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INTRODUCTION

The phloem is a dwelling and a food source for several devastating pathogens. In many ways, it is
an excellent place to live, providing pathogens with a replenishing supply of metabolic products
in a sheltered domain, protected from the environment, other organisms, and pesticides (5, 52,
110). This relative inaccessibility means that the phloem is not easily invaded and, as a result,
many phloem pathogens are vectored by insects. The plant responds to the invasion, of course,
and defense mechanisms can be effective, but the phloem is itself an escape route; many mobile
pathogens migrate along the sieve tubes, out of harm’ way. As they do so they leave a trail of
destruction, crippling the transport network and often leading to the demise of their hosts.

Phloem-inhabiting prokaryotes include wall-less Mollecutes, such as phytoplasmas, and walled
bacteria, such as pernicious Candidatus Liberibacter spp. (45). Adaptation to the cloistered and
privileged environments in the insect and plant has allowed pathogens to discard several genetic
modules and live with pruned metabolism. Several of these organisms, in particular Candidatus
Liberibacter spp., cause increasing damage to agricultural crops. In this review, we discuss phloem
structure and physiology in the context of pathogen biology, with the hope that integrated knowl-
edge will inspire new approaches to combating these destructive organisms.

SIEVE ELEMENT ONTOGENY

Sieve elements are among the most sophisticated cells in nature. Although they lose critical or-
ganelles as they differentiate, including the nucleus and protein-synthesizing machinery, they
nonetheless persist and continue to function, in some plants for many decades. Undoubtedly, they
are supported in these physiological activities and the maintenance of structural integrity by the
adjacent companion cell(s). Therefore, it is important to take into consideration the ontogeny of
the sieve element/companion cell complex.

After an unequal division of a mother cell, the larger cell will generally differentiate into a
sieve element and the smaller cell into its companion cell(s). The first ultrastructural indication
that a cell will become a sieve element is the appearance of specific protein bodies (P-proteins) that
quickly increase in size (17, 115). P-proteins are structural proteins and have been found in all dicot
(31) and most monocot species. Only in the Poacese and some palms are P-proteins absent (28).

Aside from the synthesis of P-proteins, the young sieve element appears similar to other cell
types of the surrounding tissue until shortly before full maturation when they suddenly start to
degrade many of their organelles. The sieve element fills with a dense mixture of organelle degra-
dation products (Figure 1#). The final step in sieve tube development is the opening of the sieve
plate pores in the connecting end walls of two adjacent sieve elements (Figure 15). In this process,
plasmodesmata, which are deposited across the cell plate when it is formed during cell division,
play a key role. Developmental studies suggest that each plasmodesma develops into one pore in
a future sieve plate (29). In developing pores, callose collars are deposited by callose synthases
replacing the existing cell wall around the plasmodesmata (Figure 1¢—b). The size and shape of
these collars appear to define the form of the future pore. Once the deposition is finalized, the cell
starts to degrade the callose, which opens the pores. This process of callose deposition is, how-
ever, reversible and is part of an important defense mechanism that is discussed below. After pore
opening, development is finalized and the mature sieve element becomes part of the sieve tube
(Figure 1b,i). The degraded organelle remnants are swept away with the translocation stream
and can be found in significant concentrations in sieve tube exudates (61).

Although, to our current knowledge, the ontogeny of sieve elements is similar in different
locations, their function may differ significantly. Terminal sieve elements of the protophloem, for
example, mediate phloem unloading (94). They are often located in actively growing regions, are
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Figure 1 (Figure appears on preceding page)

Sieve tube ontogeny. (2) Electron micrograph of the interface of a young sieve element on the left and a
mature sieve element in the protophloem of Arabidopsis. The young sieve element is densely filled with
organelle degradation products, and the mature sieve element has a lumen free of organelles or structural
components, indicating active transport. The sieve plate contains several thin, developing sieve plate pores.
(b) A mature sieve tube in tomato. The sieve plate pores are open and organelles such as sieve element
plastids are located at the margins of the cells. (—5) Schematic of sieve plate development. (¢) Young sieve
plate with plasmodesmata. (d) Callose collars develop around the plasmodesmata by repelling or removing
cell wall material. (¢) Collars extend and approach each other. (f) Callose formation is completed and callose
removal starts in proximity to the plasmodesmata, leading to a widening of the pores. (g) Callose removal is
completed and a mature sieve plate has developed. (b) Scanning electron micrograph of a mature Cucurbita
maxima sieve plate. (7) Schematic of sieve tube structure in Vicia faba (broadbean). Panel b adapted with
permission from Reference 27; panels c—4 adapted from Reference 16; and panel 7 adapted from

Reference 64.

in many cases active only for a few hours in unloading and die after one to a few days. As they do
not contain a nucleus, they cannot follow growth and are passively stretched by several hundred
percent. Secondary sieve elements deriving from fusiform initials in the cambium are fully grown
when opening the pores. In palms, which do not have secondary growth, sieve elements may be
active for years (e.g., 107).

