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a b s t r a c t

In this paper, we study closed-loop equilibrium strategies for mean–variance portfolio selection
problems in a hidden Markov model with dynamic attention behavior. In addition to the investment
strategy, the investor’s attention to news is introduced as a control of the accuracy of the news
signal process. The objective is to find equilibrium strategies by numerically solving an extended HJB
equation by using Markov chain approximation method. An iterative algorithm is constructed and its
convergence is established. Numerical examples are provided to illustrate the results.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Since the introduction of mean–variance (MV, for short) port-
olio selection problem by Markowitz (1952), much progress has
een made. Various extensions have been investigated including
he dynamic MV problem in multi-period model and continuous-
ime models; see, e.g., Li and Ng (2000) and Zhou and Li (2000).
ertain limitations of a single diffusion and the existence of
regimes’ that switch among themselves in the underlying mar-
et are realized, a system commonly referred to as the regime-
witching (RS, for short) model was used to discuss MV problems
see, e.g., Zhou and Yin (2003)). Usually, some states of the market
annot be observed by an investor. In the financial market with
artially observable states, hidden Markov chain is often used
o describe the evolution of the unobservable market states. The
ortfolio optimization problem in the hidden Markov RS financial
arket has been investigated by Elliott, Siu, and Badescu (2010)
nd Yang, Yin, and Zhang (2015).
It is well-known that the dynamic MV optimization problem

s time-inconsistent in the sense that Bellman’s optimality prin-
iple does not hold. In Strotz (1955), where a time-inconsistent

✩ The material in this paper was partially presented at none. This paper
was recommended for publication in revised form by Associate Editor Valery
Ugrinovskii under the direction of Editor Ian R. Petersen.
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problem within a game theoretic framework was studied, the
author viewed the time-inconsistent optimization problem as a
multi-person game and looked for a subgame perfect Nash equi-
librium point. The precise definition of the equilibrium concept
in continuous time within the class of closed-loop strategies
was provided for the first time in Ekeland and Lazrak (2006)
and Ekeland and Pirvu (2008). They investigated the optimal in-
vestment and consumption problem with hyperbolic discounting
in continuous-time deterministic and stochastic models, respec-
tively. Recently, there has been increasing interests in finding the
so-called equilibrium strategies for the time-inconsistent opti-
mization problems; see Björk and Murgoci (2010), Hu, Jin, and
Zhou (2012), Wang, Jin, and Wei (2019), Wei and Wang (2017),
among others.

In most of the existing literature on hidden Markov model, it
is assumed that the accuracy of signal collection is fixed in the fi-
nancial market, and investors acquire information passively in the
sense that they do not control the quality of the information they
collect. However, it is reasonable to introduce costly information-
acquisition problems, which can help investors obtain accurate
information, but at the expense of decreasing her current wealth.
In Detemple and Kihlstrom (1987), the author examined the
demand for information and derived the equilibrium price of in-
formation. An investor who faces uncertainty about stock-return
predictability was considered in Xia (2001). The authors solved
the portfolio-choice and information-acquisition problem. The re-
lation between costly information acquisition and the excess co-
variance of asset prices was studied in Veldkamp (2006). In Huang
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nd Liu (2007) where a dynamic portfolio-choice problem with
tatic costly information choice was studied, the author assumed
hat the accuracy and frequency of information was chosen at
ne time only. However, in Gargano and Rossi (2018), an in-

vestor’s attention was assumed time varying. Recently, a dynamic
portfolio-choice problem with dynamic information acquisition
was considered in Andrei and Hasler (2020). At each point in time,
the investor optimally chose the quantity of information that she
needed, which results in a dynamic trade-off problem between
asset and attention allocation.

In this paper, we consider the time-inconsistent MV portfolio
selection in a hidden Markov model with dynamic attention
behavior. Following the concept of investor’s attention to news
in Andrei and Hasler (2020), we introduce the dynamic atten-
tion behavior viewed as an endogenous control into the hidden
Markov model. We assume that the investor knows more accu-
rate information about the current state of the market as her
attention to news increases. Under this framework, the extended
Hamilton–Jacobi–Bellman (HJB, for short) equation cannot be
solved in closed-form. So our main objective is to find numerical
approximation of the resulting control problem. To obtain the
numerical solutions, we adopt the Markov chain approximation
method developed in Kushner and Dupuis (2013), which has
been used to find optimal controls in various complex stochastic
systems in finance, insurance, and other fields, see Jin, Yang, and
Yin (2013), Jin, Yin, and Wu (2013), Jin, Yin, and Zhu (2012), Song
(2008), Song, Yin, and Zhang (2006), Tran and Yin (2016), among
others. To the best of our knowledge, this paper is the first work
to study extended HJB equation numerically by using the Markov
chain approximation method, while the aforementioned refer-
ences are all about solving the classical HJB equation. We build an
iterative algorithm and obtain the convergence of the algorithm.
Besides, numerical examples are provided to illustrate the results.
The numerical results show that an investor with more wealth
tends to acquire more information, which is consistent with those
in Andrei and Hasler (2020).

