a new rule upon a table miss.

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ATTACK RESILIENCE OF CACHE REPLACEMENT POLICIES: STUDY BASED ON TTL APPROXIMATION 2443

Fig. 7. Accuracy of TTL approximation (◦: simulated; —: predicted).

“Hit ratios” in the sequel always refer to the hit ratios of

legitimate flows.

A. Simulation Setting

We set the cache size C = 1000 according to the flow

table size of commodity switches [36], and the average access

delay D̄ = 20 ms according to the performance of such

switches [37]. We set q = 0.15 for q-LRU. We generate attack

flows as independent Poisson processes of rates to be specified

later. We generate legitimate flows in two ways:

1) Synthetic Simulation: To verify our theoretical predic-

tions, we generate |Fl| = 5000 Poisson processes with total

rate Λl = 10 packets/ms and a Zipf(α) popularity distribution

with skewness α = 1. Here, |Fl| is set according to the

maximum number of active flows (90% of the time) at a

data center switch [38], Λl according to the average rate of

the corresponding traces [39], and α according to the typical

skewness of these traces.

2) Trace-Driven Simulation: To validate our findings made

under the IRM assumption, we also use real traces as

legitimate flows. To this end, we use the UNI2 dataset

from [39], which contains 9 trace files, each containing

29, 312–47, 807 flows of a total rate between 9.84 and

11.31 packets/ms. From each file, we extract 10 traces of

10, 000 packets from disjoint time periods with sufficiently

many active flows. It is known [38] that these traces deviate

from Poisson processes.

B. Results

1) Accuracy of TTL Approximation: To verify the accuracy

of our TTL approximation formulas, we compare the simulated

and the predicted hit ratios for each flow generated as in

Section VI-A1 without any attack. The results in Fig. 7 (a)

show that the prediction by our formulas is highly accurate

under IRM, validating the correctness of our analysis. We fur-

ther vary the average access delay and evaluate the average hit

ratio over all the flows, as in Fig. 7 (b). Besides verifying the

accuracy of our formulas under a wide range of access delays,

this result also demonstrates the value of considering access

delays, as ignoring such delays (i.e., assuming D̄ = 0) can

cause significant overestimation of the hit ratios. Meanwhile,

the result also indicates that access delays do not have much

impact under LRU and its variations (q-LRU, LRU-2), intu-

itively because these policies allow popular contents to renew

its TTL and stay in the cache for a relatively long period of

time, mitigating the misses incurred during content access.

TABLE I

POLICY SELECTION FREQUENCY UNDER HYBRID ATTACK

2) Impact of Pollution Attack: Next, we evaluate the average

hit ratio for legitimate users under pollution attacks. For Pois-

son traffic (Fig. 8), the TTL approximations accurately predict

the performance for legitimate users under a wide range of

attacks, thus validating our observations in Section IV-B.

For the traces, as the legitimate flows and their rates vary

from trace to trace, we plot the distribution of average hit

ratios over all the traces under three representative attack

strategies (Fig. 9 (a–c)). We see that while the prediction

is no longer exact, it captures important trends: (i) simple

indiscriminate policies (e.g., FIFO, Random) are resilient

to elephant-flow attacks but vulnerable to other attacks;

(ii) highly discriminative policies (e.g., LRU-2) are resilient

to mice/medium-flow attacks but vulnerable to elephant-flow

attacks; (iii) two-staged policies with indiscriminate eviction

rules (e.g., FIFO-2, Random-2) are resilient to both mice-

flow and elephant-flow attacks but vulnerable to medium-flow

attacks with suitable rates. These results validate that: (1) no

single policy can optimize the performance for legitimate users

in all the attack scenarios, and (2) the TTL approximations can

guide us to the best policy in a given attack scenario.

