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a b s t r a c t

A machine learning-based optimization strategy was used to find optimal designs for adhesive
composite pillars with either high adhesion strength or high adhesion tunability. Neural networks were
trained with data generated by finite element analysis to predict the adhesion strength of composite
pillars with different designs; an average prediction error of less than 1% was achieved. Through a
sensitivity study with the trained neural networks, it is found that the geometry of the stiff core
above a critical cut off height has no effect on the interfacial stress distribution and the adhesion of
the pillar. A randomly initialized constrained optimization algorithm was then applied to the trained
neural networks to find the optimal composite pillar design. A composite pillar design with a stiff
core that has an enlarged tapered flat end is optimal for realizing robust and high adhesion, since it
can achieve high adhesion under different loading and contact conditions. The optimized pillar has a
critical normal detachment force that is nearly 11 times that of a homogenous pillar and 1.7 times that
of a composite pillar with a simple wide rectangular core under normal loading. A composite pillar
with a thin flat stiff core shows the highest effective adhesion difference between being loaded with
a normal force and being loaded with a moment.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Dry adhesives that rely on van der Waals forces provide a
oute to realize robust, versatile and repeatable adhesion [1].
ith their unparalleled capability, dry adhesives have found ap-
lications in microtransfer printing [2–4], wearable devices [5,6],
limbing robots [7,8] and robotic grasping [9,10]. Since dry ad-
esives rely on secondary bonds such as van der Waals forces
ather than specific chemical bonding, high adhesion strength is
chieved through careful design of the adhesive structures. The
eometry and elastic properties of the adhesive structure control
he stress distribution at the adhered interface and thus can be
esigned to realize structures with high adhesive load capacity.
Mushroom-shaped pillars, inspired by the spatula-shaped tips

f the setae on geckos’ feet, have been the predominant design
f dry adhesives for more than a decade. When a mushroom-
haped pillar is loaded, the interface stress is higher in the center
f the contact and the stress concentration near the edge is
ower compared to the interface stress distribution of a simple
ylindrical pillar [11–14]. Such redistribution of the stress inhibits
etachment initiated at the edge of the contact and results in
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enhanced load capacity [1,15]. In addition to mushroom-shaped
pillars, composite pillars have been shown to have a favorable
stress distribution compared to homogenous pillars. Composite
pillars, consisting of a stiff core and a compliant tip also have
a lower stress concentration at the edge and elevated stress in
the center, and were predicted to and experimentally found to
achieve enhanced adhesion relative to a homogenous pillar [16–
19].

To realize the full potential of dry adhesion, design opti-
mization of dry adhesive structures is essential. Extensive work
has been done to optimize the geometry of mushroom-shaped
pillars. Most of these efforts have used parametric studies within
prescribed design spaces and finite element (FE) analysis to find
the optimal dimensions [12,13,20,21]. Recently, Kim et al. [22]
used a combination of deep learning and FE to predict the optimal
shape of a single material pillar with a flared end. Son et al. [23]
used a combination of Bayesian optimization and FE to determine
the optimal design of a single material fibrillar adhesive, and
experimentally fabricated and characterized the adhesion of the
optimal design. For composite pillars, the adhesion of pillars with
a simple core geometry and subjected to normal loading has been
investigated [16,18,19,24], however, there are no optimization
studies on the design of composite pillars for controlled adhesion
under a broader range of loading conditions. In many applica-
tions, dry adhesives are subjected to a normal force as well as
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ther loading components (i.e., a shear force or an applied mo-
ent) due to factors such as the direction of the far-field applied

oad and misalignment. These non-normal loading components
an significantly affect the detachment mechanism and adhesion
trength of pillar structures [1,25,26]. Moreover, defects on the
ontact surface with unknown sizes (e.g., due to surface rough-
ess, particles) can also play an important role in determining the
etachment mechanism and effective adhesion strength of pil-
ars [27]. To realize strong and robust dry adhesion, the geometry
f composite pillars must be optimized to achieve high effective
dhesion in all of these different loading and contact conditions.
n addition, dry adhesive structures with high adhesion tunability,
here the adhesion is strong under one loading condition but
eak under another loading condition, are of interest for many
ick-and-place applications. Thus, when considering the design
nd optimization of adhesive pillar structures, there is interest
n identifying designs for both high adhesion strength and high
dhesion tunability.
In this letter, a machine learning-based optimization approach