The remainder of this paper is organized as follows. Section 2
introduces the model with the investor’s attention to news. The
Markov chain approximation method is considered in Section 3.
In Section 4, we consider the approximation of optimal con-
trols and establish the convergence of the algorithm. Section 5
gives one numerical example for illustration. Finally, Section 6
concludes the paper with further remarks.

2. Model

Let T > 0 be a fixed finite time horizon and W 1(·) =(
W 1

1 (·), . . . ,W
d
1 (·)

)⊤ be a d-dimensional standard Brownian mo-
tion, where the symbol ⊤ indicates the transpose.1 Let α(t) be a
continuous-time Markov chain independent of W 1 valued in the
finite set M = {1, 2, . . . ,m} and denote by Q = (qij)m×m the
generator of α(t). Let (Ω,F, P) be a complete probability space
on which W 1, α(t), and all the random variables and processes
in the rest of the paper are defined.

We consider a financial market consisting of one bond and d
stocks within the time horizon [0, T ]. The price of the risk-free
bond S0 satisfies

dS0 = r (s, α(s)) S0ds, s ∈ (0, T ],

where S0(0) = s0 > 0 and r(·, i) ≥ 0 is the risk-free return rate
in state i for each i = 1, 2, . . . ,m.

1 In the following, we shall suppress the suffix (·) and the time variable for
rocesses and functions whenever there is no confusion.
2

For l = 1, 2, . . . , d, and s ∈ (0, T ], the price of the lth stock Sl
s given by

Sl = µl(s, α(s))Slds +

d∑
j=1

σlj(s, α(s))SldW l
1,

here Sl(0) = sl > 0, µl(·, i) and σlj(·, i), i = 1, 2, . . . ,m
are the expected return and volatility rate of the lth risky asset
corresponding to state i, respectively.

In our framework, instead of having full information of the
Markov chain α(t), the investor can only observe it in white noise.
However, we allow the investor to have opportunity to actively
learn about regime predictability.

Similar to Andrei and Hasler (2020), we assume that the
investor may acquire n(s) signals of equal precision Z j(s), j =

1, . . . , n(s) at time s, and each signal represents information from
market, which is given by

dZ j
= ζ (α(s))ds + σdBj, j = 1, . . . , n(s),

where Bj for j = 1, . . . , n(s) are independent real-valued standard
Brownian motions that are independent of W 1. Here, the function
ζ is given by a vector ζ = (ζ1, ζ2, . . . , ζm)′, so that ζ (α) = ⟨α, ζ⟩
where ⟨·, ·⟩ denotes the scalar product in Rm. Then there is a
standard real-valued Brownian motion B so that the aggregated
signal Z(s) :=

∑n(s)
j=1 dZ

j(s)/n(s) acquired by the investor satisfies

dZ = ζ (α(s))ds + σ/
√
n(s)dB. (1)

Therefore the investor can choose the number of signals n(s) to
control the accuracy of the aggregated signal. If we set π (s) =

n(s)/σ 2. Then clearly, the diffusion coefficient in (1) is 1/
√

π (s).
To take this idea further, we shall not restrict π (s) to take only
iscrete values when n(s) is integer-valued, but consider it to take
ll real values in an arbitrary interval. This can be considered as a
‘fluid approximation’’. It is more convenient for us to work with
real-valued control function than an integer-valued function.
Thus, we choose diffusion term as a control and consider the

ollowing signal process

Z = ζ (α(s)) ds + 1/
√

πdB, s ∈ (0, T ],

with Z(0) = 0. Here, we assume that π ∈ [ϵ,M], where
ϵ,M > 0 are two arbitrary constants. The boundedness of π is
consistent with Sims (2003), which argued that investors have
limited information-processing capacity.

We further assume that the investor can get accurate signals at
the cost of decreasing her current wealth, i.e., the investor faces a
dynamic trade-off problem of asset and attention allocation. De-
note by K̄ the total information cost and assume that K̄ = K (π )X ,
here the per-unit-of-wealth cost function K (π ) is increasing and
onvex in attention (Andrei & Hasler, 2020). Let ul be the dollar
mount invested in the lth stock. Then the wealth of the investor,
enoted by X , evolves as

X = b(s, X, α(s), u, π )ds + σ(s, X, α(s), u)dW 1, (2)

where X(0) = x0, u := (u1, . . . , ud)
⊤,

b (s, X, α, u, π) := r (s, α) X + θ⊤ (s, α) u − K̄ ,

σ (s, X, α, u) := u⊤
(
σlj (s, α)

)
1≤l,j≤d .

