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Abstract—Multilevel security (MLS) systems control access to
data by formalizing permissible and impermissible information
flows between data sources and destinations (e.g., database
servers and clients) fixed with distinct security labels. In com-
puter networks, MLS systems have been used to prevent unau-
thorized data disclosure in shared-infrastructure settings where
network hosts and devices may fall within different trust domains
(e.g., in multi-tenant cloud networks or wireless mesh networks).
However, current MLS systems assume static network behavior—
thus preventing the network from being practically usable in
the presence of dynamic network events that frequent unstable
network environments, including sudden changes in traffic pat-
terns, link failures, and topology changes as a result of device
movement or intermittent device connectivity. In this paper,
we introduce MLS-Enforcer, a software-defined networking
(SDN) controller application that can efficiently deploy network-
level MLS policies while retaining the ability to securely relabel
network nodes under changing topology state and network traf-
fic demands. We model network adaptivity as an integer linear
programming problem that reflects a given security policy. We
then introduce heuristic relabeling algorithms that achieve near-
optimal performance and are more tractable and efficient for
larger networks. We validate ML.S-Enforcer on several network
topologies and traffic loads, demonstrating that it can relabel
the network to route 90% -+ of flows under normal conditions
and quickly converge (on the order of seconds for the heuristic
algorithms) under changing needs—from small network struc-
ture changes to catastrophic failures. This shows that formally
secured networks can feasibly be deployed in diverse, changing,
and unpredictable environments.

Index Terms—Software-defined networking, SDN, security
services, security management, wireless network security,
multilevel security, optimization.
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I. INTRODUCTION

ULTILEVEL security (MLS) systems control access to

data through a reference monitor that governs access
requests made on data sources. The reference monitor uses
security labels and a security policy to formalize permissi-
ble and impermissible information flows between data sources
and destinations (e.g., database servers and clients). The
formalization is particularly useful in computer networks oper-
ating under a shared-infrastructure model where tenants share
the underlying physical hosts and network devices, but fall
within different trust domains— for example, in multi-tenant
cloud/enterprise networks [1] or multi-organization wireless
mesh networks [2]. As such, MLS systems have become essen-
tial components in network routing [3] to protect data between
network-service endpoints [4], [5] and to isolate the traffic
between different cloud tenants [6].

Software-defined networks (SDNs) have eased the imple-
mentation of MLS-based network routing systems by allowing
them to run as SDN controller applications. Here, the con-
troller application computes secure network-flow routes and
manages network-switch flow tables via a northbound interface
to the SDN controller (typically, a REST API). Yet, the cur-
rent design of MLS systems is limited in that it assumes
a fixed set of security labels on network hosts and devices,
which leads to under-utilization and sometimes (under inflexi-
ble security policies) a failure to route flows—i.e., it achieves
low flow coverage. This prevents the network from being prac-
tically usable in the presence of dynamic network events that
frequent unstable network environments (e.g., wireless mesh
networks), including sudden changes in traffic patterns, link
failures, and topology changes as a result of device movement
or intermittent device connectivity [2].

In this paper, we introduce MLS-Enforcer, an SDN con-
troller application that routes flows securely under MLS poli-
cies and dynamically adjusts network-switch security labels
when necessary to improve flow coverage. It therefore allows
security policies to be fluidly configured and network-flow
routes to be changed in response to evolving traffic and topol-
ogy profiles—all while providing the service transparently to
the entire network. We approach the problem by formulat-
ing integer linear-programs (ILP) that reflect MLS security
policies that preserve the confidentiality of information flows.
We then introduce heuristic relabeling algorithms that achieve
near-optimal performance and are tractable and efficient.

As relabeling network switches is an online problem, several
unique challenges arise. First, relabeling may affect flows with
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already-established routes, and thus relabeling should impose
minimal disruption on them. Additionally, changing switch
labels requires a secure procedure for wiping and rebooting
a switch (to reset the device into a known/trusted/attestable
state), which takes the time that is otherwise used for packet
forwarding; therefore, the relabeling algorithms must manage
invoking switch reboots and distributing flow rules efficiently.!
Further, policies that allow flows of different labels to traverse
common switches (i.e., flow mingling) introduce the poten-
tial for side-channel attacks (e.g., traffic analysis) by hosts
using the switch; therefore, it is essential to assess the tradeoff
between increased flow coverage and allowing flow mingling
(along with any risk that it introduces). Lastly, it is important
that the network maintains near-optimal or optimal coverage
of flows (i.e., the number of flows that can be routed) in the
presence of dynamic network events such as sudden changes
in traffic patterns, link failures, and topology changes as a
result of device movement or intermittent device connectivity.
As link failures and device movement are convention-
ally wireless network problems, we focus our evaluation
of MLS-Enforcer on common wireless network topolo-
gies [7]: mesh and star networks. We also measure the
performance of the labeling process in more traditional wired
(fat-tree) networks for juxtaposition. We focus on three met-
rics: coverage, agility, and disruption. A coverage analy-
sis shows that we can achieve high flow coverage for all
tested networks and policies: experiments in a mesh network
show that the system can achieve 99% coverage using an
optimization solver, and 95% using a heuristic algorithm.
With respect to agility and disruption, experiments show that
the heuristic algorithms are responsive to significant network
events, achieving near-optimal coverage within ~5 mins. The
relabeling process completes with minimal and controllable
disruption to ongoing flows (where up to 30% of flows may be
queued temporarily due to switch reboots). Lastly, computing
routes with the optimization solver requires up to 5 minutes
to relabel networks of just 48 switches, and thus, we resort to
heuristics that achieve 90% of the optimal flow coverage with
a 300x reduction in computational overhead.
We contribute the following:
o We formalize dynamic relabeling as an integer linear pro-
gram, parameterized by the access-control constraints of
a given security policy.
¢ We design heuristic algorithms for dynamic relabeling
that achieve near-optimal performance and scale more
efficiently with larger networks.
e We demonstrate the feasibility in deploying MLS policies
in unstable networks through a comprehensive experi-
mental evaluation.

II. BACKGROUND

In this section, we discuss background on software-defined
networking and formalize multilevel security as it relates to

INote that other methods for attesting the state of the running switch soft-
ware may be used (perhaps without rebooting). However, any choice of which
will inevitably induce some delay (which, in our evaluation, we simulate with
sleeps to temporarily suspend switch processing).

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

computer networks. We then highlight the gaps in prior work
that motivate the design of MLS-Enforcer.

A. Multilevel Security

Multilevel security (MLS) systems provide access con-
trol over data by assigning security labels to subjects (e.g.,
network hosts/IP addresses) and objects (e.g., database tables)
and validating that access constraints are satisfied whenever
an access to an object is requested by a subject [8]. A
security label consists of both a security level and one or
more security categories. A security level is an hierarchi-
cal attribute that indicates the relative authorization power
(resp. sensitivity) of a subject (resp. object)—for example,
public, confidential, secret, or top secret clearance. Security
categories are non-ordered attributes that identify classes
of data—for example, financial, medical, or personal files.
A subject’s label can then be defined, for example, as
Lgupject = {secret,{financial, medical}}. The hierarchy of
labels formed by all combinations of levels and categories
form a lattice structure called the security lattice [9].

A label is lesser (or greater) than another if the former is
a lesser level (or a greater level) and/or its categories are a
proper subset (or a proper superset) of the latter’s—otherwise
labels are incomparable (and an access is denied). We will
associate the comparators “lesser” and “greater” with the <
and > symbols, respectively. The security lattice ordering
thus describes the access constraints that must be satisfied
to maintain confidentiality. As an example, an MLS system
may require that data only flow between equivalent labels: for
an object of label L, = {secret, {financial}} and subject of
label Lgs = {public,{financial}}, all data flows L, — L are
denied since public < secret. Here, the less-than sign indi-
cates that the Public subject has a lower security level than
the Secret object.

B. Role of MLS Policies in Networks

Traditionally, multilevel security systems were used to con-
trol access to databases and operating systems, by making
different data available or presenting data differently to users
of different clearances [10]. For example, a database server
in a military or industrial organization may be shared among
users in both the accounting and engineering departments with
complete mediation over accesses to prevent unauthorized data
disclosure between users in each department [11]. However,
MLS policies have also be deployed in computer networks
to provide access controls between network service endpoints
that produce/consume data for each other [4], [5] and to isolate
traffic between different cloud tenants [6].