s used to investigate the optimal design of the core geometry
f composite pillars (Fig. 1(a)) with the highest effective ad-
esion strength under different loading and contact conditions.
oreover, the optimization framework is used to identify com-
osite pillar designs with high adhesion tunability. This study
s focused on 2D pillars in plane strain, which are representa-
ive of rectangular composite pillars. This geometry was chosen
ver an axisymmetric configuration because it allowed for the
nvestigation of applied normal loads and moments via a 2D
odel. The 2D plane strain simulations of rectangular composite
illars under various loading conditions have significantly less
omputational cost than full 3D simulations, which would be
eeded to study circular composite pillars under multiple load-
ng conditions. However, previous studies have shown that the
nterface stress distribution and adhesion strength of a circular
xisymmetric composite pillar are comparable to a rectangular
omposite pillar with the same compliant tip layer thickness [19,
4]. Thus, the results of this study are expected to provide insight
nto the design of circular composite pillars.

Machine learning and deep learning are increasingly being
sed in mechanical design because of their ability to correlate
omplex input to output and allow for the implementation of de-
ign optimization efficiently and accurately under various criteria
28–33]. The application of these techniques to mechanical design
uilds on extensive knowledge developed from application to
roblems in image processing [34] and speech recognition [35].
or optimization of the composite pillar design in this paper,
eural networks (NNs) were trained with FE data to predict
he effective adhesion strength and detachment mechanism of
omposite pillars under different conditions. A randomly initial-
zed constrained optimization algorithm was then applied to the
rained NNs to find the optimal composite pillar design with
espect to different performance criteria.

. Methods

.1. Determination of adhesion strength and detachment mechanism

In this paper, two loading conditions are considered for the
omposite adhesive pillars, namely normal loading and moment
oading as illustrated in Fig. 1(a) and (d). The effective adhesion
trength under those two loading conditions is quantified by the
ritical normal force F∗c or critical moment M∗

c , respectively. The
goal of finding composite pillars with high adhesion is thus to
find composite pillars with high F∗c under normal loading or high
M∗

c under moment loading. Composite adhesive pillars with high
adhesion tunability are considered to be pillars that have high
2

F∗c /M
∗
c (i.e., pillars with high F∗c under normal loading and low

M∗
c under moment loading). To calculate the adhesion strength,

interface stress distributions for 25,920 unique composite pillar
geometries under normal loading and moment loading conditions
were first calculated by FE as described in the Supplementary
Information. The composite pillars have an aspect ratio of 1 (H =

2L), and consist of a stiff core with Young’s modulus Es = 2 GPa,
Poisson ratio vs = 0.3 (representative of many thermoplastics
and thermosets) and a compliant matrix with Young’s modulus
Ec = 2 MPa, Poisson ratio vc = 0.49 (representative of common
elastomers). The stiff core is limited to having either a flat or
convex bottom surface and the compliant tip thickness is limited
to tmin/L>0.2 to ensure the tip layer is thick enough for fabrication,
and good contact adaptability to the target surface in the presence
of surface roughness and misalignment. The side profile of the
core is described by a 6th order Bézier curve which is defined
by seven control points (x1,0.2L), (x2,0.33L), (x3,0.51L), (x4,0.75L),
(x5,1.05L), (x6,1.46L), (x7,2.0L) (the expression of the Bézier curve
is shown as eq. (S1)). The x-coordinates of the control points (x1
to x7) are varied to generate different side profile of the core
and are constrained within the range [0.2L, 0.9L] to ensure that
the stiff core has sufficient width to avoid fracture of the core
and also that the stiff core does not extend to the edge of the
pillar and separate the compliant shell into multiple disconnected
regions, a geometry that would be difficult to fabricate. Example
interface stress distributions are shown in Fig. 1. The calculated
stress distributions are presented in normalized form. For the
case of a composite pillar under normal loading, the normal stress
distribution is normalized as σzz /F , with

