
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022 2349

Enforcing Multilevel Security Policies

in Unstable Networks
Quinn Burke , Student Member, IEEE, Fidan Mehmeti , Member, IEEE, Rahul George , Kyle Ostrowski,

Trent Jaeger , Member, IEEE, Thomas F. La Porta , Fellow, IEEE, and Patrick McDaniel , Fellow, IEEE

Abstract—Multilevel security (MLS) systems control access to
data by formalizing permissible and impermissible information
flows between data sources and destinations (e.g., database
servers and clients) fixed with distinct security labels. In com-
puter networks, MLS systems have been used to prevent unau-
thorized data disclosure in shared-infrastructure settings where
network hosts and devices may fall within different trust domains
(e.g., in multi-tenant cloud networks or wireless mesh networks).
However, current MLS systems assume static network behavior—
thus preventing the network from being practically usable in
the presence of dynamic network events that frequent unstable
network environments, including sudden changes in traffic pat-
terns, link failures, and topology changes as a result of device
movement or intermittent device connectivity. In this paper,
we introduce MLS-Enforcer, a software-defined networking
(SDN) controller application that can efficiently deploy network-
level MLS policies while retaining the ability to securely relabel
network nodes under changing topology state and network traf-
fic demands. We model network adaptivity as an integer linear
programming problem that reflects a given security policy. We
then introduce heuristic relabeling algorithms that achieve near-
optimal performance and are more tractable and efficient for
larger networks. We validate MLS-Enforcer on several network
topologies and traffic loads, demonstrating that it can relabel
the network to route 90%+ of flows under normal conditions
and quickly converge (on the order of seconds for the heuristic
algorithms) under changing needs—from small network struc-
ture changes to catastrophic failures. This shows that formally
secured networks can feasibly be deployed in diverse, changing,
and unpredictable environments.

Index Terms—Software-defined networking, SDN, security
services, security management, wireless network security,
multilevel security, optimization.

Manuscript received 1 October 2021; revised 12 March 2022; accepted
16 May 2022. Date of publication 23 May 2022; date of current version
12 October 2022. This research was sponsored by the Combat Capabilities
Development Command Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). This work was also supported in part by the National Science
Foundation under award CNS-1946022. The associate editor coordinating
the review of this article and approving it for publication was F. Valenza.
(Corresponding author: Quinn Burke.)

Quinn Burke, Rahul George, Kyle Ostrowski, Trent Jaeger, Thomas F. La
Porta, and Patrick McDaniel are with the Department of Computer Science
and Engineering, The Pennsylvania State University, University Park, PA
16802 USA (e-mail: qkb5007@psu.edu; rtg64@psu.edu; kto5055@psu.edu;
trj1@psu.edu; tfl12@psu.edu; mcdaniel@cse.psu.edu).

Fidan Mehmeti is with the Chair of Communication Networks,
Technical University of Munich, 80333 Munich, Germany (e-mail:
fidan.mehmeti@tum.de).

Digital Object Identifier 10.1109/TNSM.2022.3176820

I. INTRODUCTION

M
ULTILEVEL security (MLS) systems control access to

data through a reference monitor that governs access

requests made on data sources. The reference monitor uses

security labels and a security policy to formalize permissi-

ble and impermissible information flows between data sources

and destinations (e.g., database servers and clients). The

formalization is particularly useful in computer networks oper-

ating under a shared-infrastructure model where tenants share

the underlying physical hosts and network devices, but fall

within different trust domains— for example, in multi-tenant

cloud/enterprise networks [1] or multi-organization wireless

mesh networks [2]. As such, MLS systems have become essen-

tial components in network routing [3] to protect data between

network-service endpoints [4], [5] and to isolate the traffic

between different cloud tenants [6].

Software-defined networks (SDNs) have eased the imple-

mentation of MLS-based network routing systems by allowing

them to run as SDN controller applications. Here, the con-

troller application computes secure network-flow routes and

manages network-switch flow tables via a northbound interface

to the SDN controller (typically, a REST API). Yet, the cur-

rent design of MLS systems is limited in that it assumes

a fixed set of security labels on network hosts and devices,

which leads to under-utilization and sometimes (under inflexi-

ble security policies) a failure to route flows—i.e., it achieves

low flow coverage. This prevents the network from being prac-

tically usable in the presence of dynamic network events that

frequent unstable network environments (e.g., wireless mesh

networks), including sudden changes in traffic patterns, link

failures, and topology changes as a result of device movement

or intermittent device connectivity [2].

In this paper, we introduce MLS-Enforcer, an SDN con-

troller application that routes flows securely under MLS poli-

cies and dynamically adjusts network-switch security labels

when necessary to improve flow coverage. It therefore allows

security policies to be fluidly configured and network-flow

routes to be changed in response to evolving traffic and topol-

ogy profiles—all while providing the service transparently to

the entire network. We approach the problem by formulat-

ing integer linear-programs (ILP) that reflect MLS security

policies that preserve the confidentiality of information flows.

We then introduce heuristic relabeling algorithms that achieve

near-optimal performance and are tractable and efficient.

As relabeling network switches is an online problem, several

unique challenges arise. First, relabeling may affect flows with

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2350 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

already-established routes, and thus relabeling should impose

minimal disruption on them. Additionally, changing switch

labels requires a secure procedure for wiping and rebooting

a switch (to reset the device into a known/trusted/attestable

state), which takes the time that is otherwise used for packet

forwarding; therefore, the relabeling algorithms must manage

invoking switch reboots and distributing flow rules efficiently.1

Further, policies that allow flows of different labels to traverse

common switches (i.e., flow mingling) introduce the poten-

tial for side-channel attacks (e.g., traffic analysis) by hosts

using the switch; therefore, it is essential to assess the tradeoff

between increased flow coverage and allowing flow mingling

(along with any risk that it introduces). Lastly, it is important

that the network maintains near-optimal or optimal coverage

of flows (i.e., the number of flows that can be routed) in the

presence of dynamic network events such as sudden changes

in traffic patterns, link failures, and topology changes as a

result of device movement or intermittent device connectivity.

As link failures and device movement are convention-

ally wireless network problems, we focus our evaluation

of MLS-Enforcer on common wireless network topolo-

gies [7]: mesh and star networks. We also measure the

performance of the labeling process in more traditional wired

(fat-tree) networks for juxtaposition. We focus on three met-

rics: coverage, agility, and disruption. A coverage analy-

sis shows that we can achieve high flow coverage for all

tested networks and policies: experiments in a mesh network

show that the system can achieve 99% coverage using an

optimization solver, and 95% using a heuristic algorithm.

With respect to agility and disruption, experiments show that

the heuristic algorithms are responsive to significant network

events, achieving near-optimal coverage within ≈5 mins. The

relabeling process completes with minimal and controllable

disruption to ongoing flows (where up to 30% of flows may be

queued temporarily due to switch reboots). Lastly, computing

routes with the optimization solver requires up to 5 minutes

to relabel networks of just 48 switches, and thus, we resort to

heuristics that achieve 90% of the optimal flow coverage with

a 300× reduction in computational overhead.

We contribute the following:

• We formalize dynamic relabeling as an integer linear pro-

gram, parameterized by the access-control constraints of

a given security policy.

• We design heuristic algorithms for dynamic relabeling

that achieve near-optimal performance and scale more

efficiently with larger networks.

• We demonstrate the feasibility in deploying MLS policies

in unstable networks through a comprehensive experi-

mental evaluation.

II. BACKGROUND

In this section, we discuss background on software-defined

networking and formalize multilevel security as it relates to

1Note that other methods for attesting the state of the running switch soft-
ware may be used (perhaps without rebooting). However, any choice of which
will inevitably induce some delay (which, in our evaluation, we simulate with
sleeps to temporarily suspend switch processing).

computer networks. We then highlight the gaps in prior work

that motivate the design of MLS-Enforcer.

A. Multilevel Security

Multilevel security (MLS) systems provide access con-

trol over data by assigning security labels to subjects (e.g.,

network hosts/IP addresses) and objects (e.g., database tables)

and validating that access constraints are satisfied whenever

an access to an object is requested by a subject [8]. A

security label consists of both a security level and one or

more security categories. A security level is an hierarchi-

cal attribute that indicates the relative authorization power

(resp. sensitivity) of a subject (resp. object)—for example,

public, confidential, secret, or top secret clearance. Security

categories are non-ordered attributes that identify classes

of data—for example, financial, medical, or personal files.

A subject’s label can then be defined, for example, as

Lsubject = {secret , {financial ,medical}}. The hierarchy of

labels formed by all combinations of levels and categories

form a lattice structure called the security lattice [9].

A label is lesser (or greater) than another if the former is

a lesser level (or a greater level) and/or its categories are a

proper subset (or a proper superset) of the latter’s—otherwise

labels are incomparable (and an access is denied). We will

associate the comparators “lesser” and “greater” with the <

and > symbols, respectively. The security lattice ordering

thus describes the access constraints that must be satisfied

to maintain confidentiality. As an example, an MLS system

may require that data only flow between equivalent labels: for

an object of label Lo = {secret , {financial}} and subject of

label Ls = {public, {financial}}, all data flows Lo → Ls are

denied since public < secret. Here, the less-than sign indi-

cates that the Public subject has a lower security level than

the Secret object.

B. Role of MLS Policies in Networks

Traditionally, multilevel security systems were used to con-

trol access to databases and operating systems, by making

different data available or presenting data differently to users

of different clearances [10]. For example, a database server

in a military or industrial organization may be shared among

users in both the accounting and engineering departments with

complete mediation over accesses to prevent unauthorized data

disclosure between users in each department [11]. However,

MLS policies have also be deployed in computer networks

to provide access controls between network service endpoints

that produce/consume data for each other [4], [5] and to isolate

traffic between different cloud tenants [6].

The difficulty in deploying an MLS system in a network

stems from the fact that there are multiple hops between the

source of data and its recipient, and thus information is inher-

ently exposed to intermediate subjects (e.g., an ethernet switch,

or a forwarding node in a wireless mesh network), which may

become compromised [12]. Here, security constraints must

also be satisfied across the entire path of each network flow

(i.e., at each intermediate switch) to meet the security policy.

For example, such is the case for isolated, wireless military

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2351

networks where resource-limited network nodes are particu-

larly susceptible to attacks [13]. This task has made feasible

by leveraging a software-defined networking (SDN) architec-

ture [14], [15]: the decoupling of the network control and data

planes [16] provides an opportunity to run an MLS system

as a network application on the SDN controller with com-

plete visibility over the network topology and traffic profile.