Here, θ(·, i) := (µ1(·, i) − r(·, i), . . . , µd(·, i) − r(·, i))⊤, for i =

1, 2, . . . ,m.
Next, let us recall some results about Wonham’s filter. To

proceed, we denote by IE the indicator function of the event E
and define pi(t) := I{α(t)=i}, and
i
ϕ (t) := P (α(t) = i | Z(s), 0 ≤ s ≤ t) .
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ollowing Tran and Yin (2016), we know that ϕi(t), i = 1, 2, . . . ,
m is the probability conditioned on the observation σ (Z(s), 0 ≤ s
≤ t). Since ϕi(t) ≥ 0 and

∑m
i=1 ϕi(t) = 1, it is sufficient to work

ith ϕ :=
(
ϕ1, . . . , ϕm−1

)⊤. Denote by

m−1 :=

{
ϕ =

(
ϕ1, . . . , ϕm−1)⊤

: ϕi
≥ 0,

m−1∑
i=1

ϕi
≤ 1

}
,

and write ϕm
= 1 −

∑m−1
i=1 ϕi for ϕ ∈ Sm−1.

It was shown in Wonham (1964) that the posterior probability
ϕ satisfies the following system of stochastic differential equation

dϕ = b̃ (ϕ) ds + σ̃ (ϕ, π) dŴ2, s ∈ (0, T ],

where ϕ(0) = ϕ0 :=
(
ϕ1
0 , . . . , ϕ

m−1
0

)⊤
is the initial distribution of

α(t),

b̃ (ϕ) :=

⎛⎝ m∑
j=1

qj1ϕj, . . . ,

m∑
j=1

qj(m−1)ϕj

⎞⎠⊤

,

σ̃ (ϕ, π) :=
(√

πϕ1 (ζ (1) − ζ̄ (ϕ)
)
, . . . ,

√
πϕm−1 (ζ (m − 1) − ζ̄ (ϕ)

))⊤
,

¯ (ϕ) :=
∑m

i=1 ζ (i)ϕi, and the innovation process Ŵ2, indepen-
ent of W 1, is defined as

ˆ 2(t) :=

∫ t

0

√
π (s)dZ(s) −

∫ t

0

√
π (s)ζ̄ (ϕ(s)) ds.

With pi(t), (2) can be written as

X =

m∑
i=1

pi [b(s, X, i, u, π )ds + σ(s, X, i, u)dW 1] .

y replacing the hidden state pi by its estimate ϕi, we obtain
n estimated process of the original process. For notational sim-
licity, we still denote by X the estimated process. Letting Y :=

X,ϕ)⊤, then we can get a completely observed system with the
ollowing compacted form

Y = f (s,Y , u, π )ds + Σ (s,Y , u, π )dv̂, (3)

here Y (0) = y0 := (x0,ϕ0)⊤, v̂ :=

(
W 1, Ŵ2

)⊤

,

(s,Y , u, π ) :=

(
b̄(s,Y , u, π ), b̃(ϕ)

)⊤

,

(s,Y , u, π ) :=

(
σ̄(s,Y , u) 0

0 σ̃ (ϕ, π)

)
.

ere, we define b̄(s,Y , u, π ) :=
∑m

i=1 b(s, x, i, u, π )ϕi and σ̄
s,Y , u) :=

∑m
i=1 σ(s, x, i, u)ϕ

i.
Let F := {Fs : s ∈ [0, T ]}, where Fs = {W 1(s̃), Z(s̃),

(t) : t ≤ s̃ ≤ s}. For H := R,Rd, etc. and 0 ≤ t ≤ s ≤ T , define
2
F (t, s;H) := {X : [t, s] × Ω → H | X is F-adapted,

E

[∫ s

t
|X(v)|2dv

]
< ∞

}
,

2
F (Ω; C ([t, s];H)) := {X : [t, s] × Ω → H | X is
-adapted, has continuous paths, and

E

[
sup

v∈[t,s]
|X(v)|2

]
< ∞

}
.

In this paper, we restrict ourselves to closed-loop controls,
hat is at each t , (u(t), π (t)) is given by u(t) = ũ (t,Y (t)) , π (t) =

˜ (t,Y (t)), where the maps ũ : [0, T ]×Rm
→ Rd

+
and π̃ : [0, T ]×

m
→ [ϵ,M] are two Borel measurable functions. Here, we call

he functions ũ and π̃ control laws. In the following, for notational
˜
implicity, we still write u and π for u and π̃ , respectively.

3

efinition 1. Admissible control laws are maps u and π satisfy-
ng the following conditions:

(1) For each initial state (t, y) ∈ [0, T ] × Rm, (3) has a unique
solution Y ∈ L2F (Ω; C ([t, T ];Rm)).

(2) The processes u(·,Y (·)) ∈ L2F
(
0, T ;Rd

+

)
and π (·,Y (·)) ∈

L2F (0, T ; [ϵ,M]).

We denote by U and Π the class of admissible control laws u
nd π , respectively.
For any initial state (t, y), the objective of the investor is to

inimize the MV cost functional

(t, y; u, π) = Var t [X(T )] −
γ

2
Et [X(T )] , t ∈ [0, T ], (4)

where γ > 0 is a constant and Et [·] := E[· |Ft ]. Letting F (x) =

−
γ

2 x
2 and G(x) =

γ

2 x
2, we can rewrite (4) as

(t, y; u, π) = Et [F (X(T ))] − G [Et (X(T ))] . (5)

In summary, we need to solve the following problem

roblem 1. At any time t ∈ [0, T ] with wealth and posterior
robability Y (t) = (X(t),ϕ(t)), specify admissible control laws
∈ U and π ∈ Π that minimize (5).

