
SWeeT: Security Protocol for Wearables Embedded
Devices’ Data Transmission

Mohammad Ebrahimabadi∗, Mohamed Younis∗, Wassila Lalouani†, Abdulaziz Alshaeri∗, Naghmeh Karimi∗
∗Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County (UMBC)

†Department of Computer and Information Science, Towson University

Abstract— Motivated by the quest for decreased healthcare
costs and further fueled by the COVID pandemic, wearable
devices have gained major attention in recent years. Yet, their
secure usage and patients’ privacy continue to be concerning.
To address these issues, the paper presents SWeeT, a novel
lightweight protocol for allowing flexible and secure access
to the collected data by multiple caregivers while sustaining
the patient’s privacy. Particularly, SWeeT deploys Physically
Unclonabale Functions (PUFs) to generate encryption keys to
safeguard the patients’ data during transmission. The compu-
tation overhead is significantly reduced by applying very simple
encryption operations while enabling frequent change of the keys
to sustain robustness. SWeeT is shown to counter impersonation,
Sybil, man-in-the-middle, and forgery attacks. SweeT is validated
through experiments using implementation on an Artix7 FPGA
and through formal security analysis.

I. INTRODUCTION

The major advances in microelectronics and wireless tech-
nologies have enabled the development of wearable systems
where sensors could be attached or implanted in a human body
to assess vital conditions and share the collected measurements
over radio links [1]. Prevalence in the use of wearable devices
is deemed an effective strategy for coping with the rising
cost of healthcare services where patients are allowed to live
normal life while their status is being remotely monitored by
caregivers. Such a strategy has attracted even more attention in
recent years due to the COVID pandemic where many medical
services shifted from face-to-face to virtual interactions to
promote physical distancing and protect the healthcare pro-
fessionals. Indeed, providing a continuous service is of utmost
importance specially for the cases where the patient symptoms
and recovery need to be checked frequently by physicians.

Given their current and future role, wearable systems can be
viewed as safety critical cyber-physical systems where actions
can be taken autonomously, e.g., pacemaker, or remotely based
on physician’s advice. This in turn can impose security and
privacy concerns for the data that these wearable devices
gather and the way such data is shared with the caregivers.
In practice, security vulnerabilities on wearable devices can
lead to safety concerns for users [2]. One such example is the
pacemaker with wireless capabilities which has been shown
to be vulnerable against the software radio-based attacks [3];
thus compromising patient’s safety and privacy.

Generally, telehealth systems are prone to impersonation,
man-in-the-middle, eavesdropping, and data forgery (packet
injection) attacks [4]. To tackle the adversaries who target the
security, and privacy of the patient’s data, several methods have
been proposed in literature. These methods mainly rely on em-
ploying cryptosystems. However, the asymmetric conventional
cryptographic algorithms are prohibitively costly for wearable
devices. The symmetric counterparts need to store the data

encryption keys used in the memory of wearable devices which
in turn can be hacked; in addition a key management protocol
needs to be employed to vary the keys overtime as a means
for increased robustness against cryptanalysis.

This paper opts to fill the gap by proposing a lightweight
and effective security solution for remote data collection from
wearable devices. The proposed solution, which is referred
to as SWeeT, takes advantage of hardware-based security
primitives, namely Physically Unclonabale Functions (PUFs),
to generate fresh random keys on the fly without the need to
store them on the wearable device. A PUF exhibits unique
fingerprinting; hence when embedded in the design of a
wearable device it constitutes a tamper-proof identity. PUFs
are realized by leveraging the process variations occurring
during the fabrication process of the integrated circuits [5].
In particular, SWeeT benefits from one type of PUFs called
arbiter-PUFs that covers a large set of input-outputs which
is referred to as Challenge-Response Pairs (CRPs). SWeeT
employs an effective protocol for protecting the patient data
during transmission while imposing very little computational
overhead on the devices. It devises a key generation scheme
that benefits from the uniqueness and randomness of the
incorporated PUFs. Only simple XOR operations are applied
to encrypt data and the generated keys are varied on a per-
session basis to sustain robustness. SWeeT safeguards the
telehealth system against adversaries who eavesdrop on the
communication links or exploit leaked security credentials that
a patient provides to one or multiple physicians. In summary,
our contributions include:

• Devising SWeeT, an effective PUF-based protocol that
enables secure transfer of wearable devices data while
safeguarding against PUF modeling attacks;

• Metigating the impact of PUF measurement noise and
the temperature-change induced noises on the robustness
of the session keys generated by SWeeT and in turn the
correctness of the decrypted data.

