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ABSTRACT

In recent years, deep neural network-based restoration methods have
achieved state-of-the-art results in various image deblurring tasks.
However, one major drawback of deep learning-based deblurring
networks is that large amounts of blurry-clean image pairs are re-
quired for training to achieve good performance. Moreover, deep
networks often fail to perform well when the blurry images and the
blur kernels during testing are very different from the ones used dur-
ing training. This happens mainly because of the overfitting of the
network parameters on the training data. In this work, we present
a method that addresses these issues. We view the non-blind image
deblurring problem as a denoising problem. To do so, we perform
Wiener filtering on a pair of blurry images with the corresponding
blur kernels. This results in a pair of images with colored noise.
Hence, the deblurring problem is translated into a denoising prob-
lem. We then solve the denoising problem without using explicit
clean target images. Extensive experiments are conducted to show
that our method achieves results that are on par to the state-of-the-art
non-blind deblurring works.

Index Terms— Non blind deblurring, Wiener Deconvolution,
No-reference.

1. INTRODUCTION

Motion blur is a common and prominent problem that occurs in
hand-held photography. It destroys the aesthetics of the image and
adversely affects the performance of many computer vision applica-
tions [1, 2]. In this work, we focus on the case of uniform blur where
the blurred image is represented by,

y=k*xx+n, (1)
where y is the blurry image, x is the latent clean image, k is the
blur kernel, n is the additive white Gaussian noise, and * denotes the
convolution operation. Existing deblurring methods that restore the
clean image x can be grouped into blind and non-blind deblurring
methods. Non-blind deblurring methods take both the blurry image
y and the blur kernel k as input to restore x. On the other hand, blind
deblurring is a more difficult problem that requires only the blurry
image y as input to restore x. In this paper, we mainly focus on the
non-blind deblurring problem.

Early non-blind deblurring algorithms used statistical tech-
niques to derive minimum mean square error (MMSE) solutions
such as the Wiener filter [3] and Richardson-Lucy algorithm [4].
Although these algorithms work well for very low noise levels, they
add a significant amount of colored noise when the noise level in-
creases. Also, these methods suffer from serious ringing artifacts
and cannot deal with degradations caused by large motions. Another
line of deconvolution algorithms focus on developing effective im-
age priors [5, 6, 7, 8] using natural image statistics. But, these priors
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Fig. 1: Sample output from our restoration network. (a) Blurry input
image. (b) Wiener filtered image. Note the artifacts and noise after
Wiener filtering. (c) Restored Image.

are very reliant on the distribution of the natural images and often
lead to highly non-convex optimization problems, hence requiring
expensive computational power.

Recently neural networks have been used for various image de-
blurring tasks [9, 10, 11] and have achieved state-of-the-art results
in different deblurring scenarios [12, 13, 10]. There are two major
techniques by which deep learning has been adopted for non-blind
deblurring. One line of works develop a model which uses both the
blurred image and the kernel as input to address the deblurring prob-
lem [14, 15]. Another line of works decomposes the problem into a
denoising problem using a deconvolution algorithm or deep neural
network. Then address the deconvolution and denoising problems
separately [16, 9, 17]. These techniques require large amounts of
paired data, i.e., blurred images and their corresponding clean tar-
get pairs, to train the deep networks. These algorithms also fail
to generalize well when the blur kernels during testing differ from
the training kernels. Non-blind deblurring methods are often used
as a black-box module for solving the blind deblurring algorithms
[18, 19, 20, 21] where the kernels and the latent images are found it-
eratively until the latent clean image is restored. Hence, there exists a
need to develop non-blind deblurring algorithms that generalize over
unseen images and kernels and learn with less data. To this end, we
propose an approach that can be trained without clean target images
and can generalize well to unseen data and kernels.

In this work, we follow the second line of techniques as men-
tioned above and propose a Non-blind image deblurring technique.
Our method doesn’t require the actual clean target data correspond-
ing to the blurry input images. Specifically, we first perform Wiener
filtering to deblur two different blurry images of the same scene and
get a pair of images with colored noise. Hence, we decompose the
deblurring problem into a denoising problem. The key idea behind
our denoising network is motivated by the work of Lehtinan et al.
[22] where the authors have performed denoising of images cor-
rupted by both Gaussian as well as colored noise without explicit
training using clean target images. The main idea is that when a net-
work is trained with multiple pairs of noisy images of the same latent
scene, the expected loss between the network output and the noisy
target is approximately equal to the expected loss between the net-
work output and the corresponding clean target. The network hence
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Fig. 2: An overview of the proposed network. During training, two input blurred images are processed through Wiener filtering to produce the
corresponding two noisy images. Then these two noisy images are used as input and targetto train a network. During testing, for restoration,
a single image is Wiener filtered and passed through the denoising network to obtain the restored image.

learns the distribution of noise and can perform denoising. Inspired
by this, we utilize Wiener deconvolution to produce a pair of images
with zero centered colored noise. We then treat one of the outputs of
Wiener deconvolution as source and the other as the target to train
our network.