Independent of their location, sieve elements contain a minimal set of cellular components
at maturity. Those include the abovementioned P-proteins, some mitochondria, sieve element—
specific plastids (SE-plastids), and a uniquely shaped, stacked smooth endoplasmic reticulum (ER)
called the sieve element ER. All other organelles, including the nucleus, vacuole, cytoskeleton, and
ribosomes, are degraded. The lack of the nucleus makes sieve element investigations especially
challenging, as nucleic acid—based omics approaches are of little help in understanding sieve ele-
ment cell biology. Because sieve elements are not self-supportive, the neighboring companion cells
provide the majority of compounds necessary to keep the sieve element alive. Companion cells
are metabolically highly active, which is reflected, at least in some species, in a dense cytoplasm
with numerous mitochondria (66). Sieve elements are connected to companion cells via special
plasmodesmata (79). On the sieve tube side, the plasmodesmata have a single large pore, and the
cell wall on the companion cell side contains numerous branches that connect to the pore. The
term pore-plasmodesmata has been adapted to reflect this anatomy. It has been shown that pore-
plasmodesmata have a very large size exclusion limit of approximately 70 kDa, allowing larger
proteins to enter the sieve elements (87).

SIEVE ELEMENT-SPECIFIC DEFENSE MECHANISMS

Mature sieve elements rely on other cells, such as their companion cells, for protein turnover,
maintenance of cell integrity, and chemical defense. However, sieve elements themselves are not
defenseless. Their structure/function relations are unique and so are their defense mechanisms.
Mechanical defense strategies have evolved that would not work in other cell types but rival any
biochemical approach.

Infection of plants may occur in various ways. For example, mechanical injury of the leaf sur-
face may provide a pathway into the tissue. The infection of a single leaf by a pathogen is in many
cases not an issue for the whole plant. But when specific pathogens are able to infect neighboring
cells and ultimately reach the phloem for systemic infection, the organism is in particular dan-
ger. Mechanisms such as programmed cell death (20) target the ability of the pathogen to move
to neighboring cells and ultimately prevent the pathogen from reaching the sieve tube system
for systemic spread. However, pathogens transmitted by sieve tube feeding vectors are already in
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the tube system before chemical defense mechanisms can be initiated. Therefore, sieve element—
specific defense is crucially important, targeting flow stoppage and the isolation of the injured
tube section. The two strategies that are usually applied to stop flow within seconds or less are a
sudden increase in sap viscosity and/or a significant decrease in sieve tube or sieve pore radius.

There are two levels of sieve tube reaction to injury. Heavy injury resulting in the rupture of
the sieve tube cell wall and plasma membrane leads to an immediate release of the high turgor
pressure in the system. The drag of the fluid leaving the tube at high velocity results in the dis-
placement of P-proteins and also of organelle fragments from disrupted ER and burst SE-plastids
(1, 64). The structures are swept along until they reach the next downstream sieve plate, where
they are strained out, resulting in the occlusion of the pores. Within a short time, a solid layer is
formed that prevents further leakage. The mechanism can be compared to dumping a thick noo-
dle soup down a drain. The strainer is quickly blocked and prevents further flow. This irreversible
mechanism happens frequently when plants are mechanically injured by biotic or abiotic factors.
The comparably strong injury leads to a file of multiple dead sieve elements within the sieve tube.
To reconnect an injured tube system to neighboring files, parenchyma cells may remeristemize
to form new sieve elements and bridge the area of injury. The reconnection process has been de-
scribed in detail by Schulz (99). Most electron micrographs show sieve elements in this highly
artificial, injured state because electron microscopy requires cutting small tissue samples, and the
shock wave that induces artifacts transmits easily through the highly connected cells. Significant
efforts have been made to develop protocols to capture sieve elements in their uninjured state
(e.g., 27, 32, 36). Nevertheless, images of sieve elements that are considered mostly artifact free
are sparse and available only for a few species.

The second level of sieve tube reaction to injury is a much more delicate interaction and may
be triggered locally by, e.g., the careful insertion of an aphid stylet into the tube but may also be
initiated by distant events that result in electropotential waves running along the tube and causing
local reactions. Those stimuli may result in different forms of injury responses by the sieve tube,
as outlined below.

P-Proteins and Forisomes

P-proteins are the most abundant proteins in sieve elements. A large variety of P-protein structures
can be found in sieve elements of angiosperms (18). Historically, the first biochemically described
P-proteins were PP1 and PP2 in Cucurbita (6, 13, 43, 92). PP1 is a protein filament covalently
bound to PP2 by disulfide bridges, and it is predicted that PP2,a phloem lectin protein, anchors the
filaments to either the plasma membrane or the sieve element ER via glycoproteins (13). Cucurbita
sieve tube sap gels when exposed to air (3), and PP1 and PP2 are linked to this reaction. Burning
leaf tips induces electropotential waves in the phloem that lead to distant formation of slime plugs
formed by PP1 (39). Cucurbits have a unique and complex sieve tube system (102, 103, 123, 125),
and, in line with this, PP1 turned out to be specific to this plant family.

