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1. Introduction

Since the introduction of mean-variance (MV, for short) port-
folio selection problem by Markowitz (1952), much progress has
been made. Various extensions have been investigated including
the dynamic MV problem in multi-period model and continuous-
time models; see, e.g., Li and Ng (2000) and Zhou and Li (2000).
Certain limitations of a single diffusion and the existence of
‘regimes’ that switch among themselves in the underlying mar-
ket are realized, a system commonly referred to as the regime-
switching (RS, for short) model was used to discuss MV problems
(see, e.g., Zhou and Yin (2003)). Usually, some states of the market
cannot be observed by an investor. In the financial market with
partially observable states, hidden Markov chain is often used
to describe the evolution of the unobservable market states. The
portfolio optimization problem in the hidden Markov RS financial
market has been investigated by Elliott, Siu, and Badescu (2010)
and Yang, Yin, and Zhang (2015).

It is well-known that the dynamic MV optimization problem
is time-inconsistent in the sense that Bellman’s optimality prin-
ciple does not hold. In Strotz (1955), where a time-inconsistent
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problem within a game theoretic framework was studied, the
author viewed the time-inconsistent optimization problem as a
multi-person game and looked for a subgame perfect Nash equi-
librium point. The precise definition of the equilibrium concept
in continuous time within the class of closed-loop strategies
was provided for the first time in Ekeland and Lazrak (2006)
and Ekeland and Pirvu (2008). They investigated the optimal in-
vestment and consumption problem with hyperbolic discounting
in continuous-time deterministic and stochastic models, respec-
tively. Recently, there has been increasing interests in finding the
so-called equilibrium strategies for the time-inconsistent opti-
mization problems; see Bjork and Murgoci (2010), Hu, Jin, and
Zhou (2012), Wang, Jin, and Wei (2019), Wei and Wang (2017),
among others.

In most of the existing literature on hidden Markov model, it
is assumed that the accuracy of signal collection is fixed in the fi-
nancial market, and investors acquire information passively in the
sense that they do not control the quality of the information they
collect. However, it is reasonable to introduce costly information-
acquisition problems, which can help investors obtain accurate
information, but at the expense of decreasing her current wealth.
In Detemple and Kihlstrom (1987), the author examined the
demand for information and derived the equilibrium price of in-
formation. An investor who faces uncertainty about stock-return
predictability was considered in Xia (2001). The authors solved
the portfolio-choice and information-acquisition problem. The re-
lation between costly information acquisition and the excess co-
variance of asset prices was studied in Veldkamp (2006). In Huang
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and Liu (2007) where a dynamic portfolio-choice problem with
static costly information choice was studied, the author assumed
that the accuracy and frequency of information was chosen at
one time only. However, in Gargano and Rossi (2018), an in-
vestor’s attention was assumed time varying. Recently, a dynamic
portfolio-choice problem with dynamic information acquisition
was considered in Andrei and Hasler (2020). At each point in time,
the investor optimally chose the quantity of information that she
needed, which results in a dynamic trade-off problem between
asset and attention allocation.

In this paper, we consider the time-inconsistent MV portfolio
selection in a hidden Markov model with dynamic attention
behavior. Following the concept of investor’s attention to news
in Andrei and Hasler (2020), we introduce the dynamic atten-
tion behavior viewed as an endogenous control into the hidden
Markov model. We assume that the investor knows more accu-
rate information about the current state of the market as her
attention to news increases. Under this framework, the extended
Hamilton-Jacobi-Bellman (HJB, for short) equation cannot be
solved in closed-form. So our main objective is to find numerical
approximation of the resulting control problem. To obtain the
numerical solutions, we adopt the Markov chain approximation
method developed in Kushner and Dupuis (2013), which has
been used to find optimal controls in various complex stochastic
systems in finance, insurance, and other fields, see Jin, Yang, and
Yin (2013), Jin, Yin, and Wu (2013), Jin, Yin, and Zhu (2012), Song
(2008), Song, Yin, and Zhang (2006), Tran and Yin (2016), among
others. To the best of our knowledge, this paper is the first work
to study extended HJB equation numerically by using the Markov
chain approximation method, while the aforementioned refer-
ences are all about solving the classical HJB equation. We build an
iterative algorithm and obtain the convergence of the algorithm.
Besides, numerical examples are provided to illustrate the results.
The numerical results show that an investor with more wealth
tends to acquire more information, which is consistent with those
in Andrei and Hasler (2020).