The difficulty in deploying an MLS system in a network
stems from the fact that there are multiple hops between the
source of data and its recipient, and thus information is inher-
ently exposed to intermediate subjects (e.g., an ethernet switch,
or a forwarding node in a wireless mesh network), which may
become compromised [12]. Here, security constraints must
also be satisfied across the entire path of each network flow
(i.e., at each intermediate switch) to meet the security policy.
For example, such is the case for isolated, wireless military
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networks where resource-limited network nodes are particu-
larly susceptible to attacks [13]. This task has made feasible
by leveraging a software-defined networking (SDN) architec-
ture [14], [15]: the decoupling of the network control and data
planes [16] provides an opportunity to run an MLS system
as a network application on the SDN controller with com-
plete visibility over the network topology and traffic profile.
In this setting, the MLS service can be provided transparently
to the entire network; whenever a new flow arrives into the
network, by default, if there is no route to forward it, that
flow is forwarded to the SDN controller be route it (assuming
a reactive approach to flow rule installation). There, the access
constraints can be evaluated over the flow source and destina-
tion to determine if the flow is permitted and, if so, find an
appropriate (secure) path through the network.

MLS offers two benefits unique to network security: (1)
fine-grained isolation of network traffic flows between dif-
ferent trust domains (i.e., security levels) all using a shared
infrastructure (e.g., in a wired datacenter network or wireless
mesh network), and (2) a reduced threat surface for adver-
saries within a particular trust domain. Isolation is enabled
by ensuring network flows are routed through paths in the
network deemed secure (i.e., satisfy security constraints)—
thus ensuring adversaries cannot probe, eavesdrop, or other-
wise interact with network hosts or devices outside of their
trust domain [17]. A reduced threat surface is achieved by
leveraging security categories: they further enforce the prin-
ciple of least privilege on access to data, thus preventing
unrestricted lateral movement (e.g., network scanning and traf-
fic analysis) by potential adversaries [18]. In effect, MLS
policies can prevent entire classes of reconnaissance tech-
niques: inter-domain (between trust domains) host scans, port
scans, and vulnerability scans [17] can all be immediately
dropped at access switches if the source host is not of
appropriate security level. This simultaneously prevents data
exfiltration, even if some nodes along a flow path were to
become compromised, since data will not be leaked from
uncompromised network hosts or devices of greater security
levels to lower ones (e.g., from Top-secret hosts to Public
hosts). Moreover, MLS policies can mitigate intra-domain
scanning by restricting access with security categories, and
can mitigate denial-of-service attacks as priorities can be given
to certain security labels to ensure those flows have sufficient
bandwidth.

As an illustrative example, consider the simple lattice, com-
posed of just security levels, shown at the top of Fig. 1. An
MLS policy can enforce that a Secret flow, originating from
the Secret laptop-user, only traverses Secret switches toward
a Secret server, preventing any Public nodes from being able
to eavesdrop on the flow. Without an MLS policy, encryp-
tion alone may suffice to prevent a Public node from directly
accessing the Secret-flow data, but cannot prevent traffic
analysis by the (less-secure) node were it to become compro-
mised [19]. While end-to-end encryption used together with an
MLS policy can provide greater security, device resource con-
straints may limit when encryption can be an available option,
whereas the MLS policy provides strong security guarantees
alone.
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Fig. 1. Network scenario using a 4-level security lattice, with security labels
(logically) given to network switches, servers, and users by the SDN controller.

III. MLS-ENFORCER OVERVIEW

In this section, we detail the network and security model
that MLS-Enforcer operates under, discuss the two MLS
policies that we consider in our design and evaluation, and
provide an illustrative example of the relabeling process.

A. Network and Threat Model

As shown in Fig. 1, the system is composed of nodes (e.g.,
user device, server, or network switch), links, and an SDN
controller that orchestrates the network. In MLLS-Enforcer,
nodes (with security label Lp,4.) are subjects and network
flows (with security label Lpy,,,) are data objects. A given
flow is labeled with the security label of the source host/server,
i€, Lpiow = Lsource- Moreover, links between nodes
can be wired or wireless; however, as link failures and
device movement are conventionally wireless network prob-
lems, MLS-Enforcer may have larger benefits in wireless
environments.

We leverage an SDN architecture to allow a network admin-
istrator to logically assign labels to each network node: since
the SDN controller is topology-aware, we maintain the label
assignments at the controller and thus provide the service
transparently to the entire network. We assume that a set of
labels for endpoints deemed appropriate per the needs of the
organization is given as input to MLS-Enforcer, and the ini-
tial switch labels can be random (as they may be changed). In
other words, we assume that a network administrator assigns
the endpoint security labels based on a relative security assess-
ment of each device and what traffic classes the device is
intended to send [14]. For example, wireless devices (e.g.,
laptops) with unpatched software may be considered relatively
insecure and assigned a lesser security label when they con-
nect to the network, while wired workstations with up-to-date
software and used within an office building for secure tasks
may be considered relatively secure and given higher security
labels when they are connected to the network. A method for
choosing device labels is outside the scope of our work.

Then, for simplicity we consider all of the network flows
being emitted from the host endpoints as having the same
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security label as the endpoint. Note that in future work we
will consider host endpoints being able to emit traffic with
different security labels (e.g., to differentiate between Web
browsing and secure file transfer traffic).

In SDNSs, as new flows arrive into the network, by default
if there is no route to forward them, they are forwarded to
the controller’s routing application to be routed (assuming a
reactive approach to flow rule installation). MLS-Enforcer
is then designated as the routing application (typically Java-
or Python-based under the widely used OpenDaylight [20]
and Frenetic [21] SDN controllers), and it computes secure
network-flow routes and manages network-switch flow tables
via a northbound interface to the SDN controller (typically,
a REST API). Upon receipt of a new flow, MLS-Enforcer
therefore intercepts the request and: (1) identifies the security
label of the flow based on the source IP address, (2) checks
if the data source is permitted to send data to the destination,
and (3) potentially relabels some switches before computing a
path for the flow where the MLS policy constraints are satis-
fied between the flow’s label and the label of each node along
the path.

In our threat model, we assume a trusted SDN controller
(and trusted administrator of the shared infrastructure) that
makes labeling and routing decisions and monitors for con-
ditions that require relabeling. We allow for compromised
network hosts or switches in different trust domains: different
tenants in a cloud network, or different organizations sharing
a wireless mesh infrastructure, may attempt to probe other
hosts and switches, eavesdrop on communication, or engage
in isolated or coordinated link cutting attacks [22].

B. Relabeling Process

MLS-Enforcer can route flows in one of two modes:
with relabeling enabled, or with relabeling disabled (by con-
figuring an algorithm parameter, as discussed later). In this
way, relabeling can be manually or periodically enabled, or
enabled in response to administrator-specified trigger condi-
tions (e.g., a link-failure event) to reduce disruption imposed
on the network.

Over time, events that change the traffic profile or the struc-
ture of the network (such as link failures) may interrupt flows
and require new routing paths to be found for them. Upon
detection by the SDN controller, MLS-Enforcer’s routing
algorithms adapt by (1) potentially changing some switch
labels (if relabeling is enabled), (2) invoking switch reboots to
reset the switch software into a known/trusted/attestable state,
and (3) recomputing flow routes that meet the security policy
constraints under the new set of labels. This can be seen in
Fig. 2 by observing the label changes from the top part of the
figure to the bottom as a result of a detected link failure. The
new routes are then distributed to switches as flow rules to
realize the new routing configuration.

C. MLS Policies

As the relabeling process must align with the security poli-
cies, we focus our formulations on two security policies that
maintain confidentiality for network flows: Strict and Relaxed
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Fig. 2. Network scenario describing how relabeling operates.

Bell-LaPadula. The strict security policy enforces total isola-
tion among labels which is typical of current MLS networks.
Here, information may only flow between subjects and objects
of equivalent security labels. As described below and explored
experimentally, the strict policy may overly constrain the
routing path options, leading to under-utilization of network
switches and an inability to route some classes of flows.

The Relaxed Bell-LaPadula (R-BLP) enforces the canon-
ical BLP policy [8] between the end-points of a flow (e.g.,
between source and destination hosts). In the canonical BLP
model, a source cannot send information to a destination with a
lesser security label than it has. However, BLP allows a source
to send information to a destination with a greater security
label. R-BLP retains the spirit of the BLP model but extends
the model to networks in which there are intermediate nodes
between the source and destination. In the R-BLP model,
a source cannot send information to or through nodes with
a lesser security label than it has, but a source can send
information to or through nodes with a greater security label.