F =
b
∫ L
−L σzzdx

2bL
=

F
2bL

, (1)

where b is the depth of the pillar. For the case of a composite
pillar under moment loading, the normal stress distribution is
normalized as σzz/M , with

M =
b
∫ L
−L σzzxdx

2bL2
=

M
2bL2

. (2)

For a composite pillar, there are two primary possible de-
tachment mechanisms [16,18,19,24]. Detachment can initiate at
either the edge of the contact or at a site within the contact
(i.e. at the center or some other internal location). The detach-
ment mechanism and adhesion strength of a composite pillar are
determined by the size and location of the defects and stress
distribution at the interface. Although the stress distribution cal-
culated from FE described in Section 2.1 is the result of a perfectly
bonded interface with no defect, the effective adhesion strength
of an interface with defects can be inferred from this stress
distribution when the defects are much smaller than the width
of the pillar [4,12,19,36].

Consider an internal crack-like defect of size ain (assuming
ain<<L). The defect is a factor that affects the local adhesion of the
interface [37,38], while it has negligible effect on the interfacial
stress distribution on the pillar level. The critical stress σin−c that
will lead to the growth of a crack-like defect of initial size ain
is [39]:

σin−c =

√
π

2
GcE∗c ain, (3)

where Gc is the critical energy release rate and E∗c = Ec /(1-ν2
c ).

The critical normal force or moment to initiate failure from this
defect is related to σin−c by the normalized stress distribution
of this composite pillar. Assuming the size of the defects, ain,
is uniform over the internal region of the contact, the internal
location with the highest stress will be the site where detachment
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Fig. 1. (a) Schematic of a rectangular composite pillar in plane strain under normal loading which has t/L = 0.2 and H/L = 2. The core (blue) is 1,000 times stiffer
than the shell (yellow). (b) Distribution of normal stress at the adhered interface for the composite pillar shown in Fig. 1(a) and a homogenous pillar (i.e., no stiff
core) under normal loading. Note, the maximum stress on the y-axis is truncated at 2. (c) Normal stress at the adhered interface near the edge for the composite
pillar and a homogenous pillar under normal loading. (d) Schematic of a rectangular composite pillar in plane strain under moment loading. (e) Distribution of
normal stress at the adhered interface for the composite pillar as shown in Fig. 1(d) and a homogenous pillar under moment loading (the y-axis is truncated at
±4). (f) Normal stress at the adhered interface near the edge for the composite pillar and a homogenous pillar under moment loading. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
initiates and will determine the critical normal force or critical
moment for cases where failure initiates within the contact. For a
normal loading case, the critical normal force Fin−c corresponding
to failure from a small internal defect is:

Fin−c

2bL
=

σin−c

σin−max/F
, (4)

where σin−c is calculated by Eq. (3) and σin−max/F is the nor-
alized internal peak stress. Similarly, for the moment loading
ase, the critical moment Min−c corresponding to failure from an
internal defect is:

Min−c

2bL2
=

σin−c

σin−max/M
. (5)

However, failure can initiate from an edge also. For the com-
posite pillar geometry studied, there is a stress concentration at
the edge of the contact. At the edge, there is a stress singularity
σzz = Hs(L−x)−0.41, where Hs is the magnitude of singularity and
(L-x) is the distance from the edge [19]. Assuming that the edge
defect with size aedge is much smaller than the width of the pillar
(such that it is embedded within the stress singularity dominated
region near the edge), the critical magnitude of singularity at the
edge, Hc , is [19]

Hc =

√
GcE∗c a

−0.20
edge

. (6)

3.7

3

The critical external normal force to initiate failure from the
edge is thus

Fedge−c

2bL
=

Hc

H∗

N
, (7)

where H∗

N is the normalized magnitude of singularity at the edge
obtained from the normalized stress distribution σzz/F . H∗

