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A B S T R A C T   

Surface force-mediated adhesion, e.g. via van der Waals forces, is critical for direct bonding of 
bulk solids in the absence of chemical bonding or an adhesive layer. However, no two surfaces are 
ideally flat or perfectly conformal due to surface roughness or intentional patterning. When 
adhered, non-zero surface tractions arise wherever the local separation of the interface differs 
from its intrinsic equilibrium separation, inducing regions of tensile and compressive stresses. A 
fundamental understanding of such imperfect adhesion is important and unlocks opportunities to 
control interfacial strength and toughness in various applications including MEMS/NEMS, micro- 
transfer printing, and processes to manufacture advanced 3D integrated-circuits. This paper in
vestigates the fundamentals of direct adhesion of non-conformal surfaces by examining the 
interplay of the (i) intrinsic traction-separation relation (TSR), (ii) interface topography, and (iii) 
elastic properties of the adhered bodies. The TSR adopted accounts for strong repulsion when the 
interface separation is less than the equilibrium separation, and only the normal surface tractions 
are considered. The effective TSR properties, including the overall adhesion strength and work of 
separation, are determined from numerical calculations. Simple closed-form solutions are ob
tained for rigid bulk solids. A finite element model utilizing cohesive elements in a periodic cell is 
constructed to study cases with non-uniform deformation in the elastic solids.   

1. Introduction 

This work investigates surface-force mediated adhesion, i.e., direct bonding via van der Waals forces (Israelachvili, 2011; Maugis, 
2013), between bulk solids with an engineered surface pattern with its height on the length scale of the range of surface forces. There 
have been many studies of adhesion and fracture of conformal interfaces (i.e. with nominally uniform gaps throughout, filled by an 
adhesive, or closed by inelastic deformation) as well as contact problems involving indenters and asperities (Johnson, 1985; Maugis, 
2013). Nevertheless, there remains an incomplete understanding of imperfect adhesion of non-conformal interfaces. A fundamental 
understanding of imperfect adhesion is needed to unlock opportunities to control interfacial strength and toughness in a wide range of 
applications, including MEMS/NEMS, micro-transfer printing, manufacturing processes for advanced integrated-circuits, biomedical 
devices, and soft robotics. 

The effect of fine-scale surface roughness on adhesion has been studied over many decades, including recent studies of roughness in 
a fractal sense, leading to relationships between roughness and apparent work of adhesion (Fuller and Tabor, 1975; Pastewka and 
Robbins, 2014; Persson, 2014). In contrast, the role of patterned surfaces with feature height comparable to the range of surface forces 
on adhesion of elastic solids has received much less attention. This is surprising, since engineered surface patterns can be precisely 
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patterned via lithography and etching and bonded as part of semiconductor manufacturing processes. For example, shallow etches 
(∼ 1μm deep) have been used to prevent local adhesion in direct wafer bonding and lead to control of stable bond propagation (Turner 
and Spearing, 2002, 2006). Indeed, engineered patterned interfaces offer a route for the deterministic control of adhesion resulting 
from direct bonding for many technologies. 

Interfaces with periodic patterns can be categorized as conformal and non-conformal interfaces, where the former has been more 
widely studied. For example, inspired by periodic suture joints in nature, there have been several investigations of the influence of 
conformally patterned interfaces on adhesion strength and effective toughness. Among conformal periodic triangular, rectangular, and 
trapezoidal interface patterns, slender triangles were found to be the optimal geometry for achieving high stiffness, strength, and 
toughness due to a relatively uniform distribution of stresses (Li et al., 2011, 2013; Lin et al., 2014). Others have used cohesive zone 
models to investigate the effects of sinusoidal patterns and patterns with arbitrary kink angles on effective toughness under far-field 
Mode I conditions (Zavattieri et al., 2007; Cordisco et al., 2012, 2016; Hosseini et al., 2019); in general, conformal patterns with 
relatively high aspect ratios are found to significantly affect the effective toughness for both similar and dissimilar adhered elastic 
bodies. 

Studies that have adopted cohesive zone models of fracture of flat or conformally patterned interfaces have not addressed the strong 
repulsion at very close separations as a function of the underlying traction-separation relation, either because the tractions tend to be 
tensile everywhere across the interface or for repulsive interactions (compressive tractions) the interaction is treated as a classical 
contact problem. In fact, many studies only account for finite repulsive tractions when the interface separation becomes less than an 
equilibrium separation (Zavattieri et al., 2007), which is the case for the traction-separation relation resulting from the so-called 
universal binding energy of Rose et al. (1981) that was adopted by Xu and Needleman’s (1993) (see also Tvergaard and Hutch
inson, 1993; Wu et al., 2016, 2019; Hosseini et al., 2019). In contrast, the traction-separation relation that results from Lennard-Jones 
interactions between two semi-infinite bodies leads to repulsive tractions that blow up as the negative 9th power of the separation. As 
will be shown in this investigation of direct bonding of non-conformally patterned surfaces, accounting for a strong repulsion is 
essential, particularly for the equilibrium configuration in the absence of applied loads. We have proposed a phenomenological 
traction-separation relation that meets this requirement. 

As already noted, less well studied is the direct bonding of engineered non-conformal interfaces, which is fundamentally different 
than the direct bonding of conformal interfaces. In a non-conformal interface, regions where the separation of two solids is not at the 
ideal equilibrium separation (zero traction), details of adhesive interactions can have significant effects (Springman and Bassani, 2008; 
Ciavarella et al., 2017) and lead to spatially-varying interface tractions, e.g. over separations of tens of nanometers or less. In fact, the 
extension of Hertz spherical contact problem with adhesion can be appropriately considered as a non-conformal interface in the me
chanics of imperfect adhesion. Both Bradley (1932) and Derjaguin (1934) proposed models for the adhesion of rigid spheres, in which 
they both considered the attractive and repulsive part of interaction potential and that the interaction stresses over the curved bodies 
provided the adhesive interaction force (Barthel, 2008). Later, models for adhesion of spheres in contact were developed considering 
from rigid bodies (DMT theory) to very soft elastic bodies (JKR theory) (Johnson et al., 1971; Derjaguin et al., 1975; Barthel, 2008). 
More recently, the work of Turner and Spearing (2002,2006) on the effect of wafer bow and etched patterns on direct wafer bonding 

Fig. 1. (a) 2D schematic of generally patterned bulk solids adhered through surface forces acting across the interface. The horizontal dash lines 
correspond to the bounding planes that are introduced in to define the surface topographies (see Section 3). (b) The normalized intrinsic traction- 
separation relation (TSR) corresponds to the interaction between ideally flat surfaces, where the traction-free equilibrium separation is δo, the 
interaction range characterized from T = 0 to σmax is δm, and the work of adhesion, W, is the area under the TSR for δo ≤ δ < ∞. 
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and Springman and Bassani (2008, 2009) on adhesion of thin shells to a rigid substrate both considered direct bonding of non-conformal 
surfaces and suggested the possibility to use patterning to control adhesion. 

Imperfect adhesion arises from direct bonding of non-conformal surfaces wherever the separation of the surfaces in the adhered 
state differs from an equilibrium separation, δo, at which surface tractions vanish, T(δo) = 0. Although deformation of the surfaces can 
increase coherence by reaching more intimate contact, in general, the perfect bonding condition cannot be met everywhere in the 
equilibrium configurations (i.e. no external load) that correspond to a minimum in both the local and the total free energy of the 
system. From a microscopic perspective of a non-conformally patterned interface (sketched in Fig. 1a), the intrinsic traction-separation 
relation (TSR) shown in Fig. 1b describes the interaction between the two adhered solids locally, with the equilibrium configuration 
defined by the absence of externally applied loads. The interface separation depends on both the relative position of solid surfaces, as 
well as the local displacements that take place in the deformable solids near the interface. As a result, there will be non-zero tractions 
distributed over the entire adhered region, resulting in a fracture energy that is less than the ideal work of adhesion, W. Even at overall 
equilibrium, adhesion between the non-conformal surfaces leads to regions of both tensile and compressive tractions (Springman and 
Bassani, 2008; Pastewka and Robbins, 2014). The combination of these factors will result in an effective TSR that depends on the 
geometry of the patterned interface as well as deformations in the elastic bulk solids. Effective properties are associated with the 
averages over the adhering surfaces, which includes the overall work of separation W, the effective interfacial adhesive strength Tmax, 
the effective equilibrium separation δeq, and the effective interaction range δm. In addition, the effective fracture toughness of a 
patterned interfaces generally depends on the loading configuration, e.g. the combination of far-field tension and shear (Xia et al., 
2013, 2015; Hossain et al., 2014). In the regime of adhesion where the details of bonding, i.e. the details of the TSR, can be ignored, a 
Griffith-type approach is valid for computing W(Turner and Spearing, 2002, 2006; Springman and Bassani, 2008). This analogy reveals 
the strong dependence of the fracture stress on the geometry of patterned interfacial features. 