In this setting, the MLS service can be provided transparently

to the entire network; whenever a new flow arrives into the

network, by default, if there is no route to forward it, that

flow is forwarded to the SDN controller be route it (assuming

a reactive approach to flow rule installation). There, the access

constraints can be evaluated over the flow source and destina-

tion to determine if the flow is permitted and, if so, find an

appropriate (secure) path through the network.

MLS offers two benefits unique to network security: (1)

fine-grained isolation of network traffic flows between dif-

ferent trust domains (i.e., security levels) all using a shared

infrastructure (e.g., in a wired datacenter network or wireless

mesh network), and (2) a reduced threat surface for adver-

saries within a particular trust domain. Isolation is enabled

by ensuring network flows are routed through paths in the

network deemed secure (i.e., satisfy security constraints)—

thus ensuring adversaries cannot probe, eavesdrop, or other-

wise interact with network hosts or devices outside of their

trust domain [17]. A reduced threat surface is achieved by

leveraging security categories: they further enforce the prin-

ciple of least privilege on access to data, thus preventing

unrestricted lateral movement (e.g., network scanning and traf-

fic analysis) by potential adversaries [18]. In effect, MLS

policies can prevent entire classes of reconnaissance tech-

niques: inter-domain (between trust domains) host scans, port

scans, and vulnerability scans [17] can all be immediately

dropped at access switches if the source host is not of

appropriate security level. This simultaneously prevents data

exfiltration, even if some nodes along a flow path were to

become compromised, since data will not be leaked from

uncompromised network hosts or devices of greater security

levels to lower ones (e.g., from Top-secret hosts to Public

hosts). Moreover, MLS policies can mitigate intra-domain

scanning by restricting access with security categories, and

can mitigate denial-of-service attacks as priorities can be given

to certain security labels to ensure those flows have sufficient

bandwidth.

As an illustrative example, consider the simple lattice, com-

posed of just security levels, shown at the top of Fig. 1. An

MLS policy can enforce that a Secret flow, originating from

the Secret laptop-user, only traverses Secret switches toward

a Secret server, preventing any Public nodes from being able

to eavesdrop on the flow. Without an MLS policy, encryp-

tion alone may suffice to prevent a Public node from directly

accessing the Secret-flow data, but cannot prevent traffic

analysis by the (less-secure) node were it to become compro-

mised [19]. While end-to-end encryption used together with an

MLS policy can provide greater security, device resource con-

straints may limit when encryption can be an available option,

whereas the MLS policy provides strong security guarantees

alone.

Fig. 1. Network scenario using a 4-level security lattice, with security labels
(logically) given to network switches, servers, and users by the SDN controller.

III. MLS-ENFORCER OVERVIEW

In this section, we detail the network and security model

that MLS-Enforcer operates under, discuss the two MLS

policies that we consider in our design and evaluation, and

provide an illustrative example of the relabeling process.

A. Network and Threat Model

As shown in Fig. 1, the system is composed of nodes (e.g.,

user device, server, or network switch), links, and an SDN

controller that orchestrates the network. In MLS-Enforcer,

nodes (with security label LNode) are subjects and network

flows (with security label LFlow) are data objects. A given

flow is labeled with the security label of the source host/server,

i.e., LFlow = LSource . Moreover, links between nodes

can be wired or wireless; however, as link failures and

device movement are conventionally wireless network prob-

lems, MLS-Enforcer may have larger benefits in wireless

environments.

We leverage an SDN architecture to allow a network admin-

istrator to logically assign labels to each network node: since

the SDN controller is topology-aware, we maintain the label

assignments at the controller and thus provide the service

transparently to the entire network. We assume that a set of

labels for endpoints deemed appropriate per the needs of the

organization is given as input to MLS-Enforcer, and the ini-

tial switch labels can be random (as they may be changed). In

other words, we assume that a network administrator assigns

the endpoint security labels based on a relative security assess-

ment of each device and what traffic classes the device is

intended to send [14]. For example, wireless devices (e.g.,

laptops) with unpatched software may be considered relatively

insecure and assigned a lesser security label when they con-

nect to the network, while wired workstations with up-to-date

software and used within an office building for secure tasks

may be considered relatively secure and given higher security

labels when they are connected to the network. A method for

choosing device labels is outside the scope of our work.

Then, for simplicity we consider all of the network flows

being emitted from the host endpoints as having the same

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2352 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

security label as the endpoint. Note that in future work we

will consider host endpoints being able to emit traffic with

different security labels (e.g., to differentiate between Web

browsing and secure file transfer traffic).

In SDNs, as new flows arrive into the network, by default

if there is no route to forward them, they are forwarded to

the controller’s routing application to be routed (assuming a

reactive approach to flow rule installation). MLS-Enforcer

is then designated as the routing application (typically Java-

or Python-based under the widely used OpenDaylight [20]

and Frenetic [21] SDN controllers), and it computes secure

network-flow routes and manages network-switch flow tables

via a northbound interface to the SDN controller (typically,

a REST API). Upon receipt of a new flow, MLS-Enforcer

therefore intercepts the request and: (1) identifies the security

label of the flow based on the source IP address, (2) checks

if the data source is permitted to send data to the destination,

and (3) potentially relabels some switches before computing a

path for the flow where the MLS policy constraints are satis-

fied between the flow’s label and the label of each node along

the path.

In our threat model, we assume a trusted SDN controller

(and trusted administrator of the shared infrastructure) that

makes labeling and routing decisions and monitors for con-

ditions that require relabeling. We allow for compromised

network hosts or switches in different trust domains: different

tenants in a cloud network, or different organizations sharing

a wireless mesh infrastructure, may attempt to probe other

hosts and switches, eavesdrop on communication, or engage

in isolated or coordinated link cutting attacks [22].

B. Relabeling Process

MLS-Enforcer can route flows in one of two modes:

with relabeling enabled, or with relabeling disabled (by con-

figuring an algorithm parameter, as discussed later). In this

way, relabeling can be manually or periodically enabled, or

enabled in response to administrator-specified trigger condi-

tions (e.g., a link-failure event) to reduce disruption imposed

on the network.

Over time, events that change the traffic profile or the struc-

ture of the network (such as link failures) may interrupt flows

and require new routing paths to be found for them. Upon

detection by the SDN controller, MLS-Enforcer’s routing

algorithms adapt by (1) potentially changing some switch

labels (if relabeling is enabled), (2) invoking switch reboots to

reset the switch software into a known/trusted/attestable state,

and (3) recomputing flow routes that meet the security policy

constraints under the new set of labels. This can be seen in

Fig. 2 by observing the label changes from the top part of the

figure to the bottom as a result of a detected link failure. The

new routes are then distributed to switches as flow rules to

realize the new routing configuration.

C. MLS Policies

As the relabeling process must align with the security poli-

cies, we focus our formulations on two security policies that

maintain confidentiality for network flows: Strict and Relaxed

Fig. 2. Network scenario describing how relabeling operates.

Bell-LaPadula. The strict security policy enforces total isola-

tion among labels which is typical of current MLS networks.

Here, information may only flow between subjects and objects

of equivalent security labels. As described below and explored

experimentally, the strict policy may overly constrain the

routing path options, leading to under-utilization of network

switches and an inability to route some classes of flows.

The Relaxed Bell-LaPadula (R-BLP) enforces the canon-

ical BLP policy [8] between the end-points of a flow (e.g.,

between source and destination hosts). In the canonical BLP

model, a source cannot send information to a destination with a

lesser security label than it has. However, BLP allows a source

to send information to a destination with a greater security

label. R-BLP retains the spirit of the BLP model but extends

the model to networks in which there are intermediate nodes

between the source and destination. In the R-BLP model,

a source cannot send information to or through nodes with

a lesser security label than it has, but a source can send

information to or through nodes with a greater security label.

More formally, for all flows, a flow may only be routed

through a switch if LSwitch ≥ LFlow , such that LFlow serves

as the floor for the security labels of switches through which

a flow may be routed. However, aficionados of BLP may rec-

ognize that R-BLP technically allows a switch to route some

flow to another switch of a lesser security label as long as

that switch’s label is greater than or equal to the flow’s label.

Thus, there exists the potential for leakage into potential side

channels (e.g., the switch of lower security level may per-

form traffic analysis). In BLP, such switches would need to

be trusted or such an action would be considered a viola-

tion of BLP. In R-BLP, we address this in two ways. First, the

labeling scheme described below constrains the number of vio-

lations allowed in the network (to reduce potential leakage into

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2353

side channels). Second, there are techniques available to pro-

tect and validate the switches integrity (i.e., trustworthiness)

and protect the secrecy of communications through encryption

(see Section VI-F). We measure this effect in our evaluation,

however, we leave an assessment of side-channel information

leakage to future work.

D. Network Example

Consider the example network scenario in Fig. 2 using

the security public/confidential/secret/top secret security lattice

(top of figure) and enforcing a Relaxed Bell-LaPadula policy.

The flows have a Public user sending a Public flow (green)

toward a Public server and a Secret user sending a Secret flow

(blue) toward a Secret server. Here, the routing algorithms

can find secure paths that completely isolate the flows from

one another (i.e., incidentally satisfying the strict policy). For

example, any Public flows coming from the Public user can

reach the Public servers using only the Public switches.

Now consider a link failure (bottom of Fig. 2). Under the

initial labeling the Secret flows would be blocked since there

would be no alternative secure path. Recognizing this con-

dition, the controller (or some watchdog service) can enable

relabeling. Then, a possible solution identified by the algo-

rithm would be to relabel (and securely reboot) a single Public

switch to the Secret level, providing a secure path for the

Secret flows. However, the Public user would no longer have

a route to a Public switch. To accommodate both flows, an

option allowed by the R-BLP policy is to permit the Public

flow to be routed through Secret switches (“routing up”). But,

for the flow to be delivered to a Public server, it must be

returned to its original level, i.e., the Public flow must even-

tually be delivered back down to a Public switch (routing

down).

R-BLP utilizes such routing up and down as long as the

switches all have a label greater than or equal to the flow’s

label. Our formulation restricts routing down to a limited

number of switches to manage risks.

IV. OPTIMIZATION FORMULATIONS

In this section, we formulate two integer-linear pro-

grams (ILPs) that reflect the two security policies introduced

previously to preserve the confidentiality of information flows:

the strict policy and the Relaxed Bell-LaPadula (R-BLP) pol-

icy. Note that for simplicity we consider security labels just

in terms of security levels; the formulations can be easily

extended to labels with both levels and categories by adding

a category-based term to the access constraints. Further, the

proposed framework can easily be extended with similar con-

straints to support organization-specific security policies. We

elaborate on these points in Section IV-C.