It is well-known that Problem 1 is time-inconsistent as the
term G [Et (X(T ))] involves a non-linear function of the expecta-
tion. In this paper we aim to find the time-consistent equilibrium
strategies for this problem. Following Björk and Murgoci (2010),
we give the definition of equilibrium strategies and equilibrium
value function.

Definition 2. Consider admissible control laws ū and π̄ . For
arbitrary admissible control laws u ∈ U , π ∈ Π and a fixed real
number ε > 0, define the control laws (uε, πε) by

(
uε (s, y)

πε (s, y)

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
u (s, y)

π (s, y)

)
if t ≤ s < t + ε, y ∈ Rm,(

ū (s, y)

π̄ (s, y)

)
if t + ε ≤ s ≤ T , y ∈ Rm.

If

lim inf
ε→0

J (t, y; ū, π̄) − J (t, y; uε, πε)

ε
≥ 0

for arbitrary ε > 0 and (t, y) ∈ [0, T ] × Rm, we say that (ū, π̄) is
an equilibrium control law. The corresponding equilibrium value
function V is given by V (t, y) := J (t, y; ū, π̄).

For any twice continuously differentiable function φ(·, ·, ·) :

R+ × R × Sm−1 ↦→ R, we define

L u,πφ(t, y) :=
∂φ

∂t +
∂φ

∂x b̄ (t, y, u, π)

+
1
2

∂2φ

∂x2
σ̄(t, y, u)σ̄⊤(t, y, u) +

∑m−1
i=1

∂φ

∂ϕi

∑m
j=1 q

jiϕj

+
1
2π
∑m−1

i,k=1 ϕiϕk
(
ζ (i) − ζ̄ (ϕ)

) (
ζ (k) − ζ̄ (ϕ)

)
∂2φ

∂ϕi∂ϕk .

rom the general theory of Markovian time-inconsistent stochas-
ic control (see, e.g., Björk and Murgoci (2010)), we know that the
quilibrium value function V (t, y) satisfies the following system
f extended HJB equation

inf
,π

{
−

γ

2
∂2g(t, y)

∂x2
σ̄(t, y, u)σ̄⊤(t, y, u) + L u,πV (t, y)

−
γ

2
π

m−1∑
i,k=1

ϕi (ζ (i) − ζ̄ (ϕ)
)
ϕk (ζ (k) − ζ̄ (ϕ)

) ∂2g(t, y)
∂ϕi∂ϕk

}
= 0,

ū,π̄

(6)
V (T ,Y (T )) = x, L g(t, y) = 0, g (T ,Y (T )) = x,
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here ū and π̄ are control laws which realize the infimum in the
first equation of (6).

Remark 1. Although we adopt the similar idea of dynamic
attention behavior as in Andrei and Hasler (2020), we work under
hidden Markov model and use the Wonham filter to estimate

he posterior probability. This is different from Andrei and Hasler
2020) where the author uses the Kalman filter. As we know,
he Wonham filter is a non-linear filter, which makes it more
ifficult to handle. Besides, we study equilibrium strategies for a
V problem via extended HJB equation while Andrei and Hasler

2020) considers a classical utility maximization problem.

. Discrete-time approximation scheme

In this section, we present a numerical algorithm to solve (6)
sing Markov chain approximation method. First, we introduce a
air of step sizes h = (h1, h2). Here, h1 > 0 is the discretization
arameter for state variables, h2 > 0 is the step size for time vari-
ble such that Nh2 = T/h2 is an integer without loss of generality.
efine Sh1 :=

{
(k1h1, . . . , kmh1)⊤ : ki = 0, ±1, . . . , i = 1, . . . ,m

}
nd let {ξhn, n < ∞} be a discrete-time controlled Markov chain

with state space Sh1 . Let u
h

= (uh
0, u

h
1, . . . ) and π

h
= (πh

0 , πh
1 , . . . )

denote the sequences of Rd
+

and [ϵ,M] valued random variables
that are the control actions at time 0, 1, . . . , respectively.

Denote by Ph ((y, z) |r, c ) the probability that ξ transits from
tate y at time nh2 to state z at time (n + 1)h2 conditioned on
h
n = r and πh

n = c. Let U h and Πh denote the collection of
rdinary controls, which are determined by measurable function
h
n, such that

(
uh
n, π

h
n

)
= Λh

n

(
ξhk, k ≤ n, uh

k, π
h
k , k < n

)
. We say

hat uh
n and πh

n are admissible for the chain if uh
n and πh

n are Rd
+

and [ϵ,M] valued random variables, respectively, and the Markov
property still holds, namely,

P
{
ξhn+1 = z

⏐⏐ξhk, uh
k, π

h
k , k ≤ n

}
=P

{
ξhn+1 = z

⏐⏐ξhn, uh
n, π

h
n

}
:= Ph ((ξhn, z) ⏐⏐uh

n, π
h
n

)
.