3) Performance of Policy Selection: Since Fig. 9 (a–c)

already validate that the TTL approximations will lead us to

the best policy under static attacks, we now focus on time-

varying attacks. To this end, we simulate a hybrid attack,

where for each trace, attack traffic is sent according to the

mice-flow attack in Fig. 9 (a) for the first 1/3 of the trace,

the medium-flow attack in Fig. 9 (b) for the second 1/3 of

the trace, and the elephant-flow attack in Fig. 9 (c) for the

last 1/3 of the trace. The intuition is to take advantage of

the fact that none of the policies is resilient against all the

three attack strategies. Fig. 9 (d) shows the distribution of

the average hit ratios over all the traces for the adaptive

policy selection scheme proposed in Section V (‘Adaptive’)

as well as the individual policies, assuming that the attack

parameters (Λa, Ca) are accurately estimated. We see that

(i) the adaptive policy selection scheme achieves a better

performance than any single policy under the hybrid attack,

and (ii) two-staged policies are more robust than single-staged

policies. Furthermore, we investigate the behavior of adaptive

policy selection by examining the frequency (in terms of

#times) of selecting various policies in each stage of the attack

in Table I. The results confirm that the proposed scheme is able

to combine the strengths of different policies by choosing the

most resilient policy in each attack scenario most of the time.

The results in Fig. 9 (d) are based on the assumption that the

attack parameters (Λa, Ca) are accurately and instantaneously

estimated. While how to estimate these parameters is out of the

scope of this work, we have conducted additional simulations

to understand the sensitivity of the proposed policy selection

scheme to estimation errors/delays; see Appendix.C.

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

2444 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022

Fig. 8. Pollution attack on synthetic traffic (◦: simulated; —: predicted).

Fig. 9. Pollution attack on traces under total attack rate 1000 (solid: simulated; dashed: predicted).

VII. PROTOTYPE IMPLEMENTATION AND EXPERIMENTS

We further implement selected policies in Open vSwitch,

which is an open-source software-based SDN switch. Existing

Open vSwitch implementation uses a fixed rule replacement

policy that functions like LRU in the default setting [40].

Periodically, the eviction priority for all the non-permanent

flow rules (those with idle or hard timeouts) is calculated,

where the rule that expires the soonest has the highest priority.

If a new rule needs to be inserted when the flow table is full,

the rule with the highest eviction priority will be removed to

make space for the new rule. As typically only the idle timeout

is used, the above implementation leads to an approximation of

LRU. We have also verified that Open vSwitch by default only

uses one table (table 0), justifying treating the flow table as a

single cache. As our previous result shows that a single policy

will not be resilient to all attack scenarios, we implement

additional rule replacement policies and test their resilience

under various attack scenarios.

A. Implementation in Open vSwitch

1) Additional Rule Replacement Policies: In addition to

the default LRU-like policy, we implement two new policies:

FIFO and q-LRU. FIFO is implemented by changing the

computation of eviction priorities (the earlier the creation

time of a rule, the higher the priority for eviction), and

q-LRU is implemented by inserting a coin flip in the function

handling the insertion of new rules such that non-permanent

rules are only inserted with probability q, which is a design

parameter (set to 0.15 according to Section VI-A). Both

are low-complexity stateless policies that impose a minimal

overhead similar to LRU.

This implementation does not include Random and the

two-staged policies. Random is skipped as its performance

Fig. 10. Illustration of network created In mininet.

has been shown to be dominated by FIFO. While the two-

staged policies have shown good resilience under some attack

scenarios in the simulations, they have a much higher overhead

(including memory consumption) due to the need to maintain

the virtual cache. Moreover, we find that implementing these

policies in Open vSwitch will require disruptive changes to

the code (e.g., to extract a unique rule ID from both the

uncompressed rule sent by the controller and the compressed

version stored in the flow table). Therefore, we leave the

implementation of such more complex policies to future

work.

2) Mechanism for Runtime Policy Adaptation: Furthermore,

to enable attack-aware policy adaptation [1], we implement

a mechanism to track and adapt the replacement policy

at runtime. This includes a new flow table attribute called

eviction_algorithm to indicate which policy is selected,

and a new command to configure this attribute. The new

command utilizes the utility ovs-ofctl to generate a

table_mod message that specifies the newly selected policy.

This command is applicable to any switch supporting Open-

Flow 1.4/1.5, which supports table_mod.