We first define several variables used in both policies, and

in Table I we provide the notation used throughout.

Definition 1: A link between switches k and l for a flow

j is called a feasible link (denoted by X
j
k ,l

) and can be used

to route the flow if those two switches are first-hop neighbors

and the level relationship between the flow j and both switches

satisfies the security policy.

TABLE I
DEFINITIONS AND NOTATION

The variable Ik ,l denotes whether two switches are

neighbors:

Ik ,l =

{

1, if there is a direct link between k and l

0, otherwise

The security levels of flows (denoted by Lj) or switches

(denoted by Xi) form a totally ordered set defined by:

Lj ,Xi ∈ {1, . . . ,m}.

The updated security level of switch i is

X ′
i = Xi +∆Xi .

Hence, the set of possible values of the change in switch levels

from relabeling is

∆Xi ∈ {−Xi + 1, . . . ,m − Xi}.

The indicator variable denoting whether a switch’s initial

level was changed is

IΔi
=

{

1, if |∆Xi | > 0,
0, otherwise

We introduce a tunable parameter, M, to allow a network

administrator to limit the number of switches that may have

their labels changed during a single run of the relabeling algo-

rithm; this in turn can reduce potential disruption caused by

waiting for switch reboots.

A. Labeling for the Strict Policy

In this policy, a flow can neither be routed through a switch

of higher-security level nor through a switch of lower-security

level. Hence, given this assumption, the network is partitioned

into groups comprising the flows of the same security level.

Then, the feasibility of a link (where the switches may have

updated labels) being used for routing a flow is described by

extending the traditional MLS constraint:

X
j
k ,l

=

{

1, if Ik ,l = 1 and Lj = X ′
k = X ′

l
0, otherwise

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2354 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

In other words, a link is feasible for a flow iff the two

switches are of exactly the same security level as the flow.

The optimization problem formulation is given by (1)–(12)

below.

The objective (1) is to maximize the total capacity of the

served flows in the network, weighing each flow according

to its security level with f (Lj), which can be an arbitrary

function, such as a linear function, quadratic function, etc.2

Constraint (2) ensures only a feasible link can be chosen for

a flow. Basically, Y
j
k ,l

can be 1 only if X
j
k ,l

= 1 (the link is

feasible). Initiating (αj = 1) or not initiating a flow (αj = 0)
from the source is described by (3), whereas (4) denotes the

last link of a routed flow (αj = 1) or the flow not being routed

(αj = 0). The flow preservation property (the flow can leave a

node only if it has entered it) is captured by (5). Constraint (6)

ensures there are no loops. The left-hand side of (7) denotes

the total capacity demand of all flows going through switch i.

It cannot be larger than the total link capacity (the right-hand

side term of (7)). Similarly, the left-hand side term of (8) is

the total capacity demand of flows traversing the link between

switches k and l, which cannot be larger than the capacity of

that link (Ck ,l). Constraint (9) captures the finite number of

switches whose security labels can be changed. Finally, con-

straints (10)-(12), denoting whether a flow is routed, whether

it is routed through the link between switches k and l, and

whether a switch level is changed, respectively, define the

decision variables, whose values can be either 0 or 1.

max
J
∑

j=1

Cjαj f (Lj) (1)

s.t. Y
j
k ,l ≤ X

j
k ,l , ∀k ∈ I ∪ S, ∀l ∈ I ∪ D, (2)

∑

k

Y
j
sj ,k

= αj , ∀j ∈ J , ∀k ∈ I, (3)

∑

k

Y
j
k ,dj

= αj , ∀j ∈ J , ∀k ∈ I, (4)

∑

k

Y
j
k ,l =

∑

m

Y
j
l,m , ∀k ∈ I ∪ S, ∀l ∈ I,

∀m ∈ I ∪ D, ∀j ∈ J , (5)
∑

k

Y
j
k ,l ≤ 1, ∀k , l ∈ I, ∀j ∈ J , (6)

∑

k

∑

j

CjY
j
k ,i ≤ CS ,i , ∀i ∈ I, ∀k ∈ I ∪ S, j ∈ J ,

(7)
∑

j

CjY
j
k ,l ≤ Ck ,l , ∀k , l ∈ I, (8)

∑

i

I∆i
≤ M , ∀i ∈ I, (9)

αj ∈ {0, 1}, ∀j ∈ J , (10)

Y
j
k ,l ∈ {0, 1}, ∀k ∈ I ∪ S, ∀l ∈ I ∪ D, ∀j ∈ J ,

(11)

I∆i
∈ {0, 1}, ∀i ∈ I. (12)

2Note that whether or not a flow is served is controlled by the decision
variable αj , whose value is 1 only if flow j is served and otherwise 0.

Complexity: This optimization problem belongs to the class

of integer linear programs, which are known to be NP-

hard [23]. The problem structure does not allow for an

algorithm with a performance guarantee. Hence, we resort to a

heuristic algorithm suitable for large networks. Nevertheless,

the heuristic algorithms that we present in Section V are

demonstrated to provide near-optimal performance (close to

that obtained by the optimization solver).

B. Labeling for the Relaxed Bell-LaPadula (R-BLP) Policy

With this policy, a flow may be destined toward higher-

security level hosts or be routed up to higher-security level

switches, but not to hosts/switches of a lower-security level

than the flow itself. Therefore, we extend the above for-

mulation to realize the relaxation on the canonical BLP

policy.

Definition 2: A flow traversing any link for which the next-

hop host (destination) or switch is of higher-security level than

the flow is denoted as being routed up (see bottom of Fig. 2).

In allowing routing up, the policy must also potentially

allow the flow to be routed down to lower-level switches again

in order to reach the destination as long as LSwitch ≥ LFlow .

In allowing routing down, we introduce two parameters that

dictate to what degree routing down is permitted. The num-

ber of routing-downs along a flow route is restricted by the

routing-down limit B.

The formulation for R-BLP is identical to the strict policy

except for the link feasibility constraint which is expressed as:

X
j
k ,l

=

⎧

⎨

⎩

1, if Ik ,l = 1 andLj ≤ min{X ′
k ,X

′
l }

and X ′
k − X ′

l ≤ ∆j

0, otherwise

Essentially, besides requiring the two switches being neigh-

bors, the flow level should be lesser or equal to both switch

labels and the degree of a routing-down should be within the

limit. From the definition of a feasible link, we constrain the

number of security levels a flow can be routed down, which in

turn limits the number of security levels it can be routed up.

Further, we introduce an additional constraint to realize the

routing-down limit B:
∑

k

∑

l |X ′

k
>X ′

l

Y
j
k ,l

≤ B , ∀k , l ∈ I, ∀j ∈ J . (13)

Complexity: Since the R-BLP formulation (constrained

optimization problem) has the same objective function as the

strict policy and near-equivalent constraints, it is impossible to

provide an approximation algorithm with performance guaran-

tees in this case neither. Therefore, for this problem as well

we propose low-complexity heuristic algorithms that achieve

near-optimal performance (Section V).

C. Extending the MLS-Enforcer Framework

As noted, our formulations provide a framework for real-

izing dynamic deployment of the strict and R-BLP policies

under a standard security lattice, but can be extended to

support organization-specific security levels, categories, and

policies. Here, we elaborate on how to achieve this.

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2355

For simplicity, in the optimization formulations we consider

security labels just in terms of the security levels. The for-

mulations can be extended to support security categories by

adding a category-based term to the link feasibility indicator

variable X
j
k ,l

. First, the security labels of flows (denoted by

Lj) and switches (with updated levels denoted by X ′
i) should

be extended to represent both a level and set of categories (e.g.,

Lj = {secret , {financial}}). Then, for the strict policy, a link

is considered feasible (i.e., may be used to route the flow)

under the following condition: X
j
k ,l

= 1 ⇐⇒ (Ik ,l = 1)

and (Lj ,level = X ′
k ,level = X ′

l ,level) and (Lj ,categories =

X ′
k ,categories = X ′

l ,categories). A similar extension can be

applied for the R-BLP policy.

Note that our use of security levels as a representation of

the entire label is just a special case under the use of cat-

egories, where labels with the same level also simply have

the same set of categories. Naturally, both the space of levels

and categories can quickly render the space of possible labels

very sparse in certain organizations and thus make it difficult

to find routes for flows (i.e., it may become difficult to rela-

bel adequately to satisfy the access constraint for most flows).

Therefore, we defer a more comprehensive investigation of

security categories and the limitations they impose therein to

future work.

Just as the formulations can be extended to support cate-

gories, any other organization-specific security policies can be

implemented by similarly extending the link feasibility indi-

cator variable. For example, a security policy may require

rejecting flows being emitted after a certain time-of-day. To

support this policy, the network administrator may introduce

an additional indicator variable Tj for a flow timestamp (e.g.,

the time it was received at the controller application to be

routed). Then, it may check newly arriving flows against a set

threshold before permitting an access and installing the nec-

essary flow rules to switches: X
j
k ,l

= 1 ⇐⇒ (Ik ,l = 1) and

(Lj = X ′
k = X ′

l) and (Tj < threshold).

V. HEURISTIC ALGORITHMS

As solving the optimization problems for the given poli-

cies is NP-hard, we propose heuristic methods for each policy

that are easily deployed in real networks. We approach the

problem by dividing the relabeling process into two subrou-

tines: (1) finding potential flow paths and recording conflicts

on the paths, and (2) relabeling selected switches based on

the information collected about their conflicts. In the first

subroutine, we extend Dijkstra’s shortest-path algorithm to

find potential flow paths in the network and record per-flow

conflicting switches during path tracing (i.e., those along a

potential flow path that cause a policy violation). In the sec-

ond subroutine, we use all of the conflict information to

decide which switches (up to M switches) to relabel to resolve

conflicts.

To accomplish this, we distinguish between two types of

conflicts that a switch level may have with flow levels. Then,

the key idea is to invoke the subroutines iteratively through

multiple phases to resolve each conflict type successively. The

Fig. 3. Example execution of the heuristic for the strict policy. Minimum
conflict paths are found for flows, and conflicting switches are recorded, and
per-level weights are computed for flows traversing them. Then, conflicting-
switch levels are set to the highest-weighting level to unblock flow paths.

strict policy consists of two phases and the R-BLP policy con-

sists of three phases. For each successive phase, we enforce

constraints on links that prevent the controller from contin-

uously finding new paths containing conflict types already

resolved. We first introduce the conflict types and then describe

the relabeling process for both policies.

