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a b s t r a c t

Strikingly, ‘‘pure-shear’’ fracture tests have repeatedly shown that fracture nucleation in (common
hydrocarbon and other types of) viscoelastic elastomers occurs at a critical stretch that is independent
of the stretch rate at which the test is carried out. In this Letter, we demonstrate that this remarkable
– yet overlooked – experimental finding implies that the Griffith criticality condition that governs
nucleation of fracture from large pre-existing cracks in viscoelastic elastomers can be written in fact
as an expression not in terms of an elusive loading-history-dependent critical tearing energy Tc , as
ordinarily done, but as one exclusively in terms of the intrinsic fracture energy Gc of the elastomer.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and main result

Following in the footstep of Griffith [1] and Busse [2], Rivlin
nd Thomas [3] famously identified three types of tests – the
o-called ‘‘pure-shear’’, single-edge-crack-tensile, and ‘‘trousers’’
ests – that allowed for an expedient study of when fracture
ucleates from large pre-existing cracks in elastomers subjected
o quasi-static deformations. While Rivlin and Thomas’ analysis of
hese tests made critical use of the idealization that elastomers
re purely elastic solids, the flurry of subsequent investigations
hat their pioneering work triggered extended the same approach
o account for the fact that elastomers are inherently viscoelastic
olids [4–8]. In so doing, they established that fracture may nucle-
te from a large pre-existing crack in an elastomer whenever the
hange in total deformation (stored and dissipated) energy W in
the bulk with respect to an added surface area to the pre-existing
crack Γ0 reaches a certain critical tearing energy Tc characteristic
of the elastomer:

−
∂W
∂Γ0

= Tc . (1)

n this expression, the added surface area refers to the unde-
ormed configuration and the derivative is to be carried out
nder fixed boundary conditions on the parts of the boundary
hich are not traction-free. Notably, Tc is not a constant but –
uch like W – a function of the loading history. Physically, Tc
escribes the total energy (per unit fracture area) expended in the
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tearing process and thus it contains contributions from the actual
creation of new surface as well as from the viscous dissipation
(assuming that there are no other dissipation mechanisms, such
as strain crystallization) taking place around the crack front and
the rest of the bulk.

Experiments carried out at extremely low loading rates, at
high temperatures, and on solvent-swollen specimens, when vis-
cous effects are minimized, have shown that

Tc = Gc,

where Gc denotes the intrinsic fracture energy, or critical energy
release rate, associated with the creation of new surface in the
given elastomer [8–12]. It is a material constant, independent of
time. Its value is in the same range

Gc ∈ [10, 100]N/m (2)

for all common hydrocarbon elastomers [10,11].
More generally, experiments carried out at various loading

rates, when viscous effects are not negligible and could even be
dominant, have shown that

Tc = Gc(1+ fc),

where fc is a non-negative function of the loading history that
scales with the viscosity of the elastomer at hand [5,12–14].
Precisely how fc – and hence Tc – depends on the loading history
as remained an open problem for decades, save for the few spe-
ific loading conditions (such as deformations applied at constant
tretch rates in ‘‘pure-shear’’ fracture tests) that have allowed to
irectly measure Tc experimentally. This lacuna in knowledge has
everely hindered the practical utility of the Griffith criticality

ondition (1).
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In this Letter, we show that the Griffith criticality condition (1)
can be reduced in fact to a more fundamental and useful form
that involves not the elusive critical tearing energy Tc , but only
the intrinsic fracture energy Gc of the elastomer. We do so by
combining two elementary observations:

(i) For a viscoelastic elastomer, without loss of generality, the
total deformation energy W in (1) can be written in the
form,1

W = WEq
+WNEq  
stored

+ Wv
dissipated

(3)

as a sum of a stored part and a dissipated part. The stored
part of the energy is comprised itself of two parts: an
equilibrium part WEq and a non-equilibrium part WNEq.
The latter represents the part of the stored energy that
gets dissipated via viscous deformation eventually. On the
other hand, Wv represents the part of the energy that is
dissipated via viscous dissipation instantaneously. Granted
(3), the criticality condition (1) can be rewritten as

−
∂WEq

∂Γ0
= Gc + Gc fc +

∂WNEq

∂Γ0
+
∂Wv

∂Γ0
. (4)

In view of this relation, upon noticing the string of in-
equalities Gc fc ≥ 0, ∂WNEq/∂Γ0 ≤ 0, ∂Wv/∂Γ0 ≤ 0,
and that, much like fc , the terms ∂WNEq/∂Γ0 and ∂Wv/∂Γ0
scale with the viscosity of the elastomer, one may naturally
wonder whether

Gc fc +
∂WNEq

∂Γ0
+
∂Wv

∂Γ0
= 0 (5)

and hence whether the criticality condition (1) is, in point
of fact, given by

−
∂WEq

∂Γ0
= Gc .

(ii) Experiments have repeatedly shown that fracture in ‘‘pure-
shear’’ tests of viscoelastic elastomers occurs at a critical
stretch that is independent (to within experimental error)
of the stretch rate at which the test is carried out. This
appears to be the behavior of common hydrocarbon elas-
tomers [15,16], as well as that of more modern types of
elastomers [17,18].
As examples of illustrative experimental data, Fig. 1 re-
produces the results reported in [16] for a SBR rubber, a
common hydrocarbon elastomer, and in [17] for VHB 4905,
an acrylic elastomer.

he main result. As elaborated in the next two sections, the
emarkable experimental fact that the critical stretch at which
racture occurs in ‘‘pure-shear’’ tests is independent of the applied
tretch rate necessarily implies that relation (5) is indeed correct
nd hence that the criticality condition

∂WEq

∂Γ0
= Gc (6)

is the fundamental form of the Griffith condition that gov-
erns the nucleation of fracture from large pre-existing cracks in
viscoelastic elastomers.