More formally, for all flows, a flow may only be routed
through a switch if Lgyircn, 2> LFjow, such that Lgy,,, serves
as the floor for the security labels of switches through which
a flow may be routed. However, aficionados of BLP may rec-
ognize that R-BLP technically allows a switch to route some
flow to another switch of a lesser security label as long as
that switch’s label is greater than or equal to the flow’s label.
Thus, there exists the potential for leakage into potential side
channels (e.g., the switch of lower security level may per-
form traffic analysis). In BLP, such switches would need to
be trusted or such an action would be considered a viola-
tion of BLP. In R-BLP, we address this in two ways. First, the
labeling scheme described below constrains the number of vio-
lations allowed in the network (to reduce potential leakage into
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side channels). Second, there are techniques available to pro-
tect and validate the switches integrity (i.e., trustworthiness)
and protect the secrecy of communications through encryption
(see Section VI-F). We measure this effect in our evaluation,
however, we leave an assessment of side-channel information
leakage to future work.

D. Network Example

Consider the example network scenario in Fig. 2 using
the security public/confidential/secret/top secret security lattice
(top of figure) and enforcing a Relaxed Bell-LaPadula policy.
The flows have a Public user sending a Public flow (green)
toward a Public server and a Secret user sending a Secret flow
(blue) toward a Secret server. Here, the routing algorithms
can find secure paths that completely isolate the flows from
one another (i.e., incidentally satisfying the strict policy). For
example, any Public flows coming from the Public user can
reach the Public servers using only the Public switches.

Now consider a link failure (bottom of Fig. 2). Under the
initial labeling the Secret flows would be blocked since there
would be no alternative secure path. Recognizing this con-
dition, the controller (or some watchdog service) can enable
relabeling. Then, a possible solution identified by the algo-
rithm would be to relabel (and securely reboot) a single Public
switch to the Secret level, providing a secure path for the
Secret flows. However, the Public user would no longer have
a route to a Public switch. To accommodate both flows, an
option allowed by the R-BLP policy is to permit the Public
flow to be routed through Secret switches (“routing up”). But,
for the flow to be delivered to a Public server, it must be
returned to its original level, i.e., the Public flow must even-
tually be delivered back down to a Public switch (routing
down).

R-BLP utilizes such routing up and down as long as the
switches all have a label greater than or equal to the flow’s
label. Our formulation restricts routing down to a limited
number of switches to manage risks.

IV. OPTIMIZATION FORMULATIONS

In this section, we formulate two integer-linear pro-
grams (ILPs) that reflect the two security policies introduced
previously to preserve the confidentiality of information flows:
the strict policy and the Relaxed Bell-LaPadula (R-BLP) pol-
icy. Note that for simplicity we consider security labels just
in terms of security levels; the formulations can be easily
extended to labels with both levels and categories by adding
a category-based term to the access constraints. Further, the
proposed framework can easily be extended with similar con-
straints to support organization-specific security policies. We
elaborate on these points in Section I'V-C.

We first define several variables used in both policies, and
in Table I we provide the notation used throughout.

Definition 1: A link between switches k and / for a flow
j is called a feasible link (denoted by X ,i ;) and can be used
to route the flow if those two switches are first-hop neighbors
and the level relationship between the flow j and both switches
satisfies the security policy.
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TABLE I
DEFINITIONS AND NOTATION

C; Capacity demand of flow j

a; Routing indicator of flow j

L; Security level of flow j

f(L;) | importance function of flow j

T Set of all switches

J Set of all flows

& Set of all links

S Set of all flow sources

D Set of all flow destinations

I Indicator of the neighborhood of switches k and [
X i . flow j link indicator between switches k and [
ij’ ! flow j decision variable between switches k and [
Cs,i Capacity of switch 7

Cr Link capacity between switches k and {

B Maximum number of route-downs allowed for any flow
X; Security level of switch ¢

m Number of security levels

AX; Number of levels switch % is changed by

In; Indicator of changing the security level of switch ¢
M Number of switches whose labels can be changed
Aj Route-down degree limit allowed for flow j

The variable [j,; denotes whether two switches are
neighbors:

- 1, if there is a direct link between k£ and [
kL= 0, otherwise

The security levels of flows (denoted by L;) or switches
(denoted by X;) form a totally ordered set defined by:

L, X; € {1,...,m}.
The updated security level of switch i is
Xz/ = X; + AX;.

Hence, the set of possible values of the change in switch levels
from relabeling is

AX; e {-X;+1,....,m—X;}.

The indicator variable denoting whether a switch’s initial
level was changed is

L[ AN >0,
i 10, otherwise

We introduce a tunable parameter, M, to allow a network
administrator to limit the number of switches that may have
their labels changed during a single run of the relabeling algo-
rithm; this in turn can reduce potential disruption caused by
waiting for switch reboots.

A. Labeling for the Strict Policy

In this policy, a flow can neither be routed through a switch
of higher-security level nor through a switch of lower-security
level. Hence, given this assumption, the network is partitioned
into groups comprising the flows of the same security level.
Then, the feasibility of a link (where the switches may have
updated labels) being used for routing a flow is described by
extending the traditional MLS constraint:

X] {1, ifIkJ:landLj:Xé:X{
kil 0, otherwise
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In other words, a link is feasible for a flow iff the two
switches are of exactly the same security level as the flow.
The optimization problem formulation is given by (1)—(12)
below.

The objective (1) is to maximize the total capacity of the
served flows in the network, weighing each flow according
to its security level with f(L;), which can be an arbitrary
function, such as a linear function, quadratic function, etc.?
Constraint (2) ensures only a feasible link can be chosen for
a flow. Basically, le ; can be 1 only if X]g ; = 1 (the link is
feasible). Initiating (dj = 1) or not initiating a flow (a; =0)
from the source is described by (3), whereas (4) denotes the
last link of a routed flow (; = 1) or the flow not being routed
(aj = 0). The flow preservation property (the flow can leave a
node only if it has entered it) is captured by (5). Constraint (6)
ensures there are no loops. The left-hand side of (7) denotes
the total capacity demand of all flows going through switch i.
It cannot be larger than the total link capacity (the right-hand
side term of (7)). Similarly, the left-hand side term of (8) is
the total capacity demand of flows traversing the link between
switches k and /, which cannot be larger than the capacity of
that link (C}, ;). Constraint (9) captures the finite number of
switches whose security labels can be changed. Finally, con-
straints (10)-(12), denoting whether a flow is routed, whether
it is routed through the link between switches k and [/, and
whether a switch level is changed, respectively, define the
decision variables, whose values can be either O or 1.

J
max Y Cja;f(Ly) )
j=1
st. Y], <X}, VE€IUS,VIeTUD, )
YVl = VieJ VkeLl, 3)
k
ZYIﬁ,dJ‘:aﬁ vVieJd, Vkel, 4)
k

Yl =YY, VkeIus VieT,
k m

Ym e ZUD, VjeJ, (5)
YV, <1, Vk eI, VjeJ, (6)
k
YD GY],<Csi, Vie€eIL VEeIUS, jed,
L
(N
Y CGYl, < Chyy VEIEL ®)
J
> I, <M, Viel, 9)
a; €{0,1}, VjedJ, (10)
Y], €{0,1}, VEk€IUS,VI€TIUD,VjeJ,
1D
In, €{0,1}, VieZ (12)

2Note that whether or not a flow is served is controlled by the decision
variable cv;, whose value is 1 only if flow j is served and otherwise 0.
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Complexity: This optimization problem belongs to the class
of integer linear programs, which are known to be NP-
hard [23]. The problem structure does not allow for an
algorithm with a performance guarantee. Hence, we resort to a
heuristic algorithm suitable for large networks. Nevertheless,
the heuristic algorithms that we present in Section V are
demonstrated to provide near-optimal performance (close to
that obtained by the optimization solver).

B. Labeling for the Relaxed Bell-LaPadula (R-BLP) Policy

With this policy, a flow may be destined toward higher-
security level hosts or be routed up to higher-security level
switches, but not to hosts/switches of a lower-security level
than the flow itself. Therefore, we extend the above for-
mulation to realize the relaxation on the canonical BLP
policy.