The remainder of this paper is organized as follows. Section 2
introduces the model with the investor’s attention to news. The
Markov chain approximation method is considered in Section 3.
In Section 4, we consider the approximation of optimal con-
trols and establish the convergence of the algorithm. Section 5
gives one numerical example for illustration. Finally, Section 6
concludes the paper with further remarks.

2. Model

Let T > 0 be a fixed finite time horizon and Wq(-) =
(W), ..., W1‘1(~))T be a d-dimensional standard Brownian mo-
tion, where the symbol T indicates the transpose.! Let o(t) be a
continuous-time Markov chain independent of W valued in the
finite set .# = {1,2,...,m} and denote by Q = (q¥)nxm the
generator of «(t). Let (§2, F, P) be a complete probability space
on which W1, «(t), and all the random variables and processes
in the rest of the paper are defined.

We consider a financial market consisting of one bond and d
stocks within the time horizon [0, T]. The price of the risk-free

bond S, satisfies
dSo =1 (s, a(s)) Seds, s € (0,T],

where So(0) = so > 0 and r(-,i) > 0 is the risk-free return rate
in state i foreachi=1,2,..., m.

T In the following, we shall suppress the suffix (-) and the time variable for
processes and functions whenever there is no confusion.
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Forl=1,2,...,d, and s € (0, T], the price of the Ith stock S,
is given by
d
dS; = s, els))Sids + Y _ oy(s, a(s))SidW},
j=1

where $(0) = s > 0, w(-, i) and oy(-,i),i = 1,2,...,m
are the expected return and volatility rate of the Ith risky asset
corresponding to state i, respectively.

In our framework, instead of having full information of the
Markov chain «(t), the investor can only observe it in white noise.
However, we allow the investor to have opportunity to actively
learn about regime predictability.

Similar to Andrei and Hasler (2020), we assume that the
investor may acquire n(s) signals of equal precision Zi(s),j =
1, ..., n(s) at time s, and each signal represents information from
market, which is given by

dZ' = ¢(a(s))ds + odB, j=1,...,n(s),

where B/ forj = 1, ..., n(s) are independent real-valued standard
Brownian motions that are independent of W . Here, the function
¢ is given by a vector ¢ = (¢1, &2, ..., m), SO that ¢(«) = («, &)
where (-, -) denotes the scalar product in R™. Then there is a
standard real-valued Brownian motion B so that the aggregated
signal Z(s) := Z]"isl) dZi(s)/n(s) acquired by the investor satisfies

dZ = ¢(a(s))ds + o /+/n(s)dB. (1)

Therefore the investor can choose the number of signals n(s) to
control the accuracy of the aggregated signal. If we set 7 (s) =
n(s)/o?. Then clearly, the diffusion coefficient in (1) is 1/4/7(s).
To take this idea further, we shall not restrict 7 (s) to take only
discrete values when n(s) is integer-valued, but consider it to take
all real values in an arbitrary interval. This can be considered as a
“fluid approximation”. It is more convenient for us to work with
a real-valued control function than an integer-valued function.

Thus, we choose diffusion term as a control and consider the
following signal process

dZ = ¢ (a(s)) ds + 1/+/mdB,

with Z(0) = 0. Here, we assume that = € [e, M], where
€,M > 0 are two arbitrary constants. The boundedness of 7 is
consistent with Sims (2003), which argued that investors have
limited information-processing capacity.