A. Conflict Types

Type (1) conflicts: This type of conflict may arise when

a flow path contains a switch with a different security level

than the flow. Marking switches differing in level as conflict-

ing informs the relabeling subroutine of the potential need to

upgrade or downgrade the switch level to reduce the switch’s

threat surface. Marking all of these cases as conflicts allows us

to isolate different level flows as much as possible, reducing

the possibility of flows of different levels mingling, and hence

the threat of leakage into potential side-channels. Moreover,

this method will encourage the controller to find similar

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2356 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

paths for similar-level flows to reduce the number of con-

flicting switches and limit any disruption caused by invoking

relabels/reboots.

Type (2) conflicts: This type of conflict only applies to R-

BLP and may arise when the flow path contains a link whose

routing-down degree (after being routed up) between the ends

is larger than that allowed by policy (∆j). In this scenario,

either end of the link can be relabeled. However, downgrading

the head-end of the link may cause additional type (1) con-

flicts. Therefore, we mark the tail-end of the link as a conflict

so that the relabeling subroutine will consider it for upgrade

and resolve the level difference.

B. Strict: Two-Phase Relabeling

In the strict policy, the process of relabeling runs in two

phases, each consisting of two subroutines. In the first phase,

minimum-conflicts paths are found using Dijkstra’s shortest-

path algorithm (with distance array d and next-hop array p),

extended with a custom link metric that is the absolute-value

difference between the next-hop switch security level and the

flow security level (Algorithm 1, lines 11 and 14). Since

rebooting a switch imposes a delay, we impose an additional

cost on links containing still-rebooting switches to temporarily

reduce the number of flows that would be preempted or queued

(i.e., disrupted) by traversing such switches (Algorithm 1,

line 11). Type (1) conflicting switches are then recorded dur-

ing path tracing by checking if each switch has the same level

as the flow.

After the potential paths are found, conflicting switches of

type (1) are relabeled (up to M switches) to unblock flow

paths. While there are several ways to choose which con-

flicting switch to relabel first, the objective is to eventually

relabel all conflicting switches to a converging state. We take

a greedy approach by weighting all the conflicting switches

based on the flows traversing them, and then relabeling the

highest-weighted switches first. We apply the same weight-

ing function f (Lj) from Equation (1) to flow levels during

path tracing to find the sum per-level and overall weights for

each conflicting switch. We then iteratively select the highest

overall-weighted conflicting switches to relabel first. Similarly,

for type (1) conflicts, the new security level chosen for a con-

flicting switch is the security level of the flows that is heaviest

at the switch (index 0 of the sorted per-level weights list in

Algorithm 2, line 16).

Finally, in phase 2, an additional link constraint is enforced

to prevent paths from encountering additional type (1) conflicts

(Algorithm 1, line 31), and the resulting paths (if valid) can

be distributed to the switches as flow rules.

C. R-BLP: Three-Phase Relabeling

In R-BLP, conflicts of type (1) or (2) may be present

since flows may be routed up over appropriate-level switches.

Therefore, the first phase operates as above by running

the shortest-path algorithm, recording type (1) conflicts by

comparing the switch and flow levels, and relabeling the heav-

iest conflicting switches to the heaviest-level at the switch

(Algorithm 2, line 8). Then in the second phase, we run

Algorithm 1: MinConflictPath() Algorithm

Input: distance array d, previous-hop array p, flow j

Output: updated distance and previous-hop arrays

1 Q = {j .source}
2 d [j .source] = 0, p[j .source] = null

3 for v ∈ V \ {j .source} do

4 d [v] = ∞, p[v] = null , Q .add(v)
5 end

6 while Q not empty do

7 u = node in Q with smallest d [·]
8 pop u from Q

9 foreach neighbor v of u do

10 if v ∈ rebooting_switches then

11 w = abs(j .lvl − v .lvl) + reboot_cost

12 end

13 else

14 w = abs(j .lvl − v .lvl)
15 end

16 if RBLP then

17 if (phase1) and (d [u] + w < d [v]) then

18 d [v] = d [u] + w , p[v] = u

19 end

20 else if (phase2) and (d [u] + w <

d [v]) and (j .lvl ≤ v .lvl) then

21 d [v] = d [u] + w , p[v] = u

22 end

23 else if

(phase3) and (d [u]+w < d [v]) and (j .lvl ≤
v .lvl) and (u.lvl − v .lvl ≤ ∆j) then

24 d [v] = d [u] + w , p[v] = u

25 end

26 end

27 else if strict then

28 if (phase1) and (d [u] + w < d [v]) then

29 d [v] = d [u] + w , p[v] = u

30 end

31 else if (phase2) and (d [u] + w <

d [v]) and (j .lvl == v .lvl) then

32 d [v] = d [u] + w , p[v] = u

33 end

34 end

35 end

36 end

37 return d, p

the shortest-path algorithm again and enforce a constraint

preventing additional type (1) conflicts (Algorithm 1, line

20). Conflicting switches of type (2) are then recorded during

path tracing. As above, the switch at the end of a conflicting

segment of a path is chosen to be relabeled and set to the

minimum possible level that is still within the bounds of the

security policy: the head-end level minus the maximum allow-

able routing-down degree ∆j (Algorithm 2, line 11). Note

that there might be multiple conflicting links with the tail-end

switch in question, so we choose the link with the highest

weighted head-end switch as the one to resolve.

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2357

Algorithm 2: RelabelConflictSw() Algorithm

Input: sum per-level and overall switch weight array

sw_weights

Output: none

1 sorted = sort_per_lvl_weights(sw_weights)
2 for i = 0 −→ len(sorted) do

3 if num_relabeled == M then

4 break

5 end

6 if RBLP then

7 if phase1 then

8 sorted [i].lvl = sorted [i].weights [0]
9 end

10 else if phase2 then

11 sorted [i].lvl = max_head −∆j

12 end

13 end

14 else if strict then

15 if phase1 then

16 sorted [i].lvl = sorted [i].weights [0]
17 end

18 end

19 num_relabeled ++
20 end

Finally, in phase 3, another link constraint is enforced to

prevent paths from encountering either type (1) or type (2)

conflicts (Algorithm 1, line 23), and the resulting paths (if

valid) can be distributed to the switches as flow rules.

D. Complexity

The heuristic algorithms have three steps: (1) execution of

the shortest-path algorithm, (2) relabeling conflicting switches,

and (3) post-processing to distribute flow rules to switches.

Step (1): Dijkstra’s shortest-path algorithm, followed by

path tracing, is executed once for each flow in J . If E denotes

the set of network links and I the set of network switches,

the running time for this step is:

O(|J |(|E|+ |I| log |I|+ |I|)) = O(|J |(|E|+ |I| log |I|)),

where path tracing is upper-bounded by |I|.
Step (2): We first sort switches by their per-level weights

(across the m levels). Then, we sort switches by their highest

weight (i.e., index 0 in the per-level sorted list) and proceed

with relabeling in that order. At most M switches are relabeled.

Therefore, the running time for this step is:

O(|I|m logm + |I| log |I|+M) = O(|I|m logm + |I| log |I|).

Step (3): Finally, the controller performs post-processing on

each flow path to determine which flows can be routed and

which cannot (i.e., violates the security policy or is queued).

The running time for this step is O(|J ||I|).
The total running time of both algorithms is:

O(|J ||E|+ |J ||I| log |I|+ |I|m logm),

which is polynomial. In Section VI, we show that these algo-

rithms are efficient even in large networks. Note that Step (3)

is only executed when relabeling occurs, and the steps are

executed 2× each for the strict policy and 3× for R-BLP.

VI. EVALUATION

In the following, we evaluate the performance and secu-

rity properties of MLS-Enforcer. We capture three metrics

to assess network performance: (a) flow coverage, which is

the percentage of flows routed under a given labeling pol-

icy, (b) agility, which is the effort required by the network to

adapt to destabilizing network events (also called convergence

time), and (c) disruption, the percentage of flows queued or

preempted (i.e., not routed immediately or at all). Note that

we will refer to relabeling invocations as the number of time

instants at which relabeling was enabled in MLS-Enforcer’s

routing algorithms (by setting an M > 0). We then measure

the risk associated with routing-up and routing-down under

R-BLP.

A. Experimental Setup

For simulation-based experiments, we evaluate the

performance of MLS-Enforcer on two widely used

network topologies: mesh and star networks. We also measure

the performance of the labeling process in fat-tree networks

(used more traditionally in wired networks) for juxtaposition.

For the latter, we generate fat-tree networks with a switch

port density of k = 6 using techniques described in prior

work [24]. We use the AT&T North America WAN dataset

from Topology Zoo [25] to generate the star topology, and

we generate generic full-mesh topologies with 20 switches.

We then connect hosts to each switch in the network and

assign random levels hosts, with hosts connected to the same

edge switch having the same level (e.g., Public hosts all

connecting to a Public access point). Initial switch levels

are also randomly assigned. We use the standard security

lattice from above: Public (1) < Confidential (2) < Secret

(3) < Top-Secret (4).

For the end-to-end (E2E) traffic, ≈ 50 flows per second are

randomly generated and have source and destination endpoints

selected by appropriate levels (i.e., only create flows that com-

ply with the enforced policy). We assume that the controller

does not queue flows if they cannot be routed (i.e., that the

source may initiate retries of the flow instead). Flow durations

are set to an average of 1 s, to assess performance in the worst-

case scenario of consistently changing flow patterns. However,

we experimented with longer flow durations and found that

there was no detectable effect on performance. We then per-

form relabeling every 100 s and assign a switch reboot time

of 10 s (verified experimentally on virtual switches [26]3).

We also implement the proposed relabeling algorithms as a

prototype SDN controller application and perform experiments

on a virtual SDN testbed with Mininet [29] and the POX SDN

controller [30]. As designed, the labels are maintained entirely

3Fast-reboot features in commercial switches [27], [28] take ≈ 25 s, which
causes disruption but has no effect on coverage (see below).

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2358 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 4. Coverage in the mesh (left), fat-tree (middle), and star (right) topology for the R-BLP (top) and strict (bottom) MLS policies (S = opt. solver,
H = heuristic, OV = obj. value, M0.1 = M is 0.1).

at the controller (where the controller is aware of the given IP-

address-to-label mapping), and we evaluate the ability of the

application to route flows securely under a fat-tree topology.