1 Rheological representations are helpful to make this partition of energies
pparent. For instance, in the rheological representation depicted in Fig. 3, WEq

nd WNEq correspond to the elastic energy stored in the equilibrium and non-
quilibrium springs, whereas Wv corresponds to the viscous energy dissipated
y the dashpot.
2

Fig. 1. Critical stretch hc/H , as a function of the applied stretch rate ḣ0/H ,
t which fracture occurs in the ‘‘pure-shear’’ tests reported in [16] for a SBR
ubber, a common hydrocarbon elastomer, and in [17] for VHB 4905, an acrylic
lastomer.

. Global analysis of the ‘‘pure-shear’’ test

As already alluded to above, Rivlin and Thomas [3] famously
dentified the ‘‘pure-shear’’ test as one of the most convenient
ests to study nucleation of fracture from large pre-existing cracks
n elastomers, this provided that elastomers are viewed as purely
lastic solids. As will become apparent in this section, Rivlin and
homas’ analysis of the ‘‘pure-shear’’ test can be easily tran-
cribed to viscoelastic elastomers.
Consider the ‘‘pure-shear’’ test schematically depicted in Fig. 2,

here the thickness of the specimen – taken to be made of an
sotropic incompressible viscoelastic elastomer – is much smaller
han its height (B ≪ H), its height is much smaller than its length
H ≪ L), and the initial length of the pre-existing crack is much
arger than the height of the specimen but much smaller than its
ength (H ≪ A ≪ L). In other words, the specimen is essentially
n infinitely long strip that contains a semi-infinitely long edge
rack.
A load is applied by separating the top and bottom grips at

constant rate ḣ0 so that, as a function of time t ∈ [0, T ], the
urrent height of the specimen is given by the relation h(t) =

Fig. 2. Schematic of the ‘‘pure-shear’’ test for a viscoelastic elastomer carried
out at constant global stretch rate ḣ0/H . The dimensions in the undeformed
configuration are such that B ≪ H ≪ A ≪ L. The region C in the specimen
is essentially in a state of spatially uniform pure shear, hence the name of the
test.
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+ ḣ0t . It follows that at any given time t ∈ (0, T ], because of
the special geometry of the specimen and the incompressibility
of the elastomer, the specimen features four different regions of
deformation; see Fig. 2. Adhering to the original region labeling
used by Rivlin and Thomas (see Fig. 8 in [3]), the region A is
substantially undeformed, the crack-front region B and the fringe
region D are in a complex state of deformation (highly non-
uniform in space), while region C is in a state of spatially uniform
ure shear.
Now, for a fixed loading rate ḣ0 and a fixed time t , so that

the separation between the grips is fixed at h(t) = H + ḣ0t ,
consider an increase in the crack surface of amount dΓ0 = BdA.
This increase in crack surface does not alter the complex state
of deformation in B but, instead, simply shifts this entire region
in the direction of the added crack, resulting in the growth of
region A at the expense of region C. In other words, an added
rack dΓ0 results in the transferring of a volume HdΓ0 of the
specimen from a state of pure shear to the undeformed state.
Making use of this observation, we have that the change in
total (stored and dissipated) deformation energy in the bulk with
respect to the added crack in a ‘‘pure-shear’’ test can be readily
computed in terms of the spatially uniform pure-shear behavior
of the elastomer in region C, precisely,

−
∂W
∂Γ0

= H
∫ h(t)

H

1
Sps(λ; λ̇0) dλ, (7)

where Sps(λ; λ̇0) denotes the stress–stretch relation of the given
elastomer under pure shear applied at the constant stretch rate
λ̇0 = ḣ0/H , that is, under a spatially uniform deformation gradi-
ent of the form F = diag(λ, λ−1, 1), with λ = 1 + λ̇0t , and first
Piola–Kirchhoff stress tensor of the form S = diag(Sps, 0, Slat ) with
respect to the laboratory frame of referenced indicated in Fig. 2.

For any viscoelastic elastomer, it so happens that we can write
the stress–stretch relation in the additive form

Sps(λ; λ̇0) = SEqps (λ)+ SNEq,vps (λ; λ̇0),

where SEqps stands for the stress associated with the equilibrium
part of the underlying elastic energy, while SEq,vps denotes the
stress associated with the non-equilibrium part of the elastic
energy and the dissipated viscous energy. By making use of this
decomposition, relation (7) can then be rewritten as

−
∂W
∂Γ0

= H
∫ h(t)

H

1
SEqps (λ) dλ+ H

∫ h(t)
H

1
SNEq,vps (λ; λ̇0) dλ.

irect use of this last result in the general criticality condition (4)
eads to∫ h(t)

H

1
SEqps (λ) dλ  

−

∂WEq

∂Γ0

= Gc + Gc fc − H
∫ h(t)

H

1
SNEq,vps (λ; λ̇0) dλ  

−

⎛⎝∂WNEq

∂Γ0
+

∂Wv

∂Γ0

⎞⎠
. (8)

At this point, we can make two critical observations. By virtue
of the independence of SEqps (λ) of λ̇0, the change in equilibrium
lastic energy −∂WEq/∂Γ0 in (8) – much like the material con-

stant Gc – is independent of the stretch rate λ̇0. By contrast,
the change in non-equilibrium elastic energy −∂WNEq/∂Γ0 and
dissipated viscous energy −∂Wv/∂Γ0 – much like the term Gc fc
– do depend on the stretch rate λ̇0. These behaviors, when com-
bined with the experimental fact that viscoelastic elastomers in
‘‘pure-shear’’ tests carried out at constant stretch rates nucleate
fracture at the same global stretch h(t)/H , necessarily imply that
relations (5) and (6) must hold true, for the equality in (8) can
 q

3

be satisfied at fixed h(t)/H for all stretch rates λ̇0 only when the
stretch-rate-dependent part

Gc fc − H
∫ h(t)

H

1
SNEq,vps (λ; λ̇0) dλ = 0

and the stretch-rate-independent part

H
∫ h(t)

H

1
SEqps (λ) dλ− Gc = 0.

3. Full-field analysis of the ‘‘pure-shear’’ test

Complementary to the global analysis presented above, in this
section we present the full-field analysis of the ‘‘pure-shear’’ test
for an isotropic incompressible elastomer with Gaussian elasticity
and constant viscosity, which, arguably, is the most basic type
of viscoelastic elastomer and thus can be viewed as a canon-
ical problem. We begin by formulating the pertinent initial–
boundary-value problem and then proceed with the presentation
and discussion of the results.