The reaction of an unrelated group of P-proteins was initially discovered in Vicia faba (60, 62).
Forisomes, specific to legumes, are spindle shaped, usually 10-30 pm-long P-protein bodies that
quickly undergo a conformational change to a spherical high-volume state upon injury (Figure 2,
upper left). The up to sixfold volumetric change can be completed within 0.15 seconds (90) and
is sufficient to fill the lumen of sieve tubes, efficiently blocking flow (63). The reaction may be
locally induced by membrane puncture or osmotic shock (62) or distantly induced electropotential
waves (38).

Aphid saliva contains calcium-binding proteins, and application of the saliva to forisomes in
vitro may reverse the high-volume state of forisomes into the low-volume state (117). Interestingly,
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Figure 2 (Figure appears on preceding page)

Mechanisms of sieve tube occlusion. Upper left: Forisome in vitro in the (#) low- and (b) high-volume state (63). Upper right:
Progressive, time-dependent increase of callose deposition on sieve plates in bamboo (Phyllostachys nuda). (c) Low-magnification image
of a vein and sieve plate pores after 0, 3, 10, and 20 min (76). Lower panels: Confocal laser-scanning micrographs of the formation of
nacreous cell walls. (d) Transporting sieve tube just before impalement of one of the sieve elements by a micropipette (position indicated
by a yellow arrowhead). Individual sieve pores are resolved in the sieve plates (between blue arrowbeads). () At 1 min after impalement, the
lumen of the punctured cell has collapsed. The different cross-sectional shapes of the punctured and unaffected sieve elements are
shown in the optical sections below. (f) Transporting sieve tube before impalement. (g) The same cells 11 min after impalement. The
space between the outer cell wall layer and the collapsed cytoplasmic compartment shows irregular cellulose-linked staining (58).

forisomes in faba bean function in defense against generalist aphids (72), but the pea aphid, a
species specialized for striving on some legumes, can prevent forisome reaction (113), showing
how specific and closely defense mechanisms and counteraction by pests have evolved.

Because forisomes are found only in legumes, one might expect that the proteins are specific
to legume species. However, it has been found that the genes are widely abundant and exist in all
angiosperm families, with very few exceptions (88, 95, 129). Since these genes were first identified
in legumes and named sieve element occlusion (SEO) genes (88), homologous genes in other
families are referred to as SEO related (SEOR). This nomenclature is not universally adopted,
with some groups identifying all such genes as SEO.

Although there is no doubt that forisomes in legumes serve as a rapid first line of defense in
preventing loss of assimilates, in situ studies revealed that SEOR proteins in Arabidopsis and Populus
do not show a conformational change or direct detectable reaction to injury when observed in situ
(36). Phloem exudation is increased in P-protein knockdown lines compared to wild-type tobacco
plants (30), but this could be due to the reduced resistance in tubes lacking P-proteins. A study
on phytoplasma-infected Arabidopsis SEOR knockout and knockdown lines reported that new P-
protein filaments appear in sieve tubes after infection (83). As all investigated SEO and SEOR
promoters, including those of Arabidopsis, are sieve tube specific, mature sieve elements (lacking a
nucleus) are not capable of synthesizing new P-protein filaments. Because the neighboring cells
lack promoter activity, it is as yet unclear how SEOR filaments can be newly synthesized unless
there is an unknown unrelated gene family that also encodes P-protein filaments.

The structural diversity of P-proteins appears to reflect functional complexity, and we are far
from understanding their function in the various plant families. Although it has been difficult to
attribute P-protein function to plant defense against specific pathogens, this could be due to the
fact that when a defense mechanism works efficiently there are no symptoms and therefore attri-
bution is problematic. Here, we want to point out that some plant families have developed highly
sophisticated P-protein-based occlusion mechanisms that react in a time range of milliseconds to
seconds. The future might show whether P-proteins are also involved in other processes unrelated
to sieve tube occlusion.

Callose

As outlined above, callose is involved in sieve plate pore formation by producing callose collars
around plasmodesmata. Removing the collars opens the pores. This process is reversible, as injury
triggers callose formation. Callose synthase 7 (CalS7) has been identified as the gene encoding the
phloem-specific callose synthase (120). The enzyme, localized in the membrane, recruits sugars
from the sieve tube lumen and produces callose to the extracellular space (112). The deposition
of material onto the cell wall constricts the sieve plate pores, which results in a slowdown, and in
some cases a complete halt, of sap flow. Obviously, the synthesis of new material is not as fast as
a conformational change of existing proteins. Callose deposition on the sieve pore cell wall has
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been reported to be in the range of 25-60 nm/s (79). Smaller pores in species such as bamboo or
green bean can be fully occluded within 10-20 minutes (Figure 2, upper right). In contrast, full
occlusion of the very large sieve plate pores in Cucurbita maxima was not observed even after 24 h
(76). The wound signal may be local or distant (38, 39, 77) and may be induced by phloem-feeding
insects (47, 65, 96).