N is
the intercept of the linear region in a logarithmic plot of the
normalized stress distribution (e.g., linear region in Fig. 1(c)) [19]
and is obtained from the FE calculations. Similarly, the critical
external moment to initiate failure from an edge defect can be
calculated as
Medge−c

2bL2
=

Hc

H∗

M
. (8)

The effective adhesion strength and the location where de-
tachment initiates are determined by the defect at the interface
that leads to the lowest critical force or moment. Whether a com-
posite pillar detaches from an internal defect or an edge defect, as
well as the critical normal force Fc (or the critical momentMc), are
determined by the smaller of Fin−c and Fedge−c for normal loading
(and smaller of Min−c and Medge−c for moment loading). Both Fin−c
and Fedge−c depend on the defect sizes, but the exact value of ain
and aedge are application dependent, since they are affected by
various factors such as material properties, fabrication precision,
cleanliness, and substrate roughness. As the defect sizes are, in
general unknown, in this design study we assume a = ain =

a throughout the study. With this assumption, the detachment
edge
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echanism is determined by the following ratios:

Fin−c

Fedge−c
= 2.2a−0.4 H∗

N

σin/F
(9)

under normal loading or

Min−c

Medge−c
= 2.2a−0.4 H∗

M

σin/M
(10)

nder moment loading. Edge detachment is expected for cases
here these ratios are greater than 1 and internal crack initiation

s expected for ratios less than 1. We investigated two defect
izes, a/L = 0.001 and a/L = 0.005, to demonstrate the effect
f defect size on the optimal design. The optimization results
or other a/L can be easily obtained as long as the assumption
that the defect is sufficiently small compared to the width of the
pillar holds. The critical normal force and moment are reported
in nondimensional forms:

F∗c =
Fc

2b
√
GcE∗c L

, (11)

M∗

c =
Mc

2bL
√
GcE∗c L

. (12)

2.2. Neural networks

Machine learning calculations were conducted using Tensor-
Flow [40]. Four fully connected neural networks were constructed
to predict the effective adhesion strength of composite pillars un-
der 4 different conditions (i.e., under normal loading or moment
loading with a/L = 0.001 or a/L = 0.005), as the schematic Fig.
S1(a) shows. The positions of the control points (x1 to x7) are
inputs to the NNs and represent the geometry of the composite
pillar, and the effective adhesion strength (F∗c orM∗

c ) is the output.
The NNs consist of multiple fully connected layers: an input
layer with 7 scalar inputs, an output layer with 1 scalar output,
and 2 hidden layers with 64/16 neurons. 25,920 different pillar
geometries were examined in FE, which generated 25,920 data
pairs for each NN. 90% of the data was selected randomly as the
training set, while the remaining 10% data was the validation set.
A stochastic gradient descent optimizer ‘‘Adam’’ was used. ‘‘ReLu’’
was chosen as the activation function, and mean square error was
chosen as the loss function [41].

Five different NN structures with varied depth and neuron
number were evaluated based on mean absolute percentage error
for the 4 different conditions (the structures and prediction errors
of those NNs are summarized in Fig. S1(b) and (c)). The NN
structure with 2 hidden layers and 64/16 neurons had the lowest
mean absolute percentage error and was then used throughout
the study for prediction and optimization.

Besides the four NNs trained to predict effective adhesion of
the pillars, two binary classification NNs were constructed to
predict the detachment mechanism (edge detachment or internal
detachment) of the pillars under normal loading with a/L = 0.001
or a/L = 0.005, as described in the Supplementary Information.