3.1. Formulation of the initial–boundary-value problem

3.1.1. Initial configuration and kinematics
Consider rectangular specimens of length L = 152 mm and

height H = 10 mm in the e3 and e1 directions and constant thick-
ness B = 0.5 mm in the e2 direction; see Fig. 2. The specimens
contain a pre-existing edge crack of five different lengths

A = 15, 20, 25, 30, 40 mm

in the e3 direction. These specific values for L,H, B, A are chosen
because they are representative of those typically used in experi-
ments; see, in particular, [17]. Here, {ei} stands for the laboratory
frame of reference. We place its origin at the specimens’ mid-
plane along the edge containing the crack so that, in their initial
configuration at time t = 0, the specimens occupy the domain

Ω0 = {X : X ∈ P0 \ Γ0},

where

P0 =

{
X : |X1| ≤

H
2
, |X2| ≤

B
2
, 0 ≤ X3 ≤ L

}
and

Γ0 =

{
X : X1 = 0, |X2| ≤

B
2
, 0 ≤ X3 ≤ A

}
.

In response to the applied boundary conditions described be-
low, the position vector X of a material point in the specimens
will move to a new position specified by

x = y(X, t),

where y is an invertible mapping from Ω0 to the current con-
figuration Ω(t). Making use of standard notation, we write the
deformation gradient and Lagrangian velocity fields at X and t as

F(X, t) = ∇y(X, t) =
∂y
∂X

(X, t)

and

V(X, t) = ẏ(X, t) =
∂y
∂t

(X, t);

he ‘‘dot’’ notation will be employed throughout to denote the
agrangian time derivative (i.e., with X held fixed) of any field
uantity.
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.1.2. Constitutive behavior of the elastomer
The specimens are taken to be made of a viscoelastic elastomer

ith Gaussian elasticity and constant viscosity. Precisely, making
se of the two-potential formalism [19], the constitutive behavior
f the elastomer (for isothermal conditions) is characterized by
he two thermodynamic potentials

(F, Fv) =

⎧⎪⎪⎨⎪⎪⎩
µ

2
[I1 − 3]  
ψEq(F)

+
ν

2

[
Ie1 − 3

]
  
ψNEq

(
FFv−1)

if J = 1

+∞ otherwise

(9)

nd

(F, Fv, Ḟv) =

⎧⎪⎨⎪⎩
1
2
ḞvFv−1

·
[
2 ηK ḞvFv−1]

if tr(ḞvFv−1) = 0
+∞ otherwise

, (10)

where ψ and φ stand, respectively, for the free energy and
dissipation potential describing how the elastomer stores and dis-
sipates energy through elastic and viscous deformation. In these
expressions, the second-order tensor Fv is an internal variable of
state that describes roughly the ‘‘viscous part’’ of the deformation
gradient F,

I1 = F · F = tr C, J = det F =
√
det C,

e
1 = FFv−1

· FFv−1
= tr(CCv−1), (11)

here C = FTF denotes the right Cauchy–Green deformation
tensor, Cv = FvTFv , Kijkl =

1
2 (δikδjl + δilδjk −

2
3δijδkl) stands for

he standard deviatoric orthogonal projection tensor, and µ ≥ 0,
≥ 0, η ≥ 0 are material constants.
For a complete account of the two-potential framework as it

ertains to elastomers, the interested reader is referred to [19].
ere, it suffices to remark that the two-potential model (9)–
10) corresponds to a generalization of the classical Zener or
tandard solid model [20] to the setting of finite deformations. As
chematically depicted by the rheological representation in Fig. 3,
he function ψEq in (9) characterizes the Gaussian elastic energy
torage in the elastomer at states of thermodynamic equilibrium,
hereas ψNEq characterizes the additional Gaussian elastic en-
rgy storage at non-equilibrium states (that is, again, the part of
he energy that gets dissipated eventually). On the other hand,
he parameter η in (10) characterizes the constant viscosity of the
lastomer.

Fig. 3. Rheological representation of a viscoelastic elastomer.

Granted the two thermodynamic potentials (9) and (10), it fol-
lows that the first Piola–Kirchhoff stress tensor S at any material
point X ∈ Ω0 and time t ∈ [0, T ] is expediently given by the
relation [19]

S(X, t) =
∂ψ

∂F
(F, Fv), (12)

here Fv is implicitly defined by the evolution equation

∂ψ
(F, Fv)+

∂φ
(F, Fv, Ḟv) = 0. (13)
∂Fv ∂ Ḟv
4

Making use of the specific forms (9) and (10), this relation can be
rewritten more explicitly as

S(X, t) = µF+ νFCv−1
− pF−T , (14)

here p stands for the arbitrary hydrostatic pressure associated
ith the incompressibility constraint J = 1 of the elastomer and
v is defined implicitly as the solution of the evolution equation

˙v(X, t) =
ν

η

[
C−

1
3

(
C · Cv−1) Cv] . (15)

Note that the dependence on the internal variable Fv ends up
entering (14) and (15) only through the symmetric combination
Cv = FvTFv .