We further assume that the investor can get accurate signals at
the cost of decreasing her current wealth, i.e., the investor faces a
dynamic trade-off problem of asset and attention allocation. De-
note by K the total information cost and assume that K = K(r )X,
where the per-unit-of-wealth cost function K (i) is increasing and
convex in attention (Andrei & Hasler, 2020). Let u; be the dollar
amount invested in the Ith stock. Then the wealth of the investor,
denoted by X, evolves as

dX = b(s. X, a(s). . 7)ds + o(s, X, a(s), W)W, )
where X(0) = xo, 1 := (uy, ..., Ug) ",
b(s,X,0,u,7w) =1, a)X+80" (s, 0)u—K,

o(s, X, a,u):=u' (0 (s, ))

s€(0,T],

1=lj=d’

Here, 0(-,1) = (u1(-,1) —r(-,1),..
1,2,...,m.

Next, let us recall some results about Wonham's filter. To
proceed, we denote by I¢ the indicator function of the event E
and define p(t) := Iiy(r)=, and

'7I’Ld('7i)_ r(',i))T, fori =

Pit)=Pa(t)=i|Z(s),0<s<t).
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Following Tran and Yin (2016), we know that ¢i(t),i=1,2,...,
m is the probability conditioned on the observation o (Z(s),0 < s
< t). Since ¢'(t) > 0 and Z,'"Zl ¢'(t) = 1, it is sufficient to work

with ¢ := (@', ..., wm‘l)T. Denote by

m—1
Tigiz0, Y o<
i=1

and write 9" =1 — Y " ¢! for ¢ € Sy_1.
It was shown in Wonham (1964) that the posterior probability
@ satisfies the following system of stochastic differential equation

dp = b (@) ds + & (¢, m)dW,, se(0,T],

Sm—1:= {(p = ((pl, . ..,ga'"_l)

where ¢(0) = @, == (¢g, .- - <p(')”’1)T is the initial distribution of
a(t),
.
m m
b(p) := Zq“wh o qu‘"“”cp] :

(. m) = (fw (¢(1 C(‘P))
NET M (;“(m -1)- (f/))))

£ (@) := Y, ¢(i)¢', and the innovation process W, indepen-
dent of W, is defined as

_ / JrEZs) - / VT (ols) .
0 0

With pi(t), (2) can be written as

m
dX =) p'[b(s. X, i.u, w)ds + o(s, X, i, u)dW1]

i=1
By replacing the hidden state p' by its estimate ¢/, we obtain
an estimated process of the original process. For notational sim-
plicity, we still denote by X the estimated process. Letting Y :=
(X, @), then we can get a completely observed system with the
following compacted form

dY =f(s,Y,u, )ds + X(s, Y, u, w)dv, (3)
N T
where Y(0) =y, := (X0, @g)", D 1= (Wl, W2> )

_ - T
f, Y, u,7) = (b(s, Y, u, ), b(¢)) ,

S.Y ) o(s,Y,u) 0
s, ¥, u, = - .
i 0 o (p,7)
Here, we define b(s,Y,u,w) := > b(s,x,i,u,m)p' and &
(s, Y, u):= )" o(s. x, i, u)g'.

Let F := {F; : s € [0, T]}, where F; = {W(5), Z(5),
X(t):t<S5<s).ForH:=R,RY etc.and 0 < t <s < T, define

L% (t,s; H) := {X : [t,s] x 2 — H | X is F-adapted,

E / |X(v)|2dv:| < oo} ,
LJt
[2(2;C([t,sl; H) :=={X : [t,s] x 2 — H | X is

F-adapted, has continuous paths, and

E [ sup |X(v)|2:| < oo} .