The interface pattern geometry together with the highly nonlinear nature of the cohesive traction-separation relation generally lead 
to highly non-uniform fields across a non-conformally patterned interface. We find that several dimensionless ratios must be considered 
such that the surface topography dimensions are considered relative to the TSR properties. The overall goal of this paper is to provide a 
framework to understand imperfect adhesion, leading to analytically-based design principles for surface force-mediated adhesion of 
non-conformal interfaces associated with engineered patterns. The interplay between intrinsic adhesive properties (TSR; Section 2), 
interface geometry (Secs. 3 and Secs. 4), and bulk material elastic deformation (Section 5) on the effective TSR is investigated through 
calculations of the separation of periodically patterned interfaces. In this work, only tractions acting normal to the interface plane are 
considered. 

2. Interface traction-separation relation (TSR) 

This work is concerned with surface-force mediated direct adhesion, e.g. van der Waals forces, between bulk solids. Only forces 
acting normal to the surfaces, i.e. normal tractions, are considered. If the normal separation δ between surfaces of bulk solids is 
approximately in the 1 ∼ 100 nm range, adhesive interactions can arise with varying strength that depend on both the materials and 
the separation of those surfaces. In the absence of strong bonding (e.g., covalent, ionic or metallic), relatively long-range van der Waals 
weak attractive interactions and possibly slightly stronger hydrogen bonding come into play (Na et al., 2016). If the separation is very 
small, e.g. in the sub-nanometer range, strong repulsion arises. Those interactions can be defined locally in terms of a relationship 
between the surface separation and the resulting traction (dimension of force per unit area). Classical investigations of these in
teractions are found in the work of Tabor and Israelachvili (Tabor and Winterton, 1968; Israelachvili and Tabor, 1972; Israelachvili, 
1974, 2011) and their mechanics implications in the work of Maugis (2013) and many others. Equilibrium configurations defined by 
the absence of externally applied forces are associated with the as fabricated system. 

Two different configurations are imagined. The first is simply two rectangular blocks interacting across ideally flat surfaces, in 
which case the adhesive tractions vanish at the equilibrium separation, δo, and its traction-separation relation is referred to as the 
intrinsic TSR. As the blocks are pulled apart from the equilibrium state, a characteristic response arises: an attractive traction increases 
with separation up to some maximum value then decreases monotonically with increasing separation, eventually becoming negligible. 
For weak interaction, e.g. van der Waals, the energy per unit area to fully separate those solid blocks with ideally flat surfaces is 
referred to as the work of adhesion, W, with values in the range of 10−3 ∼ 1 J /m2, where the higher values are associated with 
hydrogen bonding (Gao and Yao, 2004; Israelachvili, 2011; Maugis, 2013; Na et al., 2016). In a given material system, for two reasons, 
the TSR is essentially phenomenological in nature since, as discussed by Israelachvili (1974, 2011): i) different types of molecular 
interactions, including many-body interactions, lead to different long-range attractive interactions and ii) repulsive interactions as 
atoms are pushed together involve nearly intractable quantum mechanical problems. Perhaps one of the most widely adopted TSR is 
based upon Lennard-Jones interactions between all atoms in two half-spaces, which leads to surface tractions that depend additively 
on the separation to the −3 and −9 powers (Springman and Bassani, 2008; Maugis, 2013); the (δo/δ)

9 term gives rise to strong 
repulsion that is essentially phenomenological in nature. Furthermore, that TSR involves only 2 constants, which limits fitting to basic 
material parameters including the equilibrium separation, elastic modulus, maximum traction, and work of adhesion. 

The second is a class of configurations involving non-flat surfaces, such as patterned surfaces and rough surfaces (Turner and 
Spearing, 2002, 2006; Springman and Bassani, 2008; Tvergaard and Hutchinson, 2009; Menga et al., 2016), which are the subject of 
this paper. In these cases, the equilibrium state involves non-zero surface tractions with a zero resultant (average), and therefore 
include both attractive and repulsive tractions. Given local surface interactions governed by a TSR, effective TSR properties are 
determined by solutions to problems involving the external loads applied to bulk solids interacting across the non-flat surfaces and 
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generally include effects of bulk straining. 
We consider only normal traction (T) – normal separation (δ) interactions, neglecting shear tractions between interacting surfaces. 

The TSR characterizes local interactions across perfectly flat surfaces between bulk solids with characteristics that include the equi
librium separation, δo, where δo is on the order of and typically greater than nearest neighbor atomic spacing (Na et al., 2016), the 
maximum traction σmax = T(δo + δm), where δm is a measure of the range of interactions, and the work of adhesion W =

∫ ∞
δo

Tdδ. 
Furthermore, regarding δ as a measure of atomic separation, we assume that the magnitude of the repulsive traction becomes infinite as 
δ → 0. 

Various analytical forms for the TSR have been proposed which all are essentially phenomenological in nature (Rose et al., 1981; 
Needleman, 1990; Xu and Needleman, 1993; Israelachvili, 2011; Park and Paulino, 2011; Maugis, 2013;). Given various analytical 
forms for the TSR, there also have been a number of experimental studies to extract TSR parameters, both direct and iterative methods 
(Guo et al., 1999; Bažant, 2001; Hong and Kim, 2003; Jeong et al., 2009; Gowrishankar et al., 2012; Na et al., 2016; Wu et al., 2019). 
Among the many analytical forms for phenomenological TSR laws that have been proposed and widely adopted, the aforementioned 
Lennard-Jones 3–9 law, which only involves 2 parameters, and the universal binding energy function of Rose-Ferrante-Smith, which 
involves 3 parameters, have motivated the form of 4-parameter TSR (Fig. 1b) we have proposed in this investigation: 

T(δ) =
ψ
β

[

1 + α
(

β
δ

)] (
δ − δo

β

)

exp
(

−
δ − δo

β

)

(1)  

where δo is the equilibrium separation, i.e. T(δo) = 0, β characterizes the range of interactions, the term multiplying α > 0 accounts for 
strong repulsion for δ < δo, and ψ has units of energy per unit area. An even stronger repulsion can be easily included by raising the 
term (β /δ) multiplying α to an arbitrary power greater than one (e.g., 12 in the Lennard-Jones case). The Rose-Ferrante-Smith TSR 
corresponds to α = 0, in which case straightforward calculations give (corresponding quantities denoted with a tilde) the work of 
adhesion W̃ = ψ, the maximum traction σ̃max = ψ /(eβ) at an interaction range δ̃m ≡ δ − δo = β, where e = exp(1), and the interface 
stiffness (modulus) Ẽ ≡ dT /d(δ /δo)|δ=δo

= ψ/β2 = σ̃maxe/β. For small values of α, e.g. α = 0.01 which is adopted for the results pre
sented below, values of W, σmax, δm and E given the parameters ψ , δo, β and α in (1), are not too different than those for α = 0. The 
potential associated with (1) as well as accurate approximations of W, σmax, δm and E for small α are given in the Appendix A. As noted 
above, the Rose-Ferrante-Smith TSR (α = 0) only accounts for weak finite repulsive interaction T(δ = 0) = −(ψδo /β2)exp(δo /β) as 
δ → 0, which would allow for material interpenetration under finite compressive tractions, while for any α > 0, (1) yields T → −∞ as 
δ → 0. This is an important consideration for equilibrium configurations corresponding to vanishing average traction for non-con
formally patterned surfaces. 

