Extreme Mechanics Letters 58 (2023) 101944

journal homepage: www.elsevier.com/locate/eml

Contents lists available at ScienceDirect

Extreme Mechanics Letters

m EXTREME MECHANICS

LETTERS

The “pure-shear” fracture test for viscoelastic elastomers and its N

revelation on Griffith fracture
Bhavesh Shrimali, Oscar Lopez-Pamies *

Check for
updates

Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA

ARTICLE INFO ABSTRACT

Article history:

Received 27 September 2022

Received in revised form 30 November 2022
Accepted 14 December 2022

Available online 17 December 2022

Keywords:

Elastomers

Viscoelasticity

Dissipative solids

Fracture nucleation
Critical energy release rate

Strikingly, “pure-shear” fracture tests have repeatedly shown that fracture nucleation in (common
hydrocarbon and other types of) viscoelastic elastomers occurs at a critical stretch that is independent
of the stretch rate at which the test is carried out. In this Letter, we demonstrate that this remarkable
- yet overlooked - experimental finding implies that the Griffith criticality condition that governs
nucleation of fracture from large pre-existing cracks in viscoelastic elastomers can be written in fact
as an expression not in terms of an elusive loading-history-dependent critical tearing energy T, as
ordinarily done, but as one exclusively in terms of the intrinsic fracture energy G, of the elastomer.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and main result

Following in the footstep of Griffith [1] and Busse [2], Rivlin
and Thomas [3] famously identified three types of tests - the
so-called “pure-shear”, single-edge-crack-tensile, and “trousers”
tests — that allowed for an expedient study of when fracture
nucleates from large pre-existing cracks in elastomers subjected
to quasi-static deformations. While Rivlin and Thomas’ analysis of
these tests made critical use of the idealization that elastomers
are purely elastic solids, the flurry of subsequent investigations
that their pioneering work triggered extended the same approach
to account for the fact that elastomers are inherently viscoelastic
solids [4-8]. In so doing, they established that fracture may nucle-
ate from a large pre-existing crack in an elastomer whenever the
change in total deformation (stored and dissipated) energy W in
the bulk with respect to an added surface area to the pre-existing
crack I reaches a certain critical tearing energy T, characteristic
of the elastomer:

ow
—— =T. (])
ol
In this expression, the added surface area refers to the unde-
formed configuration and the derivative is to be carried out
under fixed boundary conditions on the parts of the boundary
which are not traction-free. Notably, T. is not a constant but -
much like W - a function of the loading history. Physically, T,
describes the total energy (per unit fracture area) expended in the
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tearing process and thus it contains contributions from the actual
creation of new surface as well as from the viscous dissipation
(assuming that there are no other dissipation mechanisms, such
as strain crystallization) taking place around the crack front and
the rest of the bulk.

Experiments carried out at extremely low loading rates, at
high temperatures, and on solvent-swollen specimens, when vis-
cous effects are minimized, have shown that

T. = GCa

where G, denotes the intrinsic fracture energy, or critical energy
release rate, associated with the creation of new surface in the
given elastomer [8-12]. It is a material constant, independent of
time. Its value is in the same range

G, € [10, 100]N/m (2)

for all common hydrocarbon elastomers [10,11].

More generally, experiments carried out at various loading
rates, when viscous effects are not negligible and could even be
dominant, have shown that

Tc = Gc(l +fc)7

where f. is a non-negative function of the loading history that
scales with the viscosity of the elastomer at hand [5,12-14].
Precisely how f. - and hence T, - depends on the loading history
has remained an open problem for decades, save for the few spe-
cific loading conditions (such as deformations applied at constant
stretch rates in “pure-shear” fracture tests) that have allowed to
directly measure T, experimentally. This lacuna in knowledge has
severely hindered the practical utility of the Griffith criticality
condition (1).
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In this Letter, we show that the Griffith criticality condition (1)
can be reduced in fact to a more fundamental and useful form
that involves not the elusive critical tearing energy T, but only
the intrinsic fracture energy G. of the elastomer. We do so by
combining two elementary observations:

(i) For a viscoelastic elastomer, without loss of generality, the
total deformation energy W in (1) can be written in the
form,'

W = WEpWNEd Ly (3)
S——— —~
stored dissipated
as a sum of a stored part and a dissipated part. The stored
part of the energy is comprised itself of two parts: an
equilibrium part W and a non-equilibrium part WNE9,
The latter represents the part of the stored energy that
gets dissipated via viscous deformation eventually. On the
other hand, WY represents the part of the energy that is

dissipated via viscous dissipation instantaneously. Granted
(3), the criticality condition (1) can be rewritten as

ok GWNEd gy
= G G E— .

8FO ¢+ cfc+ 3F0 8F0
In view of this relation, upon noticing the string of in-
equalities G.f, > 0, aWN/9, < 0, 9W/dl, < O,
and that, much like f;, the terms dWNE9 /9 Iy and 9WY /9T

scale with the viscosity of the elastomer, one may naturally
wonder whether

3WNEq
dalp + aly
and hence whether the criticality condition (1) is, in point
of fact, given by
Wk
BT

(4)

ow’ —0 (5)

GCfC +

Ce

(ii) Experiments have repeatedly shown that fracture in “pure-

shear” tests of viscoelastic elastomers occurs at a critical
stretch that is independent (to within experimental error)
of the stretch rate at which the test is carried out. This
appears to be the behavior of common hydrocarbon elas-
tomers [15,16], as well as that of more modern types of
elastomers [17,18].
As examples of illustrative experimental data, Fig. 1 re-
produces the results reported in [16] for a SBR rubber, a
common hydrocarbon elastomer, and in [17] for VHB 4905,
an acrylic elastomer.