Lvelt,s]

In this paper, we restrict ourselves to closed-loop controls,
that is at each t, (u(t), = (t)) is given by u(t) = u (t, Y(t)) , 7 (t) =
7 (t, Y(t)), where the maps i1 : [0, T|xR™ — R% and 7 : [0, T]x
R™ — [e, M] are two Borel measurable functions. Here, we call
the functions it and 7 control laws. In the following, for notational
simplicity, we still write # and 7 for # and 7, respectively.
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Definition 1. Admissible control laws are maps u and 5 satisfy-
ing the following conditions:

(1) For each initial state (t,y) € [0, T] x R™, (3) has a unique
solution Y € [2(£2; C ([t, T]; R™)).

(2) The processes u(-, Y(:)) € [2(0,T;R%) and (-, Y(-) €
L2 (0, T; [¢, M]).

We denote by U and IT the class of admissible control laws u
and 7, respectively.

For any initial state (t,y), the objective of the investor is to
minimize the MV cost functional

J(t.yiu, ) = Var, [X(T)] - gEf [X(T)], t €0, T], )

where y > 0 is a constant and E.[-] := E[- |7 ]. Letting F(x) =
x — £x* and G(x) = £x?, we can rewrite (4) as

J(t, y;u, ) =E [FX(T)] - G[E X(T)]. (5)

In summary, we need to solve the following problem

Problem 1. At any time t € [0, T] with wealth and posterior
probability Y(t) = (X(t), ¢(t)), specify admissible control laws
u € U and € I1 that minimize (5).

It is well-known that Problem 1 is time-inconsistent as the
term G [E; (X(T))] involves a non-linear function of the expecta-
tion. In this paper we aim to find the time-consistent equilibrium
strategies for this problem. Following Bjork and Murgoci (2010),
we give the definition of equilibrium strategies and equilibrium
value function.

Definition 2. Consider admissible control laws u and 7. For
arbitrary admissible control laws u € U, = € IT and a fixed real
number ¢ > 0, define the control laws (u,, .) by

u(s,
( ( y)) ift<s<t+eyeR™

(ug (s,y)) _J\r Gy
.6.y) | [uc,
_( v) if t+e<s<T,yeR™
7T (s,y)
If
“minfj t,y;u,7)—J(t,y;u:, ) -0

£—>0 &
for arbitrary ¢ > 0 and (t,y) € [0, T] x R™, we say that (u, 7) is
an equilibrium control law. The corresponding equilibrium value
function V is given by V (t,y) :=]J (t,y; u, 7).

For any twice continuously differentiable function ¢(-, -, -) :
Ry x R X Sp—1 — R, we define

LTt y) = ?;f + 2b(t.y,u, 7)
+12250,y, wa (c, y.u0) )+ S L A
3 ST ek (¢() — ¢e) (k) — C(f/)))aw.dw

From the general theory of Markovian time-inconsistent stochas-
tic control (see, e.g., Bjork and Murgoci (2010)), we know that the
equilibrium value function V (t, y) satisfies the following system
of extended HJB equation

:,nf{ ”%‘(t yowa (ty u)+ 2 V(e y)
m—1
14 D= - a%g(t,y)
- ; ¢ (60) = £0)) " (s = El9)) 5 (6)
:0,
VT Y(T) =x, £"7g(t.y)=0, g(T.¥(I)=x,
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where u and 7 are control laws which realize the infimum in the
first equation of (6).

Remark 1. Although we adopt the similar idea of dynamic
attention behavior as in Andrei and Hasler (2020), we work under
a hidden Markov model and use the Wonham filter to estimate
the posterior probability. This is different from Andrei and Hasler
(2020) where the author uses the Kalman filter. As we know,
the Wonham filter is a non-linear filter, which makes it more
difficult to handle. Besides, we study equilibrium strategies for a
MV problem via extended HJB equation while Andrei and Hasler
(2020) considers a classical utility maximization problem.