3. Adhesion of non-conforming surfaces 

Consider two bulk solids interacting across an interface, with the surface topographies of each solid varying on the length scales 
sufficiently greater than the atomic scales that determine van der Waals forces (Barthel, 2008; Maugis, 2013). In the absence of surface 
tractions, the unstressed (as fabricated) surface geometries of the upper and lower solids (denoted with superscripts U and L, 
respectively) are defined relative to the x − z bounding planes (y = constant planes), such that the surface of the upper bulk solid is 
yU

o (x, z) ≥ 0 with min
x,z

yU
o (x, z) = 0 and the surface of the lower bulk solid is yL

o (x, z) ≤ 0 with max
x,z

yU
o (x, z) = 0 as depicted in Fig. 1a. 

Bulk deformations arising from both interface traction forces and applied external loads cause those surfaces to deform, and similar 
representations define yU(x, z) ≥ 0 with min

x,z
yU(x, z) = 0 and yL(x, z) ≤ 0 with max

x,z
yU(x, z) = 0. Note that the bounding planes 

generally evolve with external loading. Therefore, the gap between the upper and lower surfaces across the interface at any state of 
deformation can be represented as: 

δ(x, z) = yU(x, z) + yL(x, z) + δ (2)  

where δ is the separation between the bounding planes that define yU and yL. Each of the 3 terms on the right-hand side of (2), in 
general, vary with applied loads on the bimaterial system. The resulting interface tractions are assumed to act only in the y– direction, 
i.e. the traction vector acting on those surfaces is T = Tey, where ey is the unit vector in the y– direction (normal to x −z planes). Under 
specified external loading and the unknown surface tractions, the interface separation (2) is determined from solutions to a governing 
boundary-value problem that is highly nonlinear even for linearly elastic bulk material behavior. The unknown equilibrium state is 
defined in the absence of applied loads. 

Surface deformations, which arise from both interface tractions and externally applied loads, are determined from solutions of the 
governing equations of equilibrium, compatibility, and constitutive relations. From the equilibrium state, i.e. the reference configu
ration, consider a uniform vertical displacement v applied to the top surface (y = constant) of the upper bulk solid, with the bottom 
surface of the lower bulk solid (also y = constant) held fixed. Both top and bottom external surfaces and the interface have σyx = σyz =

0. All other external surfaces subjected to periodic boundary conditions (see Fig. 1a). The separation, δ, of the interface bounding 
planes, as well as yU and yL in the case of compliant bulk materials, depend on v, but the relations may not be one-to-one because of 
spring back due to the bulk elastic deformation as discussed below in Section 5. In general, for non-conforming surfaces, the bulk solids 
in the reference equilibrium state δ = δeq is stressed, and for rigid bulk solids, δ = v. Of course, more general external loading 
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conditions can be considered. Only for perfectly conforming surfaces (yU + yL = constant), which includes perfectly flat surfaces (yU =

0 = yL), are the tractions uniform along the interface and vanish in the absence of externally applied loads (δ = δo). For non-conforming 
surfaces, non-uniform interface separations and tractions arise, i.e. δ = δ(x, z) and T(x,z), and the overall average traction is: 

T =
1
A

∫

A
T(x, z) dx dz =

1
A

∫

A
T[δ(x, z)] dx dz =

1
A

∫

A
T

[
yU(x, z) + yL(x, z) + δ

]
dx dz (3)  

where A is the area of the x − z plane lying in the interface. 
The equilibrium separation δ(v = 0) = δeq(x, z) satisfies: 

T = 0 =
1
A

∫

A
T

[
δeq(x, z)

]
dx dz (4)  

where 

δeq(x, z) = yU
eq(x, z) + yL

eq(x, z) + δeq (5) 

Even in the absence of externally applied loads, the upper and lower interface surfaces undergo deformations at the equilibrium 
state due to the existence of non-uniform interface tractions. Those deformations, yU = yU

eq(x, z) and yL = yL
eq(x, z), as well as the 

separation between the bounding planes, δ = δeq,1 at equilibrium satisfy: 

0 =
1
A

∫

A
T

[
yU

eq(x, z) + yL
eq(x, z) + δeq

]
dx dz (6) 

For rigid bulk behavior, where yU
eq = yU

o (x, z) and yL
eq = yL

o (x,z), the solution to (6) only involves the determination of δeq because for 
non-conforming surfaces δeq ∕= δo. In the case of deformable bulk solids, even at equilibrium the surface profiles yU

eq(x, z) and yL
eq(x, z)

differ from the as-fabricated profiles yU
o (x, z) and yL

o (x,z). 
Given solutions T[yU(x, z) +yL(x, z) +δ] that correspond to an overall displacement v acting on the deformable bulk solid and the 

average traction from (3), one can deduce the δ(v) relation, the load-displacement relation, T − v, and the effective interface traction- 
separation relation, T − δ. The maximum average traction at the separation δeq + δm of the bounding planes corresponds to dT /dv = 0 
at the applied displacement vm, which from (3) is found from the interface opening δ(x, z) that maximizes the traction with respect to v: 

max v

{
1
A

∫

A
T[δ(x, z)] dx dz

}

(7) 

The solution v = veq + vm to (7) also implies that δm, yU
m(x,z), yL

m(x, z) and δeq determine the maximum average traction: 

Tmax =
1
A

∫

A
T

[
yU

m(x, z) + yL
m(x, z) + δeq + δm

]
dx dz (8) 

Given the general relation δ(v), the maximum traction can be regarded as a function of either δm or vm. This problem is relatively 
simple for rigid bulk solids, since yU

m = yU
o (x, z) and yL

m = yL
o (x,z), therefore vm = δm is the only unknown. In general, surface profiles 

yU
m(x, z) and yL

m(x, z) must be determined from the complete solutions for the deformable solids interacting across the patterned 
interface according to the TSR in (1) (as seen in Fig. 1). 

For the displacement loading condition defined above, the work of separation for the patterned interface is: 

W =

∫ ∞

0
T(v) dv =

1
A

∫ ∞

0

{∫

A
T[δ(x, z)] dx dz

}

dv

=
1
A

∫ ∞

δeq

{∫

A
T

[
yU(x, z) + yL(x, z) + δ

]
dx dz

}

dδ
(9) 

The above applies to 2D patterned surfaces, while the results in the remainder of the paper consider 1D patterned surfaces that are 
uniform in the z– direction, which leads to 2D boundary-value problems for deformable bulk solids. The effects of patterning on the 
overall effective traction-separation relations are readily investigated in this 2D case. 

Two important non-dimensional parameters enter the analyses in this paper. For a given intrinsic TSR, the interface geometry and 
pattern height h0 (defined below for specific patterns) strongly influence the traction distributions and, therefore, the effective 
interfacial strength Tmax and the work of separation W. One non-dimensional parameter is the ratio of pattern height to the intrinsic 
interaction range: 

η = h0/δm (10) 

1 Throughout this paper, an overbar denotes an overall solution variable associated with a patterned interface, including effective properties such 
as δ, δeq, Tmax, δm, andW; field variables such as the traction distribution T(x, z) for the patterned interface are not denoted with an overbar. 
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Recall that for the TSR in (1) with small α, δm ≈ β. For a given pattern, as η increases, the effects of non-conformity between the 
adhering surfaces increases and, intuitively, Tmaxand W tend to decrease. Another non-dimensional parameter reflects the importance 
of bulk deformation: 

λ =
σmax

δm

(
H
E

)∗

(11)  

where, for deformable upper and lower solids on either side of the interface, (H/E)
∗

= HU(1 − νU2
) /EU + HL(1 − νL2

) /EL, with the 
height, Young’s modulus and Poisson’s ratio of the upper and lower bulk solids, respectively, HU, EU, and νU and HL,EL, and νL. 