The main result. As elaborated in the next two sections, the
remarkable experimental fact that the critical stretch at which
fracture occurs in “pure-shear” tests is independent of the applied
stretch rate necessarily implies that relation (5) is indeed correct
and hence that the criticality condition

Wk

- =G, (6)
alo

is the fundamental form of the Griffith condition that gov-

erns the nucleation of fracture from large pre-existing cracks in
viscoelastic elastomers.

1 Rheological representations are helpful to make this partition of energies
apparent. For instance, in the rheological representation depicted in Fig. 3, WE
and WNE correspond to the elastic energy stored in the equilibrium and non-
equilibrium springs, whereas W corresponds to the viscous energy dissipated
by the dashpot.
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Fig. 1. Critical stretch h./H, as a function of the applied stretch rate ho/H,
at which fracture occurs in the “pure-shear” tests reported in [16] for a SBR
rubber, a common hydrocarbon elastomer, and in [17] for VHB 4905, an acrylic
elastomer.

2. Global analysis of the “pure-shear” test

As already alluded to above, Rivlin and Thomas [3] famously
identified the “pure-shear” test as one of the most convenient
tests to study nucleation of fracture from large pre-existing cracks
in elastomers, this provided that elastomers are viewed as purely
elastic solids. As will become apparent in this section, Rivlin and
Thomas’ analysis of the “pure-shear” test can be easily tran-
scribed to viscoelastic elastomers.

Consider the “pure-shear” test schematically depicted in Fig. 2,
where the thickness of the specimen - taken to be made of an
isotropic incompressible viscoelastic elastomer - is much smaller
than its height (B < H), its height is much smaller than its length
(H < L), and the initial length of the pre-existing crack is much
larger than the height of the specimen but much smaller than its
length (H << A < L). In other words, the specimen is essentially
an infinitely long strip that contains a semi-infinitely long edge
crack.

A load is applied by separating the top and bottom grips at
a constant rate hy so that, as a function of time t € [0, T], the
current height of the specimen is given by the relation h(t) =

L
Undeformed

h(t) = H + hot

Deformed

Fig. 2. Schematic of the “pure-shear” test for a viscoelastic elastomer carried
out at constant global stretch rate hy/H. The dimensions in the undeformed
configuration are such that B <« H < A « L. The region C in the specimen
is essentially in a state of spatially uniform pure shear, hence the name of the
test.
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H + hgt. 1t follows that at any given time t € (0, T], because of
the special geometry of the specimen and the incompressibility
of the elastomer, the specimen features four different regions of
deformation; see Fig. 2. Adhering to the original region labeling
used by Rivlin and Thomas (see Fig. 8 in [3]), the region A is
substantially undeformed, the crack-front region B and the fringe
region D are in a complex state of deformation (highly non-
uniform in space), while region C is in a state of spatially uniform
pure shear. )

Now, for a fixed loading rate hy and a fixed time t, so that
the separation between the grips is fixed at h(t) = H + hot,
consider an increase in the crack surface of amount d/y = BdA.
This increase in crack surface does not alter the complex state
of deformation in B but, instead, simply shifts this entire region
in the direction of the added crack, resulting in the growth of
region A at the expense of region C. In other words, an added
crack dIp results in the transferring of a volume HdIj of the
specimen from a state of pure shear to the undeformed state.
Making use of this observation, we have that the change in
total (stored and dissipated) deformation energy in the bulk with
respect to the added crack in a “pure-shear” test can be readily
computed in terms of the spatially uniform pure-shear behavior
of the elastomer in region C, precisely,

h(t)
H o

an /] Sps(X; Ao)dA, (7)
where Sp5(A; *o) denotes the stress—stretch relation of the given
elastomer under pure shear applied at the constant stretch rate
*o = o /H, that is, under a spatially uniform deformation gradi-
ent of the form F = diag(X, A~', 1), with A = 1+ Aqt, and first
Piola-Kirchhoff stress tensor of the form S = diag(Ss, 0, Sia) with
respect to the laboratory frame of referenced indicated in Fig. 2.

For any viscoelastic elastomer, it so happens that we can write
the stress-stretch relation in the additive form
Sps(A; Ao) = Spl(A) + Sy (As o),
where ng stands for the stress associated with the equilibrium
part of the underlying elastic energy, while Slfsq‘” denotes the
stress associated with the non-equilibrium part of the elastic
energy and the dissipated viscous energy. By making use of this
decomposition, relation (7) can then be rewritten as

h(t) h(t)
_OV / s da + H/ " sNEav (L fo) did

TR oo
Direct use of this last result in the general criticality condition (4)
leads to

h(t) h(t)

L Eq K NEq,v/y . 3
H SE(A)dh = G + G fe —H SNEOV(As Ao)dA.  (8)
1 1

Iwka IWNET gy
T o, Tor,

At this point, we can make two critical observations. By virtue
of the independence of SE?(A) of i, the change in equilibrium
elastic energy —dW" /31y in (8) - much like the material con-
stant G. - is independent of the stretch rate io. By contrast,
the change in non-equilibrium elastic energy —3W"“E /3T, and
dissipated viscous energy —dwW"/dIp — much like the term G.f,
- do depend on the stretch rate io. These behaviors, when com-
bined with the experimental fact that viscoelastic elastomers in
“pure-shear” tests carried out at constant stretch rates nucleate
fracture at the same global stretch h(t)/H, necessarily imply that
relations (5) and (6) must hold true, for the equality in (8) can
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be satisfied at fixed h(t)/H for all stretch rates o only when the
stretch-rate-dependent part
h(t)
H NEqury . 3
Gcfc_H/ Sps @ ()L;)\.())d)n =0
1

and the stretch-rate-independent part
()

H Eq
H/] SE(3)d — G = 0.