• Analyzing SWeeT’s resilience against various attacks,
e.g., data forgery, impersonation, and man-in-the-middle;

• Evaluating the proposed method using the data extracted
from FPGA implementation of the target PUFs.

II. RELATED WORK

Security, privacy, and integrity of wearable health data is of
utmost importance. To achieve secure data transfer, Turner et
al., [6] have proposed the so-called Transport Layer Security
(SSL/TLS) protocol that employs an asymmetric cryptography
algorithm; thus SSL/TLs imposes a high computation overhead
which makes it unfit for the resource-constrained wearable
devices. Similarly, Elliptic Curve Encryption has been used
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to secure medical devices against the adversaries who tar-
get patients’ privacy [7], [8]. Although it is secure against
contemporary attacks, e.g., man-in-the-middle, impersonation,
and message replay, and is more lightweight than SSL/TLS,
the imposed computational overhead is still too significant for
a wearable medical device. Classic symmetric cryptographic
schemes to secure the transfer of wearable devices’ data is not
promising either as storing the encryption key in an embedded
non-volatile memory makes the device tempering and hacking
possible [9], [10]. Alternatively, Trusted Platform Module [11],
[12] based protection schemes impose hardware complexity
and are not suitable for resource-constrained wearable devices.

Thanks to being lightweight and constituting a unique
electronic signature, Physically Unclonable Functions (PUFs)
is deemed a promising means for generating secret keys.
However, PUF-based protocols can be vulnerable to contem-
porary attacks such as behavior modeling, message replay, and
impersonation [13]. To mitigate vulnerability to these attacks,
Chatterjee et al. [14] have proposed using a combination
of PUFs and asymmetric cryptographic modules. Although
secure and resilient against modeling attacks, the proposed
scheme imposes high computational overhead which makes it
unfit for an wearable device. To counter PUF modeling attacks,
Aman et al. [15] make each submitted challenge a function of
the previously queried one; yet leaking one challenge makes
the overall scheme vulnerable against impersonation attacks.

Using patient biometrics to generate encryption keys for
securing the transfer of telehealth data has been pursued.
For example, Pirbhulal et al. [16] generate a cryptographic
key based on the heartbeats extracted from Electrocardiogram
(ECG) signal. However this method is prone to key guessing
attack [17]. Similarly, Zheng et al. [18] extract some features
of ECG signals to devise patient-specific cryptographic keys.
However, such a method cannot be used for patients with car-
diovascular diseases, and hence may not be practical [19]. Em-
ploying PUFs and patient biometrics in generating encryption
keys is proposed in [20]. Overall the involvement of biometrics
requires the incorporation of machine learning models that are
often computationally heavy for wearable medical devices. The
proposed SWeeT approach overcomes the shortcomings of
existing techniques and enables a lightweight and effective
mechanism for securing data transfer in telehealth applications.

III. SYSTEM MODEL AND PRELIMINARIES

A. Arbiter-PUF Architecture
An arbiter-PUF consists of a pair of delay chains; when

queried with a challenge bit-stream, it generates one response
bit [21]. PUFs operate based on variations in the micro-
electronics manufacturing process; in the case of Arbiter-
PUF these variations introduce a race between two identical
paths (top and bottom paths shown in Fig. 1). The race
corresponds to the difference in signal propagation delay on
these two paths, and affects the value latched by the arbiter.
Only the sign of delay difference, rather than the exact value,
is important. The sign, extracted by the arbiter, reflects the
response and constitutes the PUF identifier. The arbiter can
be realized as a simple SR-latch implemented by two cross-
coupled NOR gates. Note that each PUF instance generates
a 1-bit response (shown as r in Fig. 1). A multi-bit response
(shown with R hereafter) is extracted either by instantiating
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Figure 1: Illustrating the design of an arbiter-PUF.

multiple samples of PUFs in the hardware or by embedding
only one PUF sample yet querying it multiple times with
different challenges. In this paper, we consider the latter case
to lower the area overhead.