Rigid bulk behavior corresponding to λ = 0 is considered in the next section for a variety of patterned surfaces. In Section 5, finite 
element calculations are carried out for a periodically patterned surface with the bulk solids undergoing small strain deformations and 
isotropic, linear elastic behavior (λ ∕= 0). These solutions determine the interface profiles and the separations that enter into (2), which 
then determine the interface traction distributions from (1), the effective TSR from (3), and the effective properties given in (6) – (9). 

4. Adhesion of patterned surfaces – rigid bulk behavior 

Non-uniform tractions generally exist across the interface between non-conforming surfaces, even at equilibrium in the absence of 
external loading (see Fig. 2 as an example) and vary continuously as the surfaces are being separated. Whether the bulk solids are rigid 
or deformable, the traction distribution depends on the overall applied load. To study the role of geometry, adhesion of five peri
odically patterned surfaces to a flat substrate is investigated in this section under the assumption that both solids are rigid (non- 
deforming). The patterns are 1D, varying only with x, i.e. independent of z, in which case yU = yU

o (x) and yL = yL
o (x). Closed form 

solutions are readily obtained and evaluated numerically. The five geometries depicted in Fig. 3 are characterized by a pattern height 

h0 and wavelength L and include: cosine {h(x) = (h0 /2)[1 + cos(2πx /L)]}, flattened cosine 
{

h(x) = (h0 /2)

(

1 +

sin
[

1
2πcos(2πx /L)

])}

, saw tooth (isosceles triangle), rectangle (equal upper and lower flat segment length), and isosceles trapezoid 

(equal spans of upper, lower, and diagonal segments). For rigid bulk behavior, the separation between the top and bottom surfaces of 
the bulk solids is expressed as: 

δ(x) = h(x) + δ (12)  

where h(x) = yU
o (x) defines the surface topography of the upper bulk solids. 

4.1. Effective adhesion properties 

The traction varies along the patterned interface as a function of the local separation δ(x). With yL = 0 as the surface of the bottom 
substrate, the local traction T[h(x) +δ] varies with x, and the average traction T for a period of length L is: 

T(h0, δ) =
1
L

∫ L

0
T[h(x) + δ]dx (13) 

Fig. 2. An isosceles trapezoidal-patterned non-conformal interface at equilibrium configuration in which both attractive (red arrows) and repulsive 
(blue arrows) tractions exist. For rigid bulk in the absence of external loading, the tractions are a function of the local separation δeq(x) = h(x) + δeq. 
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and this specifies the overall effective traction-separation relation, T − δ. At equilibrium when T = 0, the traction distribution T[δ(x)] is 
non-zero wherever δeq(x) = h(x) + δeq ∕= δo for non-conforming surfaces. The effective equilibrium separation δeq, here defined as the 
gap between the flat substrate and the lowest point of the patterned surface (see Fig. 2), is found as the root of: 

T
(
h0, δeq

)
= 0 (14) 

The maximum overall average traction Tmax at separation δeq + δm, from (13), is 

Tmax = T
(
h0, δeq + δm

)
(15)  

where δm, the effective range of interactions for the patterned interface, is the root of: 

dT
dδ

= 0 =
1
L

∫ L

0

dT
[
h(x) + δeq + δm

]

dδ
dx (16) 

Finally, the work of separation (9) becomes: 

Fig. 3. Five periodic surface geometries are depicted in unstressed configuration, including (a) cosine, (b) flattened cosine, (c) isosceles triangle, (d) 
isosceles rectangle, and (e) isosceles trapezoid. Each geometry is characterized by a pattern height h0 and wavelength L. Note that the height of each 
pattern is magnified in these images, while generally the configurations with controllable adhesion correspond to h0 /L << 1. 

Fig. 4. Normalized (a) effective adhesive strength (Tmax)λ=0 and (b) the work of separation Wλ=0 as function of η = ho /δm for the periodic 
trapezoidal-patterned interface. 
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W =

∫ ∞

0
T(v) dv =

1
L

∫ ∞

0

{ ∫ L

0
T[h(x) + δ(x)]dx

}

dv (17)  

4.2. Isosceles trapezoidal pattern 

Consider the isosceles trapezoidal pattern of Fig. 3e first, which consists of 1 /4L upper flat segment, 1 /4L lower flat segment, and 
two diagonal surfaces that span 1 /4L each. For the TSR in (1) with input properties ψ, δo, α, and β (or the associated intrinsic 
properties W, δo, δm and σmax), both (Tmax)λ=0 and Wλ=0 (normalized by the corresponding values for an ideally flat interface) 
decrease as the normalized pattern height ratio η increases as seen in Fig. 4. Furthermore, both (Tmax)λ=0 and Wλ=0 display asymptotes 
for small and large η. From dimensional analysis, in addition to the η dependence, there can also be dependencies on δm /δo (or β /δo) 
and α. For small α, both of those dependencies are found to be very small and, therefore, we regard these trends in the rigid bulk case 
for a given type of pattern as “master curves” that are characteristic of the type of pattern in the rigid bulk limit. Results for much larger 
values of δm/δo (not shown here) also approximate the same master curve as function of η. 

The master curves can be divided into three regimes, which can serve as a guidance for adhesion control via surface patterning for a 
given geometry (see Fig. 4): i) the relatively smooth regime corresponding to small η in which case (Tmax)λ=0 and Wλ=0 asymptote to 
their ideally-flat interface values, ii) the geometry-sensitive regime for intermediate η, and iii) the large η asymptote. In the case of the 
trapezoidal pattern, the limits of (Tmax)λ=0 and Wλ=0 for large η are non-zero and correspond to the dominant interactions along the 
lower flat segment of the trapezoidal pattern, which spans 1 /4L. Intrinsic adhesion properties are recovered in the smooth regime, 0 
< η<

∼
10−1, where both (Tmax)λ=0 and Wλ=0 are insensitive to interface pattern height. The geometry-sensitive regime ranges 

10−1<
∼

η<
∼

102 and corresponds to a monotonic decrease in both (Tmax)λ=0 and Wλ=0. For η>
∼

102, both (Tmax)λ=0 and Wλ=0 approach 

their asymptotic limits (insensitive to interface pattern height again), which for the isosceles trapezoidal pattern are one-fourth of the 
values for an ideally-flat interface, e.g. 1 /4(Tmax)λ=0. 

Distinguishing the traction distributions across the different segments of the interface pattern can help us understand the various 
behaviors of the effective properties. Fig. 5 partitions the total traction contribution of (Tmax)λ=0 in Fig. 4a into the upper flat segment, 
the diagonals, and the lower flat segment of the trapezoidal pattern. Note that both the upper and lower flat segments span 1 /4L each, 
and the two diagonal surfaces together span 1 /2L. In the smooth regime of smaller η, each segment of the pattern contributes equally 
to the total (Tmax)λ=0, meaning that traction distribution across the interface is essentially uniform. In the geometry-sensitive regime, 
the contribution of each segment varies as η increases. The contribution of upper flat segment of the pattern is the first to decrease to 
zero as it is far beyond the interaction range of intrinsic TSR as pattern height ratio increases, which essentially reduces the effective 
adhesion area. As η increases further, the diagonal surfaces move beyond the interaction range and their contributions also tend to 
vanish, leaving only the lower flat segment of the pattern to contribute to the asymptotic value (Tmax)λ=0. Not that the contribution 
from the lower flat segment has a minimum around η = 2 as the results are nearly geometry sensitive but depend weakly on δm /δo (or β 
/δo) and α. 