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ATTACK RESILIENCE OF CACHE REPLACEMENT POLICIES: STUDY BASED ON TTL APPROXIMATION 2445

Fig. 11. Experiment results in mininet: (a) CDF of hit/miss delays, (b)–(d) pollution attacks with total attack rate 1000 (unit: packets per 100 ms).

The modified code based on Open vSwitch v2.14.0 is

available at [41]. We refer to [42] for more details.

B. Experimentation in Mininet

We test our implementation in Mininet [43], which is an

SDN emulator that can emulate a virtual SDN based on the

Linux kernel and the real network stack on a single machine.

Our experiments are conducted in a VM with Ubuntu 16.04,

8 cores, 16 GB RAM, and 10GB hard disk.

1) Experiment Setup: We create a 18-host network with

one attack host, one active legitimate host, and 16 passive

legitimate hosts only receiving packets, all connected through

an Open vSwtich under the control of an OpenFlow-Test Con-

troller, as illustrated in Fig. 10. Using multiple receiving hosts

allows us to create more flows, each defined by a combination

of source and destination IP addresses, MAC addresses, and

port numbers. The controller sets an idle timeout of 60s for

each non-permanent rule (no hard timeout). We have verified

that this timeout has negligible impact on our experiments.

Both the attack host and the active legitimate host gen-

erate UDP packets according to specified patterns. In each

experiment, the attack host generates Ca flows according

to independent Poisson processes of equal rate λa, where

parameters (Ca, λa) are determined by the attack strategy.

The active legitimate host generates flows according to one of

the extracted traces in Section VI-A2. In both cases, different

flows are generated by varying the destination as well as the

port numbers. Each packet has a unique sequence number in

the payload that allows us to compute the (one-way) delay

between transmission and reception. We use the usleep()

function to control the timing between packets according to

the interarrival times in the Poisson processes or traces. The

code and data for our experiments are available at [44].

2) Implementation Challenge: Our simulations use a total

traffic rate of roughly 1000 packets/ms. However, generating

packets at this rate in the experiment faces an implementation

challenge: each call to usleep() incurs an overhead of

70–80 µs in our system, which implies a maximum rate

of roughly 10 packets/ms. To accommodate this overhead,

we send both the attack traffic and the legitimate traffic at 100x

slowdown, i.e., changing the time unit from ‘1 ms’ to ‘100 ms’.

Due to the slowdown, the experiments are only performed on

one trace from each of the 9 trace files from [39].

Ideally, we should increase the access delay D̄ (i.e., time

to obtain and install a new rule) proportionally. However, due

to the limited buffer size at the interface between the switch

and the controller, we can only impose up to 500 ms of

(round-trip) delay without causing buffer overflow, which

amounts to 5 ms without the slowdown. Such a rule installation

delay is smaller than what can be achieved on commodity

switches [37]. As we have observed that the performance gap

between different policies increases with the access delay [42],

we conjecture that suitably adapting the replacement policy

can achieve an even greater performance improvement over the

default policy in commodity switches than what is achieved

in our experiments. Validating this conjecture will require

modification to the internal logic of commodity switches,

which is beyond the scope of this work.

3) Hit/Miss Inference: Following the approach in [9],

we use the measured packet delays to infer whether a packet

has incurred a hit or a miss at the flow table. To this end,

we profile the delay distributions under sure hits and sure

misses, before adding any delay to the controller, as illustrated

in Fig. 11 (a). There is a clear gap between the largest delay

for hits and the smallest delay for misses, which allows us to

distinguish hits from misses. With the 500-ms additional miss

delay, this gap will be even wider, allowing easy inference of

hits/misses.

4) Experiment Results: Fig. 11 (b–d) shows the experiment

results, where Fig. 11 (b) is under mice-flow attack, Fig. 11 (c)

under elephant-flow attack, and Fig. 11 (d) under a hybrid

attack which performs mice-flow attack for the first half of

each trace and elephant-flow attack for the second half. Here

we only consider mice-flow and elephant-flow attacks because

they are the optimal strategies against the implemented poli-

cies: FIFO and LRU are most vulnerable to mice-flow attacks,

and q-LRU is most vulnerable to elephant-flow attacks.

The experiment results confirm the value of using a replace-

ment policy other than the default policy of LRU under attacks.