Definition 2: A flow traversing any link for which the next-
hop host (destination) or switch is of higher-security level than
the flow is denoted as being routed up (see bottom of Fig. 2).

In allowing routing up, the policy must also potentially
allow the flow to be routed down to lower-level switches again
in order to reach the destination as long as Lgyiteh = LEjow-
In allowing routing down, we introduce two parameters that
dictate to what degree routing down is permitted. The num-
ber of routing-downs along a flow route is restricted by the
routing-down limit B.

The formulation for R-BLP is identical to the strict policy
except for the link feasibility constraint which is expressed as:

_ 1, if Iy ; =1 andL; < min{X/, X/}
X]il: and X] — X/ < A;
0, otherwise
Essentially, besides requiring the two switches being neigh-
bors, the flow level should be lesser or equal to both switch
labels and the degree of a routing-down should be within the
limit. From the definition of a feasible link, we constrain the
number of security levels a flow can be routed down, which in
turn limits the number of security levels it can be routed up.
Further, we introduce an additional constraint to realize the
routing-down limit B:

S > vl <B VkleI vjed.
koUX[>X]

13)

Complexity: Since the R-BLP formulation (constrained
optimization problem) has the same objective function as the
strict policy and near-equivalent constraints, it is impossible to
provide an approximation algorithm with performance guaran-
tees in this case neither. Therefore, for this problem as well
we propose low-complexity heuristic algorithms that achieve
near-optimal performance (Section V).

C. Extending the MLS-Enforcer Framework

As noted, our formulations provide a framework for real-
izing dynamic deployment of the strict and R-BLP policies
under a standard security lattice, but can be extended to
support organization-specific security levels, categories, and
policies. Here, we elaborate on how to achieve this.

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.



BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS

For simplicity, in the optimization formulations we consider
security labels just in terms of the security levels. The for-
mulations can be extended to support security categories by
adding a category-based term to the link feasibility indicator
variable X]i ;- First, the security labels of flows (denoted by
L;) and switches (with updated levels denoted by Xi’ ) should
be extended to represent both a level and set of categories (e.g.,
Lj = {secret, { financial}}). Then, for the strict policy, a link
is considered feasible (i.e., may be used to route the flow)
under the following condition: X,il =1 < ([t =1)
and (Lj,level = X/g,level = Xl/JeUgl) and (Lj,categories =

. categories | categories)- A similar extension can be
applied for the R-BLP policy.

Note that our use of security levels as a representation of
the entire label is just a special case under the use of cat-
egories, where labels with the same level also simply have
the same set of categories. Naturally, both the space of levels
and categories can quickly render the space of possible labels
very sparse in certain organizations and thus make it difficult
to find routes for flows (i.e., it may become difficult to rela-
bel adequately to satisfy the access constraint for most flows).
Therefore, we defer a more comprehensive investigation of
security categories and the limitations they impose therein to
future work.

Just as the formulations can be extended to support cate-
gories, any other organization-specific security policies can be
implemented by similarly extending the link feasibility indi-
cator variable. For example, a security policy may require
rejecting flows being emitted after a certain time-of-day. To
support this policy, the network administrator may introduce
an additional indicator variable T for a flow timestamp (e.g.,
the time it was received at the controller application to be
routed). Then, it may check newly arriving flows against a set
threshold before permitting an access and installing the nec-
essary flow rules to switches: X g =1 = (I; = 1) and

(Lj = X; = X)) and (T} < threshz)ld)

V. HEURISTIC ALGORITHMS

As solving the optimization problems for the given poli-
cies is NP-hard, we propose heuristic methods for each policy
that are easily deployed in real networks. We approach the
problem by dividing the relabeling process into two subrou-
tines: (1) finding potential flow paths and recording conflicts
on the paths, and (2) relabeling selected switches based on
the information collected about their conflicts. In the first
subroutine, we extend Dijkstra’s shortest-path algorithm to
find potential flow paths in the network and record per-flow
conflicting switches during path tracing (i.e., those along a
potential flow path that cause a policy violation). In the sec-
ond subroutine, we use all of the conflict information to
decide which switches (up to M switches) to relabel to resolve
conflicts.

To accomplish this, we distinguish between two types of
conflicts that a switch level may have with flow levels. Then,
the key idea is to invoke the subroutines iteratively through
multiple phases to resolve each conflict type successively. The
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First we find potential paths for flows and
record conflicting switches during path tracing.
Conflicting switches here are E and I along the
minimum conflict path.

|

K (4)

A1)

Conlflicting switches then relabeled to the highest
weighted level traversing the switch to resolve
conflicts: E->4 and [->1. E upgraded from level 3
to level 4. I downgraded from level 2 to level 1.

1(1)

Fig. 3. Example execution of the heuristic for the strict policy. Minimum
conflict paths are found for flows, and conflicting switches are recorded, and
per-level weights are computed for flows traversing them. Then, conflicting-
switch levels are set to the highest-weighting level to unblock flow paths.

strict policy consists of two phases and the R-BLP policy con-
sists of three phases. For each successive phase, we enforce
constraints on links that prevent the controller from contin-
uously finding new paths containing conflict types already
resolved. We first introduce the conflict types and then describe
the relabeling process for both policies.

A. Conflict Types

Type (1) conflicts: This type of conflict may arise when
a flow path contains a switch with a different security level
than the flow. Marking switches differing in level as conflict-
ing informs the relabeling subroutine of the potential need to
upgrade or downgrade the switch level to reduce the switch’s
threat surface. Marking all of these cases as conflicts allows us
to isolate different level flows as much as possible, reducing
the possibility of flows of different levels mingling, and hence
the threat of leakage into potential side-channels. Moreover,
this method will encourage the controller to find similar
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paths for similar-level flows to reduce the number of con-
flicting switches and limit any disruption caused by invoking
relabels/reboots.

Type (2) conflicts: This type of conflict only applies to R-
BLP and may arise when the flow path contains a link whose
routing-down degree (after being routed up) between the ends
is larger than that allowed by policy (A;). In this scenario,
either end of the link can be relabeled. However, downgrading
the head-end of the link may cause additional type (1) con-
flicts. Therefore, we mark the tail-end of the link as a conflict
so that the relabeling subroutine will consider it for upgrade
and resolve the level difference.

B. Strict: Two-Phase Relabeling

In the strict policy, the process of relabeling runs in two
phases, each consisting of two subroutines. In the first phase,
minimum-conflicts paths are found using Dijkstra’s shortest-
path algorithm (with distance array d and next-hop array p),
extended with a custom link metric that is the absolute-value
difference between the next-hop switch security level and the
flow security level (Algorithm 1, lines 11 and 14). Since
rebooting a switch imposes a delay, we impose an additional
cost on links containing still-rebooting switches to temporarily
reduce the number of flows that would be preempted or queued
(i.e., disrupted) by traversing such switches (Algorithm 1,
line 11). Type (1) conflicting switches are then recorded dur-
ing path tracing by checking if each switch has the same level
as the flow.

After the potential paths are found, conflicting switches of
type (1) are relabeled (up to M switches) to unblock flow
paths. While there are several ways to choose which con-
flicting switch to relabel first, the objective is to eventually
relabel all conflicting switches to a converging state. We take
a greedy approach by weighting all the conflicting switches
based on the flows traversing them, and then relabeling the
highest-weighted switches first. We apply the same weight-
ing function f(L;) from Equation (1) to flow levels during
path tracing to find the sum per-level and overall weights for
each conflicting switch. We then iteratively select the highest
overall-weighted conflicting switches to relabel first. Similarly,
for type (1) conflicts, the new security level chosen for a con-
flicting switch is the security level of the flows that is heaviest
at the switch (index O of the sorted per-level weights list in
Algorithm 2, line 16).

Finally, in phase 2, an additional link constraint is enforced
to prevent paths from encountering additional type (1) conflicts
(Algorithm 1, line 31), and the resulting paths (if valid) can
be distributed to the switches as flow rules.