CELL WALL SWELLING

Nacreous cell walls in sieve elements have been reported in a large number of plant species. The
term describes very thick walls with a specific glistering appearance. Because of the wide distri-
bution of such walls in sieve elements, they have historically been used as a diagnostic feature.
Functionally, however, it was confusing that the cell walls obstruct a major part of the sieve tube
lumen, which is required for low resistance flow. However, when conducting in situ studies, it
turned out that in the turgescent, translocating state, the cell walls in sieve tubes of Gerrardanthus
macrorbizus are actually thin and swell only when turgor is lost (Figure 2, lower). In the translo-
cating turgescent state, the cell wall is compressed but quickly swells and constricts the tube lumen
to reduce or stop flow in case of injury or osmotic-induced turgor loss (58). Cell wall swelling may
be a very common defense mechanism in sieve elements of various taxa.

The three described mechanisms are not mutually exclusive, but a combination is very com-
mon. P-protein reaction is a quick, second-to-subsecond response. Cell wall swelling is a second-
to-minute process, depending on the speed of turgor loss. Both are often followed by the slower
but more robust and permanent sieve plate pore occlusion by callose.

SAMPLING THE PHLOEM

Many molecular signals and protective compounds that arise in response to pathogen infection
are carried in the phloem stream. Identifying these compounds is an important goal in studying
plant—pathogen interactions. Unfortunately, cataloging and quantifying substances in the phloem
are a challenge (54). Unlike the extracellular circulatory system of animals, which is relatively easy
to access, the sieve tube system of plants consists of highly differentiated, living cells embedded
deep in tissue. The sieve tubes are difficult to reach in a specific manner and exuding sap is read-
ily contaminated by fluid from surrounding cells. Various phloem sampling techniques have been
devised, but none provide pure, unadulterated sieve tube sap. Recent overviews (53, 57) provide
comprehensive analyses of long-distance signaling in plants. Here, we restrict our analysis to avail-
able sampling techniques, with cautions and suggestions as to how pitfalls may be avoided and data
might be interpreted.

When *CO, became available in the late 1950s, all the major translocated sugars (sucrose,
raffinose, and stachyose) and sugar alcohols were identified as 1*C-labeled compounds downstream
of the radiolabeled leaf blade. Exposing mature leaves to *COj is the best way to introduce a tracer
naturally, although some caution is warranted in that a fraction of the transported material unloads
into the tissue surrounding the phloem as it is carried away from the labeling site. These labeled
compounds may be metabolized and the products inadvertently identified as phloem mobile. Also,
different substances have different turnover times in the loading zone, so labeled compounds that
enter the phloem slowly can be difficult to detect.

A more commonly used approach is tissue abrasion followed by the application of a radiolabeled
compound of interest. However, this is not the native pathway into the phloem, so one cannot
prove with certainty that labeled compounds that find their way into the phloem by this route are
transported naturally.
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Undoubtedly the best method for collecting authentic phloem sap is from cut stylets of insects
in the Hemiptera (24, 116). This method confirms the conclusion that sieve tube sap is essentially
free of monosaccharides. However, the samples are exceedingly small and cannot be obtained from
all species. There is also the possibility that the sap will be altered by the rapid deployment of plant
chemical defenses. Indeed, as shown by Mondal (75), effector proteins in the aphid’ saliva induce
a complex host response in an effort to stifle exudation.

One of the most common phloem sampling techniques takes advantage of the fact that cer-
tain plants “bleed” from the phloem when tissue is cut. This works well with many woody dicots
(130) but not as successfully in herbaceous plants because wound healing quickly seals the phloem.
When cut, the release of sieve tube pressure, which may exceed 1.5 MPa (59, 108), more than six
times the pressure in a car tire, pulls phloem proteins into the sieve pores. Callose is also deposited
at the edges of the pores and, as a result, exudation quickly ceases. Nonetheless, a small number
of herbaceous species, including those in the genus Lupinus, do bleed from severed phloem (86),
although one cannot conclude that the exudate is entirely free of contaminants, as Pate et al. (86)
note.

Cucurbits are well known for bleeding from the vascular tissue when severed and have been
used in many studies. The emerging fluid appears to come from the phloem, but it has been shown
that it is seriously, indeed overwhelmingly, contaminated by the contents of the extrafascicular
phloem, other cell types, and the xylem (69,123,125, 131). The extrafascicular phloem, specialized
for producing defense compounds, is a unique cell type found only in the Cucurbitaceae (42).
One common method to avoid sample contamination is to blot away the initial exudate. However,
the sieve tubes seal quickly; within 2 min, the exudation of *C-labeled photoassimilates from cut
pumpkin stems stops almost entirely (125). Therefore, fluid collected after this time point contains
little, if any, material from sieve tubes.