The variations of the effective length scales (δeq)λ=0 and (δm)λ=0 as function of η for the trapezoidal pattern are plotted in Fig. 6 for 

Fig. 5. At (Tmax)λ=0, contributions to (15) from different segments of the trapezoidal pattern vs η for δm/δo = 3 and α = 0.01. The black curve is the 
result shown in Fig.4a. The blue curve represents the upper flat segment of the trapezoidal pattern and has length of 1 /4L. The red curve represents 
the two diagonal segments and has total length of 1 /2L. The yellow curve represents the lower flat segment and has length of 1 /4L. 
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various values of δm/δo. The strong dependence of both (δeq)λ=0 and (δm)λ=0 on δm/δo can be understood as follows. For a very small 
pattern height ratio η, both (δeq)λ=0 and (δm)λ=0 approach their intrinsic values because tractions across the interface are relatively 
uniform. As η increases, interface tractions become more non-uniform, and to achieve equilibirum the lower segment of the patterned 
surface approaches the substrate, leading to repulsive tractions. For larger η, the dominant interactions essentially are confined to the 
lower flat segment of the trapezoidal pattern (see Fig. 5) and the interface tractions become more uniform, with both (δeq)λ=0 and 
(δm)λ=0 approaching their corresponding intrinsic values once again. Therefore, (δeq)λ=0 and (δm)λ=0 vary non-monotonically with η 
and depend on the ratio of the intrinsic length scales, δm/δo. For the isoscoles trapezoidal pattern, the minima of (δeq)λ=0 and (δm)λ=0 
correspond approximately to η = 2 (Fig. 6), which is in the geometry sensitive regime of the master curves. 

4.3. Variations in pattern designs 

The other four patterns depicted in Fig. 3 are considered next for rigid bulk behavior. For each pattern, the (Tmax)λ=0 and Wλ=0 

variations with respect to η = h0/δm are found to depend weakly on δm/δo as in the case of the trapezoidal pattern considered in Sec. 
4.2. Fig. 7 are plots of the master curves corresponding to δm /δo = 3 and α = 0.01. Similar trends are found for all five patterns for 
small and moderate values of η, and 3 regimes are identified: i) the smooth regime of small η, ii) the geometry-sensitive regime for 
intermediate η, and iii) the large η asymptote. As η increases beyond the relatively smooth regime, there is a portion in the geometry- 
sensitive regime where the (Tmax)λ=0 and Wλ=0 trends are similar for the 5 patterns, see Fig. 7a, b, that is approximately the range 
10−1<

∼
η<

∼
4 in which (Tmax)λ=0 and Wλ=0 are relatively insensitive to the specific pattern shape. However, for η>

∼
4, there are significant 

differences among the 5 patterns. For very large η, the trapezoidal pattern asymptotes to 1 /4L (as noted above), and the rectangular 
pattern asymptotes to 1 /2L; both determined by simple geometric considerations. The other three patterns asymptote to zero values of 
(Tmax)λ=0 and Wλ=0 as η → ∞. 

Interestingly, the triangular and rectangular patterns bound the (Tmax)λ=0 and Wλ=0 variations with respect to η among the five 
isosceles shapes (Fig. 7a, b). For η<

∼
4, the triangular pattern has the highest values and the rectangular pattern has the lowest values of 

(Tmax)λ=0 and Wλ=0; for η>
∼

4, the rectangular pattern has the highest values and the triangular pattern has the lowest values of (Tmax)λ=0 

and Wλ=0. The switch in adhesion performance can be understood as follows. For η<
∼

4, diagonal surfaces of the triangular pattern 

create non-uniform interface gaps that span the full range of the intrinsic TSR, thus, leading to non-uniform interface tractions. On the 
other hand, the flat segments of the rectangular pattern have uniform gap size and interface tractions across each segment, and these 
tractions either uniformly increase from T(δeq) = 0 or uniformly decay as the separation increases. Furthermore, for η>

∼
4, the effective 

adhesion area of a diagonal surface gradually shrinks as the interface is separated, while the adhesion area of the flat portion of the 
surface remains unchanged (see Fig. 5). 

For all non-conforming patterns, the variations of the effective equilibrium separation (δeq)λ=0 and the effective interaction range 
(δm)λ=0 with respect to η generally depend on δm/δo, as in the case of the trapezoidal pattern (see Fig. 6). As a representative case, 
variations with respect to η for the five patterns are plotted in Fig. 7c, d for δm /δo = 3. 

For a given pattern, the rigid bulk results can be understood in more detail by examining the interface traction distributions T(x,δ), 
which in fact have been calculated to generate the results above; see (13) and (17). In fact, those distributions vary significantly as δ 

Fig. 6. Normalized (a) effective equilibrium separation (δeq)λ=0, and (b) effective interaction range (δm)λ=0 as function of η for the periodic 
trapezoidal-patterned interface. 
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increases from (δeq)λ=0 to (δm)λ=0 and beyond. For example, on segments of the interface topography where δ(x) = h(x) + δ >> δm, the 
local traction T(x, δ) becomes arbitrarily small, which accounts for the large η trends in (Tmax)λ=0 and Wλ=0. For brevity, those traction 
distributions T(x, δ) across the interface as function of δ have not been plotted for the rigid bulk behaviors, while the distributions 
calculated from the finite element solutions presented in the next section reveal those variations. 

5. Adhesion of patterned surfaces – effects of elastic bulk deforamtion 

Elastic bulk deformation (λ ∕= 0) can significantly affect adhesion of non-conformal patterned interfaces by altering the surface 
topography, while for sufficiently stiff materials the rigid analysis (λ = 0) is an accurate approximation. For soft bulk, the surface 
topography at equilibrium, which involves non-zero and non-uniform surface tractions for non-conforming interfaces, will be distorted 
as compared to its as-fabricated geometry in the absence of surface tractions, i.e.yU

eq ∕= yU
o (x) for λ ∕= 0. Finite element solutions pre

sented in this section are for a non-conforming interface with isosceles trapezoidal pattern and varied elastic bulk properties as function 
of the bulk deformation parameter λ (11) and the pattern height parameter η (10). As a general trend, in the absence of any applied 
load, i.e. at equilibrium, the interface profile tends to become flatter, which is analogous to the increase in contact area found in the 
work of Johnson et al. (1985). 

One general effect of elastic bulk deformation, even for flat interfaces, is the tendency for spring-back. Spring-back occurs as the 
overall load decreases after reaching its maximum, which is associated with the decrease in the average adhesive traction across the 
interface as separation increases, thus causing a decrease in the elastic strain in the bulk solids to decrease. The decreasing elastic strain 

Fig. 7. Effective adhesive properties of rigid bulk behavior with δm/δo = 3 and α = 0.01 for all five geometries. Master curves showing normalized 
(a) effective adhesive strength (Tmax)λ=0 and (b) work of separation Wλ=0. Normalized (c) effective equilibrium separation (δeq)λ=0 and (d) effective 
interaction range (δm)λ=0. 
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contributes to the decrease in the overall extension of the bulk solids as the interface continues to separate and is directly related to the 
bulk stiffness and the heights of the bulk solids adjacent to the interface. Consider a rectangular block of linear elastic, isotropic 
material with tensile modulus EU and height HU, where the lower surface of this block interacts with a rigid flat substrate, EL → ∞, 
according to the TSR in (1). From the equilibrium configuration, the top of the block is displaced by v perpendicular to the interface. 
The block is assumed to be under a state of plane-strain, and the corresponding applied traction is denoted T. If the block is relatively 
soft and/or tall and as the interface is separated beyond the maximum traction σmax (or the maximum load Tmax in (8) or (15) for a 
patterned interface), spring-back can occur due to unloading of the elastic block as discussed below. 

The non-dimensional deformation ratio, λ (11), that reflects the tendency for the surface pattern to be distorted and the tendency 
for spring back, in this case of a rigid substrate is: 

λ =
σmax

δm

⎡

⎣
HU

(
1 − νU2

)

EU

⎤

⎦ (18) 

For large enough λ, very little overall extension beyond maximum load is possible, as shown in Fig. 8. While spring-back can be 
captured in numerical simulations (e.g., using continuation algorithms), it would be difficult to detect in experiments under either 
displacement- or force-controlled test. In an experiment, attempts to further increase the overall extension beyond the maximum load 
would lead to sudden failure where the force would drop down to zero instantaneously, and the resulting load-and-displacement curve 
could lead to apparently longer interaction range and the interface toughness would not be properly accounted for. 