C. R-BLP: Three-Phase Relabeling

In R-BLP, conflicts of type (1) or (2) may be present
since flows may be routed up over appropriate-level switches.
Therefore, the first phase operates as above by running
the shortest-path algorithm, recording type (1) conflicts by
comparing the switch and flow levels, and relabeling the heav-
iest conflicting switches to the heaviest-level at the switch
(Algorithm 2, line 8). Then in the second phase, we run
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Algorithm 1: MinConflictPath() Algorithm

Input: distance array d, previous-hop array p, flow j
Output: updated distance and previous-hop arrays

1 Q = {j.source}

2 d[j.source] = 0, p[j.source] = null

3 for v € V\ {j.source} do

4 | dv] = o0, p[v] = null, Q.add(v)

5 end

6 while Q not empty do

7 u = node in Q with smallest d[ - ]

8 pop u from Q

9 foreach neighbor v of u do

10 if v € rebooting_switches then

u | w = abs(j.lvl — v.lvl) + reboot_cost

12 end

13 else

14 | w = abs(j.lvl — v.lvl)

15 end

16 if RBLP then

17 if (phasel) and (d[u] + w < d[v]) then

18 | d[v] = d[u] + w, p[v] = u

19 end

20 else if (phase2) and (d[u] + w <
d[v]) and (j.lvl < v.lvl) then

2 | d[v] = d[u] + w, p[v] = u

22 end

23 else if
(phase3) and (d[u]+w < d[v]) and (j.lvl <
v.lwl) and (u.lvl — v.lvl < Aj) then

24 | d[v] = d[u] + w, p[v] = u

25 end

26 end

27 else if strict then

28 if (phasel) and (d[u] + w < d[v]) then

29 | d[v] = d[u] + w, p[v] = u

30 end

31 else if (phase2) and (d[u] + w <
d[v]) and (j.lvl == v.lvl) then

32 | d[v] = d[u] + w, p[v] = u

33 end

34 end

35 end

36 end

37 return d, p

the shortest-path algorithm again and enforce a constraint
preventing additional type (1) conflicts (Algorithm 1, line
20). Conflicting switches of type (2) are then recorded during
path tracing. As above, the switch at the end of a conflicting
segment of a path is chosen to be relabeled and set to the
minimum possible level that is still within the bounds of the
security policy: the head-end level minus the maximum allow-
able routing-down degree Aj (Algorithm 2, line 11). Note
that there might be multiple conflicting links with the tail-end
switch in question, so we choose the link with the highest
weighted head-end switch as the one to resolve.
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Algorithm 2: RelabelConflictSw() Algorithm

Input: sum per-level and overall switch weight array
sw_weights
Output: none
1 sorted = sort_per_lvl_weights(sw_weights)
2 for i = 0 — len(sorted) do

3 if num_relabeled == M then

4 | break

5 end

6 if RBLP then

7 if phasel then

8 | sorted[i].ll = sorted[i].weights[0]
9 end

10 else if phase2 then

1 | sorted[i].lvl = maz_head — Aj

12 end

13 end

14 else if strict then

15 if phasel then

16 sorted[i].lvl = sorted[i].weights|0]
17 end

18 end

19 num,_relabeled + +

20 end

Finally, in phase 3, another link constraint is enforced to
prevent paths from encountering either type (1) or type (2)
conflicts (Algorithm 1, line 23), and the resulting paths (if
valid) can be distributed to the switches as flow rules.

D. Complexity

The heuristic algorithms have three steps: (1) execution of
the shortest-path algorithm, (2) relabeling conflicting switches,
and (3) post-processing to distribute flow rules to switches.

Step (1): Dijkstra’s shortest-path algorithm, followed by
path tracing, is executed once for each flow in 7. If £ denotes
the set of network links and Z the set of network switches,
the running time for this step is:

O(TI(I€] + |Z]1og |Z] + 1)) = O(T[(I€] + [Z]1og |Z])),

where path tracing is upper-bounded by |Z|.

Step (2): We first sort switches by their per-level weights
(across the m levels). Then, we sort switches by their highest
weight (i.e., index O in the per-level sorted list) and proceed
with relabeling in that order. At most M switches are relabeled.
Therefore, the running time for this step is:

O(|Z|mlog m + |Z|log |Z| + M) = O(|Z|mlog m + |Z|log|Z]).

Step (3): Finally, the controller performs post-processing on
each flow path to determine which flows can be routed and
which cannot (i.e., violates the security policy or is queued).
The running time for this step is O(|J||Z]).

The total running time of both algorithms is:

O(|Jlel + 1T 1Z]1og |Z] + [Z]|m log m),
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which is polynomial. In Section VI, we show that these algo-
rithms are efficient even in large networks. Note that Step (3)
is only executed when relabeling occurs, and the steps are
executed 2x each for the strict policy and 3x for R-BLP.

VI. EVALUATION

In the following, we evaluate the performance and secu-
rity properties of MLS-Enforcer. We capture three metrics
to assess network performance: (a) flow coverage, which is
the percentage of flows routed under a given labeling pol-
icy, (b) agility, which is the effort required by the network to
adapt to destabilizing network events (also called convergence
time), and (c) disruption, the percentage of flows queued or
preempted (i.e., not routed immediately or at all). Note that
we will refer to relabeling invocations as the number of time
instants at which relabeling was enabled in MLS-Enforcer’s
routing algorithms (by setting an M/ > 0). We then measure
the risk associated with routing-up and routing-down under
R-BLP.

A. Experimental Setup

For simulation-based experiments, we evaluate the
performance of MLS-Enforcer on two widely used
network topologies: mesh and star networks. We also measure
the performance of the labeling process in fat-tree networks
(used more traditionally in wired networks) for juxtaposition.
For the latter, we generate fat-tree networks with a switch
port density of k = 6 using techniques described in prior
work [24]. We use the AT&T North America WAN dataset
from Topology Zoo [25] to generate the star topology, and
we generate generic full-mesh topologies with 20 switches.
We then connect hosts to each switch in the network and
assign random levels hosts, with hosts connected to the same
edge switch having the same level (e.g., Public hosts all
connecting to a Public access point). Initial switch levels
are also randomly assigned. We use the standard security
lattice from above: Public (1) < Confidential (2) < Secret
(3) < Top-Secret (4).

For the end-to-end (E2E) traffic, ~ 50 flows per second are
randomly generated and have source and destination endpoints
selected by appropriate levels (i.e., only create flows that com-
ply with the enforced policy). We assume that the controller
does not queue flows if they cannot be routed (i.e., that the
source may initiate retries of the flow instead). Flow durations
are set to an average of 1 s, to assess performance in the worst-
case scenario of consistently changing flow patterns. However,
we experimented with longer flow durations and found that
there was no detectable effect on performance. We then per-
form relabeling every 100 s and assign a switch reboot time
of 10 s (verified experimentally on virtual switches [261%).

We also implement the proposed relabeling algorithms as a
prototype SDN controller application and perform experiments
on a virtual SDN testbed with Mininet [29] and the POX SDN
controller [30]. As designed, the labels are maintained entirely

3Fast-reboot features in commercial switches [27], [28] take =~ 25 s, which
causes disruption but has no effect on coverage (see below).
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Fig. 4. Coverage in the mesh (left), fat-tree (middle), and star (right) topology for the R-BLP (top) and strict (bottom) MLS policies (S = opt. solver,

H = heuristic, OV = obj. value, M0.1 = M is 0.1).

at the controller (where the controller is aware of the given IP-
address-to-label mapping), and we evaluate the ability of the
application to route flows securely under a fat-tree topology.

We use the Gurobi [31] solver to find optimal solutions,
where quadratic flow weighting is used in the optimization
formulations and heuristic algorithms, i.e., f(L;) = sz, to
give high priority to high-security flows. We also experi-
mented with other flow weighting functions, such as linear
(e.g., f(Lj) = Lj), cubic (e.g., f(L;) = L?), and other higher
degree polynomials, with similar conclusions drawn. Due to
space limitations, we do not include figures for those results.

B. Coverage and Running Time (Simulation)

Coverage: Fig. 4 (top left) shows the results of our first set
of experiments. The optimization solver for R-BLP achieves
~99% and the heuristic reaches ~95% flow coverage for the
mesh network within 5 relabeling invocations (M = 0.1). The
top middle and right graphs show that the solver and heuristic
also maintain high coverage in the fat-tree and star networks
in steady-state. Note that the visible coverage high/low spikes
indicate moments where flows were queued awaiting switch
reboots following relabeling. The heuristic with M = 0.1 is
able to achieve 90% of the maximum objective value (i.e.,
90% of the maximum weighted network capacity of routed
flows). For comparison, prior MLS networks [14] have only
shown to be able to route approximately 60% of network
flows under similar network topologies for a 4-level lattice.
Here, as expected, we observe that for both the optimization
solver and heuristic the convergence is faster with a larger
M and shorter relabeling period. We note that experiments
with larger networks yielded quantitatively similar coverage
results because they only enabled more potential flow paths.