3. Discrete-time approximation scheme

In this section, we present a numerical algorithm to solve (6)
using Markov chain approximation method. First, we introduce a
pair of step sizes h = (hy, hy). Here, h; > 0 is the discretization
parameter for state variables, h, > 0 is the step size for time vari-
able such that N, = T/h; is an integer without loss of generality.
Define Sy, := {(k'hy, ..., k™))" 1 k'=0,£1,...,i=1,...,m}
and let {g’n‘, n < oo} be a discrete-time controlled Markov chain
with state space S,. Let u" = (ul, u, ... )and z" = (z}, z0, .. )
denote the sequences of Ri and [e, M] valued random variables
that are the control actions at time 0, 1, ..., respectively.

Denote by P" ((y, z) |r, ¢) the probability that & transits from
state y at time nh, to state z at time (n + 1)h, conditioned on
u' = rand 7" = c. Let U" and IT" denote the collection of
ordinary controls, which are determined by measurable function
Al such that (uf, 7)) = Al (EZ k<nul 7l k< n) We say
that u!' and /" are admissible for the chain if ul' and /! are RY
and [e, M] valued random variables, respectively, and the Markov
property still holds, namely,

{§n+1 —Z|§Z,u2,ﬂ,ﬁl,k < n}

=P {& =z &, wp, my =P (&, 2) |, 7)) -
By using the Markov chain above, we can approximate the objec-
tive function defined in (5) by

Jt,ysut, 7 = [Fly, )] - 6 [Eh, )]

where 7 is the first component of & and '7N

of the discretized wealth process.
The sequence {’;‘,, n < oo} is said to be locally consistent (see,
e.g., Kushner and Dupuis (2013)) w.r.t. (3), if it satisfies

Eh,r.CAEQ =f(t,y,r,c)hy + o(hy),

hrcA;s-h = X(t,y,r,c)X(t,y,r, )Thz + o(hy),
sup|A£2| -0,
n

is the terminal value

ash— 0,

where A&l = g8 —&" EJTC and Vary ; ¢ denote the conditional
expectation and variance glven by {’g'k, uk, nk, k < n, 1;‘" =
y. ul =r, 7l = c}, respectively.

Now, we need to find transition probabilities such that the
approximating Markov chain constructed above is locally consis-
tent. To proceed, we first suppose that control space has a unique
admissible pair control (ﬁ, ﬁ') so that we can drop inf in (6). We
discretize (6) by the following finite difference method using step
sizes h = (hy, hy).

Let V := (V, g)T and denote V"(t, y) the solution to the finite
difference equation, we have V(t,y) — V"(t,y).

For the derivative w.r.t. time variable, we use

avhi(t,y) N Vit + hyy) — V(L y)
at hy '
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For the first derivative w.r.t. x, we use one-side difference

avhi(t,y)

0x
V(t+hy x+hy.0)—VI(t+hy x.0)
hq ’
Vh(t+hy,x,0)—VI(t+hy x—h1,9)
hy ’

ifb(t,y, i, 7) >0,

ifb(t,y,,#) <0,

For the second derivative w.r.t. x, we have standard difference
7VI(t,y)
x?
2 h
Vit 4+ hy, x + (—
N D VIt 4 hy x4 (

1'hy, @) — 2V(t + hy, X, @)

hi

Similarly, we can approximate the first and second derivatives
w.r.t. ¢' and all the partial derivatives of g/'(t,y) (see also Tran
and Yin (2016)). To simplify notations, we write V’;(y) for V"

(nhy, y). Then, detailed calculation leads to the following iterative
formula

VZ(y) = (§g+](y)v ) + Vh+1(.Y)
+ Vi X+ Ry, @)pay + Vi (x— hy, @)pae

m—1

+ Y (Vi @+ e, + Vi (x @ — hieph_]
i=1

2 m—
+ ZZ[ hy (% @+ (—1)hi(e; + e) piE
=1 keti

Vi (% 0+ (=1 h(e — ey)) pi{i] ,

where (suppressing variables t,y, it, 7 of b and o)

p1 = 2h2|: ,Z:(pt k
Z (¢'[¢ (i) —E(w)l)z}

(|b| + X S @) b+ oo
hi

— ¢(9)|[¢(k) = £ (o)

hy +1,

oo’ + 2b*h,
Dot i(=m=—————

, h , _ moo
Phe = | 7Y (¢']2() - Z(p) 2+(qu)*h

Izk L ok|ct) — (e )q

e e () — (@) o (c(k) ~ )]
p4;t 4h% h2‘

Here, x™ and x~ are the positive and negative parts of the real
number x, respectively, and g~,’11 1(¥) is given by