The master curves in Fig. 7a, b have shown that all five geometries display similar trends for the key effective properties. In what 
follows, the isosceles trapezoidal pattern is chosen as the representative for the investigation of the effects of elastic bulk deformation 
because it includes the rectangular and triangular patterns as special cases, and, in principle, it is ameneable to fabrication. A periodic 
boundary-value problem is formulated. A trapezoidal-patterned unit cell is considered, as depicted in Fig. 2, consisting of a patterned 
top bulk solid of height HU with Young’s modulus EU and Poisson’s ratio νU, a flat rigid substrate, and a cohesive layer governed by the 
TSR (1) is sandwiched in between. Although the interface separation can become arbitrarily large, the bulk solid is linear elastic within 
the small strain approximation. The asymmetry considered here involves both the non-conformity of the interface topography and the 
moduli mismatch of the adhered solids. For the finite element results that follow, the modulus of the upper bulk solid (the one with the 
trapezoidal pattern) is varied, and the lower bulk solid with a flat surface is effectively rigid. Periodic boundary conditions are pre
scribed on the unit cell such that ux(0, y) = ux(L, y) and uy(0,y) = uy(L,y). The bottom of the nearly rigid substrate (EL ≫ EU) is fixed: ux 

= uy = 0. From an equilibrium configuration (T = 0) – which itself must be calculated since the non-zero interface tractions T(x) cause 
bulk deformation that affects δ(x) – the top surface of the elastic bulk is displaced by an amount uy = v with ux = 0. The bulk height of 
the unit cell is chosen to be HU = L, and for larger HU we found little change in the surface deformation for the TSR properties and 
range of moduli considered. 

5.1. Finite element model 

The unit cell problem with cohesive elements spanning the non-conformally patterned interface, as depicted in Fig. 2, is discretized 
within the commercial finite element program ABAQUS/Standard. Both bulk solids are meshed with 2D plane-strain, isotropic, lin
early elastic elements. The modulus of the bottom flat solid is set high such that is effectively rigid (e.g. EL /EU ≥ 105). The interface 

Fig. 8. For ideally flat surfaces, the effective TSR behavior for various λ with δm = 3δo. The tendency for spring-back increases with increasingλ.  
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cohesive elements are generated from a user-defined subroutine (UMAT) based upon the TSR in (1) (see the Appendix B for details of 
the finite element implementation). As previously noted, the surface-force mediated direct adhesion, e.g. van der Waals forces, 
considered in this work can arise if the normal separation between surfaces of the bulk solids is approximately in the 1~100 nm range, 
with the work of adhesion in the range of 10−3 ∼ 100 J /m2 (Tabor and Winterton, 1968; Israelachvili and Tabor, 1972; Israelachvili, 
1974, 2011; Gao and Yao, 2004). The intrinsic TSR parameters are chosen to be: δo = 1 nm, β = 3δo, ψ/βe = 2 × 105 Pa, where ln(e) =

1, and α = 0.01. Note from (1), the separation can be regarded in units of δo. The computed intrinsic properties are δm /δo = 2.994, σmax 

= 2.005 × 105Pa and W = 1.631 × 10−3 J /m2. Results are presented below for variations in the trapezoidal pattern height ratio (η) 
and in the ratio of interface to bulk deformation (λ), in particular for 10−4 ≤ σmax /EU ≤ 10−2, in which case λ = 0.030 to 3.039, with 
Poisson’s ratio νU = 0.3. 

In the initial configuration, the trapezoidal pattern is positioned at an arbitrary distance above the rigid substrate and normal 
tractions are assigned to each cohesive element based on the separation at the interface, which varies from element to element. That 
configuration is relaxed until T = 0 corresponding to the equilibrium configuration at δ = δeq and v = 0 by definition. Most studies 
involving cohesive zone elements have assumed uniform height of the cohesive layer at the equilibrium separation corresponding to a 
zero traction throughout the interface (Jiang et al., 2006; Zavattieri et al., 2007; Hossain et al., 2014; Hosseini et al., 2019). The 
assumption that the traction induced by van der Waals-type forces vanishes everywhere in the cohesive layer is not consistent with a 
spatially varying initial separation. 

5.2. Effective traction – separation relation 

The first set of results are for an interface pattern height ratio η = h0 /δm = 3. The overall load – displacement curves, T − v, 

Fig. 9. Effective results for elastic bulk solid with isosceles trapezoidal surface geometry of patterned height ratio η = 3. (a) The normalized overall 
load – displacement curves, T − v. (b) The normalized effective TSR curve subtracts out the bulk deformation. (c) Trade-off between the effective 
adhesion strength and work of separation as the bulk deformation ratio λ increases. (d) Effective equilibrium separation and effective interaction 
range as function of λ. 
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Fig. 10. Interface evolution for periodic trapezoidal pattern of η = 3. (1st row: a-e) Interface profiles and (2nd row: f-j) the corresponding interface 
normal traction distribution. These interfacial results are shown at (1st column: a, f) the effective equilibrium separation δeq, (2nd column: b, g) 
before reaching maximum load Tmax at0.5 Tmax, (3rd colum: c, h) before reaching maximum load Tmax at 0.96 Tmax, (4th colum: d, i) at maximum 
load Tmax, and (5th column: e, j) after passing maximum load Tmax at 0.25 Tmax. 
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computed from the finite element solutions are plotted in Fig. 9a for various values of the bulk deformation ratio λ. A significant effect 
of elastic bulk deformation is clearly seen. An even softer and/or taller elastic bulk solid corresponding to a larger λ would cause a 
greater spring-back tendency, e.g. as seen in Fig. 8, leading to some numerical difficulties which are discussed in the Appendix B. Recall 
that the separation between the flat rigid substrate and the lowest point of the trapezoidal-patterned surface is δ = δeq + v − vbulk, 
where the average bulk deformation is defined as vbulk = HU[(T /EU)(1 − 2νU2

/(1 − νU))]. The resulting effective TSR defined in (3), i. 
e. T versus δ − δeq = v − vbulk, is plotted in Fig. 9b. Even with the bulk deformation subtracted out in Fig. 9b, the effective TSR depends 
on the bulk deformation through its effect on distorting the patterned surface. In other words, the effective TSR for a patterned 
interface generally depends on the adhesive properties, i.e. the intrinsic TSR, as well as the compliance of the adjoining bulk solids. 

For the four non-zero values of λ in Fig. 9a, b, the maximum average traction, Tmax, and the work of separation, W, are plotted in 
Fig. 9c, and the effective equilibrium separation, δeq, and effective interaction range, δm, are plotted in Fig. 9d. At Tmax, the smallest gap 
is δ = δeq + δm; δm defines an effective interaction range that can be larger than δm. Several observations can be made when comparing 
the results with elastic bulk deformation and the rigid results of Section4. The effective adhesive strength Tmax decreases as λ increases, 
while the work of separation W increases, as seen in Fig. 9c. In Fig. 9d, δeq << δo indicates that tractions across the interface become 
highly non-uniform for some range of λ, requiring a sector of the patterned surface to come very close to the bottom substrate to 
achieve equilibrium in the system, i.e., to attain sufficiently large repulsive traction. Futhermore, δm increases as λ increases as seen in 
Fig. 9d. For relatively soft bulk materials, there can be significant distortions of the surface pattern due to the bulk deformations arising 
from the non-zero traction distributions across the interface as shown in the next section. 

5.3. Interface profiles and stress distributions 

As λ increases, elastic deformation in the bulk generally becomes important. For relatively compliant bulk solids, the interface 
tractions lead to distortion of the patterned surfaces, therefore affecting the degree of non-conformity and the overall adhesive behavior 
as a function of the applied load, v. To understand these trends, it is useful to investigate both the non-uniform bulk deformations and 
the normal surface tractions acting across the interface corresponding to the results in Fig. 9. These interface traction distributions are 
plotted in Fig. 10 for a pattern height ratio η = h0 /δm = 3 at five stages of the overall loading: equilibrium (T = 0), before the 
maximum load at T = 0.5 Tmax, before the maximum load at T = 0.96 Tmax, at the maximum load Tmax, and beyond the maximum load 
at T = 0.25 Tmax. 