3. Full-field analysis of the “pure-shear” test

Complementary to the global analysis presented above, in this
section we present the full-field analysis of the “pure-shear” test
for an isotropic incompressible elastomer with Gaussian elasticity
and constant viscosity, which, arguably, is the most basic type
of viscoelastic elastomer and thus can be viewed as a canon-
ical problem. We begin by formulating the pertinent initial-
boundary-value problem and then proceed with the presentation
and discussion of the results.

3.1. Formulation of the initial-boundary-value problem

3.1.1. Initial configuration and kinematics

Consider rectangular specimens of length L = 152 mm and
height H = 10 mm in the e; and e directions and constant thick-
ness B = 0.5 mm in the e, direction; see Fig. 2. The specimens
contain a pre-existing edge crack of five different lengths

A =15, 20, 25, 30, 40 mm

in the ez direction. These specific values for L, H, B, A are chosen
because they are representative of those typically used in experi-
ments; see, in particular, [17]. Here, {e;} stands for the laboratory
frame of reference. We place its origin at the specimens’ mid-
plane along the edge containing the crack so that, in their initial
configuration at time t = 0, the specimens occupy the domain

EOZ{XZXEIP()\F()},

where

H
2

N

Poz{X:IX1|< s Xl < ,OsxasL}

and

B
Iy = {X:Xl =0, [X2| < 7 0=<X3 sA}.
In response to the applied boundary conditions described be-
low, the position vector X of a material point in the specimens
will move to a new position specified by

x =y(X,t),

where y is an invertible mapping from 2, to the current con-
figuration £2(t). Making use of standard notation, we write the
deformation gradient and Lagrangian velocity fields at X and t as

9
F(X. 1) = Vy(X, ) = %(x, t)

and

. d
VIX, 6) = §(X, €)= 5 (X, )
the “dot” notation will be employed throughout to denote the
Lagrangian time derivative (i.e., with X held fixed) of any field

quantity.
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3.1.2. Constitutive behavior of the elastomer

The specimens are taken to be made of a viscoelastic elastomer
with Gaussian elasticity and constant viscosity. Precisely, making
use of the two-potential formalism [19], the constitutive behavior
of the elastomer (for isothermal conditions) is characterized by
the two thermodynamic potentials

% Vo, .
5[11—3]+5[11—3] if J=1

Y(FF)=1 ——" ———— 9)
qu(F) wNEq (Fvafl)
+o00 otherwise
and
1. —1 - -1
‘ PP [2n PP
$(F.F F) = 2 (10)

iftr(FP'F*" =0
+00 otherwise

where i and ¢ stand, respectively, for the free energy and
dissipation potential describing how the elastomer stores and dis-
sipates energy through elastic and viscous deformation. In these
expressions, the second-order tensor F' is an internal variable of
state that describes roughly the “viscous part” of the deformation
gradient F,

I1 =F-F=1trC, ] =detF=+/detC,
I =FF ' FF! = tr(CC’ ), (11)

where C = F'F denotes the right Cauchy-Green deformation
tensor, C° = F''F’, Ky = 1(8udjy + 8udjx — 28;0) stands for
the standard deviatoric orthogonal projection tensor, and u > 0,
v > 0, n > 0 are material constants.

For a complete account of the two-potential framework as it
pertains to elastomers, the interested reader is referred to [19].
Here, it suffices to remark that the two-potential model (9)-
(10) corresponds to a generalization of the classical Zener or
standard solid model [20] to the setting of finite deformations. As
schematically depicted by the rheological representation in Fig. 3,
the function 159 in (9) characterizes the Gaussian elastic energy
storage in the elastomer at states of thermodynamic equilibrium,
whereas yNB4 characterizes the additional Gaussian elastic en-
ergy storage at non-equilibrium states (that is, again, the part of
the energy that gets dissipated eventually). On the other hand,
the parameter n in (10) characterizes the constant viscosity of the
elastomer.

¢ PNEa

Fig. 3. Rheological representation of a viscoelastic elastomer.
Granted the two thermodynamic potentials (9) and (10), it fol-
lows that the first Piola-Kirchhoff stress tensor S at any material
point X € £2 and time t € [0, T] is expediently given by the
relation [19]

3
S(X, t) = a—f(F, ), (12)

where F’ is implicitly defined by the evolution equation

aw v 874) v ORUY
o PP+ (B FLF) =0, (13)
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Making use of the specific forms (9) and (10), this relation can be
rewritten more explicitly as

S(X, t) = uF 4+ vFC* ™! — pFT, (14)
where p stands for the arbitrary hydrostatic pressure associated
with the incompressibility constraint ] = 1 of the elastomer and
C? is defined implicitly as the solution of the evolution equation

~V _B _1 . v—1 v
C(X,t)_n[c 3(cc )c]. (15)

Note that the dependence on the internal variable F' ends up
entering (14) and (15) only through the symmetric combination
' =PFTP,

Remark 1. The solid and fluid limiting cases of the constitutive
behavior (14)-(15). The prototypical constitutive behavior (14)-
(15) contains two important limiting cases. The first one, which
corresponds to setting the elastomer viscosity either to n = 0
or n — +oo, is that of a Gaussian elastic or Neo-Hookean solid.
The second one, which corresponds to setting the equilibrium and
non-equilibrium moduli to 4 = 0 and v — +o0, is that of a
Newtonian fluid.