In contrast, the limited number of paths in very small networks
(e.g., less than 20 switches) already subjects them to low flow
coverage (e.g., <50% coverage), and the issue is only exac-
erbated by destabilizing network events. These networks may
require alternative secure-routing approaches.

Moreover, the reboot time had no detectable effect on cover-
age. More complex security lattices (e.g., composed of several
different levels or categories) may induce lower coverage if
there are not an adequate number of paths to route flows
through (i.e., if the network is too small). Notwithstanding,
the heuristic algorithm (red line) maintains nearly the same
coverage as the solver (black line), for all three topologies,
to within ~10% of the optimal for R-BLP and within ~15%
for the strict policy (experiments on other topologies yielded
similar results).

As to policy, the strict policy performed similar to R-BLP
in the mesh network, had a (non-negligible) 10% coverage
loss in the fat-tree network, and performed substantially worse
(=20—70% coverage) than R-BLP (=80—100% coverage) in
the star network topology—hence motivating R-BLP. Here, the
star network did not have enough redundant switches/inter-
connectivity to establish a set of non-intersecting paths for
all labels. Note that the delay in convergence to the optimal
or near-optimal is a reflection of the network startup from a
random state, which would occur just once in practice.

Running time: Each invocation of the optimization solver
took ~5 minutes for the fat-tree network of 48 switches and
~2 minutes for the star (WAN) network of 25 switches and
mesh network of 20 switches, where we observed the run-
time scaling with a power-law relationship to the number of
switches. This renders the optimization solver impractical to
use in real-world settings for larger networks (e.g., in large
SDN networks, which may manage several thousand switches

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.



BURKE e al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2359
1.0 - - ﬁ \‘I 1.0 = } “ W V T 1.0 g = T
08 { i 08 | |1 ! 08
%06 — No relabelling %06 %06
£ —— Heuristic, M=0.05 | £ £
004 o 004 004
S 02 M 3 o2l T No relabelling 3 T No relabelling
’ | —— Heuristic, M=0.05 | —— Heuristic, M=0.05
007500 2000 2500 3000 %0 1500 2000 2500 3000 0.0—"7500 2000 2500 3000
Time (s) Time (s) Time (s)
(a) Traffic bursts (b) Link failures (c) Device movement
Fig. 5. Adaptive reconfiguration for different network events in the mesh topology.

in datacenter settings). Conversely, the heuristic took ~1s
on average (in Python) to relabel switches, up to and scal-
ing linearly with networks of several hundred switches and
flow arrivals per second. In fact, the heuristic algorithms can
compute a relabeling in < 5s for a mesh network containing
200 switches. The results strongly indicate that the heuristics
are both necessary and capable of performing relabeling in
complex or large networks with many flows.

C. Network Agility and Recovery (Simulation)

In the next experiments we consider three classes of network
events that effect the network performance: traffic bursts, link
failures, and device movement. The goal here is to assess how
well the network relabeling recovers from (is agile to) to events
ranging from small state changes to catastrophic failures.

Traffic bursts: In the experiments depicted in Fig. 5(a), we
inject a large burst of top-secret flows for several minutes
(pink region). In the mesh topology for the R-BLP policy,
the network coverage immediately drops from 90% to 20%.
Relabeling is periodically enabled in MLS-Enforcer (by
setting M = 0.05) every 100 seconds to adapt, bringing the
coverage back to the steady-state level and even increasing it
beyond 90% (the TS-level burst traffic dominates the back-
ground traffic) within 2-3 invocations. In contrast, without
relabeling (black line) the coverage remains at 20% for the
duration of the burst. Note that the network is also re-adjusted
within two relabeling invocations once the traffic burst is gone.
The network adapts quickly in response to sudden changes in
the traffic-level distribution. We observed quantitatively simi-
lar convergence times in the fat-tree and star topologies, and
slightly longer convergence times under the strict policy.

Link failures: Next, we randomly fail 10% of the network
links and measure performance in the R-BLP/mesh topology.
Shown in Fig. 5(b), coverage drops from ~~98% to around
90%. However, relabeling adapts to these failed links by
rerouting flows over other policy-compliant paths, thus incre-
mentally bringing the coverage back to ~95% over the next
three relabeling invocations. Notably, at 10% the magnitude
of the coverage drop is manageable, allowing the network to
still maintain high coverage. This is partly due to the high
degree of connectivity in general in the mesh network. Other
experiments for the fat-tree network show that as the volume

of links that fail increases, the ability to route traffic drops
significantly faster, where we see ~60% coverage at 20% link
failures, 40% coverage at 30%, and 10% coverage at 50%.
We observed the same negative effects in the star network
topology.

Device movement: In our last set of agility experiments,
we relocate 50% of hosts to other parts of the mesh network
(i.e., connect through different access networks). This emulates
devices being relocated to new physical locations (e.g., a server
being moved to a different location inside of a building) or
intermittent connectivity of devices. As shown in Fig. 5(c), the
coverage drops from the initial 98% to 88%. Further, relabel-
ing enables the network to adapt quickly and reach 95—98%
within two invocations. As with the other events, relabeling
of the interior switches enables the network to adapt quickly
in response to shifts in network structure or host distributions.
Note that each relocation event (beginning of the pink zone)
causes a random relocation of hosts. However, as we do not
revert relocated hosts to their original location, each successive
relocation in the non-relabeling network leads to the labeling
being further from optimal (and hence lower coverage).

Notably, we conclude that the agility of the system is closely
dependent on the security policy; policies that impose more
access constraints or use complex security lattices may not
converge as quickly under destabilizing events. Moreover, the
security policy’s flow weighting function f(L;) also affects
the priority of certain flows and must be tuned appropriately to
reduce the potential for unfair network partitioning (e.g., rela-
beling still-alive switches to accommodate a relatively small
set of Secret flows but block a larger set of Public flows).

D. Disruption (Simulation)

We define two kinds of disruption: preempted, where a flow
that was previously routed is then blocked after relabeling,
and queued, where a flow traverses a path containing a still-
rebooting switch. Fig. 6 shows a simulation of each event class
for R-BLP on the mesh topology. In general, only ~ 35% of
flows from hosts that were relocated and ~ 15% of flows
from failed links are preempted at the start of the dynamic
event, but otherwise the heuristic relabeling algorithms does
not preempt flows. The former is due to hosts which had active
flows before moving (red line) and the latter due to active flows
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using failed links and not having a secure path found at the
instant the failure is detected.

On the other hand, switch reboots cause flows to be queued.
For link failures and device movement, we observe an average
of 30—40% disruption caused by queueing. While a significant
proportion of flows, disruption is naturally heavily dependent
on switch reboot times, although disruption can be mitigated
with lower relabeling frequencies, manually initiating the rela-
beling algorithm, development of efficient fast-boot features
on switches [27], [28], or with a smaller M. A direction for
future work is developing selective relabeling algorithms that
restrict which switch labels may change to provide guarantees
about disruption caused to certain flow levels. Note that for the
strict policy we observed slightly less disruption. We noticed
quantitatively similar results in the fat-tree and star topologies.

E. Coverage, Agility, and Disruption (Mininet)

We then evaluated a prototype SDN controller application
(implementing the heuristics) in a Mininet network environ-
ment that reflected similar simulation parameters (network size
and the R-BLP policy). We generate new flows (as a series of
ICMP packets) from hosts every 60-second time epoch. Using
a relabeling period of 100s, we then capture measurements by
sampling the flow coverage observed by the controller every
second. As shown in Fig. 7, under the R-BLP policy in a
fat-tree topology, the routing application achieves >90% flow
coverage within a single relabeling invocation (at M = 0.1),
from a random assignment of switch labels. This demonstrates
a significant improvement over the coverage granted by prior

MLS routing systems [14] (60%) and comparable to the suc-
cessful packet delivery ratio (>90%) measured in prior works
for similar network sizes [32].