We use the Gurobi [31] solver to find optimal solutions,

where quadratic flow weighting is used in the optimization

formulations and heuristic algorithms, i.e., f (Lj) = L2
j , to

give high priority to high-security flows. We also experi-

mented with other flow weighting functions, such as linear

(e.g., f (Lj) = Lj), cubic (e.g., f (Lj) = L3
j), and other higher

degree polynomials, with similar conclusions drawn. Due to

space limitations, we do not include figures for those results.

B. Coverage and Running Time (Simulation)

Coverage: Fig. 4 (top left) shows the results of our first set

of experiments. The optimization solver for R-BLP achieves

≈99% and the heuristic reaches ≈95% flow coverage for the

mesh network within 5 relabeling invocations (M = 0.1). The

top middle and right graphs show that the solver and heuristic

also maintain high coverage in the fat-tree and star networks

in steady-state. Note that the visible coverage high/low spikes

indicate moments where flows were queued awaiting switch

reboots following relabeling. The heuristic with M = 0.1 is

able to achieve 90% of the maximum objective value (i.e.,

90% of the maximum weighted network capacity of routed

flows). For comparison, prior MLS networks [14] have only

shown to be able to route approximately 60% of network

flows under similar network topologies for a 4-level lattice.

Here, as expected, we observe that for both the optimization

solver and heuristic the convergence is faster with a larger

M and shorter relabeling period. We note that experiments

with larger networks yielded quantitatively similar coverage

results because they only enabled more potential flow paths.

In contrast, the limited number of paths in very small networks

(e.g., less than 20 switches) already subjects them to low flow

coverage (e.g., <50% coverage), and the issue is only exac-

erbated by destabilizing network events. These networks may

require alternative secure-routing approaches.

Moreover, the reboot time had no detectable effect on cover-

age. More complex security lattices (e.g., composed of several

different levels or categories) may induce lower coverage if

there are not an adequate number of paths to route flows

through (i.e., if the network is too small). Notwithstanding,

the heuristic algorithm (red line) maintains nearly the same

coverage as the solver (black line), for all three topologies,

to within ≈10% of the optimal for R-BLP and within ≈15%

for the strict policy (experiments on other topologies yielded

similar results).

As to policy, the strict policy performed similar to R-BLP

in the mesh network, had a (non-negligible) 10% coverage

loss in the fat-tree network, and performed substantially worse

(≈20−70% coverage) than R-BLP (≈80−100% coverage) in

the star network topology—hence motivating R-BLP. Here, the

star network did not have enough redundant switches/inter-

connectivity to establish a set of non-intersecting paths for

all labels. Note that the delay in convergence to the optimal

or near-optimal is a reflection of the network startup from a

random state, which would occur just once in practice.

Running time: Each invocation of the optimization solver

took ≈5 minutes for the fat-tree network of 48 switches and

≈2 minutes for the star (WAN) network of 25 switches and

mesh network of 20 switches, where we observed the run-

time scaling with a power-law relationship to the number of

switches. This renders the optimization solver impractical to

use in real-world settings for larger networks (e.g., in large

SDN networks, which may manage several thousand switches

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2359

Fig. 5. Adaptive reconfiguration for different network events in the mesh topology.

in datacenter settings). Conversely, the heuristic took ≈1 s

on average (in Python) to relabel switches, up to and scal-

ing linearly with networks of several hundred switches and

flow arrivals per second. In fact, the heuristic algorithms can

compute a relabeling in < 5 s for a mesh network containing

200 switches. The results strongly indicate that the heuristics

are both necessary and capable of performing relabeling in

complex or large networks with many flows.

C. Network Agility and Recovery (Simulation)

In the next experiments we consider three classes of network

events that effect the network performance: traffic bursts, link

failures, and device movement. The goal here is to assess how

well the network relabeling recovers from (is agile to) to events

ranging from small state changes to catastrophic failures.

Traffic bursts: In the experiments depicted in Fig. 5(a), we

inject a large burst of top-secret flows for several minutes

(pink region). In the mesh topology for the R-BLP policy,

the network coverage immediately drops from 90% to 20%.

Relabeling is periodically enabled in MLS-Enforcer (by

setting M = 0.05) every 100 seconds to adapt, bringing the

coverage back to the steady-state level and even increasing it

beyond 90% (the TS-level burst traffic dominates the back-

ground traffic) within 2-3 invocations. In contrast, without

relabeling (black line) the coverage remains at 20% for the

duration of the burst. Note that the network is also re-adjusted

within two relabeling invocations once the traffic burst is gone.

The network adapts quickly in response to sudden changes in

the traffic-level distribution. We observed quantitatively simi-

lar convergence times in the fat-tree and star topologies, and

slightly longer convergence times under the strict policy.

Link failures: Next, we randomly fail 10% of the network

links and measure performance in the R-BLP/mesh topology.

Shown in Fig. 5(b), coverage drops from ≈98% to around

90%. However, relabeling adapts to these failed links by

rerouting flows over other policy-compliant paths, thus incre-

mentally bringing the coverage back to ≈95% over the next

three relabeling invocations. Notably, at 10% the magnitude

of the coverage drop is manageable, allowing the network to

still maintain high coverage. This is partly due to the high

degree of connectivity in general in the mesh network. Other

experiments for the fat-tree network show that as the volume

of links that fail increases, the ability to route traffic drops

significantly faster, where we see ≈60% coverage at 20% link

failures, 40% coverage at 30%, and 10% coverage at 50%.

We observed the same negative effects in the star network

topology.

Device movement: In our last set of agility experiments,

we relocate 50% of hosts to other parts of the mesh network

(i.e., connect through different access networks). This emulates

devices being relocated to new physical locations (e.g., a server

being moved to a different location inside of a building) or

intermittent connectivity of devices. As shown in Fig. 5(c), the

coverage drops from the initial 98% to 88%. Further, relabel-

ing enables the network to adapt quickly and reach 95−98%

within two invocations. As with the other events, relabeling

of the interior switches enables the network to adapt quickly

in response to shifts in network structure or host distributions.

Note that each relocation event (beginning of the pink zone)

causes a random relocation of hosts. However, as we do not

revert relocated hosts to their original location, each successive

relocation in the non-relabeling network leads to the labeling

being further from optimal (and hence lower coverage).

Notably, we conclude that the agility of the system is closely

dependent on the security policy; policies that impose more

access constraints or use complex security lattices may not

converge as quickly under destabilizing events. Moreover, the

security policy’s flow weighting function f (Lj) also affects

the priority of certain flows and must be tuned appropriately to

reduce the potential for unfair network partitioning (e.g., rela-

beling still-alive switches to accommodate a relatively small

set of Secret flows but block a larger set of Public flows).

D. Disruption (Simulation)

We define two kinds of disruption: preempted, where a flow

that was previously routed is then blocked after relabeling,

and queued, where a flow traverses a path containing a still-

rebooting switch. Fig. 6 shows a simulation of each event class

for R-BLP on the mesh topology. In general, only ≈ 35% of

flows from hosts that were relocated and ≈ 15% of flows

from failed links are preempted at the start of the dynamic

event, but otherwise the heuristic relabeling algorithms does

not preempt flows. The former is due to hosts which had active

flows before moving (red line) and the latter due to active flows

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2360 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 6. Time series plots for the mesh topology depicting the disruption caused by switch relabeling in response to dynamic network events (–: coverage,
–: preempted, –: queued).

Fig. 7. Experiments with Mininet, POX SDN controller, and MLS-Enforcer controller application. From left to right: coverage under normal conditions,
agility in response to link failures, and disruption in response to link failures (RTT and packet loss).

using failed links and not having a secure path found at the

instant the failure is detected.

On the other hand, switch reboots cause flows to be queued.

For link failures and device movement, we observe an average

of 30−40% disruption caused by queueing. While a significant

proportion of flows, disruption is naturally heavily dependent

on switch reboot times, although disruption can be mitigated

with lower relabeling frequencies, manually initiating the rela-

beling algorithm, development of efficient fast-boot features

on switches [27], [28], or with a smaller M. A direction for

future work is developing selective relabeling algorithms that

restrict which switch labels may change to provide guarantees

about disruption caused to certain flow levels. Note that for the

strict policy we observed slightly less disruption. We noticed

quantitatively similar results in the fat-tree and star topologies.

E. Coverage, Agility, and Disruption (Mininet)

We then evaluated a prototype SDN controller application

(implementing the heuristics) in a Mininet network environ-

ment that reflected similar simulation parameters (network size

and the R-BLP policy). We generate new flows (as a series of

ICMP packets) from hosts every 60-second time epoch. Using

a relabeling period of 100s, we then capture measurements by

sampling the flow coverage observed by the controller every

second. As shown in Fig. 7, under the R-BLP policy in a

fat-tree topology, the routing application achieves >90% flow

coverage within a single relabeling invocation (at M = 0.1),

from a random assignment of switch labels. This demonstrates

a significant improvement over the coverage granted by prior

MLS routing systems [14] (60%) and comparable to the suc-

cessful packet delivery ratio (>90%) measured in prior works

for similar network sizes [32].

We then measured the ability of MLS-Enforcer to

respond to link failure events by rerouting flows around the

failures. The link failure event occurs during the time period

highlighted in the red region in the middle plot of Fig. 7 (which

corresponds to approximately time 240-420s and time epochs

5-8). We observed in the Mininet network that failure events

similarly cause a severe drop in flow coverage that last until

relabeling can adjust switch labels to better align with the

network traffic profile. Specifically, we observed that the cov-

erage dropped from ≈95% to ≈70% upon detection of the link

failure events, where a new route could not be immediately

found for many flows that were previously routed across the

failed links. However, MLS-Enforcer was able to respond

to the event to reroute the flows around the failure, achieving

near-optimal coverage (≈90%) within 5 relabeling invocations.

From the perspective of hosts, we then measured the dis-

ruption on their flows as a result of the link failures (right

side of Fig. 7). Of interest are the average RTT (which char-

acterizes the latency of queued flows) and packet loss (which

characterizes preempted flows) that flows observe during and

after the link failure. Notably, we found under normal con-

ditions that both average flow RTT and packet loss of host

ICMP messages are relatively low (at <0.020s and <12%,

respectively). However, during the link failure event (which

corresponds approximately to time 240-420s and time epochs

5-8), the average RTT and packet loss peak at ≈0.06s and

≈20%, respectively. Here, some flows are routed around the

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2361

failure (incurring higher RTT and a small amount of packet

loss), and when the links become live again at epoch 8 (and the

controller responds approximately during epoch 9), the aver-

age RTT and packet loss begin to drop as MLS-Enforcer

stabilizes the network.