At the effective equilibrium separation δeq, the interface profile yU is plotted in Fig. 10a for various values of λ with HU = L fixed. As 
λ increases, the interface pattern height is increasingly compressed at equilibrium. The distortions of the bulk patterned surface 
topography in Fig. 10a arise due to the surface tractions, which are plotted in Fig. 10f for the equilibrium state. Those surface tractions 
reflect the interface gap associated with the trapezoidal pattern; note that the lower flat segment of the trapezoidal pattern is subjected 
to repulsive tractions since δeq < δo. As v increases and the interface begins to separate, the pattern becomes relatively less compressed, 
corresponding to a decrease in magnitude of those repulsive tractions as well as a decrease in the attractive tractions on the upper flat 
segment of the trapezoidal pattern seen in Fig. 10b, g at T = 0.5 Tmax (before Tmax is reached). Just before reaching Tmax, as shown in 
Fig. 10c, h at 0.96 Tmax, the patterns are no longer being compressed and have returned to approximately their original heights as the 
lower flat segment is no longer subjected to repulsive tractions, and the magnitude of the attractive traction on the upper flat segment 
has decreased further for smaller λ cases. At maximum load Tmax, with the attractive tractions greatest around the lower flat segment, 
the trapezoidal pattern tends to stretch, as seen in the interface profile yU of Fig. 10d, which shows that the pattern height increases as λ 
increases. At that state, there are relatively strong attractive tractions on the lower flat segment of the trapezoidal pattern and rela
tively weak attractive tractions on the upper flat segment of the trapezoidal pattern, as seen in Fig. 10i. Recall that η = h0 /δm = 3 for 
these results, which correlates with the latter finding. Beyond Tmax at T = 0.25 Tmax, the interface approaches the undistorted trap
ezoidal geometry (see Fig. 10e), and the tractions, which are attractive everywhere along the interface, become smaller in magnitude 
(see Fig. 10j). As the top surface of the bimaterial sample is displaced further, the tractions become even smaller in magnitude and 
gradually vanish, and the surface geometry returns to its original configuration. As δ → ∞ (and v → ∞ unless there is pronounced 
spring-back, which can occur for very large λ – see Fig. 8), the stresses in the bulk solid are zero everywhere in the unadhered state. 
Numerical difficulties associated with much larger values of λ, especially for the calculation of the equilibrium configuration, are 
discussed in the Appendix B. For a stiffer upper bulk solid, e.g. λ ≤ 0.03, there is little effect of bulk deformation and the rigid results of 
Section 4 are an accurate representation. 

5.4. Effective adhesion properties 

For the case η = h0 /δm = 3, the results in Section 5.2 have shown that the effective adhesive properties depend on the elastic bulk 
deformation with trends that include a decreasing Tmax and a increasing W as λ increases. In this section, variations in the pattern 
height ratio (η) are considered, again for the isosceles trapezoidal pattern interface, and the results are presented relative to both the 
intrinsic TSR properties and the rigid results for the patterned interfaces (from Section 4). Fig. 11a, b are plots of Tmax /σmax and W /W, 
respectively, versus the deformation parameter λ for 0.05 ≤ η ≤ 30. The trends are: i) Tmax/σmax and W/W both decrease with 
increasing pattern height, which is readily understood from the rigid results of Section 4, and ii) for each η, Tmax/σmax decreases 
somewhat with increasing λ, while W/W increases with increasing λ. The increase in W with increasing λ is associated with the increase 
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in elastic strain energy as bulk material gets softer (Hensel et al., 2018). The decrease in Tmax with increasing λ is associated with the 
stretching of the pattern topography as discussed in Section 5.3 (see Fig. 10d). Hensel et al. (2018) also noted the trade-off between 
Tmax and W in adhesive contacts formed between two non-conforming elastic solids, that the stored elastic strain energy close to the 
interface counteracts adhesion strength. 

Comparisons to the corresponding rigid case, λ = 0, are instructive to see how Tmax and W are affected by bulk deformation 
(normalized plots in Fig. 11c, d). For the trapezoidal-patterned interface, the “elasticity-sensitive” regime is approximately 0.5<

∼
η<

∼
30. 

Overall, one concludes from Fig. 11 that surface geometry is the primary effect on the overall adhesion behavior, while the effect of 
elastic bulk deformation can be significant for large λ, i.e. soft solids. In the elasticity-sensitive range, both Tmax and W change non- 
monotonically as the pattern height ratio η increases. Note that the pattern height resulting in the minimum Tmax and maximum W 
is for η = 3 (the case considered in Secs. 5.2 and 5.3, which is in the geometry-sensitive regime): for λ = 3.039, compared to the rigid 
results, there is a 12% decrease in Tmax and a 28% increase in W. Outside of the elasticity-sensitive regime, both Tmax and W are very 
close to the rigid results and independent of η, since the interface traction distribution is relatively uniform for very small and very 
large η (as explained in Secs. 4.2). Therefore, for bulk elastic solids with surface pattern heights outside of the elasticity-sensitive 
regime can be assumed as rigid to predict the effective interfacial adhesion properties, thus, simplifying engineering design. 

For completeness, the effect of elastic bulk deformation on the effective equilibrium separation, δeq, and the effective interaction 
range, δm, are plotted in Fig. 12, also relative to the intrinsic properties (Fig. 12a, b) and the rigid results (Fig. 12c, d). As the elastic bulk 
deformation increases, δeq tends to increase for small pattern heights (e.g., 1 ≤ η) due to compression of the pattern but decreases for 
larger η (e.g., η ≥ 5) when compared to the intrinsic equilibrium separation, δo. The greatest compression of surface geometry occurs 
for η = 1 for λ ≥ 3.039 because the top flat segment of the trapezoidal pattern is subjected to the strongest attractive tractions, T =

σmax, in which case δeq is significantly larger than the rigid result, (δeq)λ=0 (Fig. 12c). Note, while δeq is much larger than (δeq)λ=0 for η =

1, both values are still relatively small compared to the intrinsic equilibirum separation, δo. For taller patterns heights (e.g., η ≥ 5), the 

Fig. 11. Effect of elastic bulk deformation on isosceles trapezoidal pattern interface. Compared to intrinsic properties: (a) Effective adhesive 
strength Tmax and (b) work of separation W as function of deformation ratio λ for varies pattern height ratios η. Compared to rigid results: (c) Tmaxand 
(d) Was function of η for various λ. 
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top flat segment of the trapezoidal pattern is out of the van der Waals interaction range when the bulk is stiff, but it gets compressed 
back into the interaction range when the bulk is softer, resulting the interface tractions becoming more non-uniform, hence reducing 
δeq. Furthermore, the pattern heights (e.g., 1 < η < 5) that span the majority of the interaction range of the TSR have highly non- 
uniform tractions across the interface at the equilibirum configuration (see Fig. 10a), i.e., min(yU) must be vary close to max(yL) in 
order to reach δeqthat δeq ≪ δo (see Fig. 12a, c). One can also see in Fig. 12c that as η increases, δeq approaches the rigid result, e.g. δeq 

/(δeq)λ=0 = 1, for all λ because the dominant interactions are essentially confined to the lower flat segment of the trapezoidal pattern. 
Lastly, δm increases with increasing λ for all η when compared to the intrinsic interaction range, δm, (Fig. 12b) due to the aformentioned 
compression and elongation of the surface pattern, and δm decreases with increasing of η for all λ when compared to the rigid behaviors 
(Fig. 12d). 

6. Conclusions 

Interfaces rarely realize their actual intrinsic adhesion strength due to surface topography and elastic deformation in the adhered 
bulk materials. For any material system, the intrinsic strength is the upper limit of adhesion such that no interface pattern will achieve 
higher adhesion than the ideally perfectly flat surfaces, but such ideal surfaces rarely exist. In one notable exception, if edge boundary 
effects are exploited for fibrillar structures, Gao and Yao (2004) have shown an optimal concave fiber tip geometry can achieve the 
intrinsic adhesion strength, although sensitivity of adhesion strength to fiber tip geometry decreases as fiber diameter decreases. We 
have shown that the interplay between non-conformal surface geometries and the intrinsic traction-separation behavior leads to highly 
non-uniform interface fields that depend strongly on the overall separation and control the effective adhesive properties. If the normal 

Fig. 12. Effect of elastic deformation on bulk solid with isosceles trapezoidal pattern interface. Compared to intrinsic properties: (a) effective 
equilibrium separation δeq and (b) effective interaction range δm as function of λ for varies η. Compared to rigid results: (c) δeq and (d) δm as function 
of η for various λ. 
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separation δ between surfaces of adhered solids is approximately in the 1 ∼ 100 nm range, i.e. the range of surface tractions, complex 
adhesive interactions arise with varying strength that depend on the intrinsic adhesive properties as well as the bulk material elasticity. 
If the separation is very small, e.g. in the sub-nanometer range, the strong repulsion that arises depends on that local separation. 