We then measured the ability of MLS-Enforcer to
respond to link failure events by rerouting flows around the
failures. The link failure event occurs during the time period
highlighted in the red region in the middle plot of Fig. 7 (which
corresponds to approximately time 240-420s and time epochs
5-8). We observed in the Mininet network that failure events
similarly cause a severe drop in flow coverage that last until
relabeling can adjust switch labels to better align with the
network traffic profile. Specifically, we observed that the cov-
erage dropped from ~95% to ~70% upon detection of the link
failure events, where a new route could not be immediately
found for many flows that were previously routed across the
failed links. However, MLS-Enforcer was able to respond
to the event to reroute the flows around the failure, achieving
near-optimal coverage (~90%) within 5 relabeling invocations.

From the perspective of hosts, we then measured the dis-
ruption on their flows as a result of the link failures (right
side of Fig. 7). Of interest are the average RTT (which char-
acterizes the latency of queued flows) and packet loss (which
characterizes preempted flows) that flows observe during and
after the link failure. Notably, we found under normal con-
ditions that both average flow RTT and packet loss of host
ICMP messages are relatively low (at <0.020s and <12%,
respectively). However, during the link failure event (which
corresponds approximately to time 240-420s and time epochs
5-8), the average RTT and packet loss peak at ~0.06s and
~20%, respectively. Here, some flows are routed around the
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failure (incurring higher RTT and a small amount of packet
loss), and when the links become live again at epoch 8 (and the
controller responds approximately during epoch 9), the aver-
age RTT and packet loss begin to drop as MLS-Enforcer
stabilizes the network.

This supports our observation of high flow coverage and
demonstrates the ability of MLS-Enforcer to adapt quickly.
However, we note that the slight discrepancy in the coverage
observed by the controller and packet loss ratios are caused by
(1) packets lost before the link event (down/up) is detected, and
(2) heavy queueing at the controller that causes some ICMP
packets sent from a host to be dropped.

While we present preliminary results under link failures,
in future work we plan to refine the implementation to pro-
vide a comprehensive analysis of the other network events,
as well as the systems challenges introduced when deploying
MLS-Enforcer in areal network. We refer to Section VII for
insights towards integrating MLS-Enforcer into commonly
used frameworks for deploying various SDN-based network
policies. Moreover, to more accurately assess the utility and
security in deploying such policies, we defer to future work
extending monitoring tools to capture finer-grained routing
measurements from different perspectives across the network.

E Security Analysis

We begin by considering unauthorized flows. Formal MLS
policies prevent under-privileged adversaries from capturing
network traffic for analysis and mitigate the threat of equally-
privileged adversaries (by restricting the potential information
flows to only those permitted per the security labels). In
this way, MLS-Enforcer significantly reduces the capabil-
ities of adversaries performing network scans or attempting
to eavesdrop on traffic. Specifically, any unauthorized flows
emitted from endpoints or compromised switches are dropped
at the nearest uncompromised neighbor—for example, for an
unauthorized flow from a malicious endpoint, the controller
instructs the access/edge switch to drop the flow, and for an
unauthorized flow from a compromised switch, the controller
similarly instructs the next-hop switch to drop the flow.

We now consider legitimate flows. In R-BLP a limited num-
ber of switches are trusted to “route down” flows, which may
represent some risk (see Section III-C). We measure the risk
impact in the mesh topology with a limit of five switches per
flow (B = 5). From the flow perspective, we find in our sim-
ulation experiments that 36% of the flows are routed through
at least one switch that may route down. However, we find
that only 2.52% of the flows received by these switches on
average may be routed down below a flow’s level (i.e., if the
switch is compromised), indicating that routing targets flows
that profit from being “routed up.”

Nonetheless, risks to the remaining flows can be mitigated
using virtual isolation methods. For example, the authors of
MLSNet suggest that data routed through devices of lower
levels could be encrypted using a level-specific key [14]. The
data would be tunneled and encrypted to prevent intermediate
switches from eavesdropping on the payload or ascertaining
the identities of the endpoints.
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Another approach would be to use methods to validate the
integrity of the switch run-time environment using remote
attestation [33] applied to network equipment [34]. If the
network administrators are concerned about traffic analysis,
standard techniques such as traffic shaping [35] can be applied.

Evaluation Summary: Our experiments demonstrate that the
strict and R-BLP policies could be used to effectively gov-
ern a network environment, with associated trade-offs. The
relabeling process converges quickly and adapts to changing
conditions within a few invocations. Moreover, the relabeling
process can be calibrated to be more (faster convergence and
recovery) or less aggressive by setting algorithm parameters
appropriately.

VII. DISCUSSION

We have demonstrated that MLS-Enforcer provides an
effective means of constructing and deploying dynamic MLS
policies across an entire network infrastructure. The system
is designed to integrate into SDNs as a controller application,
and therefore has natural extensions into the rich ecosystem of
SDN control plane management solutions (e.g., network pol-
icy deployment and reconciliation systems [32], [36], [37],
[38], [39]). We defer an in-depth analysis of related work
to Section VIII, but discuss here avenues for future work in
improving the utility of MLS-Enforcer and integrating it
into other SDN-based policy management systems.

The focus of MLS-Enforcer lies in maximizing flow
coverage under a set of security constraints imposed on all
network nodes by the security policy. It therefore requires
security labels to be assigned to all network nodes, disal-
lows ACL policy violations, and runs the optimization solver
or heuristics algorithms to compute an optimal set of switch
labels and flow routes through the network. The relabeling fea-
ture allows achieving good flow coverage (>90%) compared
to the successful packet delivery ratio (>90%) measured in
prior works for similar network sizes [32]—but at the trade-
off of (potentially) high flow-table usage, since we place no
restriction on how many flow rules should be installed on
switches to accommodate flows. However, prior works posited
that SDN switches provide insufficient flow table capacity,
which may lead to performance degradation and network fail-
ures [40], [41], [42], and therefore focus on minimizing the
number of flow rules deployed on the switches (for imple-
menting ACLs and routing in general) [32], [40], [41], [42].

However, we contend that this argument does not hold in
general. For example, in shared infrastructure settings, the
infrastructure layer may use virtual (software) switches like
Open vSwitch, which has been recently shown to efficiently
handle up to several hundred-thousand flow table entries [43].
Therefore, some networks may be able to accept this trade-
off at the benefit of enforcing strong security controls across
the entire infrastructure. In the future, hardware SDN switches
may also be able to support similar flow-table capacities.

As prior works [40], [41], [42] have done, a potential
avenue for future work lies in leveraging wildcard flow rules
to reduce flow-table usage and reduce controller interaction
(e.g., matching subnet prefixes as DIFANE [44] does). With
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wildcard rules, as long as end-hosts in the same trust domain
are given IP addresses within the same subnets, they could all
match against the same flow rules at switches. Using wildcards
proactively (as opposed to reactively) and on other flow fields
(e.g., protocol numbers) may also help mitigate the impact on
flow-table usage. However, wildcarded fields complicate pol-
icy enforcement and must be carefully co-designed with the
security policy, since matching any flow-field value widens the
(inter- and intra-domain) threat surface for adversarial network
scanning. See Section II-B for a discussion on using security
categories to reduce the threat surface.

Besides constructing dynamic MLS policies,
MLS-Enforcer can integrate into other systems for
policy deployment and reconciliation. For example, prior
work introduced the PrePass-Flow system [32] for
predicting link failures and recomputing the necessary flow
rules for enforcing ACLs and routing around the failures.
The system uses a K-partite graph technique introduced
previously in [45] to find the optimal placement of flow
rules (ACLs) onto switches that minimizes the total number
of rules deployed. MLS-Enforcer could be plugged into
PrePass-Flow as a replacement for the K-partite graph
technique, extending security controls across the entire
network infrastructure. Other policy deployment and rec-
onciliation systems, like [38] (especially for hybrid-SDNs),
may similarly be extended to support MLS-Enforcer, to
strengthen the ecosystem of tools available for providing
access control in SDNs, particularly those with complex
network service chains.

VIII. RELATED WORK
A. Confidentiality in Networks

Several defenses have been proposed to protect confidential-
ity in networks such as perimeter firewalls, encryption, and
routing configuration (e.g., using VLANs). However, these
solutions fail to provide comprehensive security guarantees.
They only partially address the problem of confidentiality and
fail to adapt to dynamic network events. Firewall configuration
is complex and error-prone [46]. They are often mis-configured
and either violate the user intended security policy or contain
inconsistencies and inefficiency among the rules irrespective of
the security policy. The inconsistencies could also be among
different firewalls (inter-firewall). Furthermore, firewalls fail
with regard to insider threats, as attacks that can be staged
within the boundary of a perimeter firewall [47].