To see the specialization to the elastic solid limiting case, note
that when 5 = 0, the solution to the evolution Eq. (15) is simply
C” = C and the first Piola-Kirchhoff stress tensor (14) reduces,
with a slight abuse of notation, to S(X, t) = uF — pF~'. Similarly,
when n — o0, the solution to the evolution Eq. (15) is € =
14+ 0(n~') and the first Piola-Kirchhoff stress tensor (14) reduces
to S(X, t) = (u + v)F — pF'.

On the other hand, to see the specialization to the viscous
fluid limiting case, note that when © = 0 and v — +o0, the
solution to the evolution Eq. (15) is given by C" = C+ v‘l(—né—i-
p1C) + O(v=2) and the first Piola-Kirchhoff stress tensor (14)
reduces to S(X,t) = n(FF'FT + FTF'FT) — gF'; in these
last two expressions, p; and q are arbitrary hydrostatic pressures
associated with the incompressibility constraint. Accordingly, the
Cauchy stress tensor T = SF' specializes to T(x, t) = 2nD — I,
where D = 1/2(FF! + F-TF") is the rate of deformation tensor.

3.1.3. Initial and boundary conditions

In their initial configuration, we consider that the specimens
are undeformed and stress-free. Therefore, we have the initial
conditions

y(X,0)=X
{p(X,O):,u—i—v , Xe . (16)
C'(X,0)=1

Save for the top boundary
- H B
2] =1X:Xy==,X2| <, 0<X3<L
2 2
and the bottom boundary

5 H B
082y = {X3X1 =-3 1Xa| < 5 0=<X; SL},
the entire boundary 02, of the specimens is traction free. The
top and bottom boundaries are separated in the e; direction at
the constant rate fig so that, as a function of time t € [0, T], the
current height of the specimen is given by the relation h(t) =
H + hot. Precisely, making use of the notation s(X, t) = SN, we
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have that
h
yi(X, £) = X1 + ?Ot, (X.t) € 027 x [0,T]
yi(X, t) = X3, (X.t) € 92] x[0,T]
s(X, t) =0, (X,t) € 2] x[0,T]
h , 17
nX, t)=X; — ?Ot, (X, t) € 928 x [0,T] (17)
y3(X, t) = X3, (X, t) € 028 x [0,T]
s(X, £) =0, (X,t) € 328 x [0, T]
s=0, (X,t)ed\ (0822] UdRy) x[0,T]

where N stands for the outward unit normal to the boundary
3820.

Remark 2. The boundary conditions at the grips. In experi-
ments, “pure-shear” specimens are typically gripped in a way
that complex triaxial stresses develop near the grips. Numerical
experiments indicate that these localized stresses have practically
no effect on the response of the specimens, thus our idealized
choice of zero traction (17)3 ¢ at the top and bottom boundaries.

3.1.4. Governing equations

In the absence of inertia and body forces, putting all the above
ingredients together, the mechanical response of the specimens
is governed by the equilibrium and incompressibility constraint
equations

{ DivS = 0, (X, t) € 20 x [0, T]

(X, t) € 2 x [0, T] (18)

detVy =1,
subject to the initial and boundary conditions (16);, and (17),
where S(X,t) = uVy + vVyC’~! — pVy T, coupled with the
evolution equation

. 1
co="r [VyTVy — 5 (W'vy-c) c"] (19)
n

subject to the initial condition (16)s, for the deformation field
y(X, t), the pressure field p(X,t), and the internal variable
C'(X, t).

The initial-boundary-value problem (18)-(19) with (16)-(17)
does not admit analytical solutions and hence must be solved
numerically. In a recent contribution, Ghosh et al. [21] have intro-
duced a robust scheme based on a finite-element (FE) discretiza-
tion of space and a high-order finite-difference (FD) discretization
of time for such a class of problems. The solutions that we present
in the sequel are generated with a variant of that scheme, one
where we make use of a non-conforming Crouzeix-Raviart finite-
element discretization of first order instead of a conforming one
of second order. Also, because of their checked agreement with
full 3D solutions, all the solutions that we present in the sequel
correspond to plane-stress solutions.

Before proceeding with the presentation of the results, we
emphasize that, because of the presence of a pre-existing crack in
the specimens, extreme care should be exercised in using a suffi-
ciently refined FE discretization of space and a sufficiently refined
FD discretization of time in order to generate converged solutions.
All the solutions that are presented below were checked to be
converged solutions.

3.2. Numerical results

Representative of values for typical elastomers, all the results
that follow pertain to equilibrium and non-equilibrium initial
shear moduli

u = 1MPa and v = 2 MPa,
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and three different viscosities:
n =5, 10, 20 MPas.

Note that these material constants result in elastomers with
relaxation times ¢ = n/v = 2.5,5, and 10 s. Furthermore, in
order to probe the entire spectrum of behaviors - from elasticity-
dominated to viscosity-dominated - the results correspond to
global stretch rates in the range

. h
Ag = ﬁ‘) € [1073,50] s~

spanning more than four orders of magnitude.