Remark 1. The solid and fluid limiting cases of the constitutive
behavior (14)–(15). The prototypical constitutive behavior (14)–
(15) contains two important limiting cases. The first one, which
corresponds to setting the elastomer viscosity either to η = 0
or η → +∞, is that of a Gaussian elastic or Neo-Hookean solid.
The second one, which corresponds to setting the equilibrium and
non-equilibrium moduli to µ = 0 and ν → +∞, is that of a
Newtonian fluid.

To see the specialization to the elastic solid limiting case, note
that when η = 0, the solution to the evolution Eq. (15) is simply
Cv = C and the first Piola–Kirchhoff stress tensor (14) reduces,
with a slight abuse of notation, to S(X, t) = µF− pF−T . Similarly,
when η → +∞, the solution to the evolution Eq. (15) is Cv =

+O(η−1) and the first Piola–Kirchhoff stress tensor (14) reduces
o S(X, t) = (µ+ ν)F− pF−T .

On the other hand, to see the specialization to the viscous
luid limiting case, note that when µ = 0 and ν → +∞, the
olution to the evolution Eq. (15) is given by Cv = C+ν−1(−ηĊ+
1C) + O(ν−2) and the first Piola–Kirchhoff stress tensor (14)
educes to S(X, t) = η(ḞF−1F−T

+ F−T ḞTF−T ) − qF−T ; in these
ast two expressions, p1 and q are arbitrary hydrostatic pressures
ssociated with the incompressibility constraint. Accordingly, the
auchy stress tensor T = SFT specializes to T(x, t) = 2ηD − qI,
here D = 1/2(ḞF−1

+ F−T ḞT ) is the rate of deformation tensor.

.1.3. Initial and boundary conditions
In their initial configuration, we consider that the specimens

re undeformed and stress-free. Therefore, we have the initial
onditions

y(X, 0) = X
p(X, 0) = µ+ ν

Cv(X, 0) = I
, X ∈ Ω0. (16)

Save for the top boundary

∂ΩT
0 =

{
X : X1 =

H
2
, |X2| ≤

B
2
, 0 ≤ X3 ≤ L

}
and the bottom boundary

∂ΩB
0 =

{
X : X1 = −

H
2
, |X2| ≤

B
2
, 0 ≤ X3 ≤ L

}
,

the entire boundary ∂Ω0 of the specimens is traction free. The
top and bottom boundaries are separated in the e1 direction at
the constant rate ḣ0 so that, as a function of time t ∈ [0, T ], the
current height of the specimen is given by the relation h(t) =

H + ḣ t . Precisely, making use of the notation s(X, t) = SN, we
0
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s

ave that

y1(X, t) = X1 +
ḣ0

2
t, (X, t) ∈ ∂ΩT

0 × [0, T ]

y3(X, t) = X3, (X, t) ∈ ∂ΩT
0 × [0, T ]

s2(X, t) = 0, (X, t) ∈ ∂ΩT
0 × [0, T ]

y1(X, t) = X1 −
ḣ0

2
t, (X, t) ∈ ∂ΩB

0 × [0, T ]

y3(X, t) = X3, (X, t) ∈ ∂ΩB
0 × [0, T ]

s2(X, t) = 0, (X, t) ∈ ∂ΩB
0 × [0, T ]

s = 0, (X, t) ∈ ∂Ω0 \
(
∂ΩT

0 ∪ ∂ΩB
0

)
× [0, T ]

, (17)

where N stands for the outward unit normal to the boundary
∂Ω0.

Remark 2. The boundary conditions at the grips. In experi-
ments, ‘‘pure-shear’’ specimens are typically gripped in a way
that complex triaxial stresses develop near the grips. Numerical
experiments indicate that these localized stresses have practically
no effect on the response of the specimens, thus our idealized
choice of zero traction (17)3,6 at the top and bottom boundaries.

3.1.4. Governing equations
In the absence of inertia and body forces, putting all the above

ingredients together, the mechanical response of the specimens
is governed by the equilibrium and incompressibility constraint
equations{

Div S = 0, (X, t) ∈ Ω0 × [0, T ]
det∇y = 1, (X, t) ∈ Ω0 × [0, T ] (18)

subject to the initial and boundary conditions (16)1,2 and (17),
where S(X, t) = µ∇y + ν∇yCv−1

− p∇y−T , coupled with the
evolution equation

Ċv =
ν

η

[
∇yT∇y−

1
3

(
∇yT∇y · Cv−1) Cv] (19)

ubject to the initial condition (16)3, for the deformation field
y(X, t), the pressure field p(X, t), and the internal variable
Cv(X, t).

The initial–boundary-value problem (18)–(19) with (16)–(17)
does not admit analytical solutions and hence must be solved
numerically. In a recent contribution, Ghosh et al. [21] have intro-
duced a robust scheme based on a finite-element (FE) discretiza-
tion of space and a high-order finite-difference (FD) discretization
of time for such a class of problems. The solutions that we present
in the sequel are generated with a variant of that scheme, one
where we make use of a non-conforming Crouzeix–Raviart finite-
element discretization of first order instead of a conforming one
of second order. Also, because of their checked agreement with
full 3D solutions, all the solutions that we present in the sequel
correspond to plane-stress solutions.

Before proceeding with the presentation of the results, we
emphasize that, because of the presence of a pre-existing crack in
the specimens, extreme care should be exercised in using a suffi-
ciently refined FE discretization of space and a sufficiently refined
FD discretization of time in order to generate converged solutions.
All the solutions that are presented below were checked to be
converged solutions.

3.2. Numerical results

Representative of values for typical elastomers, all the results
that follow pertain to equilibrium and non-equilibrium initial
shear moduli

µ = 1 MPa and ν = 2 MPa,
5

and three different viscosities:

η = 5, 10, 20 MPa s.