Another simple method of obtaining exudate for long periods is to immerse the cut ends of the
tissue in an EDTA solution. However, EDTA chelates Ca’* in membranes and cell walls, soft-
ening the tissue in general and inducing leakage of soluble ions and compounds (69). Keeping
the leaves in the dark reduces the amount of EDTA drawn into the petiole and lamina by tran-
spiration, but even with this caution, the samples may still be overwhelmingly contaminated by
leakage. In the original study, King & Zeevaart (56) exposed leaf blades to 1*CO; and analyzed ra-
diolabeled exudate, ensuring that the sampled compounds were in the transport stream. However,
in subsequent studies this labeling technique is rarely used; instead, it is simply assumed that all
captured compounds are phloem mobile. This is clearly not true, as profiles of radiolabeled and
non-radiolabeled compounds exuded after *COj; labeling differ considerably (69). In some stud-
ies, contamination has been estimated by measuring the concentrations of compounds assumed
not to be present in sieve tubes, such as monosaccharides. However, this works only if the propor-
tional differences in concentrations of these compounds in the various cell types surrounding the
phloem are known. In many studies, damage induced by EDTA is reduced by preincubating the
cut petiole in the EDTA, then transferring the leaves to an EDTA-free solution for the collection
process. However, this may not effectively reduce damage and leakage (121).

Whereas the techniques discussed above sample fluid that may or may not derive from sieve
tubes, simple dissection or laser capture techniques collect phloem tissue that obviously contains
sieve elements, companion cells, phloem parenchyma, and, in some cases, additional cell types (70,
103). These analyses are limited in the sense that the compounds they record are clearly not all
from the sieve tubes, but the origin of the derived data is at least unambiguous.

Functional analysis is the only way to demonstrate that a phloem-mobile compound is a true
signal or has some other practical purpose. In this regard, identification of the flowering signal
[Flowering Locus T (FT)] provides a cogent example (for review, see 119). FT is synthesized in

www.annualreviews.org » Phloem Pathogens



Annu. Rev. Phytopathol. 2022.60:77-96. Downloaded from www.annualreviews.org
Access provided by Washington State University on 01/27/23. For personal use only.

specific companion cells in the minor veins of leaves (9). Several advanced methods were used
to prove that FT is the functional flowering protein, and many groups are now investigating the
transport of specific long-distance signals (e.g., 10, 106, 109, 126). The field is growing rapidly
(119), and the technology that drives it will undoubtedly be useful in the study of mobile signals
associated with pathogens and plant defense strategies.

THE NATURE OF PHLOEM PATHOGENS

The phloem is an ideal niche for pathogens, providing sugars, micronutrients, and long-distance
transport to the plant. Phloem-restricted bacteria typically have highly reduced genomes, lack core
metabolic pathways, and depend on their plant hosts for nutrients. As a result, it is not yet possible
to grow these pathogens in the lab, which has hindered the study of these important bacteria (73).
They often grow very slowly in their plant hosts, which can make it difficult to tell if the plants
are infected until they are very sick (100).

Pathogen infection substantially affects the RNA and protein composition of the phloem, al-
though there are challenges associated with identifying phloem-specific molecules, as described in
the section titled Sampling the Phloem. In susceptible infected hosts, the sieve elements become
plugged by callose and phloem loading is impaired, as seen in citrus infected with Candidatus
Liberibacter asiaticus (CLas), tomato infected with ‘Candidatus Phytoplasma solani’ and Arabidop-
sis infected with ‘Candidatus Phytoplasma asteris’ (22, 34, 55, 83). These effects are more severe in
infected susceptible plants compared to infected tolerant or uninfected plants, suggesting that the
plant’s response leads to phloem dysfunction. Specific proteins, such as phloem protein 2 (PP2, a
lectin) and forisomes, are induced by pathogen infection and are highly abundant in the phloem
(2, 43, 122). PP2 has been proposed to contribute to defenses against pathogens, can interact
with a wide variety of RNAs, and may be co-opted for viroid infection (80). Since PP2 can traf-
fic between companion cells and sieve elements, viroids may interact with PP2 to facilitate their
systemic movement (80). Forisomes are legume-specific calcium-responsive protein bodies that
expand and occlude sieve plates (see above). Phytoplasmas are still able to colonize the host even
when mass flow through the phloem is impaired (83), indicating that phytoplasma movement does
not depend exclusively on mass flow.