By using the Markov chain above, we can approximate the objec-
tive function defined in (5) by

J(t, y; uh,πh) = Et

[
F (ηh

Nh2
)
]

− G
[
Et (ηh

Nh2
)
]
,

where η is the first component of ξ and ηh
Nh2

is the terminal value
of the discretized wealth process.

The sequence {ξhn, n < ∞} is said to be locally consistent (see,
e.g., Kushner and Dupuis (2013)) w.r.t. (3), if it satisfies

Eh,r,c
y,n △ξhn = f (t, y, r, c)h2 + o(h2),

Var h,r,c
y,n △ξhn = Σ (t, y, r, c)Σ (t, y, r, c)⊤h2 + o(h2),

sup
n

⏐⏐△ξhn⏐⏐ → 0, as h → 0,

where △ξhn := ξhn+1−ξhn, E
h,r,c
y,n and Var h,r,c

y,n denote the conditional
expectation and variance given by {ξhk, u

h
k, π

h
k , k ≤ n, ξhn =

y, uh
n = r, πh

n = c}, respectively.
Now, we need to find transition probabilities such that the

approximating Markov chain constructed above is locally consis-
tent. To proceed, we first suppose that control space has a unique
admissible pair control

(
û, π̂

)
so that we can drop inf in (6). We

discretize (6) by the following finite difference method using step
sizes h = (h1, h2).

Let V := (V , g)⊤ and denote V h(t, y) the solution to the finite
difference equation, we have V (t, y) → V h(t, y).

For the derivative w.r.t. time variable, we use

∂V h(t, y)
→

V h(t + h2, y) − V h(t, y)
.

∂t h2

4

For the first derivative w.r.t. x, we use one-side difference

∂V h(t, y)
∂x

→

⎧⎨⎩
Vh(t+h2,x+h1,ϕ)−Vh(t+h2,x,ϕ)

h1
, if b̄

(
t, y, û, π̂

)
≥ 0,

Vh(t+h2,x,ϕ)−Vh(t+h2,x−h1,ϕ)
h1

, if b̄
(
t, y, û, π̂

)
< 0.

For the second derivative w.r.t. x, we have standard difference

∂2V h(t, y)
∂x2

→

∑2
l=1 V

h(t + h2, x + (−1)lh1,ϕ) − 2V h(t + h2, x,ϕ)
h2
1

.

imilarly, we can approximate the first and second derivatives
.r.t. ϕi and all the partial derivatives of gh(t, y) (see also Tran
nd Yin (2016)). To simplify notations, we write V h

n(y) for V h

nh2, y). Then, detailed calculation leads to the following iterative
ormula
h
n(y) =

(
g̃h
n+1(y), 0

)⊤
+ V h

n+1(y)p1
+ V h

n+1(x + h1,ϕ)p2+ + V h
n+1(x − h1,ϕ)p2−

+

m−1∑
i=1

[
V h

n+1(x,ϕ + h1ei)pi3+ + V h
n+1(x,ϕ − h1ei)pi3−

]
+

2∑
l=1

m−1∑
k̸=i

[
V h

n+1

(
x,ϕ + (−1)lh1(ei + ek)

)
pi,k4+

+V h
n+1

(
x,ϕ + (−1)lh1(ei − ek)

)
pi,k4−

]
,

here (suppressing variables t, y, û, π̂ of b and σ)

p1 :=
h2

2h2
1

[
π̂

m−1∑
i,k=1

ϕiϕk
⏐⏐ζ (i) − ζ̄ (ϕ)

⏐⏐⏐⏐ζ (k) − ζ̄ (ϕ)
⏐⏐

−3π̂
m−1∑
i=1

(
ϕi
⏐⏐ζ (i) − ζ̄ (ϕ)

⏐⏐)2]

−

(
|b| +

∑m−1
i=1

⏐⏐∑m
j=1 q

jiϕj
⏐⏐) h1 + σσ⊤

h2
1

h2 + 1,

2± :=
σσ⊤

+ 2b±h1

2h2
1

h2, (7)

pi3± :=
h2

h2
1

⎡⎣π̂

m−1∑
i=1

(
ϕi
⏐⏐ζ (i) − ζ̄ (ϕ)

⏐⏐)2 + (
m∑
j=1

qjiϕj)±h1

−
π̂ϕi

⏐⏐ζ (i) − ζ̄ (ϕ)
⏐⏐∑m−1

k=1 ϕk
⏐⏐ζ (k) − ζ̄ (ϕ)

⏐⏐
2

]
,

pi,k4± :=
π̂
[
ϕi
(
ζ (i) − ζ̄ (ϕ)

)
ϕk
(
ζ (k) − ζ̄ (ϕ)

)]±
4h2

1
h2.