Note that these material constants result in elastomers with
relaxation times τ = η/ν = 2.5, 5, and 10 s. Furthermore, in
order to probe the entire spectrum of behaviors – from elasticity-
dominated to viscosity-dominated – the results correspond to
global stretch rates in the range

Λ̇0 ≡
ḣ0

H
∈ [10−3, 50] s−1

spanning more than four orders of magnitude.

3.2.1. The force–deformation response
Fig. 4 presents results for the total force P required to deform

the specimens with viscosity η = 5 MPa s and pre-existing cracks
of length A = 15, 25, 40 mm at constant global stretch rates
Λ̇0 = 10−3 s−1 and Λ̇0 = 50 s−1. The results are shown for P as a
function of the applied deformation h for Λ̇0 = 10−3 s−1 in part
(a) and for Λ̇0 = 50 s−1 in part (b). Two expected observations are
immediate. Specimens with larger cracks require smaller forces to
reach the same deformation. Larger forces are required to reach
a given deformation applied at a higher global stretch rate.

Fig. 4. Force–deformation response of ‘‘pure-shear’’ specimens with viscosity
η = 5 MPa s and pre-existing cracks of various lengths A. Part (a) shows results
for deformations applied at the stretch rate Λ̇0 = 10−3 s−1 , while part (b) shows
results for Λ̇0 = 50 s−1 .
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.2.2. The total deformation energy W and its partition into WEq,
NEq, and Wv

The areas under the curves in the results presented in Fig. 4
orrespond to the total work done by the applied loads. By the
ame token, they correspond to the total deformation energy
tored and dissipated by the elastomer. We thus have

=

∫ H(1+Λ̇0t)

H
P dh.

Fig. 5. Computed values from (20)–(22) of (a) the equilibrium elastic energy
Eq , (b) the non-equilibrium elastic energy WNEq , and (c) the dissipated viscous

nergy Wv in ‘‘pure-shear’’ specimens with viscosity η = 5 MPa s stretched at
= 1.5, plotted as functions of the initial crack surface Γ0 = A × B and the

pplied stretch rate Λ̇0 .
6

Since the elastomer is a Gaussian elastomer with constant
iscosity, we also have that

Eq
=

∫
Ω0

ψEq(F) dX =

∫
Ω0

µ

2
[tr C− 3] dX, (20)

WNEq
=

∫
Ω0

ψNEq(FFv−1) dX

=

∫
Ω0

ν

2

[
tr(CCv−1)− 3

]
dX, (21)

and

Wv
=W −WEq

−WNEq

=

∫ H(1+Λ̇0t)

H
P dh−

∫
Ω0

µ

2
[tr C− 3] dX−∫

Ω0

ν

2

[
tr(CCv−1)− 3

]
dX. (22)

Fig. 5 shows results for WEq, WNEq, and Wv – as computed
rom expressions (20)–(22) and the pertinent numerical solutions
or the deformation field y(X, t) and internal variable Cv(X, t) – at
he global stretch Λ ≡ h(t)/H = 1.5, plotted as functions of the
nitial crack surface Γ0 = A× B and the stretch rate Λ̇0.

Three comments are in order. First, the results at other fixed
alues of the stretchΛ are not fundamentally different from those
hown in Fig. 5 for Λ = 1.5. In other words, the results presented
n Fig. 5 can be considered as representative of those at any
tretch Λ. All three parts of the deformation energy appear to
e linear with respect to the crack surface Γ0. This implies that
ven the specimen with the smallest pre-existing crack length
= 15 mm behaves de facto as an infinitely long strip containing
semi-infinitely long edge crack. Finally, the dependence of the
quilibrium energy WEq on the applied stretch rate Λ̇0 appears
o also be linear (as shown in the next subsection, it is in fact
onstant), while those of the non-equilibrium energy WNEq and
he dissipated viscous energy Wv are distinctly nonlinear.

.2.3. The derivatives −∂WEq/∂Γ0, −∂WNEq/∂Γ0, and −∂Wv/∂Γ0
From the 3D plots presented in Fig. 5, we can readily compute

he derivatives entering the general criticality condition (4). The
esults are presented in Fig. 6 as functions of the applied stretch
ate Λ̇0. While part (a) presents the results for −∂WEq/∂Γ0,
arts (b) and (c) present those for −∂WNEq/∂Γ0 and −∂Wv/∂Γ0,
espectively.

We remark that, consistent with the behavior noted in Fig. 5,
he results in Fig. 6 are invariant with respect to Γ0. What is more,
he results at other fixed values of the stretch Λ are qualitatively
he same as those shown in Fig. 6 for Λ = 1.5, which can be
herefore viewed as representative of any Λ.

We can make two further observations from Fig. 6. First,
onsistent with the analysis presented in Section 2, the derivative
∂WEq/∂Γ0 is independent of the applied stretch rate Λ̇0. Sec-
nd, and also consistent with the analysis presented in Section 2,
he derivatives −∂WNEq/∂Γ0 and −∂Wv/∂Γ0 depend strongly on
˙ 0. In particular, as expected on physical grounds, −∂WNEq/∂Γ0
s bounded from below (by zero) and from above, and increases
onotonically with increasing Λ̇0. On the other hand,−∂Wv/∂Γ0

s also bounded from below (by zero) and from above, but is
ot monotonically increasing in Λ̇0, instead, it exhibits a single
ocal maximum at some value of Λ̇0 (in the present case, around
˙ 0 = 10−1 s−1).