3.2.1. The force-deformation response

Fig. 4 presents results for the total force P required to deform
the specimens with viscosity = 5 MPas and pre-existing cracks
of length A = 15,25,40 mm at constant global stretch rates
Ao = 1073 s~ and Ag = 50 s~ . The results are shown for P as a
function of the applied deformation h for Ag = 10~ s~ in part
(a) and for Ag = 50 s~! in part (b). Two expected observations are
immediate. Specimens with larger cracks require smaller forces to
reach the same deformation. Larger forces are required to reach
a given deformation applied at a higher global stretch rate.

A -3 -1
250 A[) =10 S
200
Z 150
A
100 A =15mm
A =25mm
A =40 mm
50
0
10 11 12 13 14 15 16 17
h (mm)
(a)
250 Ao =50 s A =15mm
A =25 mm
200 A =40 mm
Z 150
R
100
50
0
10 11 12 13 14 15 16 17
h (mm)
(b)

Fig. 4. Force-deformation response of “pure-shear” specimens with viscosity
n =5 MPas and pre-existing cracks of various lengths A. Part (a) shows results
for deformations applied at the stretch rate Ao = 10~3 s~ !, while part (b) shows
results for Ag =50 s~ .
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3.2.2. The total deformation energy W and its partition into W¥,
WNEL and WY

The areas under the curves in the results presented in Fig. 4
correspond to the total work done by the applied loads. By the
same token, they correspond to the total deformation energy
stored and dissipated by the elastomer. We thus have

H(14+Agt)
W= / P dh.
H

(a

(c)

Fig. 5. Computed values from (20)-(22) of (a) the equilibrium elastic energy
WEd4, (b) the non-equilibrium elastic energy WM, and (c) the dissipated viscous
energy WV in “pure-shear” specimens with viscosity n = 5 MPas stretched at
A = 1.5, plotted as functions of the initial crack surface Iy = A x B and the
applied stretch rate Aq.
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Since the elastomer is a Gaussian elastomer with constant
viscosity, we also have that

YEI(F)dX = /

20

W — % [trC — 3] dX, (20)

20
WNEq =/ l[/NEq(FFv_1) dx
20

=/ g[tr(cc"”)—z,] dX, (21)
20

and

W =W — W — WhH
H(1+Agt) w
:/ Pdh—f — [trC — 3] dX—
H 20 2

/ % [tr(cc ™) — 3] dx. (22)
20

Fig. 5 shows results for W&, WNE4 and WY - as computed
from expressions (20)-(22) and the pertinent numerical solutions
for the deformation field y(X, t) and internal variable C*(X, t) - at
the global stretch A = h(t)/H = 1.5, plotted as functions of the
initial crack surface Iy = A x B and the stretch rate Ag.

Three comments are in order. First, the results at other fixed
values of the stretch A are not fundamentally different from those
shown in Fig. 5 for A = 1.5. In other words, the results presented
in Fig. 5 can be considered as representative of those at any
stretch A. All three parts of the deformation energy appear to
be linear with respect to the crack surface I'y. This implies that
even the specimen with the smallest pre-existing crack length
A = 15 mm behaves de facto as an infinitely long strip containing
a semi-infinitely long edge crack. Finally, the dependence of the
equilibrium energy WE4 on the applied stretch rate Ay appears
to also be linear (as shown in the next subsection, it is in fact
constant), while those of the non-equilibrium energy WNE and
the dissipated viscous energy WY are distinctly nonlinear.

3.2.3. The derivatives —3W*4/9 T, —dWNEd /3 I, and —dW? /a1,

From the 3D plots presented in Fig. 5, we can readily compute
the derivatives entering the general criticality condition (4). The
results are presented in Fig. 6 as functions of the applied stretch
rate Ao. While part (a) presents the results for —aWFt/3 1y,
parts (b) and (c) present those for —aWNE/3 Iy and —d W' /a1,
respectively.

We remark that, consistent with the behavior noted in Fig. 5,
the results in Fig. 6 are invariant with respect to I'y. What is more,
the results at other fixed values of the stretch A are qualitatively
the same as those shown in Fig. 6 for A = 1.5, which can be
therefore viewed as representative of any A.

We can make two further observations from Fig. 6. First,
consistent with the analysis presented in Section 2, the derivative
—awWk1/9Ty is independent of the applied stretch rate Ag. Sec-
ond, and also consistent with the analysis presented in Section 2,
the derivatives —3»WN /31 and —dW? /8, depend strongly on
Ay. In particular, as expected on physical grounds, —9WNE /3
is bounded from below (by zero) and from above, and increases
monotonically with increasing Ag. On the other hand, —oW" /91,
is also bounded from below (by zero) and from above, but is
not monotonically increasing in Ay, instead, it exhibits a single
local maximum at some value of Ag (in the present case, around
Ag = 10_1 S_l).

The above results for —3WEi/9rp, —awWN/3r,, and
—JdW"/d 1y, when combined with the experimental fact that vis-
coelastic elastomers in “pure-shear” tests carried out at constant
stretch rates nucleate fracture at the same stretch A, corroborate
that relations (5) and (6) must hold true, for the equality in (4)
can be satisfied at fixed A for all stretch rates A, only then.
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Fig. 6. Computed values from Fig. 5 of (a) the derivative —3wWF®/3I; of
the equilibrium elastic energy, (b) the derivative —3wWNt /31y of the non-
equilibrium elastic energy, and (c) the derivative —9wV/d I, of the dissipated
viscous energy in “pure-shear” specimens with viscosity n =5 MPas stretched
at A = 1.5, plotted as functions of the applied stretch rate Aq.
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3.2.4. Scalings of the critical tearing energy T.