2. PROPOSED METHOD

2.1. Deconvolution as a denoising problem

Given y and k in (1), our objective is to restore x. A simple solution
to this problem is finding an inverse filter g where,
r=gxy, @)
such that we can make an estimate of the clean latent image repre-
sented by . The ideal solution for Z;4eq; minimizes the expected
mean square error between the clean latent image « and the estimate
Fidear = min Elz — 2%, 3)
This inverse filtering problem can be easily solved in the Fourier
domain and the solution for the inverse filter g is the Wiener filter
defined by
KH
= -
K2+ 2k
where G, K, X, N denote the variables in the Fourier domain and
H denotes the Hermitian operator (detailed derivation is given in the
supplementary document). The corresponding solution turns out to
be Zidear = T + N, Where

“

K"N

K2+ 285 ) ®
E|X|?

Here, n. represents the inverse Fourier transform of the colored
noise present along with the image after Wiener filtering. Now, since
Eg}z is an even function, the Fourier transform of n. is odd, and
the inverse Fourier transform is also odd. Hence, its mean is zero.
Thus the output of Wiener filtering contains the latent image cor-
rupted with zero mean colored random noise. Hence by performing
Wiener filtering, the deblurring problem converts into a denoising
problem. One crucial aspect of Wiener filtering is estimating the
noise to signal ratio (NSR) term defined by g}g; In our work,
similar to [17], we first find a median filtered estimate of the blurred
image and compute its variance with the original blurred image to
estimate NSR. Multiple works have previously taken this approach
to simplify the deconvolution problem to a denoising problem by
utilizing various transformations such as shearlet [23], and wavelet
[24].

Given blurry images y with the corresponding blur kernels k,

ne =I1FFT

we first convert the deconvolution task into a denoising by applying
Wiener filtering as follows,

p=pt [ SWEWC ©)

()2 + 250

where F' denotes the Fourier transform. In practical scenarios, the
output of Wiener filtering is often corrupted with ringing artifacts
along with the coloured noise. The colored noise could be removed
to an extent by training the network using another set of noisy images
as targets as the output like in the case of Lehtinan et a/[22].

2.2. Network architecture

The overall pipeline of our network is shown in Figure 2. During
the training process, we create two different blurry images using dif-
ferent blur kernels and random noise signals. Then, each of these
blurred images are Wiener filtered to generate two images of the
same latent scene with different random coloured noise. We use a
simple U-net based architecture as our base network. We then use
one of these images as the input and the other image as target output
of the network.

2.3. Loss function

Let I,, and I», denote two noisy images of dimensions C' x H x W.
The loss function used to trailn our network is

Lo=———" L — L. 7

2= GHw ZH 1— 1o )

5,k

3. EXPERIMENTS

We use a batch size of 8 and use the AdamW optimizer with param-
eters §1 = 0.9 andB2 = 0.999. We set the initial learning rate to
10~* and reduce it by half every 10 epochs. We train our network
for a total of 60 epochs. ALI the experiments are run in

3.1. Training Dataset

For creating our training dataset, we follow the approach that has
been followed in multiple non-blind deblurring works [11, 9, 28,
17]. We create a dataset of 1,000 images consisting of 600 images
from the Waterloo exploration dataset [30] and 400 images from the
Berkeley Segmentation dataset [31]. We synthesize kernels of ran-
dom sizes varying from 11 X 11 to 35 x 35 according to the method
proposed by [32] and convolve them with a patch of size 256 x 256
cropped from a clean image. We finally apply additive Gaussian
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Table 1: Quantitative evaluation on Levin et al[25] dataset consisting of 32 images in terms of PSNR, SSIM. Please note that all the deep
learning based methods used for comparison ad achieves better result than us in the o = 12.75 dataset is a supervised technique. MD-Motion

deblurring, NBD- Non-Blind Deblurring.