Under the mice-flow attack, q-LRU substantially outperforms

LRU; under the elephant-flow attack, FIFO substantially out-

performs LRU. Moreover, under the hybrid attack, adapting

the policy from q-LRU to FIFO according to the prediction

by TTL approximation outperforms all the fixed policies.

VIII. CONCLUSION

Inspired by empirical studies that showed poor perfor-

mance of normally good replacement policies under pollu-

tion attacks, we performed a systematic study of the attack

resilience of a set of representative policies using the tool

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

2446 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 6, DECEMBER 2022

of TTL approximation. After incorporating access delays into

these approximations, we used them to design the optimal

attack strategy against each policy and develop an attack-aware

policy selection scheme. Our case study with an SDN flow

table as the cache validated our solutions, particularly that the

flow table can be made more resilient to pollution attacks by

suitably adapting the rule replacement policy based on the

perceived level of attack. Our results also identified certain

policies, especially FIFO-2, as an attack-oblivious solution

with relatively good resilience. Our prototype implementation

and experiments validated that our solution can improve the

attack resilience of SDN switches.

REFERENCES

[1] T. Xie, T. He, P. McDaniel, and N. Nambiar, “Attack resilience of
cache replacement policies,” in Proc. IEEE INFOCOM, May 2021,
pp. 1–10.

[2] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, Dec. 2003,
doi: 10.1145/954339.954341.

[3] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,
“Adaptive TTL-based caching for content delivery,” IEEE/ACM Trans.
Netw., vol. 26, no. 3, pp. 1063–1077, Jun. 2018.

[4] I. Abdullahi, S. Arif, and S. Hassan, “Survey on caching approaches
in information centric networking,” J. Netw. Comput. Appl., vol. 56,
pp. 48–59, Oct. 2015.

[5] S. Alouf, N. Choungmo Fofack, and N. Nedkov, “Performance mod-
els for hierarchy of caches: Application to modern DNS caches,”
Perform. Eval., vol. 97, pp. 57–82, Mar. 2016. [Online]. Available:
https://hal.inria.fr/hal-01258189

[6] N. Gast and B. Van Houdt, “TTL approximations of the cache
replacement algorithms LRU(m) and h-LRU,” Perform. Eval., vol. 117,
pp. 33–57, Dec. 2017.

[7] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.

Eval. Comput. Syst., vol. 1, no. 3, pp. 1–28, May 2016.

[8] Y. Gao, L. Deng, A. Kuzmanovic, and Y. Chen, “Internet cache pollution
attacks and countermeasures,” in Proc. IEEE Int. Conf. Netw. Protocols,
Nov. 2006, pp. 54–64.

[9] M. Yu, T. He, P. McDaniel, and Q. K. Burke, “Flow table security in
SDN: Adversarial reconnaissance and intelligent attacks,” in Proc. IEEE

INFOCOM, Jul. 2020, pp. 1519–1528.

[10] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Comput. Commun. Rev., vol. 34,
no. 2, pp. 39–53, Apr. 2004.

[11] P. Smith et al., “Network resilience: A systematic approach,” IEEE

Commun. Mag., vol. 49, no. 7, pp. 88–97, Jul. 2011.

[12] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analy-
sis of TTL cache networks,” Perform. Eval., vol. 79, pp. 2–23,
Sep. 2014.

[13] Open vSwitch 2.14.90 Documentation. Accessed: Sep. 2020. [Online].
Available: https://docs.openvswitch.org/en/latest/

[14] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE J. Sel. Areas Com-

mun., vol. 20, no. 7, pp. 1305–1314, Sep. 2002.

[15] G. Bianchi, A. Detti, A. Caponi, and N. Blefari-Melazzi, “Check before
storing: What is the performance price of content integrity verification
in LRU caching?” ACM SIGCOMM Comput. Commun. Rev., vol. 43,
no. 3, pp. 59–67, Jul. 2013, doi: 10.1145/2500098.2500106.

[16] B. Jiang, P. Nain, and D. Towsley, “On the convergence of the TTL
approximation for an LRU cache under independent stationary request
processes,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 3,
no. 4, pp. 1–31, Sep. 2018.