The above results for −∂WEq/∂Γ0, −∂WNEq/∂Γ0, and
∂Wv/∂Γ0, when combined with the experimental fact that vis-
oelastic elastomers in ‘‘pure-shear’’ tests carried out at constant
tretch rates nucleate fracture at the same stretch Λ, corroborate
hat relations (5) and (6) must hold true, for the equality in (4)
an be satisfied at fixed Λ for all stretch rates Λ̇ only then.
0
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Fig. 6. Computed values from Fig. 5 of (a) the derivative −∂WEq/∂Γ0 of
he equilibrium elastic energy, (b) the derivative −∂WNEq/∂Γ0 of the non-
quilibrium elastic energy, and (c) the derivative −∂Wv/∂Γ0 of the dissipated
iscous energy in ‘‘pure-shear’’ specimens with viscosity η = 5 MPa s stretched
t Λ = 1.5, plotted as functions of the applied stretch rate Λ̇0 .
7

.2.4. Scalings of the critical tearing energy Tc
While the critical tearing energy Tc has long remained an

lusive quantity, it has been known since the 1950s that it scales
ith the viscosity of the elastomer [5,14]. It has also been known
ince the 1970s that Tc scales with the stretch rate in a man-
er that resembles the dependence of the storage modulus on
requency in DMA (dynamic mechanical analysis) tests of elas-
omers [13,14].

Since we have now established that (5) holds true and hence
bringing resolution to the decades-old open problem of how Tc
epends on the loading history – that

c = Gc(1+ fc) = Gc −
∂WNEq

∂Γ0
−
∂Wv

∂Γ0

at fracture, we can readily examine the precise scalings of Tc with
the viscosity and the stretch rate for the prototypical elastomer
under investigation here.

To reveal the scaling on viscosity, Figs. 7(a) and 7(b) plot the
values of −∂WNEq/∂Γ0 and −∂Wv/∂Γ0 for ‘‘pure-shear’’ speci-
mens when stretched at Λ = 1.5 at the stretch rate Λ̇0 = 10−1

s−1, as functions of the viscosity η of the elastomer, which was
varied from η = 5 to 20 MPa s. Interestingly, for the range of η
considered, both derivatives scale not far from linearly in η.

Fig. 7. Dependence on the viscosity η of (a) the derivative −∂WNEq/∂Γ0 of
the non-equilibrium elastic energy and (b) the derivative −∂Wv/∂Γ0 of the
dissipated viscous energy in ‘‘pure-shear’’ specimens stretched at Λ = 1.5 at
the stretch rate Λ̇0 = 10−1 s−1 .
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Fig. 8. Dependence on the stretch rate Λ̇0 of the combination of derivatives
∂WNEq/∂Γ0−∂Wv/∂Γ0 in ‘‘pure-shear’’ specimens with viscosity η = 5 MPa s
tretched at Λ = 1.5.

To reveal the scaling on stretch rate, Fig. 8 plots the val-
ues of the combination of derivatives −∂WNEq/∂Γ0 − ∂Wv/∂Γ0
or ‘‘pure-shear’’ specimens with viscosity η = 5 MPa s when
tretched at Λ = 1.5, as a function of the applied stretch rate
˙ 0. Consistent with results in the classical literature – see, for
nstance, Section 3 in [14] – the plot does indeed resemble the
ypical dependence of the storage modulus on frequency obtained
rom DMA tests of elastomers.

.2.5. The local fields in the regions A, B, C, and D
For completeness, we close this section by reporting in Fig. 9

epresentative contour plots of the equilibrium elastic energy
ensity ψEq(F) in specimens stretched atΛ = 1.5 at two different
tretch rates, Λ̇0 = 10−3 s−1 and Λ̇0 = 50 s−1. The results
ertain to an elastomer with viscosity η = 5 MPa s, a pre-existing
rack of length A = 40 mm, and are shown over the deformed
onfiguration.
These plots allow to identify the precise locations of the so-

alled regions A, B, C, and D in the global Rivlin–Thomas analysis
f the problem. They provide as well quantitative insight into the
patial heterogeneity of the local deformation field in the crack-
ront region B and the fringe region D. Consistent with the results
n Fig. 5(a) for the total equilibrium elastic energy WEq, note that

Fig. 9. Contour plots over the deformed configuration of the equilibrium elastic
energy density ψEq(F) in ‘‘pure-shear’’ specimens with viscosity η = 5 MPa s
and pre-existing crack of length A = 40 mm stretched at Λ = 1.5 at stretch
rates (a) Λ̇0 = 10−3 s−1 and (b) Λ̇0 = 50 s−1 .
 r

8

the local value of ψEq(F) is independent of the applied stretch rate
Λ̇0 over the entire specimen.

4. Comparisons with experiments on VHB 4905

In this section, as a first demonstration of its use to explain
fracture in elastomers, we deploy the Griffith criticality condi-
tion (6) to explain a representative set of ‘‘pure-shear’’ fracture
ests, those reported in [17] on the acrylic elastomer VHB 4905.
he focus is on the results for specimens with the same geometry
onsidered in the preceding section (L = 152 mm, H = 10 mm,
= 0.5 mm) featuring a pre-existing edge crack of length A =

0 mm; see Fig. 3(b) in [17].

.1. The viscoelastic behavior of VHB 4905

In contrast to the canonical viscoelastic behavior considered
bove, VHB 4905 exhibits non-Gaussian elasticity and a nonlinear
iscosity of shear-thinning type. This falls squarely within the be-
avior of the vast majority of elastomers [22–29]. Such a behavior
an be described with the same type of two-potential constitutive
odeling considered in the preceding section by simply replac-

ng the finite branch of the equilibrium and non-equilibrium
aussian free-energy functions in (9) with the non-Gaussian free-
nergy functions

ψEq(F) =
2∑

r=1

31−αr

2αr
µr

[
Iαr1 − 3αr

]
ψNEq(FFv−1) =

2∑
r=1

31−βr

2βr
νr

[
Ie1
βr
− 3βr

] ,

nd by replacing the constant viscosity in (10) with the nonlinear
iscosity function

(Ie1, I
e
2, I

v
1 ) = η∞ +

η0 − η∞ + K1
[
Iv1
γ1 − 3γ1

]
1+

(
K2J

NEq
2

)γ2 .