Candidatus Liberibacter asiaticus: A Covert Suppressor of Plant Immunity

CLas is the most common cause of Huanglongbing (HLB) disease, also called citrus greening.
CLas is vectored by the Asian citrus psyllid, Diaphorina citri (7). In the plant host, CLas migrates
approximately 3 cm/day (91), 400 times slower than the rate of phloem transport, and is capable
of moving into mature leaves against assimilate flow (84). CLas attaches to the plasma membrane
at the sieve plate and moves through the phloem in an elongated form (1). Although CLas move-
ment in the phloem is not mediated by flagella, bacteria have several other potential mechanisms
of active movement, including twitching through type IV pili and slithering, known as gliding
motility (51). Active lateral migration from the initial infection site to other sieve tubes probably
explains why after a limited number of CLas-carrying psyllids feed on a citrus stem, the bacteria
can be found in many of the numerous sieve tubes, ensuring that bacteria-free psyllids stand a
good chance of becoming infected (25). HLB symptoms include blotchy mottle, leaf and shoot
chlorosis, premature fruit drop, deformed and discolored fruit, and dieback and result in adverse
fruit quality and quantity (114). Phosphate deficiency in infected plants is linked with symptoms
127).

Citrus species vary in their susceptibility or tolerance to CLas. The outcome depends on how
quickly the host responds to infection and whether the pathogen suppresses host immunity (122).
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Microcitrus such as lemon and lime are more tolerant to CLas infection, and lemon can regenerate
its phloem after infection (23), as discussed in the section titled Sieve Element—Specific Defense
Mechanisms. HLB-tolerant citrus show greater induction of immune-related genes, cell wall-
associated genes, transcriptional regulators, signaling cascades, and hormone signaling compared
to HLB-susceptible citrus (19, 122), although these studies did not look specifically at the phloem.
Some tolerant citrus such as Swingle citrumelo display higher expression of pathogenesis-related
genes such as PRI as well as fewer impacts on hormone expression and sucrose content than
susceptible varieties (118). Citrus can also be protected against infection by introducing mas-
ter regulators of immunity such as NPR4 or by the application of antimicrobial compounds or
immune-inducing peptides (11, 49, 78, 89). In contrast, sweet orange does not mount a rapid im-
mune response after infection (2, 55). It is believed that the defense response is too slow to prevent
infection in sweet orange and that P-proteins and/or callose deposition in sieve plates contribute to
phloem dysfunction. PP2 is upregulated in HLB-infected sweet orange, which likely contributes
to the plugging of sieve plates (55). HLB-infected sweet orange displays greater impairment of
phloem loading and more callose deposition in sieve plates than HLB-tolerant rough lemon (34),
which affects translocation through the phloem.

Many pathogens deliver effector proteins to their hosts to promote pathogenesis. Effectors are
small proteins, encoded by the pathogen, that function in the host. Although many bacteria deliver
effectors to hosts through the needle-like type III secretion system, CLas instead delivers Sec-
dependent effectors (SDEs) through the Sec-dependent pathway. Many of these effector proteins
suppress immune signaling pathways in the host. For example, CLIBASIA-04405, SDE15, and
several other putative effectors are able to suppress cell death (26, 85, 124). Cell death can result
from recognition of a specific effector protein and allows the host to kill the infected area, which
protects the rest of the plant from infection. It is commonly used as a defense mechanism by
plants. Suppression of cell death therefore promotes bacterial infection. Another effector, SahA,
degrades salicylic acid (SA) and suppresses the plant immune response (68). SA is an important
signaling molecule that induces systemic acquired resistance (SAR), a broad-spectrum defense
response to pathogen infection after an initial exposure (37). SDEI inhibits papain-like cysteine
proteases, which normally contribute to plant immunity, and therefore promotes disease (14).
These activities have been observed for other well-characterized bacterial effectors (98), indicating
that cell death suppression and manipulation of SA are common strategies to promote bacterial
virulence.

Since CLas is an insect-vectored pathogen, it is also likely that effector proteins modify host
processes to promote insect vectoring, as seen with phytoplasmas (see next section). Effectors
might affect plant or floral development, which could increase insect colonization or fecundity. A
recent study examined effector proteins from Candidatus Liberibacter solanacearum, a bacterial
pathogen related to CLas (93). Only a few effectors were able to suppress pattern-triggered
immune (PTI) responses induced by the application of flagellin peptide (flg22) or fungal
chitin. This is an intriguing result, as most effectors from foliar bacterial pathogens suppress
PTI (98), and suggests that effectors of insect-vectored pathogens may have unique targets in
plants.

One major question is how CLas manipulates host signaling when it is restricted to sieve ele-
ments that lack a nucleus. Effector proteins are likely key to this manipulation, as effectors from
other bacterial and fungal pathogens are able to traffic through the plasmodesmata (4, 12). The
effector proteins could then suppress immune signaling in nucleated cells and impact the produc-
tion of systemic signals, which would create a conducive environment for disease. For example,
multiple effectors from the bacterial pathogen Pseudomonas syringae suppress callose deposition
(46) and some effectors suppress SAR (98).
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Fatal Attraction: Phytoplasmas Manipulate Development
to Attract Insect Vectors

Phytoplasmas are mycoplasma-like bacteria that lack cell walls. They are vectored by insects, pri-
marily the leathopper Macrosteles quadrilineatus, and cause disease in many crop plants. Similar to
CLas, they have been observed in sieve cells and systemically infect plants through the vascula-
ture. Common symptoms include leaf chlorosis, stunting, witches’ broom (abnormal growth of
stems, leaves, and branches), phyllody (flowers become leaves), and floral virescence (greening of
flowers). Iron deficiency and aberrant distribution of iron are associated with symptoms (8).