While the critical tearing energy T, has long remained an
elusive quantity, it has been known since the 1950s that it scales
with the viscosity of the elastomer [5,14]. It has also been known
since the 1970s that T. scales with the stretch rate in a man-
ner that resembles the dependence of the storage modulus on
frequency in DMA (dynamic mechanical analysis) tests of elas-
tomers [13,14].

Since we have now established that (5) holds true and hence
- bringing resolution to the decades-old open problem of how T,
depends on the loading history - that

WNEa gy
alp Iy

at fracture, we can readily examine the precise scalings of T, with
the viscosity and the stretch rate for the prototypical elastomer
under investigation here.

To reveal the scaling on viscosity, Figs. 7(a) and 7(b) plot the
values of —dWNE/3 T, and —dWV/d I, for “pure-shear” speci-
mens when stretched at A = 1.5 at the stretch rate Aq = 10"
s~1, as functions of the viscosity 5 of the elastomer, which was
varied from n = 5 to 20 MPa s. Interestingly, for the range of n
considered, both derivatives scale not far from linearly in 7.

T. =Gc(1+fc)=cc -

() w ~
T T L
1 1 Il

—OWNEL/9T ) (N/mm)

—
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I
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n (MPa s)
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S
W
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(3%} w

—
T
I

0 Il Il 1
0 5 10 15 20 25
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(b)

Fig. 7. Dependence on the viscosity 1 of (a) the derivative —3wWN/91; of
the non-equilibrium elastic energy and (b) the derivative —3wV/aIlp of the
dissipated viscous energy in “pure-shear” specimens stretched at A = 1.5 at
the stretch rate Ag = 1071 s~ 1.
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Fig. 8. Dependence on the stretch rate A, of the combination of derivatives
—3dwWNE /9y — dWV /T, in “pure-shear” specimens with viscosity n = 5 MPas
stretched at A = 1.5.

To reveal the scaling on stretch rate, Fig. 8 plots the val-
ues of the combination of derivatives —3WNE4 /9y — 3WP /3Ty
for “pure-shear” specimens with viscosity = 5 MPas when
stretched at A = 1.5, as a function of the applied stretch rate
Ag. Consistent with results in the classical literature - see, for
instance, Section 3 in [14] - the plot does indeed resemble the
typical dependence of the storage modulus on frequency obtained
from DMA tests of elastomers.

3.2.5. The local fields in the regions A, B, C, and D

For completeness, we close this section by reporting in Fig. 9
representative contour plots of the equilibrium elastic energy
density ¥E9(F) in specimens stretched at A = 1.5 at two different
stretch rates, Ag = 1073 s~! and A, = 50 s~ . The results
pertain to an elastomer with viscosity n = 5 MPa s, a pre-existing
crack of length A = 40 mm, and are shown over the deformed
configuration.

These plots allow to identify the precise locations of the so-
called regions A, B, C, and D in the global Rivlin-Thomas analysis
of the problem. They provide as well quantitative insight into the
spatial heterogeneity of the local deformation field in the crack-
front region B and the fringe region D. Consistent with the results
in Fig. 5(a) for the total equilibrium elastic energy W&, note that

3 0 01 02 03 16 17
| B S W —I—

(a)

0 5 )
B (N/mm?) | | | i | |

(b)

Fig. 9. Contour plots over the deformed configuration of the equilibrium elastic
energy density ¥"9(F) in “pure-shear” specimens with viscosity n = 5 MPa s
and pre-existing crack of length A = 40 mm stretched at A = 1.5 at stretch
rates (a) Ag = 1072 s7! and (b) Ag =50 s 1.
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the local value of ¥E9(F) is independent of the applied stretch rate
Ag over the entire specimen.

4. Comparisons with experiments on VHB 4905

In this section, as a first demonstration of its use to explain
fracture in elastomers, we deploy the Griffith criticality condi-
tion (6) to explain a representative set of “pure-shear” fracture
tests, those reported in [17] on the acrylic elastomer VHB 4905.
The focus is on the results for specimens with the same geometry
considered in the preceding section (L = 152 mm, H = 10 mm,
B = 0.5 mm) featuring a pre-existing edge crack of length A =
20 mm; see Fig. 3(b) in [17].

4.1. The viscoelastic behavior of VHB 4905

In contrast to the canonical viscoelastic behavior considered
above, VHB 4905 exhibits non-Gaussian elasticity and a nonlinear
viscosity of shear-thinning type. This falls squarely within the be-
havior of the vast majority of elastomers [22-29]. Such a behavior
can be described with the same type of two-potential constitutive
modeling considered in the preceding section by simply replac-
ing the finite branch of the equilibrium and non-equilibrium
Gaussian free-energy functions in (9) with the non-Gaussian free-
energy functions

Eq - 317% or o
v (F):;T.[rﬂr[l] —3%]
Y NP ) = 22: i vy [1;”9’ - 3ﬁr]
r=1 zﬂr

and by replacing the constant viscosity in (10) with the nonlinear
viscosity function