n these expressions, Iv1 = tr Cv , J NEq
2 = (Ie1

2/3 − Ie2)×∑2
r=1 3

1−βr νr Ie1
βr−1)2, Ie2 =

1
2 [(C · Cv−1)2 − Cv−1C · CCv−1

], and
we recall that I1 and Ie1 stand for the invariants (11)1,3. Making
use of these constitutive prescriptions in (12)–(13) results in the
viscoelastic model [19]

S(X, t) =
2∑

r=1

31−αrµr I
αr−1
1 F+

2∑
r=1

31−βr νr Ie1
βr−1FCv−1

− pF−T , (23)

where, again, p stands for the arbitrary hydrostatic pressure asso-
ciated with the assumed incompressibility of the elastomer and
where now the internal variable Cv is defined implicitly as the
solution of the evolution equation

Ċv(X, t) =
∑2

r=1 3
1−βr νr Ie1

βr−1

η(Ie1, I
e
2, I

v
1 )

[
C−

1
3

(
C · Cv−1) Cv] . (24)

In all, the constitutive relation (23)–(24) contains fourteen
material constants. Four of them, µ1, µ2, α1, α2, serve to char-
acterize the non-Gaussian elasticity of the elastomer at states of
thermodynamic equilibrium. Another four, ν1, ν2, β1, β2, charac-
terize the non-Gaussian elasticity at non-equilibrium states. The
last six constants, η0, η∞, K1, K2, γ1, γ2, serve to characterize
he nonlinear shear-thinning viscosity. Note that the constitutive
elation (23)–(24) includes (α = β = 1, µ = ν = 0, η = 0,
1 1 2 2 ∞
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Fig. 10. Comparison between the stress–stretch response (solid line) predicted
by the viscoelastic model (23)–(24), with the material constants in Table 1, and
the experimental data (solids circles) reported in [17] for the acrylic elastomer
VHB 4905 under pure shear applied at three different constant stretch rates: (a)
λ̇0 = 1.67× 10−3 s−1 , (b) λ̇0 = 1.67× 10−1 s−1 , and (c) λ̇0 = 1.67 s−1 .

1 = K2 = 0) the canonical relation (14)–(15) for a viscoelastic
elastomer with Gaussian elasticity and constant viscosity as a
special case.

In addition to reporting results for ‘‘pure-shear’’ fracture tests,
the work [17] includes experimental results for the stress–stretch
9

Table 1
Values of the material constants in the viscoelastic model (23)–(24)
for the acrylic elastomer VHB 4905.
µ1 = 13.96 kPa µ2 = 0.9255 kPa
α1 = 0.5104 α2 = 1.910
ν1 = 50.15 kPa ν2 = 5.193× 10−6 kPa
β1 = 0.9660 β2 = 7.107
η0 = 7007 kPa s η∞ = 14 kPa s
K1 = 2833 kPa s K2 = 1.228 kPa−2

γ1 = 3.467 γ2 = 0.0836

response of VHB 4905 under (approximately) pure shear defor-
mation applied at various constant stretch rates in the range
λ̇0 ∈ [1.67 × 10−3, 1.67] s−1; see Fig. 3(a) in [17]. Specializing
the constitutive relation (23)–(24) to such loadings – that is,
to deformation gradients of the form F = diag(λ, λ−1, 1) with
λ = 1 + λ̇0t and first Piola–Kirchhoff stresses of the form S =

iag(Sps, 0, Slat ) – and then fitting (by least squares) its material
constants to the experimental data in [17] yields the values listed
in Table 1 for all fourteen material constants. As seen from the
comparisons presented in Fig. 10, the constitutive relation (23)–
24) with such material constants describes reasonably well the
iscoelastic response of VHB 4905 reported in [17].

.2. Computation of the derivative −∂WEq/∂Γ0

Having determined the viscoelastic behavior of VHB 4905,
e proceed by repeating the same type of full-field analysis
resented in Section 3 in order to compute the derivative
∂WEq/∂Γ0 entering the Griffith criticality condition (6).
Before presenting and discussing the results for −∂WEq/ ∂Γ0,
few technical remarks are in order. Since the experiments

n [17] pertain to specimens with a pre-existing edge crack of
ength A = 20 mm, we perform the simulations for specimens
ith three crack lengths, A = 15, 20, 25 mm. This suffices to
e able to take the required derivative −∂WEq/∂Γ0 in (6) at
0 = A × B = 20 × 0.5 mm2. Much like the global stretch rates
sed in the experiments, we carry out simulations at six different
lobal stretch rates, Λ̇0 = 1.67 × 10−3, 1.67 × 10−2, 6.67 ×

0−2, 1.67 × 10−1, 6.67 × 10−1, 1.67 s−1. Accordingly, in all, we
arry out 3 × 6 = 18 simulations of the ‘‘pure-shear’’ fracture
ests. Furthermore, since the experiments indicate that fracture
ucleates from the pre-existing crack at the critical global stretch

Fig. 11. The derivative −∂WEq/∂Γ0 of the equilibrium elastic energy computed
rom the simulations of ‘‘pure-shear’’ fracture tests on VHB 4905. The results
orrespond to a global stretch of Λ = 3.63 and are plotted as a function of the
pplied stretch rate Λ̇0 .
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c ≡ hc/H = 3.63±0.45, we carry out each of these simulations
p to a global stretch of Λ = 3.63.
Analogous to Fig. 6(a), Fig. 11 presents results for the deriva-

ive −∂WEq/∂Γ0 computed from the simulations of the ‘‘pure-
hear’’ fracture tests on VHB 4905, at the global applied stretch
= 3.63. Much like the results in Fig. 6(a) for the canonical case

f an elastomer with Gaussian elasticity and constant viscosity,
he results in Fig. 11 are invariant with respect to Γ0 and inde-
endent of the applied stretch rate Λ̇0. According to the Griffith
riticality condition (6), they indicate then that fracture nucleates
t Λ = 3.63 for all Λ̇0 precisely as in the experiments, so long as
he intrinsic fracture energy of VHB 4905 is about Gc = 634 N/m.