B. Error Correction via Two-Dimensional Parity Coding
As discussed earlier, delay-PUFs, and in particular arbiter-

PUFs, operate based on the delay characteristics of the em-
bedded circuit. Thus, environmental variations (e.g., voltage
and temperature change) may affect the PUF response by
changing the propagation delay of the underlying components.
For example, if the delay magnitude of the blue and green
paths shown in Fig. 1 are very close to each other, a voltage-
or temperature-change may change the outcome of the race
occurring between these 2 paths, and accordingly the PUF
response deviates from what is expected. As will be discussed
in Sec. IV, to secure the data transfer, in this research we opt
to use the PUF signature (response R generated for challenge
C) as a session key to encrypt the wearable device data
during communication. Thereby, the noise-caused changes to
the PUF response need to be tolerated to be able to properly
decrypt the transmitted data at the receiver side. As discussed
in the next section, our proposed SWeeT approach uses a fresh
key per data transfer session in order to prevent replay and
impersonation attacks. Such a key will be corrected, if noisy,
using a multi-dimensional parity scheme.

To mitigate the PUF noise effects, SWeeT benefits from
the incorporation of Error Correction Codes (ECC), in partic-
ular a 2-Dimensional parity coding [22] since the associated
ECC is separate from the data and can thus be shared without
the data itself. In this ECC scheme, each block of data (PUF
responses in our case) is represented as a 2-dimensional
matrix, and a parity bit is generated for each row and column.
Fig. 2(a) shows an example of deploying the 2-dimensional
parity for the sample data of 64′x3263B28FF39D2CE7.
As depicted, we first place the data in a 8× 8 matrix and then
calculate the parity for each column and row. In Fig. 2(b) we
assume that a data bit is noisy (located in row 4 and column 5).
In this case the parities for both the 4th row and 5th column
change. By comparing the parities of the original data with the
one generated for the faulty data, one can find the fault location
and toggle the corresponding bit. A 2-dimensional parity can
correct 1-bit errors. However, as discussed in Sec. IV, with
some additional analysis we also can correct errors in multiple
bits. As supported by the experimental results in Sec. V, errors
that affect more than 2 bits are very infrequent and would not
warrant complicating the design.

C. System Architecture
Our proposed solution employs hardware-based identifiers

to enable secure transmission of patient’s data to the health
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(b) Erroneous Data

Figure 2: Two-Dimensional parity for a sample genuine and an erroneous data
block. The bit located in the (row=4, column=5) location is faulty; reflected
through Parity bit 4 and 13 (i.e., Pa4&Pa13).

service providers (referred to as physician hereafter). We
assume that multiple wearable medical sensors are used to
measure the physiological biometrics of the patient, and all
measurements are aggregated in a processing unit at the
patient side, denoted by On-Patient Gateway Node (PGN).
The aggregated data is in turn transferred to the physician upon
receiving a request. Figure 3 articulates the system architecture
for SWeeT. Without loss of generality, this figure shows the
case where the patient receives care from N=2 physicians. As
depicted, the PGN records all measurements acquired from the
patient’s wearable devices, e.g., patients’ ECG, EMG (stands
for Electromyography), temperature, heartbeat, etc.

SWeeT deploys PUFs to devise a robust encryption method
to secure the data transfer and prevent data leakage. To
mitigate the overhead, SWeeT does not need to include a PUF
in each wearable device; rather it only includes 2 PUFs in the
PGN. These PUFs are used to generate the encryption keys,
as explained in the next section. To initiate a data transfer,
the physician sends a data request to the patient. This request
includes a challenge bit-stream. Upon receiving the physician’s
request by the PGN, the challenge is applied to the PUFs. The
patient data is then encrypted via the key generated based on
the response of the two embedded PUFs, and is sent back
to the physician. The physician decrypts the received data
using the key tabulated at the time the patient registered with
the physician. In practice, a patient may receive service from
multiple care providers, therefore in our system model, each
patient needs to be registered by each physician individually to
receive the related services. Accordingly, each physician has
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Temperature

EMG

Blood Pressure

On-Patient
Gateway 

Node

PatientMedical 
Service Provider

Physician 1

Physician 2

Challenge

Response
(Encrypted Data)

Challenge

Response
(Encrypted Data)

Figure 3: An overview of the target framework.

his/her own database to tabulate the PUF responses (encryption
key) for each patient.