This supports our observation of high flow coverage and

demonstrates the ability of MLS-Enforcer to adapt quickly.

However, we note that the slight discrepancy in the coverage

observed by the controller and packet loss ratios are caused by

(1) packets lost before the link event (down/up) is detected, and

(2) heavy queueing at the controller that causes some ICMP

packets sent from a host to be dropped.

While we present preliminary results under link failures,

in future work we plan to refine the implementation to pro-

vide a comprehensive analysis of the other network events,

as well as the systems challenges introduced when deploying

MLS-Enforcer in a real network. We refer to Section VII for

insights towards integrating MLS-Enforcer into commonly

used frameworks for deploying various SDN-based network

policies. Moreover, to more accurately assess the utility and

security in deploying such policies, we defer to future work

extending monitoring tools to capture finer-grained routing

measurements from different perspectives across the network.

F. Security Analysis

We begin by considering unauthorized flows. Formal MLS

policies prevent under-privileged adversaries from capturing

network traffic for analysis and mitigate the threat of equally-

privileged adversaries (by restricting the potential information

flows to only those permitted per the security labels). In

this way, MLS-Enforcer significantly reduces the capabil-

ities of adversaries performing network scans or attempting

to eavesdrop on traffic. Specifically, any unauthorized flows

emitted from endpoints or compromised switches are dropped

at the nearest uncompromised neighbor—for example, for an

unauthorized flow from a malicious endpoint, the controller

instructs the access/edge switch to drop the flow, and for an

unauthorized flow from a compromised switch, the controller

similarly instructs the next-hop switch to drop the flow.

We now consider legitimate flows. In R-BLP a limited num-

ber of switches are trusted to “route down” flows, which may

represent some risk (see Section III-C). We measure the risk

impact in the mesh topology with a limit of five switches per

flow (B = 5). From the flow perspective, we find in our sim-

ulation experiments that 36% of the flows are routed through

at least one switch that may route down. However, we find

that only 2.52% of the flows received by these switches on

average may be routed down below a flow’s level (i.e., if the

switch is compromised), indicating that routing targets flows

that profit from being “routed up.”

Nonetheless, risks to the remaining flows can be mitigated

using virtual isolation methods. For example, the authors of

MLSNet suggest that data routed through devices of lower

levels could be encrypted using a level-specific key [14]. The

data would be tunneled and encrypted to prevent intermediate

switches from eavesdropping on the payload or ascertaining

the identities of the endpoints.

Another approach would be to use methods to validate the

integrity of the switch run-time environment using remote

attestation [33] applied to network equipment [34]. If the

network administrators are concerned about traffic analysis,

standard techniques such as traffic shaping [35] can be applied.

Evaluation Summary: Our experiments demonstrate that the

strict and R-BLP policies could be used to effectively gov-

ern a network environment, with associated trade-offs. The

relabeling process converges quickly and adapts to changing

conditions within a few invocations. Moreover, the relabeling

process can be calibrated to be more (faster convergence and

recovery) or less aggressive by setting algorithm parameters

appropriately.

VII. DISCUSSION

We have demonstrated that MLS-Enforcer provides an

effective means of constructing and deploying dynamic MLS

policies across an entire network infrastructure. The system

is designed to integrate into SDNs as a controller application,

and therefore has natural extensions into the rich ecosystem of

SDN control plane management solutions (e.g., network pol-

icy deployment and reconciliation systems [32], [36], [37],

[38], [39]). We defer an in-depth analysis of related work

to Section VIII, but discuss here avenues for future work in

improving the utility of MLS-Enforcer and integrating it

into other SDN-based policy management systems.

The focus of MLS-Enforcer lies in maximizing flow

coverage under a set of security constraints imposed on all

network nodes by the security policy. It therefore requires

security labels to be assigned to all network nodes, disal-

lows ACL policy violations, and runs the optimization solver

or heuristics algorithms to compute an optimal set of switch

labels and flow routes through the network. The relabeling fea-

ture allows achieving good flow coverage (>90%) compared

to the successful packet delivery ratio (>90%) measured in

prior works for similar network sizes [32]—but at the trade-

off of (potentially) high flow-table usage, since we place no

restriction on how many flow rules should be installed on

switches to accommodate flows. However, prior works posited

that SDN switches provide insufficient flow table capacity,

which may lead to performance degradation and network fail-

ures [40], [41], [42], and therefore focus on minimizing the

number of flow rules deployed on the switches (for imple-

menting ACLs and routing in general) [32], [40], [41], [42].

However, we contend that this argument does not hold in

general. For example, in shared infrastructure settings, the

infrastructure layer may use virtual (software) switches like

Open vSwitch, which has been recently shown to efficiently

handle up to several hundred-thousand flow table entries [43].

Therefore, some networks may be able to accept this trade-

off at the benefit of enforcing strong security controls across

the entire infrastructure. In the future, hardware SDN switches

may also be able to support similar flow-table capacities.

As prior works [40], [41], [42] have done, a potential

avenue for future work lies in leveraging wildcard flow rules

to reduce flow-table usage and reduce controller interaction

(e.g., matching subnet prefixes as DIFANE [44] does). With

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2362 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

wildcard rules, as long as end-hosts in the same trust domain

are given IP addresses within the same subnets, they could all

match against the same flow rules at switches. Using wildcards

proactively (as opposed to reactively) and on other flow fields

(e.g., protocol numbers) may also help mitigate the impact on

flow-table usage. However, wildcarded fields complicate pol-

icy enforcement and must be carefully co-designed with the

security policy, since matching any flow-field value widens the

(inter- and intra-domain) threat surface for adversarial network

scanning. See Section II-B for a discussion on using security

categories to reduce the threat surface.

Besides constructing dynamic MLS policies,

MLS-Enforcer can integrate into other systems for

policy deployment and reconciliation. For example, prior

work introduced the PrePass-Flow system [32] for

predicting link failures and recomputing the necessary flow

rules for enforcing ACLs and routing around the failures.

The system uses a K-partite graph technique introduced

previously in [45] to find the optimal placement of flow

rules (ACLs) onto switches that minimizes the total number

of rules deployed. MLS-Enforcer could be plugged into

PrePass-Flow as a replacement for the K-partite graph

technique, extending security controls across the entire

network infrastructure. Other policy deployment and rec-

onciliation systems, like [38] (especially for hybrid-SDNs),

may similarly be extended to support MLS-Enforcer, to

strengthen the ecosystem of tools available for providing

access control in SDNs, particularly those with complex

network service chains.

VIII. RELATED WORK

A. Confidentiality in Networks

Several defenses have been proposed to protect confidential-

ity in networks such as perimeter firewalls, encryption, and

routing configuration (e.g., using VLANs). However, these

solutions fail to provide comprehensive security guarantees.

They only partially address the problem of confidentiality and

fail to adapt to dynamic network events. Firewall configuration

is complex and error-prone [46]. They are often mis-configured

and either violate the user intended security policy or contain

inconsistencies and inefficiency among the rules irrespective of

the security policy. The inconsistencies could also be among

different firewalls (inter-firewall). Furthermore, firewalls fail

with regard to insider threats, as attacks that can be staged

within the boundary of a perimeter firewall [47].

Similarly, encryption alone cannot ensure confidentiality as

adversaries able to capture network traffic may still be able to

execute traffic analysis attacks [19], [48], [49]. Traditionally,

adversaries have leveraged the packet size of the encrypted

traffic as a side channel to infer information about the

victim such as which websites were visited. As a result sev-

eral defenses have been proposed to hide the packet size

information, including packet padding and traffic morphing.

Traffic analysis attacks based on packet counting [48], [49]

were also found to be feasible, whereas defenses such as ran-

domized pipelining over Tor and traffic morphing were found

to be insufficient [49] against these classes of attack. Even

though the packet counting attacks require identifying the

number of packets associated with each Web fetch (which may

be challenging in practice), recent work [19] has demonstrated

that adversaries can use the packet timing information alone

to launch successful traffic analysis attacks. Leveraging MLS

security levels and categories, we can prevent under-privileged

adversaries from capturing traffic for analysis and mitigate

the threat of equally-privileged adversaries (by restricting the

potential information flows).

Routing mechanisms such as VLANs offer some degree

of isolation: they have been used in cloud settings (including

SDNs) [50], [51] with multiple tenants to enforce network traf-

fic isolation by tagging flows in the data plane with a VLAN

unique to each tenant. However, VLANs add an additional

layer of complexity in providing traffic isolation: they require

(1) interacting with switches to manage VLAN assignments on

ports, and (2) impose additional network overhead from having

to tag every network flow for executing access control checks

along a flow path. Thus, they do not scale well for large multi-

tenant networks [52]; in contrast, MLS-Enforcer ensures

an equivalent level of isolation by checking access control

constraints at rule installation time, eliminating the need for

physical VLAN tags to be attached to each flow.

B. Multilevel Security in Networks

Traditionally, multilevel security systems were used to con-

trol access to databases [53] and operating systems [54],

by making different data available or presenting data differ-

ently to users of different clearances [10]. For example, a

database server in a military or industrial organization may

be shared among users in both the accounting and engineer-

ing departments with complete mediation over accesses to

prevent unauthorized data disclosure between users in each

department [11]. Furthermore, MLS was also used to secure

distributed object oriented systems [55].

Lu and Sundareshan [3] introduced such an MLS system

for networks that statically assigned security labels to network

switches (based on a relative security analysis of each device)

to protect confidentiality in network routing without requiring

additional layers of protection, such as encrypted tunnels [5].

This required specialized software to be installed on each

network endpoint. While appropriate for the time, the scale and

dynamics of modern networks render such a system imprac-

tical. The flexibility of SDNs has also been exploited by

MLSNet [14], [15] to enforce MLS policies in network rout-

ing without requiring specialized software to be installed on

each network host and device. Here, the network application

at the SDN controller assigns and (logically) maintains secu-

rity labels for each node (e.g., user device, server, or network

switch), and deploys the security policy via flow rules (repre-

senting the inter-switch information flow restrictions) that are

enforced by the switches. This in turn allows the MLS service

to be provided transparently to the network.

Other uses of MLS have been labeling distinct network end-

points that produce/consume data for each other to enforce

strong access controls [4], [5] and leveraging hypervisor-level

features to isolate network traffic between different tenants in

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2363

a cloud network [6]. While these approaches leverage similar

MLS techniques as MLS-Enforcer, they are limited in that

they assume static network behavior and are not designed to

adapt to events that alter the network structure or traffic pro-

file. This limitation can lead to significant under-utilization

and often a failure to route a large fraction of flows.