Mo — Noo + Ky [I}71 — 371]
Y2
1+ (k™)

n(I3, 5, 17) = neo +

In these expressions, I} = trC’ JzNEq = (I¥/3 — I§)x
(7 3" Pyt s = e 72 — ¢7'c - ec'T'), and
we recall that I; and I stand for the invariants (11); 3. Making
use of these constitutive prescriptions in (12)-(13) results in the
viscoelastic model [19]

2
S(X,t) = 3" Iy F+
r=1
2
> 3PP Ee T — pF, (23)
r=1

where, again, p stands for the arbitrary hydrostatic pressure asso-
ciated with the assumed incompressibility of the elastomer and
where now the internal variable C’ is defined implicitly as the
solution of the evolution equation

2 1—-Br, 7ebr—1
CU(X, t) = 2o 3l [c- 1 (c.cvl)cv] (24)
n(s, 5, 17) 3

In all, the constitutive relation (23)-(24) contains fourteen
material constants. Four of them, wq, u2, o1, @y, serve to char-
acterize the non-Gaussian elasticity of the elastomer at states of
thermodynamic equilibrium. Another four, vy, v,, 81, B2, charac-
terize the non-Gaussian elasticity at non-equilibrium states. The
last six constants, 79, 7o, K1, K2, Y1, Y2, serve to characterize
the nonlinear shear-thinning viscosity. Note that the constitutive
relation (23)-(24) includes (0y = 1 =1, U2 = v, =0, o = 0,
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Fig. 10. Comparison between the stress-stretch response (solid line) predicted
by the viscoelastic model (23)-(24), with the material constants in Table 1, and
the experimental data (solids circles) reported in [17] for the acrylic elastomer
VHB 4905 under pure shear applied at three different constant stretch rates: (a)
ho=1.67x 1073 571, (b) ko = 1.67 x 107" 57!, and (c) ko = 1.67 s~

K; = K, = 0) the canonical relation (14)-(15) for a viscoelastic
elastomer with Gaussian elasticity and constant viscosity as a
special case.

In addition to reporting results for “pure-shear” fracture tests,
the work [17] includes experimental results for the stress-stretch
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Table 1
Values of the material constants in the viscoelastic model (23)-(24)
for the acrylic elastomer VHB 4905.

u1 = 13.96 kPa oy = 0.9255 kPa

oy =0.5104 ay = 1.910

vy = 50.15 kPa v; =5.193 x 107¢ kPa
B1 = 0.9660 B, =7.107

no = 7007 kPa s Noo = 14 kPa s

Ky = 2833 kPa s K, = 1.228 kPa™2

y1 = 3.467 y2 = 0.0836

response of VHB 4905 under (approximately) pure shear defor-
mation applied at various constant stretch rates in the range
Lo € [1.67 x 1073, 1.67] s™'; see Fig. 3(a) in [17]. Specializing
the constitutive relation (23)-(24) to such loadings - that is,
to deformation gradients of the form F = diag(A, 271, 1) with
A = 1+ Aot and first Piola-Kirchhoff stresses of the form S =
diag(Sps, 0, Sier) — and then fitting (by least squares) its material
constants to the experimental data in [17] yields the values listed
in Table 1 for all fourteen material constants. As seen from the
comparisons presented in Fig. 10, the constitutive relation (23)-
(24) with such material constants describes reasonably well the
viscoelastic response of VHB 4905 reported in [17].

4.2. Computation of the derivative —3 W& /9T

Having determined the viscoelastic behavior of VHB 4905,
we proceed by repeating the same type of full-field analysis
presented in Section 3 in order to compute the derivative
—3dWE1 /9Ty entering the Griffith criticality condition (6).

Before presenting and discussing the results for —3W/ 3Ty,
a few technical remarks are in order. Since the experiments
in [17] pertain to specimens with a pre-existing edge crack of
length A = 20 mm, we perform the simulations for specimens
with three crack lengths, A = 15,20, 25 mm. This suffices to
be able to take the required derivative —3Wt4/9Iy in (6) at
Iy = A x B =20 x 0.5 mm?. Much like the global stretch rates
used in the experiments, we carry out simulations at six different
global stretch rates, Ay = 1.67 x 1073, 1.67 x 1072, 6.67 x
1072, 1.67 x 1071,6.67 x 1071, 1.67 s~!. Accordingly, in all, we
carry out 3 x 6 = 18 simulations of the “pure-shear” fracture
tests. Furthermore, since the experiments indicate that fracture
nucleates from the pre-existing crack at the critical global stretch

A =3.63

800

g 600
(=)
[
)

57400
=
7

200

0 -
10° 107 10" 10° 10'

Ao s™Y

Fig. 11. The derivative —3W"4/3 I of the equilibrium elastic energy computed
from the simulations of “pure-shear” fracture tests on VHB 4905. The results
correspond to a global stretch of A = 3.63 and are plotted as a function of the
applied stretch rate Aq.
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Ac = h./H = 3.6310.45, we carry out each of these simulations
up to a global stretch of A = 3.63.

Analogous to Fig. 6(a), Fig. 11 presents results for the deriva-
tive —9WF4/9 I, computed from the simulations of the “pure-
shear” fracture tests on VHB 4905, at the global applied stretch
A = 3.63. Much like the results in Fig. 6(a) for the canonical case
of an elastomer with Gaussian elasticity and constant viscosity,
the results in Fig. 11 are invariant with respect to I and inde-
pendent of the applied stretch rate Ag. According to the Griffith
criticality condition (6), they indicate then that fracture nucleates
at A = 3.63 for all Aq precisely as in the experiments, so long as
the intrinsic fracture energy of VHB 4905 is about G, = 634 N/m.