emark 3. The value of Gc = 634 N/m for VHB 4905. The
alue Gc = 634 N/m for the intrinsic fracture energy deduced
rom Fig. 11 depends directly on the constitutive relation (23)–
24), together with the material constants in Table 1, utilized
n the simulations to describe the viscoelastic behavior of VHB
905. More specifically, it depends on the part of the model
hat describes the equilibrium elasticity and hence, here, on the
aterial constants µ1, µ2, α1, α2. It is possible that fitting a set
f experimental results larger than the one fitted here could lead
o material constants µ1, µ2, α1, α2 different from those listed in
able 1 that describe more accurately the equilibrium elasticity
f VHB 4905.
Be that as it may, the comparisons presented in Fig. 10 sug-

est that the constitutive relation (23)–(24), with the material
onstants in Table 1, describes fairly accurately the viscoelastic
ehavior of VHB 4905 and hence that the value Gc = 634 N/m
btained in this work should be a good estimate. Interestingly,
his value is considerably larger than those found for common
ydrocarbon elastomers, which, again, typically fall within the
ange (2). This result, we hope, will encourage experiments in the
pirit of those carried out in [10,11] to measure directly the value
f Gc for VHB 4905.

emark 4. A Rivlin–Thomas-type formula. For a ‘‘pure-shear’’
racture test, the computation of the derivative −∂WEq/∂Γ0 in
he Griffith criticality condition (6) requires, in principle, the
umerical solution of the pertinent boundary-value problem. This
s precisely the approach that we have followed in this and in the
receding section.
Fortunately, as already alluded to at the end of Section 2 above,

he approximate formula originally worked out by Rivlin and
homas [3] in the setting of finite elasticity also happens to apply,
utatis mutandis, in the present setting of finite viscoelasticity
o compute −∂WEq/∂Γ0. Precisely, when the viscoelasticity of
he elastomer of interest is described within the two-potential
ramework, the formula reads

∂WEq

∂Γ0
= HψEq(Fps), Fps = diag(λ, λ−1, 1),

here we recall that H denotes the initial height of the specimen;
ee Fig. 2. This approximate relation – which we have checked to
e in good agreement with all the numerical results that we have
enerated for −∂WEq/∂Γ0 in this Letter – is obviously of great
ractical utility as it allows to determine the energy release rate
∂WEq/∂Γ0 in ‘‘pure-shear’’ fracture tests solely from knowledge
f the equilibrium elasticity of the elastomer and the initial geom-
try of the specimen without having to solve any boundary-value
roblem.

.3. The critical stretch and the critical stress at fracture: Theory vs.
xperiment

We are now in a position to deploy the Griffith criticality con-

ition (6) to explain the ‘‘pure-shear’’ fracture tests in [17]. Taking

10
Fig. 12. Comparison between (a) the critical global stretch Λc = hc/H and (b)
he critical global stress Sc = Pc/BL at which fracture nucleates, according to
he Griffith criticality condition (6), and the corresponding experimental results
eported in [17] for ‘‘pure-shear’’ fracture tests on VHB 4905. Both sets of results
re presented as functions of the global stretch rate Λ̇0 = ḣ0/H at which the
ests are carried out.

c = 634 N/m as the intrinsic fracture energy of VHB 4905,
ig. 12 confronts the predictions obtained from the simulations
or the critical global stretchΛc = hc/H in part (a) and the critical
lobal stress Sc = Pc/BL in part (b) at which fracture nucleates,
ccording to the Griffith criticality condition (6), with the corre-

sponding experimental results reported in [17]. The results are
presented as functions of the global stretch rate Λ̇0 at which the
tests are carried out.

Two observations are immediate from Fig. 12. First are fore-
most, the Griffith criticality condition (6) does indeed determine
when fracture nucleates from the pre-existing crack in the spec-
imens. Second, as opposed to the critical global stretch Λc , the
critical global stress Sc is strongly dependent on the stretch rate
Λ̇0 at which the tests are carried out, in particular, Sc increases
with increasing Λ̇0. This dependence is nothing more than a
manifestation of the viscoelastic behavior of VHB 4905.

5. Final comments

Besides the ‘‘pure-shear’’ fracture test examined in this work,
there is another classical test in the literature that provides an
additional elementary experimental check of the validity of (6)
as the true Griffith condition for viscoelastic elastomers, that
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s the delayed fracture test of an elastomer sheet, containing a
rack, subjected to a constant load that is applied rapidly and
hen kept fixed. Indeed, the existence of a time delay after the
pplication of the load for the nucleation of fracture from the
re-existing crack in these tests is a telltale of the validity of
6). This is because a time delay implies that it is the increase
f WEq in time at the expense of the decrease of WNEq due to
he creeping of the elastomer that leads to the attainability of
he criticality condition (6). The first experiments that showed
hat elastomers exhibit delayed crack growth can be traced back
o work of Knauss [30] in the 1970s. In a companion paper [31],
e explain the pioneering delayed fracture tests of Knauss [30]
nd in so doing describe the use of the fundamental form (6)
f the Griffith criticality condition when the applied boundary
onditions are traction boundary conditions.
We conclude by emphasizing that, from a practical point of

iew, as illustrated in Section 4, the Griffith criticality condi-
ion (6) is straightforward to employ, as it is based on quantities
that can be measured experimentally once and for all by means
of conventional tests. From a theoretical point of view, moreover,
it would behoove us to investigate whether the alluringly simple
and intuitive form (6) remains applicable to dissipative solids at
large, not just viscoelastic elastomers.
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