Qrf,'“(y)
=ygr ) (1 -p

el SRR

h; 2
2 h I b*h, — pa+hy

+ry, {gn+1(><+ (=1)hy, (0)7111

=1
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— QL d'¢)h
+ D amax 9+ (=1 hye) === h -

i=1

— P

- Z[ b (@ + (—1fhCe + €0) B
k#i

VR (% @+ (1) (e — ey)) pi;’:]} .

By choosing proper h, we can assume that the coefficient p; is in
[0, 1], which can be explained as the transition probability from
state y at time nh, to state y at time (n + 1)h, given (i, 7).
Similarly, we can explain the transition probabilities p,, p5,, and
piii. Similar to Yang et al. (2015), we can approximate V (t,y) by
using

Vy)y= inf J(t,y;u x").

uheuh ghemh
It follows from Kushner and Dupuis (2013) that the Markov chain
{52, n < oo} with transition probabilities defined in (7) is indeed
locally consistent with (3).

4. Approximation of optimal controls

4.1. Relaxed controls

Following Kushner and Dupuis (2013), let us first recall the
definition of relaxed controls. Let 2(U) and #(U x [t, T]) denote
the Borel o-algebras of U and U x [t, T], respectively. An admis-
sible relaxed control or simply a relaxed control m is a measure
on (U x [t, T]) such that m(U x [t,s]) =s —t for all s € [t, T].
Similarly we can define m a measure on %(IT x [t, T]) such that
m(IT x [t,s]) = s — t. Given relaxed controls m and m, there are
derivatives m; and s which are measures on %(U) and #4(IT),
respectively, such that m(dr,ds) = my(dr)ds and m(dc, ds) =
ms(dc)ds, respectively.

To prove the convergence of the algorithm, we use relaxed
control representatlon (Kushner & Dupuis, 2013). Let M =
(My, ..., Mg)" and M be a vector-valued measure and a scalar-
valued measure, respectively. To proceed, we impose the follow-
ing conditions.

(A1) M is square integrable and continuous, each component is
orthogonal, and the pairs (M;, M)+ and M are strongly
orthogonal. M is also square integrable, continuous and
orthogonal (see, e.g., Yang et al. (2015)).

Under Assumption (A1), there exist measure-valued ran-
dom processes m' and m such that the quadratic variation
processes satisfy, fori=1,2,...,d,

(Mi(A, ), Mi(B, )) (s) = 8;m'(AN B, s),
(M. ). (. ) (5) =

where A, B € #(U), A, Be B(II

M(ANB,s),
) and §;; is Kronecker delta.

(A2) m' does not depend on i, and m(U, s) = s.

Under Assumption (A1) and (A2), there are measures M
and M with quadratic variation processes m1 and m, re-
spectively, where 1 is the unit vector.
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With the relaxed controls representation, the operator of
the controlled diffusion is given by

fmm
/ —b t,y, r, c)my(dr)ms(dc)

¢

X2

Z Zqﬂqﬂ+ fzgo £0)

ik=

olt,y, r)o’(t,y, r)my(dr)

¢ (¢ (k) — Z((ﬂ))

,(;15 kcms(dc)
@

= / / LT (s, y)mg(dr)mg(de).

Besides, there are measures m, m satisfying Assumptions
(A1) and_(A2) such that for each bounded and smooth
function f(-, -),

Fev)—Fity) - / / / 27 (2, ¥(2)) my(dr)in(dc)dz

is an F martingale, where ¥ = o {Y(z), m;, ;. t <z <s}.