D. Threat Model
We consider an adversary who is eager to illegally access

the patient data. The adversary tries to achieve such a goal
by either eavesdropping on the wireless links between the
patient and the physician, or hacking the physician’s computer
system. Although the adversary’s attempt, if successful, would
suffice for accessing the data, such success is short lived and/or
limited in scope as: (i) different sensing modality could be
of interest to different physicians, and hence cracking the
computer system of physician Phi is not enough for getting
all patient’s data; (ii) a patient often switches physicians over
time, and consequently the illegal data access will not be
sustained. Therefore, the adversary opts to uncover the security
primitive of the patient’s PGN rather than just hacking the
computer system or the communication links of a certain
physician. In the context of SWeeT, the adversary will strive
to collect CRPs for the embedded PUFs so that an accurate
behavior model is formed and used to predict the responses of
unknown challenges. The modeling, which is often conducted
through the application of Machine Learning (ML) techniques,
will allow the attacker access to the data that the patient shares
with other physicians both at the current time and in the future.

In sum, the goal of the adversary is to uncover the en-
cryption keys by collecting sufficient challenge to model the
behavior of the embedded PUFs using ML techniques. The
adversary will attempt to eavesdrop on the wireless links
between patient Px and physicians to intercept the exchanged
packets and infer the challenge and response bits, and/or hack
the computer system of physician Phk to read the CRPs stored
in the memory. If the CPRs that Phk has, do not suffice to
model the PUF, the adversary may target one or multiple
additional physicians, i.e., Phj (where k �= j). The latter
scenario is referred to as collusive attack where the adversary
combines the gained knowledge from multiple compromised
physician systems or communication links that originate at
the patient in order to grow the list of uncovered CRPs and
devise an accurate behavior model for the patient’s security
provisions. SWeeT strives to counter the aforementioned attack
scenarios, as detailed next.

IV. SECURE DATA TRANSMISSION PROTOCOL

This section presents the detailed design of the proposed
SWeeT protocol. Before describing the protocol steps, we
provide an overview of the underlying methodology and how
it meets the requirements.
Design Overview: Transfer of a patient’s wearable sensor data
to a caregiver should achieve two fundamentally objectives:
(i) confidentiality in order to sustain patient’s privacy, and
(ii) integrity to ensure correct patient conditions assessment
by the physician. As pointed out, the use of conventional
cryptosystems imposes computational overhead that would
require increased device complexity and cost. Hence, a third
requirement for the data transfer protocol is to be lightweight.
Finally, a patient could be served by multiple physicians either
at the same time based on the sensor modality, e.g., EEG,
ECG, heart sound, etc., or over periods of time as patients
change their treating doctors. That leads to a fourth require-
ment of sustaining patient privacy across different physicians.
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SWeeT meets the above requirements by employing PUFs
and devising a simple data sharing protocol. First, a PUF is
employed where data encryption keys are generated based on
the PUF responses of some challenge bit streams. Each physi-
cian will be given the challenges and the corresponding keys.
To limit the computational overhead, the encryption is simply
performed through applying an XOR for the data and key. To
mitigate the vulnerability of such simple encryption, the key is
varied per session (request) and the request is controlled by the
physician. Thus, for an adversary, it becomes a moving target,
and insufficient patterns will be available for cryptanalysis. To
ensure secrecy across physicians, a second PUF is employed
where the physician ID is used as a challenge (input) and the
PUF output is further factored in the key generation. In other
words, if two physicians, Phj and Phk (where k �= j) use the
same challenge bit pattern, C, SWeeT generates two distinct
keys for them. Employing the second PUF, enables SWeeT
to safeguard the system against collusion attacks involving
multiple malicious physicians, who are impersonated or whose
computers were compromised by an attacker.

Registration Phase: Before data can be accessed by a physi-
cian, registration has to be conducted. In such a registration
phase, some security credentials have to be provided to the
physician either by the patient or by a trusted server on behalf
of the patient. Algorithm 1 summarizes the steps taken by
SWeeT during the registration phase. All interactions during
the registration phase are assumed to be secure, e.g., by using
public-private key cryptography. Basically, the patient could
be connecting its PGN to a personal computer (PC) during
the registration phase, where the PC can apply an elaborate
encryption algorithm on behalf of the PGN (which does not
have the computational resources to do so under SWeeT).

First, the physician, Phi, establishes a connection with the
PC of a patient, Px. The latter will create a set of randomly
generated challenge bit-patterns; let SC

x,i denote such a set. The
PC of Px will then query the PGN for the key corresponding
to each challenge C ∈ SC

x,i. To generate the key for a
challenge C, the PGN will first apply C to one of its embedded
PUFs, namely, PUF1 (Fig. 4). To make the session key for
each challenge unique per physician, the PGN uses a second
PUF, denoted PUF2, and feeds it with the unique ID of the
physician. Finally, the key is formed based on the two PUF
responses, namely, RC and RID.