C. Deploying and Verifying Network Policies

There is also a large body of work in deploying, ver-

ifying, and reconciling SDN-based network policies. For

example, constructions and specification languages have been

introduced that check for reachability and loop-free forward-

ing [36], [56], [57], and network-level access controls (ACLs)

per-service and per-user-identities [32], [58], [59], [60], [61],

among other invariants. However, many of these systems are

limited in that they fail to adapt to dynamic network events—

the policies are either predefined (static) based on the user

identity [60] or service [14], [59], or do not consider the

security of intermediate nodes within the underlying shared

network infrastructure. They, therefore, cannot meet a security

policy such as R-BLP under varying network conditions.

Systems have also been tightly co-designed with SDNs to

check for policy compliance in real time [36], [62], building

on header-space-analysis [56] (a set of tools to model and

check network-wide invariants and identify failure conditions)

to incrementally check compliance of state changes such as

flow rule installation and removal. The mechanisms have also

evolved to reduce controller interaction by providing real-time

policy checking entirely within the data plane [32], [45], [63].

More closely related to MLS-Enforcer, efficient deploy-

ment and reconciliation of SDN-based ACL whitelisting

policies have been extensively studied [37], [38], [39], par-

ticularly in the presence of network failures [32]. However,

the goal of MLS-Enforcer lies in providing a framework

for constructing instances of dynamic MLS policies. Our con-

tributions therefore differ in intent from prior works that

focus primarily on deployment or reconciliation of an already-

defined set of policies. Moreover, we formulate optimization

problems reflecting security policies using formally-defined

MLS semantics that protect confidentiality of information

flow—a different realization of access control than tradi-

tional endpoint-whitelisting/ACLs (which may involve manual

composition [38]) that these prior works had not considered.

Besides the functional goal of MLS-Enforcer, the design

also differs significantly from prior works on dynamic ACL

deployment. In particular, recent works have emphasized

the increasing threat of the network infrastructure itself

becoming compromised, besides potentially malicious network

endpoints—from exploiting weakly protected admin Web

interfaces to bugs in the switch operating system software

and hardware backdoors [64]. These insights motivate our

design to extend dynamic ACL deployment beyond endpoint-

whitelisting to realize formal (and dynamic) information-flow

guarantees across an entire network infrastructure (i.e., across

both endpoints and forwarding devices). As prior works have

done [37], MLS-Enforcer assigns to network endpoints a

security class/group (via a security label) based on a relative

security assessment of each device or other labeling scheme

for associating devices with particular trust domains. However,

MLS-Enforcer also assigns security labels to switches,

which may change over time to align with network conditions.

Moreover, the optimizations introduced in prior works

focus primarily on labeling network endpoints and minimizing

“unwanted” traffic in the network, the number of ACL policy

violations, and on the number of ACL policies installed on

switches [32], [45]. In contrast, we assign security labels to

all network nodes, disallow ACL policy violations (thereby

disallowing any “unwanted” traffic), and focus on maximiz-

ing flow coverage (at the tradeoff of more ACL policies being

installed; i.e., higher flow-table usage). MLS-Enforcer still

achieves comparable flow coverage (>90%) to the success-

ful packet delivery ratio (>90%) measured in prior works for

similar network sizes [32]. We have already elaborated on the

implications of this tradeoff in Section VII.

IX. CONCLUSION

In this work, we introduced MLS-Enforcer, a system that

extends network-level MLS capabilities to unstable networks.

We envision MLS-Enforcer as a network application run-

ning on an SDN controller, providing the service transparently

to the entire network. The flexibility of SDNs allows the

system to relabel network nodes in response to evolving traffic

and policy profiles, thus allowing the network to remain agile

in the face of instability. We modeled network adaptivity as an

integer linear program that enables network administrators to

maximize the overall utility capacity of the network under the

security constraints of the given information-flow security pol-

icy. We then developed polynomial-time heuristic relabeling

algorithms that scale more efficiently with larger networks.

We assessed the system performance and security proper-

ties by focusing on four evaluation metrics: coverage, agility,

disruption, and security risk. Through extensive evaluation,

we observed that the system performed well under several

network topologies, policies, and destabilizing network events.

We showed that MLS-Enforcer can optimally relabel the

network to support 90%+ of flows under normal conditions

and quickly converge under changing needs. Moreover, we

showed that the heuristic algorithms can achieve 90% of the

optimal flow coverage with a 300× reduction in computational

overhead—thus demonstrating that it is feasible for formally

secured networks to be deployed in diverse and unpredictable

environments. In future work, we will consider different MLS

policies and extend the optimization framework to other objec-

tive functions, such as minimizing the total number of links

on which there are route-down paths over all flows.

ACKNOWLEDGMENT

The authors would like to thank Ryan Sheatsley, Yohan

Beugin, Eric Pauley, and Sophia Beyda for their feedback and

support on early versions of the paper. The views and con-

clusions contained in this document are those of the authors

and should not be interpreted as representing the official poli-

cies, either expressed or implied, of the Combat Capabilities

Development Command Army Research Laboratory or the

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

2364 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes not

withstanding any copyright notation here on.

REFERENCES

[1] D. Gonzales, J. M. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods,
“Cloud-trust—A security assessment model for infrastructure as a
service (IaaS) clouds,” IEEE Trans. Cloud Comput., vol. 5, no. 3,
pp. 523–536, Jul.–Sep. 2015.

[2] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,”
IEEE Commun. Mag., vol. 43, no. 9, pp. S23–S30, Sep. 2005.

[3] W.-P. Lu and M. K. Sundareshan, “A model for multilevel secu-
rity in computer networks,” IEEE Trans. Softw. Eng., vol. 16, no. 6,
pp. 647–659, Jun. 1990.

[4] P. Watson, “A multi-level security model for partitioning workflows over
federated clouds,” J. Cloud Comput. Adv. Syst. Appl., vol. 1, no. 1, p. 15,
2012.

[5] T. D. Nguyen, M. A. Gondree, D. J. Shifflett, J. Khosalim, T. E. Levin,
and C. E. Irvine, “A cloud-oriented cross-domain security architecture,”
in Proc. IEEE MILCOM, 2010, pp. 441–447.

[6] N. Meghanathan, “Review of access control models for cloud comput-
ing,” Comput. Sci. Inf. Sci., vol. 3, no. 1, pp. 77–85, 2013.

[7] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Comput. Netw., vol. 52, no. 12, pp. 2292–2330, 2008.

[8] D. E. Bell and L. J. La Padula, “Secure computer system: Unified expo-
sition and multics interpretation,” MITRE Corp., Bedford, MA, USA,
Rep. ESD-TR-75-306, 1976.

[9] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, no. 5, pp. 236–243, 1976.

[10] G. Pernul, W. Winiwarter, and A. M. Tjoa, “The entity-relationship
model for multilevel security,” in Proc. Int. Conf. Conceptual Model.,
1993, pp. 166–177.

[11] O. S. Saydjari, “Multilevel security: Reprise,” IEEE Security Privacy,
vol. 2, no. 5, pp. 64–67, Sep./Oct. 2004.

[12] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, “Detecting and
isolating malicious routers,” IEEE Trans. Dependable Secure Comput.,
vol. 3, no. 3, pp. 230–244, Jul.–Sep. 2006.

[13] T. Azzabi, H. Farhat, and N. Sahli, “A survey on wireless sensor
networks security issues and military specificities,” in Proc. Int. Conf.
Adv. Syst. Electr. Technol. (IC ASET), 2017, pp. 66–72.

[14] S. Achleitner, Q. Burke, P. McDaniel, T. Jaeger, T. L. Porta, and
S. Krishnamurthy, “MLSNet: A policy complying multilevel security
framework for software defined networking,” IEEE Trans. Netw. Service
Manag., vol. 18, no. 1, pp. 729–744, Mar. 2021.

[15] V. Varadharajan, K. Karmakar, U. Tupakula, and M. Hitchens, “A policy-
based security architecture for software-defined networks,” IEEE Trans.
Inf. Forensics Security, vol. 14, pp. 897–912, 2019.

[16] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software
defined networks: A survey,” IEEE Commun. Surveys Tuts., vol. 17,
no. 4, pp. 2317–2346, 4th Quart., 2015.

[17] S. Roy, N. Sharmin, J. C. Acosta, C. Kiekintveld, and A. Laszka,
“Survey and taxonomy of adversarial reconnaissance techniques,” 2021,
arXiv:2105.04749.

[18] S. Achleitner, T. La Porta, T. Jaeger, and P. McDaniel,
“Adversarial network forensics in software defined networking,”
in Proc. Symp. SDN Res., 2017, pp. 8–20. [Online]. Available:
https://doi.org/10.1145/3050220.3050223

[19] S. Feghhi and D. J. Leith, “A Web traffic analysis attack using only
timing information,” IEEE Trans. Inf. Forensics Security, vol. 11,
pp. 1747–1759, 2016.

[20] “OpenDayLight SDN Controller.” [Online]. Available:
https://www.opendaylight.org/ (Accessed: Apr. 20, 2016).

[21] “The Frenetic Project.” [Online]. Available: https://github.com/frenetic-
lang/frenetic (Accessed: Feb. 8, 2022).

[22] S. Bellovin and E. Gansner, “Using link cuts to attack Internet routing,”
in Proc. 12th USENIX Security Symp., 2003, pp. 1–16.

[23] M. Conforti, G. Cornuejols, and G. Zambelli, Integer Programming.
Cham, Switzerland: Springer, 2014.

[24] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[25] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[26] “OpenVSwitch.” [Online]. Available: http://openvswitch.org/
(Accessed: Jun. 4, 2022).

[27] “Loading and Managing System Images Configuration Guide, Cisco
IOS Release 15S.” [Online]. Available: https://www.cisco.com/c/en/us/
td/docs/ios-xml/ios/sys-image-mgmt/configuration/15-s/sysimgmgmt-
15-s-book.pdf (Accessed: Jun. 4, 2022).

[28] “SONiC Fast-Reboot (Fast-Reload) Design.” [Online]. Available:
https://github.com/Azure/SONiC/wiki/Fast-Reboot (Accessed: Jun. 4,
2022).

[29] “Mininet—Realistic Virtual SDN Network Emulator.” [Online].
Available: http://mininet.org/ (Accessed: Nov. 6, 2017).