Here, x+ and x− are the positive and negative parts of the real
number x, respectively, and g̃h

n+1(y) is given by

g̃h
n+1(y)

= γ gh
n+1(y)

(
1 − p1 −

∑m−1
i=1

⏐⏐∑m
j=1 q

jiϕj
⏐⏐+ |b|

h1
h2

)

+ γ

2∑{
gh
n+1(x + (−1)lh1,ϕ)

b+h2 − p2+h1

h

l=1 1
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B
[

s
S
p

+

m−1∑
i=1

gh
n+1(x,ϕ + (−1)lh1ei)

(
∑m

j=1 q
jiϕj)+h2 − pi3+h1

h1

−

m−1∑
k̸=i

[
V h

n+1

(
x,ϕ + (−1)lh1(ei + ek)

)
pi,k4+

+V h
n+1

(
x,ϕ + (−1)lh1(ei − ek)

)
pi,k4−

]}
.

y choosing proper h, we can assume that the coefficient p1 is in
0, 1], which can be explained as the transition probability from
tate y at time nh2 to state y at time (n + 1)h2 given

(
û, π̂

)
.

imilarly, we can explain the transition probabilities p2±, pi3±, and
i,k
4±. Similar to Yang et al. (2015), we can approximate V (t, y) by

using

V (t, y) = inf
uh∈Uh,πh∈Πh

J
(
t, y; uh,πh) .

It follows from Kushner and Dupuis (2013) that the Markov chain
{ξhn, n < ∞} with transition probabilities defined in (7) is indeed
locally consistent with (3).

4. Approximation of optimal controls

4.1. Relaxed controls

Following Kushner and Dupuis (2013), let us first recall the
definition of relaxed controls. Let B(U ) and B(U × [t, T ]) denote
the Borel σ -algebras of U and U × [t, T ], respectively. An admis-
sible relaxed control or simply a relaxed control m is a measure
on B(U × [t, T ]) such that m(U × [t, s]) = s − t for all s ∈ [t, T ].
Similarly we can define m̃ a measure on B(Π × [t, T ]) such that
m̃(Π × [t, s]) = s − t . Given relaxed controls m and m̃, there are
derivatives ms and m̃s which are measures on B(U ) and B(Π ),
respectively, such that m(dr, ds) = ms(dr)ds and m̃(dc, ds) =

m̃s(dc)ds, respectively.
To prove the convergence of the algorithm, we use relaxed

control representation (Kushner & Dupuis, 2013). Let M =

(M1, . . . ,Md)⊤ and M̃ be a vector-valued measure and a scalar-
valued measure, respectively. To proceed, we impose the follow-
ing conditions.

(A1) M is square integrable and continuous, each component is
orthogonal, and the pairs (Mi,Mj)i̸=j and M̃ are strongly
orthogonal. M̃ is also square integrable, continuous and
orthogonal (see, e.g., Yang et al. (2015)).

Under Assumption (A1), there exist measure-valued ran-
dom processes mi and m̃ such that the quadratic variation
processes satisfy, for i = 1, 2, . . . , d,⟨
Mi(A, ·),Mj(B, ·)

⟩
(s) = δijmi(A ∩ B, s),⟨

M̃(Ã, ·), M̃(B̃, ·)
⟩
(s) = m̃(Ã ∩ B̃, s),

where A, B ∈ B(U ), Ã, B̃ ∈ B(Π ) and δij is Kronecker delta.

(A2) mi does not depend on i, and m(U , s) = s.

Under Assumption (A1) and (A2), there are measures M
and M̃ with quadratic variation processes m1 and m̃, re-

spectively, where 1 is the unit vector.

5

With the relaxed controls representation, the operator of
the controlled diffusion is given by

L m,m̃φ(t, y)

:=
∂φ

∂t
+

∫∫
∂φ

∂x
b(t, y, r, c)ms(dr)m̃s(dc)

+
1
2

∫
∂2φ

∂x2
σ(t, y, r)σ⊤(t, y, r)ms(dr)

+

m−1∑
i=1

∂φ

∂ϕi

m∑
j=1

qjiϕj
+

1
2

∫ m−1∑
i,k=1

ϕi (ζ (i) − ζ̄ (ϕ)
)

× ϕk (ζ (k) − ζ̄ (ϕ)
) ∂2φ

∂ϕi∂ϕk cm̃s(dc)

=

∫∫
L u,πφ(s, y)ms(dr)m̃s(dc).

Besides, there are measures m, m̃ satisfying Assumptions
(A1) and (A2) such that for each bounded and smooth
function f̃ (·, ·),

f̃ (s,Y ) − f̃ (t, y) −

∫∫∫
L u,π f̃ (z,Y (z))mz(dr)m̃z(dc)dz

is an F̃ martingale, where F̃ = σ
{
Y (z),mz, m̃z, t ≤ z ≤ s

}
.

Then
(
Y ,m, m̃

)
solves the martingale problem with oper-

ator L u,π and we represent our control system as

Y (s) = y +

∫ s

t

∫
U

∫
Π

f (Y (z), r, c)mz(dr)m̃z(dc)dz

+

∫ s

t

∫
U

∫
Π

Σ (Y (z), r, c)M(dr, dz)M̃(dc, dz).
(8)

We say that (M,m) and
(
M̃, m̃

)
are admissible relaxed

controls for (8) if Assumption (A1) and (A2) hold and
⟨M⟩ = m1,

⟨
M̃
⟩

= m̃. To proceed, we pose another two
conditions.