[17] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxi-
mation for LRU cache performance,” in Proc. 24th Int. Teletraffic Congr.,
2012, pp. 1–8.

[18] A. Dabirmoghaddam, M. Dehghan, and J. J. Garcia-Luna-Aceves,
“Characterizing interest aggregation in content-centric networks,” in
Proc. IFIP Netw., May 2016, pp. 449–457.

[19] M. Dehghan, B. Jiang, A. Dabirmoghaddam, and D. Towsley, “On the
analysis of caches with pending interest tables,” in Proc. ICN, Sep. 2015,
pp. 69–78.

[20] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A survey of
security attacks in information-centric networking,” IEEE Commun.

Surveys Tuts., vol. 17, no. 3, pp. 1441–1454, 3rd Quart., 2015.

[21] Y. Zhou, K. Chen, J. Zhang, J. Leng, and Y. Tang, “Exploiting the
vulnerability of flow table overflow in software-defined network: Attack
model, evaluation, and defense,” Secur. Commun. Netw., vol. 2018,
pp. 1–15, Jan. 2018.

[22] J. Cao, M. Xu, Q. Li, K. Sun, Y. Yang, and J. Zheng, “Disrupting
SDN via the data plane: A low-rate flow table overflow attack,” in Proc.

SECURECOMM, 2017, pp. 356–376.

[23] Y. Qian, W. You, and K. Qian, “OpenFlow flow table overflow attacks
and countermeasures,” in Proc. IEEE EuCNC, Jun. 2016, pp. 205–209.

[24] B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen, “Defend-
ing against flow table overloading attack in software-defined net-
works,” IEEE Trans. Services Comput., vol. 12, no. 2, pp. 231–246,
Mar./Apr. 2019.

[25] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proc. ACM CCS, 2013, pp. 413–424.

[26] J. Weekes and S. Nagaraja, “Controlling your neighbour’s bandwidth
for fun and for profit,” in Proc. Secur. Protocols, 2017, pp. 214–223.

[27] H. M. Sun, W. H. Chang, S. Y. Chang, and Y. H. Lin, “DepenDNS:
Dependable mechanism against DNS cache poisoning,” in Cryptology

and Network Security. New York, NY, USA: Springer-Verlag, 2009,
pp. 174–188.

[28] C. Ghali, G. Tsudik, and E. Uzun, “Needle in a haystack: Mitigating
content poisoning in named-data networking,” in Proc. SENT Workshop

NDSS, 2014.

[29] T. Kamimoto, K. Mori, S. Umeda, Y. Ohata, and H. Shigeno, “Cache
protection method based on prefix hierarchy for content-oriented net-
work,” in Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf.
(CCNC), Jan. 2016, pp. 417–422.

[30] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “A system
for denial-of-service attack detection based on multivariate correla-
tion analysis,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2,
pp. 447–456, Feb. 2014.

[31] H. Park, I. Widjaja, and H. Lee, “Detection of cache pollution attacks
using randomness checks,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2012, pp. 1096–1100.

[32] M. Xie, I. Widjaja, and H. Wang, “Enhancing cache robustness for
content-centric networking,” in Proc. IEEE INFOCOM, Mar. 2012,
pp. 2426–2434.

[33] N. Choungmo-Fofack, M. Dehghan, D. Towsley, M. Badov, and
D. L. Goeckel, “On the performance of general cache networks,” in
Proc. ValueTools, Dec. 2014, pp. 106–113.

[34] N. Gast and B. Van Houdt, “Asymptotically exact TTL-approximations
of the cache replacement algorithms LRU(m) and h-LRU,” in Proc. 28th

Int. Teletraffic Congr. (ITC), vol. 1, Sep. 2016, pp. 157–165.

[35] Y. Fu, D. Li, S. Shen, Y. Zhang, and K. Chen, “Clustering-preserving
network flow sketching,” in Proc. IEEE INFOCOM, Jul. 2020,
pp. 1309–1318.

[36] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[37] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
SOSR, 2016, pp. 1–12.

[38] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.

Internet Meas., 2010, pp. 267–280.