[30] “POX—Python based SDN Controller Framework.” [Online]. Available:
http://www.noxrepo.org/pox/about-pox/ (Accessed: Nov. 6, 2015).

[31] “Gurobi.” [Online]. Available: http://gurobi.com (Accessed: Jun. 4,
2022).

[32] M. Ibrar, L. Wang, G.-M. Muntean, A. Akbar, N. Shah, and K. R. Malik,
“PrePass-flow: A machine learning based technique to minimize ACL
policy violation due to links failure in hybrid SDN,” Comput. Netw.,
vol. 184, Jan. 2021, Art. no. 107706.

[33] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and imple-
mentation of a TCG-based integrity measurement architecture,” in Proc.
13th USENIX Security Symp., 2004, pp. 223–238.

[34] (Trusted Computing Group, Beaverton, OR, USA). TCG Guidance
for Securing Network Equipment Using TCG Technology.
[Online]. Available: https://trustedcomputinggroup.org/wp-
content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
(Accessed: Jun. 4, 2022).

[35] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic Morphing: An effi-
cient defense against statistical traffic analysis,” in Proc. NDSS, 2009,
pp. 1–14. [Online]. Available: https://www.bibsonomy.org/bibtex/265c4
a9c5d1a7fc7e9cd55cf6edeef6dc/dblp

[36] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space analy-
sis,” in Proc. 10th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2013, pp. 99–112.

[37] M. Ali, N. Shah, and M. A. K. Khattak, “DAI: Dynamic ACL pol-
icy implementation for software-defined networking,” in Proc. IEEE
17th Int. Conf. Smart Commun. Improving Qual. Life Using ICT IoT
AI (HONET), 2020, pp. 138–142.

[38] C. Prakash et al., “PGA: Using graphs to express and automatically
reconcile network policies,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 29–42, 2015.

[39] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and D. Huang,
“Brew: A security policy analysis framework for distributed SDN-based
cloud environments,” IEEE Trans. Dependable Secure Comput., vol. 16,
no. 6, pp. 1011–1025, Nov./Dec. 2019.

[40] J.-P. Sheu, W.-T. Lin, and G.-Y. Chang, “Efficient TCAM rules distri-
bution algorithms in software-defined networking,” IEEE Trans. Netw.
Service Manag., vol. 15, no. 2, pp. 854–865, Jun. 2018.

[41] Y. Guo, H. Luo, Z. Wang, X. Yin, and J. Wu, “Routing optimization
with path cardinality constraints in a hybrid SDN,” Comput. Commun.,
vol. 165, pp. 112–121, Jan. 2021.

[42] R. Bauer and M. Zitterbart, “An optimization-based approach for flow
table capacity bottleneck mitigation in software-defined networks,” 2021,
arXiv:2109.08482.

[43] B. Pfaff et al., “The design and implementation of open vSwitch,” in
Proc. 12th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 117–130.

[44] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 351–362, 2010.

[45] R. Amin, N. Shah, and W. Mehmood, “Enforcing optimal ACL policies
using K-partite graph in hybrid SDN,” Electronics, vol. 8, no. 6, p. 604,
2019.

[46] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“FIREMAN: A toolkit for firewall modeling and analysis,” in Proc.
IEEE Symp. Security Privacy (SP), 2006, p. 15.

[47] L. Spitzner, “Honeypots: Catching the insider threat,” in Proc. 19th
Annu. Comput. Security Appl. Conf., 2003, pp. 170–179.

[48] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
Proc. IEEE Symp. Security Privacy, 2012, pp. 332–346.

[49] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a dis-
tance: Website fingerprinting attacks and defenses,” in Proc. ACM Conf.
Comput. Commun. Security, 2012, pp. 605–616.

[50] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” in Proc. 1st Workshop
Hot Topics Softw. Defined Netw., 2012, pp. 1–6.

[51] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Comput., vol. 17, no. 2,
pp. 20–27, Mar./Apr. 2013.

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

BURKE et al.: ENFORCING MLS POLICIES IN UNSTABLE NETWORKS 2365

[52] A. Ranjbar, M. Antikainen, and T. Aura, “Domain isolation in a multi-
tenant software-defined network,” in Proc. IEEE/ACM 8th Int. Conf.
Utility Cloud Comput. (UCC), 2015, pp. 16–25.

[53] X. Qian and T. F. Lunt, “A semantic framework of the multilevel
secure relational model,” IEEE Trans. Knowl. Data Eng., vol. 9, no. 2,
pp. 292–301, Mar./Apr. 1997.

[54] P. Loscocco, “Security-enhanced linux,” in Proc. Linux 2.5 Kernel
Summit, San Jose, CA, USA, 2001.

[55] V. Varadharajan and S. Black, “A multilevel security model for a dis-
tributed object-oriented system,” in Proc. 6th Annu. Comput. Security
Appl. Conf., 1990, pp. 68–78.

[56] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. 9th USENIX Symp. Netw. Syst.
Design Implement., 2012, pp. 113–126.

[57] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and
S. T. King, “Debugging the data plane with anteater,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 290–301, 2011.

[58] B. Tian et al., “Safely and automatically updating in-network ACL con-
figurations with intent language,” in Proc. ACM Special Interest Group
Data Commun., 2019, pp. 214–226.

[59] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “FlowNAC:
Flow-based network access control,” in Proc. 3rd Eur. Workshop Softw.
Defined Netw., 2014, pp. 79–84.

[60] A. Hesham, F. Sardis, S. Wong, T. Mahmoodi, and M. Tatipamula, “A
simplified network access control design and implementation for M2M
communication using SDN,” in Proc. IEEE Wireless Commun. Netw.
Conf. Workshops (WCNCW), 2017, pp. 1–5.

[61] S. T. Yakasai and C. G. Guy, “FlowIdentity: Software-defined network
access control,” in Proc. IEEE Conf. Netw. Function Virtualization Softw.
Defined Netw. (NFV-SDN), 2015, pp. 115–120.

[62] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. 10th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2013, pp. 15–27.

[63] J. Liu et al., “Leveraging software-defined networking for security policy
enforcement,” Inf. Sci., vol. 327, pp. 288–299, Jan. 2016.

[64] K. Thimmaraju, L. Schiff, and S. Schmid, “Outsmarting network security
with SDN teleportation,” in Proc. IEEE Eur. Symp. Security Privacy
(EuroS P), 2017, pp. 563–578.

Quinn Burke (Student Member, IEEE) received
the B.S. and M.S. degrees in computer science
from the Pennsylvania State University with a focus
on computer security, where he is currently pur-
suing the Ph.D. degree in computer science. His
research interests include network and systems secu-
rity, software-defined networking, and virtualization
technologies.

Fidan Mehmeti (Member, IEEE) received the
Graduation degree in electrical and computer engi-
neering from the University of Prishtina, Kosovo,
in 2009, and the Ph.D. degree from the Institute
Eurecom/Telecom ParisTech, France, in 2015. He
was a Postdoctoral Scholar with the University of
Waterloo, Canada, North Carolina State University,
and Penn State University, USA. He is currently
working as a Senior Researcher and a Lecturer with
the Technical University of Munich, Germany. His
research interests lie within the broad area of wire-

less networks, with an emphasis on performance modeling, analysis, and
optimization.

Rahul George received the B.E. degree in
information science from the BMS College of
Engineering, India, in 2017, and the M.S. degree
in computer science from the Pennsylvania State
University with a focus on computer security,
where he is currently pursuing the Ph.D. degree
in computer science. His research interests include
network and software security, intrusion detection,
and security-performance tradeoffs.

Kyle Ostrowski received the Bachelor of
Science degree in computer engineering from The
Pennsylvania State University and was a Student
Researcher under the supervision of Dr. T. L. Porta.
He currently works as a Research and Development
Engineer, specializing in firmware and digital
circuits. His interests include network security and
software-defined networks.

Trent Jaeger (Member, IEEE) is a Professor with
the Computer Science and Engineering Department,
The Pennsylvania State University. His research
interests include systems and software security, on
which he has published over 150 journal and con-
ference papers. He has authored the book Operating

Systems Security, which examines the principles
behind secure operating system designs. He has
made a variety of contributions to the open-source
security community, particularly to the Linux oper-
ating system. He serves on the Executive Committee

for the ACM Special Interest Group on Security, Audit, and Control, is the
Steering Committee Chair for the Network and Distributed Systems Security
Symposium, and is an Editorial Board Member for the Communications of

the ACM and IEEE SECURITY AND PRIVACY.

Thomas F. La Porta (Fellow, IEEE) received the
B.S.E.E. and M.S.E.E. degrees from The Cooper
Union, New York, NY, USA, and the Ph.D.
degree in electrical engineering from Columbia
University, New York, NY, USA. He is the
Director of the School of Electrical Engineering
and Computer Science and Penn State University.
He is an Evan Pugh Professor and the William
E. Leonhard Chair Professor with the Computer
Science and Engineering Department and the
Electrical Engineering Department. He joined Penn

State in 2002, where he was the Founding Director of the Institute of
Networking and Security Research. Prior to joining Penn State, he was with
Bell Laboratories for 17 years. He was the Director of the Mobile Networking
Research Department, Bell Laboratories, Lucent Technologies where he led
various projects in wireless and mobile networking. He is a Bell Labs Fellow,
received the Bell Labs Distinguished Technical Staff Award, and an Eta Kappa
Nu Outstanding Young Electrical Engineer Award. He also won two Thomas
Alva Edison Patent Awards. He was the Founding Editor-in-Chief of the
IEEE TRANSACTIONS ON MOBILE COMPUTING. He served as the Editor-
in-Chief of IEEE Personal Communications Magazine. He was the Director
of Magazines for the IEEE Communications Society and was on its Board of
Governors for three years.

Patrick McDaniel (Fellow, IEEE) is the William L.
Weiss Professor of Information and Communications
Technology and the Director of the Institute
for Networking and Security Research, School
of Electrical Engineering and Computer Science,
Pennsylvania State University. He also served as the
Program Manager and a Lead Scientist of the Army
Research Laboratory’s Cyber-Security Collaborative
Research Alliance from 2013 to 2018. Prior to
joining Penn State in 2004, he was a Senior
Research Staff Member with AT&T Labs-Research.

His research focuses on a wide range of topics in computer and network secu-
rity and technical public policy. He is a Fellow of ACM and AAAS and the
Director of the NSF Frontier Center for Trustworthy Machine Learning.

Authorized licensed use limited to: Penn State University. Downloaded on December 19,2022 at 19:59:54 UTC from IEEE Xplore. Restrictions apply.