(A3) f (·, ·, ·) and Σ (·, ·, ·) are continuous; f (·, r, c) and Σ (·, r, c)
are Lipschitz continuous uniformly in r, c and bounded.

(A4) Let a := ΣΣ⊤, there exist a positive constant C and a
identity matrix I such that a − CI is positive definite and
aii −

∑
j:j̸=i

⏐⏐aij
⏐⏐ ≥ 0, for each i = 1, . . . ,m.

4.2. Approximation of relaxed controls and measures

Let Eh
n denote the conditional expectation given {ξhk, u

h
k, π

h
k , k ≤

n} and define Rh
n = △ξhn − Eh

n△ξ
h
n. By local consistency, we have

ξhn+1 = ξhn + f (ξhn, u
h
n, π

h
n )h2 + Rh

n,

with

Cov h
nR

h
n = a(ξhn, u

h
n, π

h
n )

= Σ (ξhn, u
h
n, π

h
n )Σ

⊤(ξhn, u
h
n, π

h
n )h2 + o(h).

As shown in Tran and Yin (2016), by Assumption (A4), we can
decompose

a(ξhn, u
h
n, π

h
n ) = T h

n(D
h
n)

2(T h
n)

⊤,

where Dh
n = diag(d1, . . . , dm) and T h

n is an orthogonal matrix.
Then we can represent the increment of Brownian motion as
△W h

n = (Dh
n)

−1(T h
n)

⊤Rh
n, where Rh

n = Σ (ξhn, uh
n, π

h
n )△W h

n + εhn.
Thus we have
h h h h h h h h h h
ξn+1 = ξn + f (ξn, un, πn )h2 + Σ (ξn, un, πn )△W n + εn.
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6

g

o focus on the control part, let {Lh
l , l ≤ kh} and {Ch

l̃
, l̃ ≤ k̃h} be

finite partition of U and Π , respectively, such that Lh
l → 0 and

h
l̃

→ 0, as h → 0. Let r l ∈ Lh
l and cl̃ ∈ Ch

l̃
, we can define the

andom variable

W h
l,l̃,n

= △W h
nI{uhn=r l,πh

n=cl̃}
+ △ψh

l,l̃,nI{uhn ̸=r l,πh
n ̸=cl̃}

.

hen we have
h
n+1 = ξhn + f (ξhn, u

h
n, π

h
n )h2

+

∑
l,l̃

Σ (ξhn, u
h
n, π

h
n )I{uhn=r l,πh

n=cl̃}
△W h

l,l̃,n
+ εhn,

h
n(r l) = I

{uhn=r l}
, m̃h

n(cl̃) = I
{πh

n=cl̃}
. (9)

o approximate the continuous-time following processes
Y ,m,M, m̃, M̃

)
, for s ∈ [nh2, (n + 1)h2), we define the piece-

ise constant interpolations as
h(s) = Ψ h

n , for Ψ = ξ, u, π, ε,m, m̃, zh2 (s) = n,

¯
h(s) =

m∑
i=1

g(i)ϕh,i
n , W h

l,l̃
(s) =

zh2 (s)−1∑
k=0

△W h
l,l̃,k

. (10)

ecall that mh
n and m̃h

n are a pair admissible relaxed controls if
h
n(U ) = 1, m̃h

n(Π ) = 1 and

P
{
ξhn+1 = z

⏐⏐ξhi ,mh
i , m̃

h
i , i ≤ n

}∫∫
Ph(ξhn, z|r, c )m

h
n(dr)m̃

h
n(dc).

or r l ∈ Lh
l , cl̃ ∈ Ch

l̃
, {M(Lh

l , ·), l ≤ kh} and {M̃(Ch
l̃
, ·), l̃ ≤ k̃h} are

rthogonal continuous martingales with
⟨
M(Lh

l , ·)
⟩
= m

(
Lh
l , ·
)
1,

nd
⟨
M̃(Ch

l̃
, ·)
⟩
= m̃

(
Ch
l̃
, ·

)
. There are d+1 dimensional standard

rownian motions W h
l,l̃
(·), l ≤ kh, l̃ ≤ k̃h such that(

Lh
l , s
)
M̃(Ch

l̃
, s) =

∫ s

t
m1/2

z (Lh
l )m̃

1/2
z (Ch

l̃
)dW h

l,l̃
(z).

et Mh and mh be the restrictions of the measures of M and m,
espectively, on the set {Lh

l , l ≤ kh}, and let M̃h and m̃h be the
estrictions of the measures of M̃ and m̃, respectively, on the
et {Ch

l̃
, l̃ ≤ k̃h}. Similar to the method used in Kushner (1990,

heorem 8.1, pp.1024–1025), we have the following lemma.

emma 3. Under Assumption (A1)–(A4), it holds that

ξh,mh,Mh, m̃h, M̃h
)

⇒

(
Y ,m,M, m̃, M̃

)
,

here the notation ⇒ denotes weak convergence, and J(t, y;mh, m̃h)
J(t, y;m, m̃).