We note, however, that if the same data is shared in multiple
sessions, the adversary may be able to infer the key and then
use the uncovered keys to model the PUF behavior using
ML techniques and extract the key for each session. This
scenario cannot be ruled out since in reality some of the
sensor measurements may not change frequently. Therefore,
SWeeT employs another challenge, P , whose response, RP is
used to permute the concatenated string of RC and RID. In
other words, SWeeT again applies P to PUF2 and then uses a
key_generator function that change the order of bits of RC

|| RID based on the value of RP ; the result constitutes the
session key corresponding to ID, C and P . Hence, along with
SC
x,i and the set of corresponding keys, ΩC

x,i, the patient Px

will share another set SP
x,i with Phi reflecting some randomly

generated values of P . Each P is applied to PUF2, and the
response RP is then used to determine its 2-dimensional parity

Algorithm 1: Registering Physician Phi by Patient Px

input : Number of CRPs (N )
input : Physician’s identifier (IDi)
output: SC

x,i,S
P
x,i,Ω

C
x,i, ECCP

x,i

1 RID ← PUF2(IDi)
2 for (k < N) do
3 Generating a randomly selected C and P

4 Add C to SC
x,i, and P to SP

x,i

5 RC ← PUF1(C)
6 RP ← PUF2(P )
7 key ← key_generator(RC , RP , RIDi)
8 ζP ← Parity_gen(RP )
9 Add key to ΩC

x,i, and ζP to ECCP
x,i

10 return SC
x,i, S

P
x,i, Ω

C
x,i, ECCP

x,i

bits, ζP . The latter is sent to Phi to be used during the run-
time phase. Basically, at time of data request (i.e., run-time),
ζP is provided by the physician to Px along with C, ID, and
P to mitigate the effect of PUF noise when generating RP .

Figure 4: Block diagram of the encryption mechanism in patient side.

Run-time Phase: Fig. 4 shows the overall encryption process
performed by the patient’s PGN during data transfer to the
physician. Each physician may request new measurement data
from the patient by sending a challenge (C) as well as the
permutation index (P ). Upon receiving the query, the PGN
infers the physician’s ID from the packet and uses it along
with C, and P to generate an encryption key. Factoring in
the physician ID prevents sharing the measurements with
unauthorized recipients, even other physicians. The patient
would then transfer the measurements, e.g., heartbeat rate, in
an encrypted form to the requester according to Algorithm 2.

As pointed out earlier, SWeeT sustains the integrity of the
data and confidentiality of the patient by encrypting the trans-
ferred data; yet unlike existing work SWeeT avoids elaborating
cryptographic algorithms, both symmetric and asymmetric,
and instead employs a simple XOR operation of the data and
a key. Robustness against cryptanalysis is enabled by changing
the key per session and per patient. The key is generated at
the patient side instantaneously without storage to avoid any
potential leakage. The role of C and ID in the key generation
has been already discussed in the registration phase, we here
focus on how P is factored in the process and why it is useful.

To motivate the need for P , let’s assume that both Phi and
Phj requested the same data and submitted the same C. In
such a case, an attacker could correlate packets sent from the
patients to Phi and Phj and uncover the RC as well as RIDi

and RIDj since key is just a concatenation of RC and RID. To
mitigate such vulnerability, SWeeT introduces unpredictability
in how the key is defined based on RC and RID. By using
RP as means for defining the key, the mixing of RC and RID
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bits becomes dependent on the PUF (unfixed or stored at the
patient’s PGN). Moreover, the physician does not even know
RP and cannot reverse engineer the key formation process
despite being able to decrypt the patient data. Since RP is
critical in forming the key it is very important that the effect
of noise be tolerated. To do so, at the time of registration, the
patient gives the physician both P and ECCP . The latter will
be included in the data request so that the patient can correct
RP if needed. Such an approach is not considered as leakage
since the physician does not know RP . Note that ECCP is
extracted from RP ; not P itself.

While |RP | could be generally M bits (size of PUF re-
sponse), in practice there is no need to consider numerous op-
tions for mixing RC and RID. Hence only a subset of the bits
of RP could suffice. Without loss of generality, let’s assume
that only two bits of RP are used in the key generation process.
Alg. 2 shows an example of how to concatenate RC and RID

with different permutations based on the value of RP . Note
that in Algo. 2, we only considered the 2 Least Significant
Bits of the RP for devising the permutation strategy. However,
one can involve more bits with a negligible overhead.