Noise Metrics Supervised-MD Supervised-NBD No clean target training-NBD
Kupyn[26] Gong [27] \ Son [17] \ IRCNNI28] \ Zhang[9] \ Kruse[15] | EPLL [29] \ OURS
— 955 PSNR 24.52 32.32 31.56 32.94 32.87 33.68 33.72 34.97
7= SSIM 0.712 0913 0.896 0.912 0.919 0.922 0.929 0.950
— 765 PSNR 23.97 29.22 28.95 30.51 29.55 29.80 29.05 30.21
=0 SSIM 0.641 0.852 0.837 0.875 0.860 0.857 0.845 0.883
— 1275 PSNR 2221 27.13 27.35 27.92 27.77 27.95 26.53 26.91
7= SSIM 0.542 0.791 0.802 0.821 0.814 0.812 0.778 0.822

Noisy Image EPLL [29] Son [17]

\
>
-

IRCNN [28]

- 4

Ground-Truth

Kruse [15] NBD-GAP(ours)

Fig. 3: Qualitative evaluations on the Levin et al dataset [25] for ¢ = 2.55 noise level.

noise of standard deviation {2.55,7.65,12.75} to form blurry im-
ages.

3.2. Testing Dataset

For testing our network, we use three different testing datasets. Sim-
ilar to the approaches [11, 9, 17], we use the popular benchmark
datasets from Levin et al. [25]. Levin et al. [33] consists of 4
grayscale images respectively. We utilize the 8 standard kernels re-
leased by [25] and blur these images and add noise of different vari-
ances in the range of {2.55,7.65,12.75} to create blurry images.
We also create a synthetic dataset using the 100 test images of the
BSD dataset [31] and blur it with a random blur kernel generated us-
ing [32]. Note that the kernels used for the testing are different from
the ones used for training.

3.3. Results

We evaluate the performance of our network by comparing quali-
tatively and quantitatively with different supervised works in non-
blind deblurring. For comparison, we use a combination of classi-
cal non-blind deblurring algorithms [29], supervised deep networks
designed for non-blind deblurring [9, 28, 17], methods which uti-
lize a combination of supervised deep learning and optimization al-
gorithms [27] and one supervised motion deblurring network [26].

Peak signal to noise ratio (PSNR) and structural similarity index
measure (SSIM) are used to measure the performance of different
methods quantitatively.

3.3.1. Results on the Levin et al.[25] dataset

Table.1 shows the quantitative results for different noise levels in the
dataset prepared using images and kernels released by Levin et al.
[25]. We can from Figure 3 that conventional patch-based method
EPLL [29] but creates a small amount of unwanted artifacts. Son
et al. [17] converts the deblurring problem to a denoising problem,
similar to us. But we can see that some noise is still retained in
the output. Note that the deep learning-based method IRCNN [28]
achieves better results than us in the o = 7.65 noise case. However,
IRCNN is a supervised method and is trained with a lot of paired
training data.

3.3.2. Results on the BSD500 dataset [31]

Since both Levin et al.[25] and Sun et al. [34] consist of gray scale
images, to evaluate the performance on coloured images, we gener-
ate a test set using 100 test images from [31] using kernels from [32]
for three different noise levels. As we can see in Table 2 and Fig. 4,
our method is able to perform well and produce results with fewer
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Table 2: Quantitative evaluation on 500 blurry images generated from the BSD500 dataset [31] in terms of PSNR, SSIM. Please note that
all the deep learning-based methods used for comparison achieve better results than us in the o = 7.65 noise case are supervised techniques.
MD denotes Motion deblurring and NBD denotes Non-Blind Deblurring.

Noise Metrics Supervised-MD Supervised-NBD Self-supervised-NBD
Kupyn[26] Gong [27] | Son[17] | IRCNN[28] | Zhang[9] | Kruse[15] | EPLL [29] | OURS

— 955 PSNR 23.25 27.61 27.40 27.85 27.55 27.22 27.49 30.27
7= SSIM 0.712 0.841 0.831 0.854 0.840 0.825 0.839 0.862
— 765 PSNR 23.97 25.73 25.51 25.63 26.70 25.61 25.62 26.81
=" SSIM 0.641 0.751 0.729 0.758 0.802 0.738 0.746 0.761
—12.75 PSNR 2221 24.35 24.42 24.66 24.60 24.53 24.71 24.82
7= SSIM 0.542 0.649 0.641 0.660 0.652 0.677 0.688 0.685

Noisy Image EPLL [29] Zhang [28] Son [17] Gong [27] NBD-GAP(ours)  Ground-Truth

Fig. 4: Qualitative evaluations on the BSD500 dataset [25] for ¢ = 7.65 noise level and o = 12.75 noise level. The First two figures from
top represent images of o = 7.65 noise level and the third figure has 0 = 12.75 noise level. The corresponding absolute error map from the
ground truth is shown below each cropped patch.
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