2.3. Optimization

A trained NN with all weights and biases fixed is equivalent to
an algebraic function and its derivatives can be calculated analyt-
ically, so optimization algorithms that find the extremum values
of a function can be used to find the extremum outputs of the
trained NNs and the corresponding inputs [42–44]. Constrained
minimization algorithm trust-region constrained method from
Python SciPy library was used to perform optimization on the
4 NNs that were trained to predict the effective adhesion. As a
4

minimization algorithm, maximization was performed by min-
imizing the negative value of the function output. The input
variables x1 to x7 were constrained within the range [0.2L,0.9L]
in the optimization. Since the quasi-Newton based optimization
algorithm may converge to a local extremum values depending
on the initial point of search, the optimization algorithm was
run 100 times with a random initial point each time to generate
100 candidate geometries that have local optimal performances.
The final optimized design was chosen to be the best one among
the 100 local optimal candidates. Note that in our study, at least
the top 3 candidates have the same geometry. The duplication of
the best design generated by randomly initialized optimizations
indicates 100 optimum searches are very likely to capture all the
local optimum and are able to predict the global optimum.

3. Results and discussion

The stress distributions of a composite pillar in plane strain
under normal loading and moment loading as shown in Fig. 1(a)
and (d) are summarized in Fig. 1 to provide insight into the
asic mechanics of these structures. The stress distributions for a
imple homogenous pillar are also shown for comparison. When
composite pillar is subjected to a normal force (Fig. 1(a)), the
tress in the center region of the contact is elevated compared to
homogenous pillar due to the presence of a stiff core (Fig. 1(b)).
y equilibrium, the stress near the edge is thus reduced compared
o a homogenous pillar. To highlight the details of the stress
istribution and singularity near the edge, the stress distribution
s replotted on a logarithmic scale (Fig. 1(c)). The linear region
n this logarithmic plot is the edge singularity dominated region,
nd the intercept is log H∗

N . Fig. 1(c) clearly shows that the
tress near the edge and the magnitude of singularity (H∗

N ) are
educed in the composite design — this inhibits edge initiated
etachment and increases the critical normal force F∗c relative
o a homogenous pillar. However, since the effective adhesion
trength of an interface is determined by the location where
etachment first initiates, elevating the internal stress too much
an shift crack initiation from the edge to an internal site and
educe the adhesion [24]. As a result, the optimal adhesion cannot
e achieved by solely reducing the stress at one position, and
n optimized result that balances the stress distribution over the
ntire contact area is needed.
In many applications, an adhesive pillar is subjected to a

hear force and/or moment in addition to a normal force due to
actors such as misalignment, surface non-flatness, and far-field
oads with varying directions [1,25,26]. Moreover, a shear force
r moment can be applied intentionally to actively reduce the
dhesion of a pillar for easy release [16,17,45]. It is thus important
o consider additional loading conditions. When a shear force is
pplied to the top of an adhesive pillar, its effect on the interfacial
tress distribution is primarily through the moment generated by
his shear force rather than the shear stress introduced at the
nterface, because an adhesive pillar typically has a high aspect
atio and thus a long moment arm for the shear force to act
ver [4]. Moreover, a moment contributes to mode I failure which
s the lowest energy failure mode, while shear stresses contribute
o mode II failure. As a result, we focus on the moment loading
ase as shown in (Fig. 1(d)). When a moment is applied to a
omposite pillar, different from a homogenous pillar where the
tress varies monotonically from one edge to the other edge
f the contact, a peak in the tensile stress distribution within
he interior of the contact is observed because of the stiff core
Fig. 1(e)), and the magnitude of the stress near the edge is
educed (Fig. 1(f)).

To find the optimal composite pillar designs under different
onditions, 4 separate NNs were first trained to predict the critical
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Fig. 2. The optimal composite pillar designs for different crack lengths under
ormal loading (the core (blue) is 1,000 times stiffer than the shell (yellow)). (a)
he optimal design with a/L = 0.001. (b) The optimal design with a/L = 0.005.