[39] T. Benson. Data Set for IMC 2010 Data Center Measurement.
Accessed: Sep. 2019. [Online]. Available: http://pages.cs.wisc.edu/~
tbenson/IMC10_Data.html

[40] M. Kerrisk. (Dec. 21, 2020). Linux Manual Page. [Online]. Available:
https://man7.org/linux/man-pages/man5/ovs-vswitchd.conf.db.5.html

[41] T. Xie, N. Nambiar, and T. He. (2021). Configurable Rule Replacement

Policies in SDN: Implementation in Open vSwitch. [Online]. Available:
https://github.com/SophieCXT/SDN-Implementation-in-Open-vSwitch

[42] N. Nambiar, “Attack resilience of cache replacement policies: Implemen-
tation and experimentation in SDN,” M.S. thesis, Dept. Comput. Sci.
Eng., Univ. Park, State College, PA, USA, 2021. [Online]. Available:
https://etda.libraries.psu.edu/catalog/18973nmn5265

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/954339.954341
http://dx.doi.org/10.1145/2500098.2500106

XIE et al.: ATTACK RESILIENCE OF CACHE REPLACEMENT POLICIES: STUDY BASED ON TTL APPROXIMATION 2447

[43] Mininet. Accessed: Sep. 2020. [Online]. Available: http://mininet.org/
[44] T. Xie, N. Nambiar, and T. He. (2021). Attack Resilience of Cache

Replacement Policies: Code and Data for Experiments in Mininet.
[Online]. Available: https://github.com/SophieCXT/Code-and-Data-for-
Experiments-in-Mininet

Tian Xie (Student Member, IEEE) received the
B.Eng. degree in software engineering from Wuhan
University, China, in 2019. She is currently pur-
suing the Ph.D. degree in computer science and
engineering with The Pennsylvania State University,
University Park, PA, USA, in 2019. Advised by
Prof. Ting He, her research interests lie in the area
of networks security and networks modeling and
joint optimization problems over cache networks.
She was awarded as the “Top Ten Outstanding Luo-
jia Scholars of the Year 2018” by Wuhan University.

Namitha Nambiar received the B.E. degree in
electronics and communication engineering from the
PES Institute of Technology, India, in 2016, and
the M.S. degree in computer science and engi-
neering from The Pennsylvania State University,
State College, PA, USA, in 2021. She is currently
working as a Software Engineer with the Graph
Infrastructure Team, LinkedIn, Bay Area, CA, USA.
Her research interests include distributed systems,
computer networking, and distributed algorithms.

Ting He (Senior Member, IEEE) received the
Ph.D. degree in electrical and computer engineer-
ing from Cornell University in 2007. She is an
Associate Professor with the School of EECS,
The Pennsylvania State University. Her research
interests include computer networking, performance
evaluation, statistical inference, and machine learn-
ing. Her work received multiple Outstanding Con-
tributor Awards from IBM, multiple awards from
DAIS-ITA and NIS-ITA, and multiple paper awards
such as the 2021 IEEE Communications Society

Leonard G. Abraham Prize and the Best Paper Award at the 2013 ICDCS.
She has served as the TPC Co-Chair for IEEE ICCCN in 2022, the Area
TPC Chair for IEEE INFOCOM in 2021, and an Associate Editor for IEEE
TRANSACTIONS ON COMMUNICATIONS from 2017 to 2020 and IEEE/ACM
TRANSACTIONS ON NETWORKING from 2017 to 2023.

Patrick McDaniel (Fellow, IEEE) served as the
Program Manager and the Lead Scientist for the
Army Research Laboratory’s Cyber-Security Col-
laborative Research Alliance from 2013 to 2018.
He is the William L. Weiss Professor of information
and communications technology and the Director of
the Institute for Networking and Security Research
with the School of EECS, The Pennsylvania State
University. His research focuses on a wide range
of topics in computer and networks security and
technical public policy. He is a Fellow of ACM and

AAAS and the Director of the NSF Frontier Center for Trustworthy Machine
Learning.

Authorized licensed use limited to: Penn State University. Downloaded on January 27,2023 at 19:01:19 UTC from IEEE Xplore. Restrictions apply.