Advances in transcriptomics and proteomics have facilitated analysis of vascular transcripts and
proteins in plants infected with phytoplasma. Laser microdissection of grapevine phloem infected
with Candidatus Phytoplasma solani, followed by expression analysis, found lower expression of
sucrose transporters and higher expression of vacuolar sugar transporters, sugar synthases, and
PR genes (97). Multiple mRNAs, proteins, and novel miRNAs are found in the phloem sap of
mulberry infected with phytoplasma (40, 41). The mRNAs and proteins have gene ontology
category annotations of metabolism, regulation, biotic stress, hormone responses, and signaling
(40). In particular, the major latex protein-like 329 (MuMLPL329) gene is upregulated and
the protein is more abundant in infected mulberry (40). Overexpression of MuMLPL329 in
Arabidopsis results in less severe disease when plants are inoculated with an unrelated bacterial
pathogen (Pseudomonas syringae) or phytoplasma (40). Consistent with this, defense gene expres-
sion is induced in transgenic MuMLPL329 plants, indicating that it enhances plant immunity
(40). Similarly, the miRNAs have predicted targets whose gene ontology categories include
metabolism, transcription, signaling, responses to the environment, hormone responses, etc. (41).
However, it is not clear whether the miRNAs regulate other genes by trafficking through the
plant or if they regulate the translation or movement of target RNAs.

Similar to CLas effectors, phytoplasma effectors are likely secreted through a Sec-dependent
pathway. Although phytoplasmas are restricted to the phloem, effectors have been found in other
tissues (48). Phytoplasma effectors are small and are believed to move cell-to-cell and unload
from the phloem through the plasmodesmata. Many phytoplasma effectors induce development
changes to the plant, which may help with insect vectoring. Transgenic or transient expression of
specific effectors induces developmental changes similar to witches’ broom. The effector protein
TENGU from onion yellows phytoplasma suppresses auxin and jasmonic acid signaling pathways,
which affects flower development (48, 74). Effector SAP54 from Candidatus Phytoplasma asteris
promotes the degradation of MADS-box proteins, and their degradation suppresses flowering and
increases insect colonization (71). The nuclear-localized protein SAP11 from Candidatus Phyto-
plasma asteris destabilizes TCP transcription factors, which promotes JA signaling and increases
insect fecundity on Arabidopsis (101). Candidatus Phytoplasma asteris effector SAP0S mediates
the degradation of SPL and GATA transcription factors through RPN10, the 26S ubiquitin
receptor. SPL and GATA both control the transition to reproductive development. SAPOS5 causes
the plants to remain in a vegetative state and leads to witches’ broom and delayed senescence
(50).

Viruses: Master Hijackers of Signaling

Viruses are typically introduced into plants through mechanical injury or by insects. Plant viruses
tend to be encoded by very small genomes and therefore must depend heavily on their hosts for
many functions. Infected host cells support replication and transcription of the viral genome and
translation of viral proteins. Infection spreads locally from cell-to-cell by symplastic movement of
the virus or viral replication complexes through the plasmodesmata using specialized viral proteins
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called movement proteins (35). Viruses also encode suppressors of RINAi, which disrupt immune
signaling and prevent activation of viral defense pathways. Viral RNAi suppressors help promote
systemic infection. Once they reach the vasculature, viruses generally cause systemic infection
by following source-to-sink movement of nutrients through the phloem. Systemic movement
therefore requires that viruses cross several cell types: bundle sheath, vascular parenchyma, and
companion cells, followed by sieve elements. Viruses can move through the vasculature as virions,
where the coat protein coats the viral genome, or as viral replication complexes (35). Variation
in the coat protein can determine whether a given virus can infect specific hosts. For example,
mutation of key aspartic acid residues in the coat protein of Wheat streak mosaic virus affected
systemic infection of maize but not wheat (105). It is not clear whether host specificity comes
from differential recognition of the coat protein by the host immune system or the coat protein
is better adapted to vascular uptake in one host versus another. However, the coat protein of
Tobacco mosaic virus (TMV) was recently shown to suppress SA immune signaling to promote
viral systemic movement (111). Interestingly, begomoviruses can reprogram chemical defenses to
attract their whitefly vectors and deter non-vector insects (128).