(c) Normal stress at the adhered interface for these two designs (the maximum
value of the y-axis is truncated at 2). (d) Normal stress at the adhered interface
near the edge for these two designs. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

normal force F∗c or the critical moment M∗
c of a composite pillar

with defect size a/L = 0.001 or a/L = 0.005. Input data to the
NNs are the positions of the control points of Bézier curve, x1 to
x7, that describe the shape of the stiff core. The output is F∗c or
M∗

c of the pillar with a/L = 0.001 or a/L = 0.005. After NNs were
trained, a randomly initiated constrained optimization algorithm
was applied to those NNs to find the maximum output and the
corresponding input with respect to different criteria. In addition
to the NNs used to predict F∗c and M∗

c , binary classifiers were
also built to predict the detachment mechanism of the composite
pillars under normal loading (i.e., whether the detachment is
initiated at edge or internal region of the contact). Note that for
the moment loading case, all of the composite pillars investigated
detach from the edge, so there is no need to build a binary
classifier for moment loading cases.

The optimal composite pillar designs that have the highest
critical normal force F∗c with defect size a/L = 0.001 or a/L =

0.005 are first investigated using the machine learning-based
optimization algorithm, and the results are summarized in Fig. 2
and Table S2. The predicted optimal design that has the highest
F∗c assuming a/L = 0.001 (Fig. 2(a)) is different from the predicted
optimal design assuming a/L = 0.005 (Fig. 2(b)), which is simply
the case with the widest rectangular core (xi/L = 0.90). To
understand the reason for this difference, stress distributions of
the two designs are shown in Fig. 2(c) and (d). The optimal design
with a/L = 0.001 has a more slender core than the optimal
design with a/L = 0.005, thus the stress is higher in the center
of the contact and lower near the edge for the a/L = 0.001
optimal case. According to Eq. (9) and Fig. S2, when the defect
size a/L is smaller, edge detachment is more favorable compared
to detachment initiated at an internal site, so the optimal design
with a/L = 0.001 tends to reduce the stress near the edge more
than that of the optimal design with a/L = 0.005 to suppress the
5

Fig. 3. The optimal composite pillar designs for different crack lengths under
moment loading (the core (blue) is 1,000 times stiffer than the shell (yellow)). (a)
The optimal design with a/L = 0.001. (b) The optimal design with a/L = 0.005.
(c) Normal stress at the adhered interface for these two designs (the maximum
value of the y-axis is truncated at ±4). (d) Normal stress at the adhered interface
near the edge for these two designs. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

edge detachment. As the results in Fig. S2(c) and Table S2 indicate,
when a/L = 0.001, the composite pillar design shown in Fig. 2(a)
with an a/L of 0.001 has a critical normal force that is 11.2×
that of a homogenous pillar with an a/L of 0.001 and 1.7× that
of the composite pillar design shown in Fig. 2(b) assuming the
same crack size a/L = 0.001. When a/L = 0.005, the composite
pillar design shown in Fig. 2(b) with an a/L of 0.005 achieves
a critical normal force that is 6.5×that of a homogenous pillar
with an a/L of 0.005 and 10% higher than that of the composite
pillar design shown in Fig. 2(a) assuming the same crack size
a/L = 0.005. Results in Fig. 2 demonstrate that the optimal
design can vary as the defect size varies, and there may not be a
universal optimal composite pillar design under different contact
conditions on various surfaces.

The optimal composite pillar designs that have the highest
critical moment M∗

c with defect size a/L = 0.001 or a/L = 0.005
were also determined. As all moment-loaded pillars fail from the
edge that experiences tension, it is expected that the optimal
design should be the one with the lowest magnitude of edge
stress (i.e., the lowest H∗

M in Eq. (8)) for both a/L = 0.001 and
a/L = 0.005. The optimized designs are shown in Fig. 3(a) and
(b) and Table S3. The first three control points (x1 to x3) of these
two optimal designs are nearly the same and the rest of the
control points are different (x4 to x7), yet their interface stress
distributions are the same (Fig. 3(c) and (d)). The critical moment
is 4.5× that of a homogenous pillar and 1.5× that of a composite
pillar with the widest rectangular core investigated (xi/L = 0.90).
With the trained NNs, a sensitivity study was conducted to help
understand the effect of the position of each control point on
the critical normal force and moment, and the results are sum-
marized in Fig. 4. As the control point is further away from the
adhered interface, its effect on the critical force and moment