Similarly, encryption alone cannot ensure confidentiality as
adversaries able to capture network traffic may still be able to
execute traffic analysis attacks [19], [48], [49]. Traditionally,
adversaries have leveraged the packet size of the encrypted
traffic as a side channel to infer information about the
victim such as which websites were visited. As a result sev-
eral defenses have been proposed to hide the packet size
information, including packet padding and traffic morphing.
Traffic analysis attacks based on packet counting [48], [49]
were also found to be feasible, whereas defenses such as ran-
domized pipelining over Tor and traffic morphing were found
to be insufficient [49] against these classes of attack. Even
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though the packet counting attacks require identifying the
number of packets associated with each Web fetch (which may
be challenging in practice), recent work [19] has demonstrated
that adversaries can use the packet timing information alone
to launch successful traffic analysis attacks. Leveraging MLS
security levels and categories, we can prevent under-privileged
adversaries from capturing traffic for analysis and mitigate
the threat of equally-privileged adversaries (by restricting the
potential information flows).

Routing mechanisms such as VLANs offer some degree
of isolation: they have been used in cloud settings (including
SDNs) [50], [51] with multiple tenants to enforce network traf-
fic isolation by tagging flows in the data plane with a VLAN
unique to each tenant. However, VLANs add an additional
layer of complexity in providing traffic isolation: they require
(1) interacting with switches to manage VLAN assignments on
ports, and (2) impose additional network overhead from having
to tag every network flow for executing access control checks
along a flow path. Thus, they do not scale well for large multi-
tenant networks [52]; in contrast, MLS-Enforcer ensures
an equivalent level of isolation by checking access control
constraints at rule installation time, eliminating the need for
physical VLAN tags to be attached to each flow.

B. Multilevel Security in Networks

Traditionally, multilevel security systems were used to con-
trol access to databases [53] and operating systems [54],
by making different data available or presenting data differ-
ently to users of different clearances [10]. For example, a
database server in a military or industrial organization may
be shared among users in both the accounting and engineer-
ing departments with complete mediation over accesses to
prevent unauthorized data disclosure between users in each
department [11]. Furthermore, MLS was also used to secure
distributed object oriented systems [55].

Lu and Sundareshan [3] introduced such an MLS system
for networks that statically assigned security labels to network
switches (based on a relative security analysis of each device)
to protect confidentiality in network routing without requiring
additional layers of protection, such as encrypted tunnels [5].
This required specialized software to be installed on each
network endpoint. While appropriate for the time, the scale and
dynamics of modern networks render such a system imprac-
tical. The flexibility of SDNs has also been exploited by
MLSNet [14], [15] to enforce MLS policies in network rout-
ing without requiring specialized software to be installed on
each network host and device. Here, the network application
at the SDN controller assigns and (logically) maintains secu-
rity labels for each node (e.g., user device, server, or network
switch), and deploys the security policy via flow rules (repre-
senting the inter-switch information flow restrictions) that are
enforced by the switches. This in turn allows the MLS service
to be provided transparently to the network.

Other uses of MLS have been labeling distinct network end-
points that produce/consume data for each other to enforce
strong access controls [4], [5] and leveraging hypervisor-level
features to isolate network traffic between different tenants in
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a cloud network [6]. While these approaches leverage similar
MLS techniques as MLS-Enforcer, they are limited in that
they assume static network behavior and are not designed to
adapt to events that alter the network structure or traffic pro-
file. This limitation can lead to significant under-utilization
and often a failure to route a large fraction of flows.

C. Deploying and Verifying Network Policies

There is also a large body of work in deploying, ver-
ifying, and reconciling SDN-based network policies. For
example, constructions and specification languages have been
introduced that check for reachability and loop-free forward-
ing [36], [56], [57], and network-level access controls (ACLs)
per-service and per-user-identities [32], [58], [59], [60], [61],
among other invariants. However, many of these systems are
limited in that they fail to adapt to dynamic network events—
the policies are either predefined (static) based on the user
identity [60] or service [14], [59], or do not consider the
security of intermediate nodes within the underlying shared
network infrastructure. They, therefore, cannot meet a security
policy such as R-BLP under varying network conditions.

Systems have also been tightly co-designed with SDNs to
check for policy compliance in real time [36], [62], building
on header-space-analysis [56] (a set of tools to model and
check network-wide invariants and identify failure conditions)
to incrementally check compliance of state changes such as
flow rule installation and removal. The mechanisms have also
evolved to reduce controller interaction by providing real-time
policy checking entirely within the data plane [32], [45], [63].

More closely related to MLS-Enforcer, efficient deploy-
ment and reconciliation of SDN-based ACL whitelisting
policies have been extensively studied [37], [38], [39], par-
ticularly in the presence of network failures [32]. However,
the goal of MLS-Enforcer lies in providing a framework
for constructing instances of dynamic MLS policies. Our con-
tributions therefore differ in intent from prior works that
focus primarily on deployment or reconciliation of an already-
defined set of policies. Moreover, we formulate optimization
problems reflecting security policies using formally-defined
MLS semantics that protect confidentiality of information
flow—a different realization of access control than tradi-
tional endpoint-whitelisting/ACLs (which may involve manual
composition [38]) that these prior works had not considered.

Besides the functional goal of MLS-Enforcer, the design
also differs significantly from prior works on dynamic ACL
deployment. In particular, recent works have emphasized
the increasing threat of the network infrastructure itself
becoming compromised, besides potentially malicious network
endpoints—from exploiting weakly protected admin Web
interfaces to bugs in the switch operating system software
and hardware backdoors [64]. These insights motivate our
design to extend dynamic ACL deployment beyond endpoint-
whitelisting to realize formal (and dynamic) information-flow
guarantees across an entire network infrastructure (i.e., across
both endpoints and forwarding devices). As prior works have
done [37], MLS-Enforcer assigns to network endpoints a
security class/group (via a security label) based on a relative
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security assessment of each device or other labeling scheme
for associating devices with particular trust domains. However,
MLS-Enforcer also assigns security labels to switches,
which may change over time to align with network conditions.

Moreover, the optimizations introduced in prior works
focus primarily on labeling network endpoints and minimizing
“unwanted” traffic in the network, the number of ACL policy
violations, and on the number of ACL policies installed on
switches [32], [45]. In contrast, we assign security labels to
all network nodes, disallow ACL policy violations (thereby
disallowing any “unwanted” traffic), and focus on maximiz-
ing flow coverage (at the tradeoff of more ACL policies being
installed; i.e., higher flow-table usage). MLS-Enforcer still
achieves comparable flow coverage (>90%) to the success-
ful packet delivery ratio (>90%) measured in prior works for
similar network sizes [32]. We have already elaborated on the
implications of this tradeoff in Section VII.

IX. CONCLUSION

In this work, we introduced MLS-Enforcer, a system that
extends network-level MLS capabilities to unstable networks.
We envision MLS-Enforcer as a network application run-
ning on an SDN controller, providing the service transparently
to the entire network. The flexibility of SDNs allows the
system to relabel network nodes in response to evolving traffic
and policy profiles, thus allowing the network to remain agile
in the face of instability. We modeled network adaptivity as an
integer linear program that enables network administrators to
maximize the overall utility capacity of the network under the
security constraints of the given information-flow security pol-
icy. We then developed polynomial-time heuristic relabeling
algorithms that scale more efficiently with larger networks.

We assessed the system performance and security proper-
ties by focusing on four evaluation metrics: coverage, agility,
disruption, and security risk. Through extensive evaluation,
we observed that the system performed well under several
network topologies, policies, and destabilizing network events.
We showed that MLS-Enforcer can optimally relabel the
network to support 90%+ of flows under normal conditions
and quickly converge under changing needs. Moreover, we
showed that the heuristic algorithms can achieve 90% of the
optimal flow coverage with a 300 reduction in computational
overhead—thus demonstrating that it is feasible for formally
secured networks to be deployed in diverse and unpredictable
environments. In future work, we will consider different MLS
policies and extend the optimization framework to other objec-
tive functions, such as minimizing the total number of links
on which there are route-down paths over all flows.
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