The molecular mechanisms of systemic infection by viruses are still not well understood. A
connection between TMYV infection and auxin signaling was first suggested by phenotypic simi-
larities between plants infected with TMV and plants impaired in auxin signaling. In fact, TMV
co-opts Aux/TAA (auxin/indole acetic acid) transcriptional repressors to regulate phloem loading.
IAA proteins typically function as negative regulators of auxin signaling. Auxin facilitates the inter-
action between the F-box protein TIR1 (Transport Inhibitor Response 1) and Aux/IAA proteins,
which causes the degradation of Aux/IAA proteins and prevents AUXIN RESPONSE FACTOR
transcriptional repression (67). Three IAA proteins (IAA26, IAA27, and TAA18) can interact with
the replicase of TMV, and the strength of their interaction is correlated with their localization;
stronger interactions between IAA proteins and TMV replicase resulted in cytoplasmic localiza-
tion of the TAA protein (81). IAA26 appears to be the most biologically relevant IAA protein that
is manipulated by TMV, as IAA26 is expressed in all vein classes in leaves as well as the phloem
companion cells of stems and roots (15). Consistent with this, during TMV infection, the nuclear
localization of IAA26 is strongly reduced (15). In addition, if IAA26 accumulates to high levels,
TMYV infection is impaired (15). The IAA26-replicase interaction and the age of the plants appear
to be critical for loading TMV into the vasculature (15).

The movement protein [Triple Gene Block 1 (T'GB1)] of Potato mop-top virus (PMTV)
interacts with the stress sensor HIPP26 (heavy metal-associated isoprenylated plant protein) to
facilitate long-distance movement (16). HIPP26 is a part of a family of proteins that contain
heavy metal-binding domains and isoprenylation motifs. Some members of the family regulate
transcriptional responses to abiotic and biotic stress (21, 132). HIPP26 is expressed in the vascular
parenchyma and is induced during drought stress or PMTV infection (16). Infection induces
similar responses as drought stress, as infected plants are more drought tolerant (16). When
HIPP26 is silenced in Nicotiana benthamiana plants, systemic infection by PM'TV is impaired (16).
Taken together, this suggests that HIPP26 regulates stress-responsive genes, including genes
expressed in the vasculature, to promote drought tolerance, which is then co-opted by PMTV
for systemic movement through the vasculature.

Some viruses such as Citrus tristeza virus (CTV) are restricted to the phloem. CTV can over-
come this restriction if the host is suppressed for SA-mediated defenses and silencing pathways,
the viral silencing suppressor (p23) is overexpressed, or a viral protein (p33) that induces reactive
oxygen species is deleted (33, 44, 104). These data suggest that CTV is recognized in resistant
hosts and is restricted by the plant immune system to the phloem.
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CONCLUDING THOUGHTS AND REMAINING QUESTIONS

Diverse pathogens have substantial and often devastating physiological effects on the phloem, in-
cluding callose deposition on the sieve plates, alteration in phloem loading capacity, effects on the
composition of phloem mobile proteins and small molecules, and eventually necrosis. Even when
restricted to the phloem, pathogens use effector proteins to manipulate host immune signaling and
development in other parts of the plant. Effectors are typically small enough that they are able to
unload from the phloem, traffic to other tissues, and modulate host expression. Effector mobility
is therefore likely critical to manipulate host signaling even though the pathogen itself is found
in non-nucleated cells of the phloem. Effectors from phytoplasmas and viruses (and likely those
from CLas) co-opt developmental signaling to promote virulence. Some developmental changes
can promote insect vectoring, for example, by enhancing flower formation or volatile produc-
tion, and facilitate greater spread of the pathogen. Some effectors may have evolved to function
in the plant host or insect host, and therefore may have novel targets compared to effectors in
non-vectored pathogens. Effectors also suppress host immune signaling, which again promotes
pathogen virulence.

Major challenges remain in controlling infection because many of these pathogens cannot be
cultured or modified genetically. Insights from studies on CLas effectors and their movement from
the site of infection allowed the development of serological assays for earlier diagnosis of infected
citrus trees (82). Early diagnosis is important in preventing the spread of disease. Recent work
on peptides or small molecules that boost plant immunity or act as antimicrobial agents (11, 49,
78) also holds promise for control of pathogens. Rational design of antimicrobial compounds that
block key enzymatic activities in prokaryotic pathogens could be an effective strategy to block
pathogen proliferation, particularly if the molecules can move systemically through the plant.
New sources of resistance, potentially from wild relatives, or engineered resistance may also help
protect plants from infection. A deeper understanding of phloem biology will undoubtedly lead
to superior strategies for defeating pathogens in this remarkable tissue.

1. Physiological coordination and information transfer between sieve elements and com-
panion cells are fundamental and largely unexplored subjects.

2. Identification of host molecules that are manipulated by phloem pathogens will help
better understand how the plant regulates immune responses.

3. Characterization of pathogen effectors will help dissect their roles in promoting disease,
manipulating insect vectors, and modifying host development.

4. Dissecting the systemic movement of pathogen molecules will help better understand
how the plant regulates traffic through the phloem.

5. Innovative and diverse approaches involving both pathogen and phloem biology will be
needed to combat infection by these destructive pathogens.
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