A. Luo, H. Zhang and K.T. Turner Extreme Mechanics Letters 54 (2022) 101695

p

b
p
c
p
F
o
F
i
a
T
c
o

w
i
a
F
d
t
e
o
d
w
h
i
t

Fig. 4. (a) The critical normal force F∗c as a function of each control point position. Each curve corresponds to varying the position of one control point with other
control points kept the same as the design in Fig. 2(a). The critical moment M∗

c as a function of each control point position. Each curve corresponds to varying the
osition of one control point with other control points kept the same as the design in Fig. 3(a).
d
a
t
b
t

F
i
a
c
T
o
s
e
a
w

a
a
n
m
s
t

h
0
T
a
2
(
r

ecomes smaller, which is expected according to Saint-Venant’s
rinciple. Only the position of the first three control points affects
ritical force and moment, and the position of the first two control
oints are the dominant ones. This explains why the designs in
ig. 3(a) and (b) have the same stress distributions even though
nly x1 to x3 to are similar. Note that x1 and x2 for the designs in
ig. 3(a) and (b) are also almost the same as those for the design
n Fig. 2(a), which indicates those designs are able to achieve high
dhesion under both normal and moment loading conditions.
his observation also provides a cut-off height for the design of
omposite pillars for which the structure and detail distribution
f the external loading above this cut-off height z/L≥0.51 have no

effect on the interfacial stress distribution and effective adhesion.
With the NNs, we can identify the optimal composite pillar

design under more complicated criteria. We have shown in Fig. 2
that the optimal design under normal loading depends on the
defect size. However, the defect size for an adhesive pillar in
contact with various surfaces is typically unknown. It is thus
useful to perform optimization based on a criterion that accounts
for the performance of the adhesive pillar with multiple possible
defect sizes. As a demonstration here, a criterion that seeks the
optimal design which maximizes the sum of the critical normal
forces under both a/L = 0.001 and a/L = 0.005 is defined as:

F∗c (a/L = 0.001)
F∗c−maxF (a/L = 0.001)

+
F∗c (a/L = 0.005)

F∗c−max (a/L = 0.005)
, (13)

here F∗c−max(a/L = 0.001) and F∗c−max(a/L = 0.005) are normal-
zation factors, F∗c−max(a/L = 0.001) is the critical normal force
chieved by the design shown in Fig. 2(a) with a/L = 0.001 and
∗
c−max(a/L = 0.005) is the critical normal force achieved by the
esign shown in Fig. 2(b) with a/L = 0.005. The optimal design
hat maximizes Eq. (13) is shown in Fig. 5(a) and Table S4. The
ffective control points (x1 to x3) are almost the same as those
f the design shown in Fig. 2(a). As Fig. S2(c) shows, though the
esign in Fig. 2(a) has a F∗c 10% lower than the design in Fig. 2(b)
ith a relatively large defect size (a/L = 0.005), it has a F∗c 72%
igher when the defect is smaller (a/L = 0.001). As the criterion
s based on the sum of F∗c for both a/L = 0.001 and a/L = 0.005,

he design in Fig. 2(a) is predicted to be the optimal design.

6

In real applications, adhesive pillars often need to work under
ifferent loading conditions, and it is often desirable to have high
dhesion under both normal loading and moment loading condi-
ions. To find a composite pillar design with high adhesion under
oth loading conditions, we propose a criterion that maximizes
he sum of the critical normal force and moment:
F∗c

F∗c−max
+

M∗
c

M∗
c−max

. (14)