Finally, to mitigate the effect of noise on RC and RID,
and consequently the key, SWeeT includes the 2-dimensional
parity of the generated key, denoted PKey , in the data packet
to the physician. The main purpose of PKey is to guide the
physician on adjusting its tabulated key to what the patient
used. In other words, PKey does not correct bit flips in the
PUF response due to noise, instead it helps the physician know
how to adjust the expected key to what is actually used. This
point will be elaborated in the next subsection. Moreover, the
CRC of the data (CRCData) is sent along with the encrypted
data (EData) to the physician. Such CRC will allow the
physician to validate the integrity of the data, especially if
key adjustment is performed based on PKey .

Algorithm 2: Data packet encryption by the patient

Input : Queried packet from physician (ID||C||P ||ECCP )
Output: EData, PKey , CRCData

1 RC ←PUF1(C)
2 RID ←PUF2(ID)
3 RP ←PUF2(P )
4 RP ← ECC(RP ,ECCP )
5 if RP [1 : 0] = 0 then
6 Key = RC || RID

7 else if RP [1 : 0] = 1 then
8 Key = RID || RC

9 else if RP [1 : 0] = 2 then
10 Key = RC [l − 1 : 0]||RID||RC [m− 1 : l]

11 else if RP [1 : 0] = 3 then
12 Key = RID[l − 1 : 0]||RC ||RID[m− 1 : l]

13 end
14 EData ← XOR(Key,Data)
15 PKey ← Parity_gen(Key)
16 return EData, PKey , CRCData

Noise Mitigation: SWeeT employs two levels of error correc-
tions to mitigate the noise impact on the PUF response and
ensure the robustness of the session keys generated by the
patient’s PGN. We treat the noise related to generation of RP

in the PGN itself (hardware level) since a change of one bit in
RP could result in a different scrambling pattern of the bits of

RC and RID within the session key and thus prevent proper
decryption of the transmitted data by physician. However, to
reduce the computational burden on the PGN, the noise effect
on RID and RC is treated at the physician’s side in software.

As explained earlier, during the registration phase, the
physician tabulates the 2-dimensional parity of RP along with
the corresponding Key. Such a parity scheme can tolerate
one-bit errors. As the experimental results in Sec. V depicts,
the probability of 2-bit (or more) measurement noise is very
low (≈ 0.7%) in room temperature and hence the provisioned
protection suffices most of the time. In case of 2 (or more)
bit errors, the 2-dimensional parity cannot directly pinpoint
the exact erroneous bit; rather it can suggest the erroneous
bit candidates which need to be checked subsequently to
determine the exact faulty bit. For example in Fig. 2(a) if the
bit in row 3 and column 4 as well as that in row 5 and column 2
are simultaneously erroneous, then the parity bits Pa3, Pa12,
Pa5, and Pa10 will change which brings ambiguity that the
errors are either in locations (3,4) and (5,2) or in locations
(3,2) and (5,4). Note that even in the case of 2 (or more)
bit errors in RP the packet is detected as erroneous by the
physician; thanks to using the CRC of data. In that case the
packet is discarded and data re-transmission is requested.

On the other hand, the noise affecting RC and RID (and
in turn Key) is treated at the physician’s side (software level)
to avoid loading the PGN. To do so, we need to generate
the corresponding parity bits during runtime in the wearable
devices and send it to the physician along with the encrypted
data to remove the impact of the noise accordingly (PKey in
Alg. 2). In this case we can correct multiple-bit errors; thanks
to the transferred CRC bits of the original data.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experiment Setup
We have validated SWeeT using 2 Xilinx ARTIX7 FPGA

boards, each representing one patients’ PGN, and using two
PCs to mimic two physicians. We used Zigbee transceivers to
connect the physicians to patient nodes. We assigned a 64-bit
unique number as the ID to each physician. We assume both
PUF1 and PUF2 have 64 bit challenges and each generate
a 64-bit response. The adversary is assumed to either get
access (via hacking a Physician’s PC) to a subset of the stored
challenges and keys, or eavesdrop on the communication links
between the patient and physician (to intercept the challenge
and the encrypted data) and perform cryptanalysis to extract
the transferred patient data.