Then (Y, m, Fn) solves the martingale problem with oper-
ator "™ and we represent our control system as

=y+fsf /f(Y(Z),r,c) my(dr)m,(dc)dz

t uJi

+/ // X (Y(2),r, c) M(dr, dz)M(dc, dz).
t uJi

We say that (M, m) and (1\71 ﬁl) are admissible relaxed
controls for (8) if Assumption (A1) and (A2) hold and
(M) = m1, (1\71> = m. To proceed, we pose another two
conditions.

(8)

(A3) f(-,-,-)and X(-, -, -) are continuous; f(-,r,c)and X(-,r,c)
are Lipschitz continuous uniformly in r, ¢ and bounded.

(Ad) Let @ := X X7, there exist a positive constant C and a
identity matrix I such that @ — CI is positive definite and
@Gi— Y i laj| > 0, foreachi=1,...,m.

4.2. Approximation of relaxed controls and measures

Let E! denote the conditional expectation given {&, ull, 7}', k <
n} and define R" = A&" — El'A&". By local consistency, we have

Eh,y = &b+ F(ED ul hy + RE,
with
Cov /R = a( .gh n h)

= (& up, 7)) X7 (&, ul mhy + o(h).
As shown in Tran and Yin (2016), by Assumption (A4), we can
decompose
T, (DT,

where D! = diag(d',...,d™) and T" is an orthogonal matrix.
Then we can represent the increment of Brownian motion as
AW" = (DMY"(T")TR!, where R" = (&' ul, z")AW" + &h.
Thus we have

I R [(

a( un)

aMhy + S(E" ul, AW + eh
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To focus on the control part, let {Lh I < kp} and {Ch 1< I~<h} be

a finite partition of U and 17, respectlvely, such that L — 0 and
Ch - 0,ash — O.Letr, e L!'and ¢ € C~ we can defme the
random variable

h
AWIJ. = AW I(uh*rl ah= o) + AV’I Tn {u] #r,,nﬁ#cﬂ'
Then we have

g =4 +f(s’,:, n “) h,

3 S Ay W, e
LI
( ) u _r” m ( ) = I{nh_c} (9)
To approximate the continuous-time following processes
(Y, m, M, f, 1\7[) for s € [nhy, (n + 1)hy), we define the piece-
wise constant interpolations as
wh(s) = lI/rf', for =& u,m, e, mm, ZM(s) = n,
m z"2(5)-1
a(s)=">_gli)pl', Wi Z AW} (10)
i=1
Recall that m" and m are a pair admissible relaxed controls if

mh(U) = 1, mh(11

En+1_z|$1’ l<1’l}

//Ph & z|r, c)m!(dr)m(dc).

Forr, € L,, G € Cih‘ {M(Lh, ), 1 < kp} and {M ( ) 1< kh} are
orthogonal continuous martingales with (M(L}, -)) =m(L}, )1,
and (M(Cih, ~)> =1 (Cih, ) There are d + 1 dimensional standard

Brownian motions W?i(')’ I < kp, 1< ky such that

)=land

N
M (L}, s) M(C',s) = / m;/z(L?)rﬁ;/z(C{’)dW?j(z).
t

Let M" and m" be the restrictions of the measures of M and m,
respectively, on the set {L!,| < k;}, and let M" and " be the
restrictions of the measures of M and m, respectively, on the
set {Ch 1< kh} Similar to the method used in Kushner (1990,
Theorem 8.1, pp.1024-1025), we have the following lemma.

Lemma 3. Under Assumption (A1)-(A4), it holds that
(& m" M, i ") = (v, m. M., 81

where the notation = denotes weak convergence, and J(t, y; m", m")
— J(t,y; m, m).