To demonstrate this criterion, we choose a/L = 0.001 and
∗
c−max is the critical normal force achieved by the design shown
n Fig. 2(a) with a/L = 0.001, and M∗

c−max is the critical moment
chieved by the design shown in Fig. 3(a) with a/L = 0.001. The
orresponding optimal design is shown in Fig. 5(b) and Table S5.
he effective control points (x1 to x3) are also very similar to those
f the design shown in Fig. 2(a). The designs in Fig. 5(a) and (b)
uggest that the design in Fig. 2(a), where the stiff core has an flat
nlarged tapered end, is the optimal design for robust and high
dhesion since it maximizes the sum of the adhesion capacity
ith two defect sizes and two different loading conditions.
In addition to pillars with robust and strong adhesion, pick-

nd-place applications often require adhesive pillars to have high
dhesion tunability, i.e., an adhesion strength that is high under
ormal loading and low under moment (or shear) loading. To
aximize the adhesion tunability, we maximize the adhesion
witching ratio, which is the ratio of the critical normal force to
he critical moment:
F∗c /F∗c−max

M∗
c /M

∗
c−max

. (15)

Again, a/L = 0.001 is chosen to demonstrate this criterion
ere. The composite pillar with the thinnest stiff core (xi/L =

.20) within the range investigated as shown in Fig. 5(c) and
able S6 has the highest adhesion switching ratio. It achieves
switching ratio that is 4.7× that of a homogenous pillar and
.1× that of the composite pillar with the widest rectangular core
xi/L = 0.90) (Fig. 2(b)). The composite pillar with the thinnest
ectangular core (xi/L = 0.20) exhibits higher adhesion tunability
compared with the composite pillar with the widest rectangular
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his article.)
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ore (xi/L = 0.90) because its critical normal force is 22% lower
hile its critical moment is 58% lower than the composite pillar
ith the widest core. Since a pillar is more likely to fail from the
dge when the crack size is small (a/L = 0.001 here), even though
here is a high stress in the center of the contact for the composite
illar with the thinnest core (xi/L = 0.20), it still fails from the
dge and the magnitude of the stress near the edge is 27% higher
han the composite pillar with the widest core (Fig. S3(a) and
b)). However, when loaded with a moment, the position of the
nternal peak stress of the composite pillar with thinnest core is
loser to the center of the contact compared to the position of the
nternal peak stress of the composite pillar with widest core, and
ts internal peak stress thus generates less moment. As a result,
or a given total moment, the magnitude of the stress near the
dge for the composite pillar with the thinnest core is 2.4×that
f the composite pillar with the widest core (Fig. S3(c) and (d)). It
hould be noted that a composite pillar design generally cannot
chieve robust high adhesion (which requires the adhesion to be
igh under all loading conditions) and high adhesion tunability
which requires the adhesion to be low under at least one specific
oading condition) simultaneously. The high adhesion tunability
f the design shown in Fig. 5(c) is achieved by compromising
ts adhesion strength under both normal and moment loading
onditions compared to the design shown in Fig. 5(b) (F∗c is 53%
ower and M∗

c is 76% lower for the design shown in Fig. 5(c)
ompared to the design shown in Fig. 5(b)).

. Conclusion

In this study, we investigated the optimal design of adhe-
ive composite pillars with high effective adhesion strength un-
er different loading and contact conditions through a machine
earning-based approach. The composite pillar design with the
ighest adhesion tunability through different loading modes was
lso studied. Neural networks were trained with data generated
y finite element analysis to predict the adhesion strength of
ifferent composite pillar designs, and then used to find the
ptimal design with the best performance. It is found that the ge-
metry of the stiff core above the critical cut off height z/L≥0.51
as no effect on the interfacial stress distribution and effective
dhesion strength. Moreover, we find the optimal design depends
n the loading condition and the size of defects at the interface.
ptimization based on combined criteria that account for the
dhesion of composite pillars under different conditions together
as then conducted. The composite pillar design with a stiff core

hat has an enlarged tapered end with a flat bottom surface is

7

ound to be the optimal design for robust and high adhesion, as it
an achieve high adhesion with different loading and contact con-
itions. A composite pillar with a thin flat bottom core exhibits
igh adhesion switching ratio that enables large adhesion tunabil-
ty for easy release. These optimizations demonstrate the ability
f machine learning to optimize mechanical structure design
fficiently and quickly under complicated combined criterion.
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