The Support Vector Machine(SVM), Logistic Regression
(LR), and Neural Network (NN) schemes are used to real-
ize modeling attacks. The later is a 5-layer fully connected
architecture including one input layer, three nonlinear hidden
layers, and one output layer. The modeling accuracy is used as
a metric to gauge the resilience of SWeeT against ML-assisted
modeling attacks. We show the results for varying sizes of the
training dataset (CRPs). We have also employed AVISPA to
analyze the security of the underlying protocol.

B. Performance Result
Resistance against modeling attacks: SWeeT changes the key
per session; if the patient’s data varies it is not possible to
model the key generation process using the encrypted data.
However, if the same data is shared in multiple sessions
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subsequently, the adversary may be able to model the PUF
behavior using ML techniques and extract the encryption keys.
Owing to the nature of human bodies, such a case is probable.
According, Fig. 5 shows the resiliency of SWeeT against the
state of the art modeling attacks when the transferred data
is constant. As depicted, the accuracy of such an attack in
presence of SWeeT is 59.75%, 58%, and 58.25% when the
adversary deploys LR, SVM, and NN, respectively, for the
training size of 2000 intercepted payload. Even by increasing
the training size to 200,000, the modeling accuracy does not
exceed 63%. Due to the binary nature of the PUF responses,
the baseline success to predict the response is 50%; thus 63%
success is almost similar to guessing the response blindly. As
shown, the accuracy of the modeling attack when SWeeT is
not applied is over 97% with the training size of 2,000 CRPs.

Uniformity and Uniqueness of Encryption Key: Key unifor-
mity reflects the distribution of zeros and ones in the key
bits, and its favorable value is 50%. To assess the uniformity,
we generated 200,000 random C and P values (each 64 bit)
and extracted the corresponding SWeeT key for each case (we
considered 2 physicians and 2 patients). The results exhibited
the average uniformity of 50.53% for the generated keys.

To assess the uniqueness, we used the CRPs discussed
above and extracted the average intra Hamming Distance (HD)
between the keys generated by each patient Pi (1 ≤ i ≤ 2).
We also extracted the inter-HD between the keys used for
transferring data between each patient Pi and physician Phj

(1 ≤ i, j ≤ 2). The average intra- and inter-HD are 46.8% and
50.5%, respectively; highly close to the ideal value of 50%.

Hardware and Power overhead: Implementing SWeeT (mainly
two 64-bit Arbiter-PuFs, a simple controller and a 2-
dimensional parity generator) on the Artix7 FPGA occupied
690 6-input LUTs. Compared to a wearable device, e.g., a
smartwatch that can represent the PNG node, SWeeT imposes
almost 0% hardware overhead. Although the embedded pro-
cessing unit in a smartwatch is deemed to be lightweight, pro-
totyping such a unit on an FPGA requires at least 100K LUTs.
In our prototype implementation, the latency of encrypting
each packet using SWeeT was negligible (around 3 us), and
the power consumption was ≈ 2 mW . The smartwatch power
consumption in wake-up mode is around 300mW [23]. In
summary, SWeeT imposes very negligible overhead and thus
fits the resource-constrained wearable devices.

Noise Impact: This set of results shows the observed error
bits in the generated keys caused by the measurement noise

Figure 5: Accuracy of properly extracting the encryption key when different
ML schemes are used to model the target PUFs in the presence/absence of
SWeeT.

Table I: Percentage of error in the extracted session keys before and after
applying the deployed error correction scheme. Errors are caused by the PUF
measurement noise and temperature-induced changes of the PUF outputs. A
64-bit key is considered as erroneous even if 1 bit of the key has been changed.

Test Condition ECC
1-bit
error
rate (%)

2-bit
error
rate (%)

>2-bit
error
rate (%)

Reliability
(%)

measurement
noise

Pre 11.29 0.72 0.02 87.97

Post 0 0.1 0 99.9

temperature-Induced
noise

Pre 31.0 9.35 3.25 56.41

Post 0 1.9 0.4 97.7

and the temperature-change induced noise. For the former, the
response of each PUF (per queried challenge) was measured
twice at the room temperature while for the latter the PUF
response per challenge is extracted one time at room tempera-
ture and another time in 100◦C. In both cases, we applied
2,000 challenges and the average bit error rates with and
without the deployed error correction were tracked. The results
are reported in Table I. As depicted the measurement noise
(in the same temperature) highly diminishes after applying
error correction, resulting in a reliable key in over 99.9%
of the cases. The reliability was about 88% without error
correction. Moreover, with the deployed correction scheme
the temperature-change induced errors also decrease signifi-
cantly, yielding correct keys in over 97.7% cases. Note that
the temperature change we considered in this study is too
pessimistic as the temperature of the wearable devices used by
the patient does not go more than 43◦C considering the normal
temperature range of human bodies. Thanks to transferring
the CRC of the original data to the physician, even in rare
cases where the key is noisy (post ECC), the physician will
be informed; thus wrong data will not get accepted and the
physician sends another query to request the data again.