We have shown that the interplay between the intrinsic TSR and the interface geometry strongly affects the effective interfacial 
strength and work of separation, and both tend to decrease non-linearly as the pattern height ratio, an important non-dimensional 
parameter, η = h0/δm, increases. Three regimes of η are identified: smooth, geometry-sensitive, and asymptotic. The intrinsic adhe
sion properties are recovered in the smooth regime, and effective adhesion behavior is controllable in the geometry-sensitive regime. 
In the small η range, a pattern with a diagonal surface, e.g. the trapezoidal interface, has superior adhesion performance, while flat 
surface patterns perform better in larger η range. 

For a given interface geometry, elastic deformation of the bulk solids can significantly distort the surface geometry and alter the 
interface stress distribution as the two surfaces are adhered and then pulled apart during loading. We have identified another 
important non-dimensional parameter measured at the maximum intrinsic traction, λ = σmax/δm(H/E)

∗, that characterizes the 
importance of the bulk deformation relative to the interface deformation. For a perfectly flat interface, significant spring-back is 
observed in the system when λ > 5, and this tendency also leads to spring back (and numerical problems) for patterned interfaces. For λ 
> 0.030, the interface pattern height is flattened at effective equilibrium but elongated at maximum load, and such elastic straining in 
the patterned region causes load-dependent changes of the interface geometry and, therefore, can strongly influence the effective 
separation behavior. Generally, as the system becomes more compliant, there is a trade-off that the interface toughness increases while 
the interfacial strength decreases. For λ ≤ 0.030 or η outside of the elasticity-sensitive regime 0.5<

∼
η<

∼
30, the elastic solids can be 

assumed as rigid to accurately predict the effective interfacial adhesion properties, thus, simplifying calculations for engineering 
design. 

Based upon current understanding, the ability to design surfaces with desired adhesion and toughness is, at best, trial and error, and 
there are potentially significant opportunities for improvement in many applications. The understanding of adhesion of non-conformal 
interfaces will enable advanced micro- and nano-patterning techniques to be exploited to realize new approaches to control interface 
adhesion and toughness through geometry, going beyond the traditional approach of controlling adhesion through chemistry. The 
understanding of the impact of non-conformally patterned surface geometry on the separation mechanisms established here can be 
exploited to realize new materials and mechanical systems with specifically tuned adhesive properties to advance a wide range of 
technologies. Further investigations are underway, including crack propagation and effects of shear tractions. For periodic patterns, we 
have found relatively small effects of shear tractions on overall normal separation, which is the loading considered in this paper. 
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Appendix A. The potential and small α approximations for TSR (1) 

The term multiplying α in the TSR relation (1) is introduced to account for the strong repulsion when surfaces are brought very 
close together to suppress unphysical material interpenetration. Let 

T(δ) = (1 + α δo / δ) T̃(δ) (19)  

where T̃ is the Rose-Ferrante-Smith traction, and the associated adhesive potential is 

F̃(δ) = (ψ / β)(δ + β − δ0)exp
(

−
δ − δo

β

)

(20) 

The potential associated with non-zero α, with T = −dF /dδ in (1), is 

F(δ) = F̃(δ) + α ψ δo

β

[

exp
(

−
δ − δo

β

)

−
δo

β
exp

(
δo

β

)

E1

(
δo

β

)]

(21)  

where E1(x) =
∫ ∞

x (e−t /t) dt is the exponential integral. 
For any α, the traction-free equilibrium separation is δo. At the end of Section 2, expressions for the maximum traction, the cor

responding separation, and the work of separation are given for the case α = 0, which is the Rose-Ferrante-Smith TSR. Approximations 
for the maximum traction and the corresponding separation for small α are given below and let δ̃ = δ̃m + δo = β + δo denote the 
corresponding separation at ̃σmax = ψ /(eβ). From (1), expanding dT /dδ = 0 in terms of δ − δ̃, noting that dT̃ /dδ = 0atδ̃ = δ̃m + δo = β 
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+ δo, and neglecting higher-order terms (Newton-Raphson approximation) leads to the separation corresponding to the maximum 
traction 

δm + δo ≃ β + δo − α δo

(1 + δo/β)
2 (22)  

and from (1) 

σmax ≃ T

(

β + δo − α δo

(1 + δo/β)
2

)

(23)  

Appendix B. UMAT implementation and equilibrium iterations 

ABAQUS/Standard was used to couple linear static stress analysis with our nonlinear cohesive zone model (1) using implicit 
integration scheme. Equilibrium iterations are performed at load step until the set of nonlinear equations are solved iteratively using 
Newton-Raphson method. The bulk material is linear-elastic under 2D plane-strain conditions. Quadratic 4-node quadrilateral ele
ments, CPE4R, with reduced integration as recommended by ABAQUS contact problems were adopted. Note, using quadratic fully 
integrated elements led essentially to the same results but took longer CPU time. The interface cohesive elements are modeled using the 
ABAQUS default cohesive element structure but with our user-defined subroutine (UMAT) to describe the interface TSR (1). 

In the initial configuration of the model, the upper solid with the trapezoidal pattern is positioned at an arbitrary distance above the 
rigid flat bottom substrate. The UMAT calculates the normal traction at each integration point of each cohesive element based on its 
element height, which varies from element to element and with deformation. The height of each cohesive element represents the local 
separation across the interface. Assigning the appropriate normal traction first to each element is important because the non-uniform 
interface gap results in a non-uniform interface traction distribution, i.e. each cohesive element has a non-zero stress if its height differs 
from the intrinsic equilibrium separation, δo. The initial configuration is relaxed until T = 0 corresponding to δ = δeq and v = 0 by 
definition. 

In the UMAT, the material Jacobian matrix (J = ∂T /∂ε) for the interface constitutive model in (1) must be specified for the Newton- 
Raphson iterations. An accurate, symmetric Jacobian matrix is required for rapid convergence of the overall equilibrium iterations. 
However, an incorrect Jacobian matrix will not affect the accuracy of numerical results, but it will just slow down the convergence rate 
(ABAQUS User’s Manual). Since our investigation only involved normal tractions, and to avoid singular matrix, we chose the shear 
component of the Jacobian matrix to be a small fraction of the normal component, with the off-diagonal components zero, to achieve 
the highest convergence rate. 

Numerical difficulties in cohesive zone models are commonly due to the unstable decay of cohesive tractions as separations in
crease. Generally, ABAQUS’ built in Riks arc-length method and stabilization control are sufficient (Gao and Bower, 2004), but care is 
required to obtain rapid convergence rate and accurate results. For our problem, the ABAQUS built in Riks arc-length method is needed 
in the softest case (λ = 3.039 for η = 3) to predict the global unstable response of the system due to spring-back tendency. However, 
finding the correct input values required for the Riks method for a given case is not straightforward, and we found requires a 
trial-and-error approach. 

Another numerical difficulty we found was in computing the effective equilibirum separation δeq for the cases where the interface 
geometry gets highly compressed due to increased λ. For the TSR (1), the tangent stiffness of the repulsive traction increases as local 
separation decreases below δo. Therefore, for a low stiffness bulk material, the cohesive elements have relatively high stiffness 
compared to the bulk material stiffness, thus resulting in numerical convergence difficulties for the nodes shared by the cohesive and 
the elastic solid elements. While maintaining accurate results, the use of stabilization control helps to resolve such numerical issues 
(ABAQUS User’s Manual; Gao and Bower, 2004). 
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