Lemma 3 shows we can approximate the variables

(Y, m, M, m, 1\7[) by using <§h, mh, M", mh, 1\71“) satisfying
¢ =y+ [ YAE@ romahinchiz
t -

+/t;2<s(

+ &h(s). (11)
Let F" represent the o-algebra that is generated by

1 emy AL 2(CHAW2)
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Denote " and T'" the sets of admissible relaxed controls m"
and m" w.r.t. the set {§ W”, I<kpl< k,,j, respectively such

that m!" and m! are fixed probability measures in the interval
[nhy, (n + 1)hy). We then rewrite the value function as
Vi, y)y = inf _ J"(ty;m" m"),

mherh mherh
and J"(t,y; m", m") = E; [F (n"(T))] — G [Ec (n"(T))].

Next, we use the weak convergence methods (see, e.g., Kush-
ner and Dupu1s (2013)) to obtain the convergence of the al-
gorlthm Let ( S m", M", ", M") be a solution of (11), where
M" and M" are measures with respect to the filtration F", with
quadratic variation processes m"1 and m", respectively. Then we
have the following two theorems, whose proofs are presented in
Appendix A and Appendix B of Zhang, Jin, Wei, and Yin (2022).

(12)

Theorem 4. Under Assumption (A1)-(A4), let the approximating
chain {’g‘n, n< oo} be constructed with transition probabilities de-
fined in (7), let {u n < oo} and {n n < oo} be sequences
of admissible controls ‘g' be the continuous time mterpolatlons
defined by (10), m" be the relaxed control representation of u"
(continuous time interpolation of u’;), and m" be the relaxed control
representation of =" (continuous time interpolation of nh) Then

"= {g", m", M", ", M"} is tight, which has a weakly convergent
subsequence with the limit H := {Y, m, M, m, M}.

Theorem 5. Under Assumption (A1)-(A4), let V (t,y) and V" (t,y)
be value functions defined in (5) and (12), respectively. Then
Vh(t,y) > V(t,y),ash — 0.

5. A numerical example

In this section, we provide an example with m = 2 to
demonstrate our results. Here, we set hy = 0.2, h, = 0.001,
y = 0.5, N = 2000 and = € [0.001, 2]. We consider the same
financial market as Yang et al. (2015).

The per-unit-of-wealth information-cost function is specified
in quadratic form, i.e, K(x) = k2 where k > 0 is the
information-cost parameter (see Andrei and Hasler (2020)). Fix
t = 1. Let ¢ := ¢!(1) = 0.2, the value function V(1), the ratio
of risky investment to wealth w(1) and the control 7 (1) with
different values of k are shown in Figs. (a)-(c), respectively. The
relationship between the value function V(1) and (¢, x) is shown
in Fig. (d).

Fig. (a) shows the value of value function is larger when k is
smaller. This is because smaller k implies lower information cost,
and thus the investor can obtain better MV utility. It follows from
Fig. (b) that an investor intends to invest in risky assets as wealth
increases. This may be due to the fact that the investor with
less wealth intends to invest in risk-free assets for risk-averse
purposes. Given fixed wealth x, larger k implies higher informa-
tion cost, and thus the investor intends to invest in risky assets,
which makes larger w. Fig. (c) shows that as wealth increases, the
investor pays more attention to the signals with small k. Because
of the specific assumption of the information cost function in this
section, the price of information is relatively high with larger k
when investor’s wealth reaches a certain level. This will lead the
investor to reduce investment in the information market more
quickly.

6. Concluding remarks
This paper has investigated time-consistent equilibrium strate-

gies for MV portfolio selection under a hidden Markov model. We
adopted the idea of the dynamic attention behavior in Andrei and
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V(9

Optimal feedback control
0

0.001

Value function
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The ratio of risky investment to wealth w.

Fig. 1. Optimal controls and value function.

Hasler (2020) to introduce investor’s attention to news on the
hidden Markov model. That is, we considered an investor who
can, at each time, improve the accuracy of acquired information
at a cost. Under this framework, we derived an extended HJB
equation, for which we used Markov chain approximation to ob-
tain numerical solutions. We constructed an iterative algorithm,
proved its convergence, and provided some numerical results. We
also gave some explanations for our numerical results.
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