C. Security Analysis:
Preventing Impersonation and Sybil Attacks: This attack is
realized when an adversary tries to masquerade as one (or
more) legitimate physicians to get access to the patient’s data.
In SWeeT the data is XORed with a key that is a function of
the physician’s ID, challenge bits and permutation index. Thus,
as the experimental results also confirm, the utilized key and in
turn the original (unencrypted) data cannot be uncovered via
eavesdropping. Thereby, an adversary cannot impersonate a
legitimate physician. Moreover, as SWeeT uses a fresh session
key for each encryption, even if one session key is revealed,
such a key is not valid for sending the following set of data.
Resilience to modeling attacks: SWeeT employs two indepen-
dent PUFs and derives a key that is based on the intertwined
responses of these two PUFs to distinct challenges. Thus, in
essence what an attacker will use to model SWeeT is a key
representing the shuffled version of the two responses and
challenges, i.e., C and ID. This is assuming that the attacker
manages to successfully hack the physician PC; otherwise
the attacker has access only to the challenges as well as the
encrypted data. In both cases there is no correlation that could
be modeled. Moreover, the shuffling pattern also depends on
the PUF and varies per session. Thus in essence the adversary
will have incoherent inputs and outputs.
Thwarting Data Manipulation Attempts: Two attacks fall un-
der this category: (i) data forgery where wrong data is sent to
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the physician, and (ii) man-in-the-middle where a data packet
is intercepted, data get modified and then the packet is retrans-
mitted to the physician. Fundamentally the difference between
these two attacks is whether the data is originally faulty or after
being changed in transition to the recipient (physician). Since
in SWeeT every session is initiated with a physician request,
any unsolicited packet would be discarded. In addition, SWeeT
prevents data modification by (a) encrypting the measurement
data with a key that is generated in part by PUFs, (b) using
a distinct key per session, and (c) appending a CRC of the
data payload in the packet. Thus any well-orchestrated data
modification requires uncovering the key in a timely manner,
which is not possible given factorization of the PUF response
for C, P and ID and the inability for modeling the PUF, as
shown earlier. On the other hand, any random changes in the
data will result in inconsistency between the decrypted data
and the CRC of the data on the physician side.
Formal Security Validation: We have used AVISPA to validate
the security properties of SWeeT. We have specified the
following security goals that have to be fulfilled: i) the PUF
response (key) is to be a secret and cannot be accidentally
disclosed, ii) the secrecy of the patient’s data is to be guaran-
teed and access to data is allowed only to the corresponding
physician, i.e., even if a data packet is sent accidentally to an
intended physician, the data should not be extracted from the
packet payload, and iii) a unilateral authentication meaning
that the physician authenticates the patient on the received
enciphered data; in other words, when the physician deciphers
and validates the patient’s data, it is confirmed that the patient
is actually present in the current session and sent such data. As
shown in Fig. 6, AVISPA deems our scheme safe and shows
that all the security goals are satisfied.

VI. CONCLUSION

Telehealth is being viewed as the predominant mode for
medical services for quite a variety of illnesses. Wearable
devices are an enabler for telehealth where the patient can
be monitored remotely through a set of body-attached and
implanted sensors. However, security and privacy issues have
to be addressed before adopting these telehealth systems.
Specifically, the patient’s data should be protected against

Figure 6: Screenshot showing the result of OFMC module of AVISPA. The
results confirm the robustness of SWeeT.

unauthorized access and manipulation during transmission,
and the authenticity of the data source should be ensured.
This paper presents SWeeT that tackles these issues. SWeeT
takes advantage of hardware fingerprinting primitives, namely
PUFs, to generate encryption keys on the fly. The keys are
also personalized by factoring in the identity of the receiver
in order to thwart impersonation, data forgery, and man-
in-the-middle attacks. Each session has a distinct key to
counter any attempts for modeling the underlying security
provision. The effectiveness of SWeeT is validated through
implementation and security analysis. The validation results
not only demonstrated its attack resilience but also its very
low overhead. Our future plan is to test SWeeT in a prototype
wearable system.
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