Lemma 3 shows we can approximate the variables
Y ,m,M, m̃, M̃

)
by using

(
ξh,mh,Mh, m̃h, M̃h

)
satisfying

h(s) = y +

∫ s

t

∑
l,l̃

f (ξh(z), r l, cl̃)mz(Lh
l )m̃z(Ch

l )dz

+

∫ s

t

∑
l,l̃

Σ (ξh(z), r l, cl̃)m
1/2
z (Lh

l )m̃
1/2
z (Ch

l̃
)dW h

l,l̃
(z)

+ εh(s). (11)

et Fh represent the σ -algebra that is generated by{
ξh(z),mh

z , m̃
h
z ,M

h(z), M̃h(z),

h (z), 1 ≤ l ≤ k , 1 ≤ l̃ ≤ k̃ , t ≤ z ≤ s
}

.

l,l̃ h h a

6

enote Γ h and Γ̃ h the sets of admissible relaxed controls mh

nd m̃h w.r.t. the set
{
ξh,W h

l,l̃
, l ≤ kh, l̃ ≤ k̃h

}
, respectively such

hat mh
s and m̃h

s are fixed probability measures in the interval
nh2, (n + 1)h2). We then rewrite the value function as
h (t, y) = inf

mh∈Γ h,m̃h∈Γ̃ h
Jh
(
t, y;mh, m̃h) , (12)

nd Jh(t, y;mh, m̃h) = Et
[
F
(
ηh(T )

)]
− G

[
Et
(
ηh(T )

)]
.

Next, we use the weak convergence methods (see, e.g., Kush-
er and Dupuis (2013)) to obtain the convergence of the al-
orithm. Let (ξh,mh,Mh, m̃h, M̃h) be a solution of (11), where
h and M̃h are measures with respect to the filtration Fh, with
uadratic variation processes mh1 and m̃h, respectively. Then we
ave the following two theorems, whose proofs are presented in
ppendix A and Appendix B of Zhang, Jin, Wei, and Yin (2022).

heorem 4. Under Assumption (A1)–(A4), let the approximating
hain

{
ξhn, n < ∞

}
be constructed with transition probabilities de-

ined in (7), let {uh
n, n < ∞} and {πh

n , n < ∞} be sequences
f admissible controls, ξh be the continuous time interpolations
efined by (10), mh be the relaxed control representation of uh

continuous time interpolation of uh
n), and m̃h be the relaxed control

epresentation of πh (continuous time interpolation of πh
n ). Then

h
:= {ξh,mh,Mh, m̃h, M̃h

} is tight, which has a weakly convergent
ubsequence with the limit H := {Y ,m,M, m̃, M̃}.

heorem 5. Under Assumption (A1)–(A4), let V (t, y) and V h (t, y)

e value functions defined in (5) and (12), respectively. Then
V h (t, y) → V (t, y) , as h → 0.

5. A numerical example

In this section, we provide an example with m = 2 to
demonstrate our results. Here, we set h1 = 0.2, h2 = 0.001,
γ = 0.5, N = 2000 and π ∈ [0.001, 2]. We consider the same
financial market as Yang et al. (2015).

The per-unit-of-wealth information-cost function is specified
n quadratic form, i.e., K̄ (π ) = kπ2, where k > 0 is the
nformation-cost parameter (see Andrei and Hasler (2020)). Fix
= 1. Let φ := ϕ1(1) = 0.2, the value function V (1), the ratio
f risky investment to wealth w(1) and the control π (1) with
ifferent values of k are shown in Figs. (a)–(c), respectively. The
elationship between the value function V (1) and (φ, x) is shown
n Fig. (d).

Fig. (a) shows the value of value function is larger when k is
maller. This is because smaller k implies lower information cost,
nd thus the investor can obtain better MV utility. It follows from
ig. (b) that an investor intends to invest in risky assets as wealth
ncreases. This may be due to the fact that the investor with
ess wealth intends to invest in risk-free assets for risk-averse
urposes. Given fixed wealth x, larger k implies higher informa-
ion cost, and thus the investor intends to invest in risky assets,
hich makes larger w. Fig. (c) shows that as wealth increases, the

nvestor pays more attention to the signals with small k. Because
f the specific assumption of the information cost function in this
ection, the price of information is relatively high with larger k
hen investor’s wealth reaches a certain level. This will lead the

nvestor to reduce investment in the information market more
uickly.

. Concluding remarks

This paper has investigated time-consistent equilibrium strate-
ies for MV portfolio selection under a hidden Markov model. We

dopted the idea of the dynamic attention behavior in Andrei and
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asler (2020) to introduce investor’s attention to news on the
idden Markov model. That is, we considered an investor who
an, at each time, improve the accuracy of acquired information
t a cost. Under this framework, we derived an extended HJB
quation, for which we used Markov chain approximation to ob-
ain numerical solutions. We constructed an iterative algorithm,
roved its convergence, and provided some numerical results. We
lso gave some explanations for our numerical results.
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