Remark 3. The value of G = 634 N/m for VHB 4905. The
value Gc = 634 N/m for the intrinsic fracture energy deduced
from Fig. 11 depends directly on the constitutive relation (23)-
(24), together with the material constants in Table 1, utilized
in the simulations to describe the viscoelastic behavior of VHB
4905. More specifically, it depends on the part of the model
that describes the equilibrium elasticity and hence, here, on the
material constants w1, (2, @1, oz. It is possible that fitting a set
of experimental results larger than the one fitted here could lead
to material constants w1, (a, o1, oz different from those listed in
Table 1 that describe more accurately the equilibrium elasticity
of VHB 4905.

Be that as it may, the comparisons presented in Fig. 10 sug-
gest that the constitutive relation (23)-(24), with the material
constants in Table 1, describes fairly accurately the viscoelastic
behavior of VHB 4905 and hence that the value G, = 634 N/m
obtained in this work should be a good estimate. Interestingly,
this value is considerably larger than those found for common
hydrocarbon elastomers, which, again, typically fall within the
range (2). This result, we hope, will encourage experiments in the
spirit of those carried out in [10,11] to measure directly the value
of G. for VHB 4905.

Remark 4. A Rivlin-Thomas-type formula. For a “pure-shear”
fracture test, the computation of the derivative —9W*® /315 in
the Griffith criticality condition (6) requires, in principle, the
numerical solution of the pertinent boundary-value problem. This
is precisely the approach that we have followed in this and in the
preceding section.

Fortunately, as already alluded to at the end of Section 2 above,
the approximate formula originally worked out by Rivlin and
Thomas [3] in the setting of finite elasticity also happens to apply,
mutatis mutandis, in the present setting of finite viscoelasticity
to compute —dW¥4/3I,. Precisely, when the viscoelasticity of
the elastomer of interest is described within the two-potential
framework, the formula reads

Wk

alo

where we recall that H denotes the initial height of the specimen,;
see Fig. 2. This approximate relation — which we have checked to
be in good agreement with all the numerical results that we have
generated for —3W% /91 in this Letter - is obviously of great
practical utility as it allows to determine the energy release rate
—3dWE4/9 Iy in “pure-shear” fracture tests solely from knowledge
of the equilibrium elasticity of the elastomer and the initial geom-
etry of the specimen without having to solve any boundary-value
problem.

= HY"(Ey), Fps = diag(x, 271, 1),

4.3. The critical stretch and the critical stress at fracture: Theory vs.
experiment

We are now in a position to deploy the Griffith criticality con-
dition (6) to explain the “pure-shear” fracture tests in [ 17]. Taking

10
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Fig. 12. Comparison between (a) the critical global stretch A. = h./H and (b)
the critical global stress S, = P./BL at which fracture nucleates, according to
the Griffith criticality condition (6), and the corresponding experimental results
reported in [17] for “pure-shear” fracture tests on VHB 4905. Both sets of results
are presented as functions of the global stretch rate Aog = ho/H at which the
tests are carried out.

G, = 634 N/m as the intrinsic fracture energy of VHB 4905,
Fig. 12 confronts the predictions obtained from the simulations
for the critical global stretch A. = h/H in part (a) and the critical
global stress S. = P./BL in part (b) at which fracture nucleates,
according to the Griffith criticality condition (6), with the corre-
sponding experimental results reported in [17]. The results are
presented as functions of the global stretch rate A, at which the
tests are carried out.

Two observations are immediate from Fig. 12. First are fore-
most, the Griffith criticality condition (6) does indeed determine
when fracture nucleates from the pre-existing crack in the spec-
imens. Second, as opposed to the critical global stretch A, the
critical global stress S. is strongly dependent on the stretch rate
Ag at which the tests are carried out, in particular, S. increases
with increasing Ap. This dependence is nothing more than a
manifestation of the viscoelastic behavior of VHB 4905.

5. Final comments

Besides the “pure-shear” fracture test examined in this work,
there is another classical test in the literature that provides an
additional elementary experimental check of the validity of (6)
as the true Griffith condition for viscoelastic elastomers, that
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is the delayed fracture test of an elastomer sheet, containing a
crack, subjected to a constant load that is applied rapidly and
then kept fixed. Indeed, the existence of a time delay after the
application of the load for the nucleation of fracture from the
pre-existing crack in these tests is a telltale of the validity of
(6). This is because a time delay implies that it is the increase
of W in time at the expense of the decrease of WNEI due to
the creeping of the elastomer that leads to the attainability of
the criticality condition (6). The first experiments that showed
that elastomers exhibit delayed crack growth can be traced back
to work of Knauss [30] in the 1970s. In a companion paper [31],
we explain the pioneering delayed fracture tests of Knauss [30]
and in so doing describe the use of the fundamental form (6)
of the Griffith criticality condition when the applied boundary
conditions are traction boundary conditions.

We conclude by emphasizing that, from a practical point of
view, as illustrated in Section 4, the Griffith criticality condi-
tion (6) is straightforward to employ, as it is based on quantities
that can be measured experimentally once and for all by means
of conventional tests. From a theoretical point of view, moreover,
it would behoove us to investigate whether the alluringly simple
and intuitive form (6) remains applicable to dissipative solids at
large, not just viscoelastic elastomers.
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