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Abstract

In Heterogeneous Face Recognition (HFR), the objective

is to match faces across two different domains such as vis-

ible and thermal. Large domain discrepancy makes HFR

a difficult problem. Recent methods attempting to fill the

gap via synthesis have achieved promising results, but their

performance is still limited by the scarcity of paired train-

ing data. In practice, large-scale heterogeneous face data

are often inaccessible due to the high cost of acquisition

and annotation process as well as privacy regulations. In

this paper, we propose a new face hallucination paradigm

for HFR, which not only enables data-efficient synthesis but

also allows to scale up model training without breaking any

privacy policy. Unlike existing methods that learn face syn-

thesis entirely from scratch, our approach is particularly

designed to take advantage of rich and diverse facial priors

from visible domain for more faithful hallucination. On the

other hand, large-scale training is enabled by introducing a

new federated learning scheme to allow institution-wise col-

laborations while avoiding explicit data sharing. Extensive

experiments demonstrate the advantages of our approach in

tackling HFR under current data limitations. In a unified

framework, our method yields the state-of-the-art hallucina-

tion results on multiple HFR datasets.

1. Introduction

Deep convolutional neural networks have led to unprece-

dented success on visual face recognition [5, 58, 61, 66],

where state-of-the-art methods achieve more than 99% ac-

curacy on multiple benchmarks. These near-perfect perfor-

mances come from both well-elaborated architectures and

exhaustive training on massive datasets. Nevertheless, in

many real-world scenarios with low-visibility, such as low-

light and night-time, it is often infeasible to obtain clear

visible (VIS) images. Under these circumstances, sensors

deployed for other imaging spectra, e.g. Thermal (TH), can

capture more discriminative information and serve as a more

reliable solution. This raises a great need of heterogeneous

face recognition (HFR) [32, 33, 40], an important task in

*equal contribution

computer vision and biometrics, that matches images from

TH modality to its VIS counterpart 1. The HFR problem

has numerous applications in surveillance, monitoring and

security.

Unfortunately, due to the large domain discrepancy,

naively deploying a state-of-the-art face recognition algo-

rithm trained on VIS images often leads to poor performance

on a TH dataset [21]. Over the past decade, tremendous ef-

forts have been spent to address the HFR problem by either

learning domain-invariant features [10, 14, 15, 37] or finding

a common subspace [28, 49, 59, 72]. Owing to the rapid

progress in Generative Adversarial Networks (GANs) [16],

most recent methods [7,8,12,60,73,75] reformulate HFR as

a face synthesis/translation problem. The resulting “recogni-

tion via hallucination” scheme embraces a huge benefit that

any off-the-shelf recognizer can be directly applied on the

synthesised images.

While these synthesis-based approaches fill the gap to

some extent, the produced VIS images are still unsatisfac-

tory, often accompanied with distorted and incorrect facial

structures (shown in Figure 4), which significantly degrades

the recognition accuracy. We found that the bottleneck is

likely due to the limited size of the dataset which fails to

offer sufficient information to guide image synthesis. Unlike

visible images that are easy to obtain and widely available

over the Internet [20], collecting and annotating a large-scale

high-quality TH dataset is difficult. Challenges stem from

many aspects. First, the acquisition process is both time-

consuming and costly, which often requires laborious setup

and non-trivial calibrations [52, 63]. Second, the diversity of

collected data can be limited. Due to the physical constraints,

it is typically infeasible for a single institution to collect a

comprehensive dataset that covers a diverse set of identities

with various attributes, such as race, gender and age. Most

existing datasets [1,9,42,47] are confined to a small number

of subjects, leading to biased results and over-fitting. Third,

face data is privacy sensitive. Since it contains subjects’

personal identification information, one has to deal with pri-

vacy concerns when collecting and storing them, making it

1Note that HFR is a general term that is used for matching two face

images taken in two different domains such as TH, VIS or sketch. In this

paper, we refer to HFR as a specific problem of matching TH images with

VIS images.
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difficult to share the data with other institutions.

Besides poor synthesis quality, most existing methods

can only process images at a resolution no more than 128×
128. This not only leads to visually unappealing results,

but also reduces their applicability in many downstream

tasks that depend on high-resolution inputs, such as face

parsing [38, 39], editing [74] and reenactment [53].

In this paper, we present a unified hallucination frame-

work for HFR, that is capable of synthesizing high-resolution

visible faces (512×512) from low-resolution heterogeneous

data (i.e. smaller than 128×128), with superior realness and

higher fidelity. Our approach consists of two separate strate-

gies. The first one comes with a new generation paradigm

inspired by the recent success in GAN inversion [68]. The

core idea is to leverage rich and diverse facial priors from

the visible domain to eschew the need of learning generation

from scratch. This is accomplished by embedding a pre-

trained GAN (e.g. StyleGAN [25, 26]) as a facial decoder

which hallucinates visible faces conditioned on the latent rep-

resentations of a U-shaped encoder. The encoder is carefully

designed with a novel Multi-scale Contexts Aggregation

(MSCA) mechanism which merges scale-wise information

to enhance representation. MSCA offers better fine-grained

generation control and is pivotal for preserving identity infor-

mation. The proposed method, called Visual Prior enhanced

GAN (VPGAN), can break the underlying data limitation

by producing faces with state-of-the-art accuracy and photo-

realism.

Deep models are data hungry and VPGAN may be further

improved with large-scale training. However, in practice,

HFR data tends to be separately collected and dispersed

among different intuitions. Due to privacy concerns, one

cannot simply share the data for centralized training. To

this end, our second strategy introduces Federated Learning

(FL) [29] to further improve HFR, which enables collabora-

tive model training while avoiding explicit data exchanging.

Specifically, we allow each institution to perform local train-

ing on their private HFR data and deploy a centralized server

to periodically communicate with each institution, aggregat-

ing local models and updating a global model. The whole

process does not involve any data transfer but benefits deep

models a lot by integrating information from a significantly

broader range of data. To make our approach more suitable

for real-world HFR, we have to tackle the heterogeneous

data distributions across institutions. This challenge, which

may be caused by differences in sensor types or acquisition

protocols, can lead to locally skewed updates, resulting in

slow convergence and sub-optimal performance [31, 35]. To

tackle this issue, we build our FL algorithm based on a new

Model Proximity Regularization (MPR), which corrects lo-

cal gradient updates by constraining the discrepancy between

the latent representations from the global and local models.

As a result, our approach achieves superior robustness to-

wards non-ideal data distribution, implying its applicability

for solving real-world HFR problems.

In our unified framework, we integrate VPGAN as the

basic component and use it in the proposed FL scheme. We

term this new framework VPFL. In the experiment section,

we demonstrate that our approach generates VIS faces at

high-resolution with superior realness and accuracy.

Within the infrared spectrum, various modalities have

been explored for thermal-to-visible (TH-VIS) face recog-

nition. These include Near Infrared (NIR), Short-Wave In-

frared (SWIR), Mid-Wave Infrared (MWIR) and Long-Wave

Infrared (LWIR). The use of a particular thermal modal-

ity depends on the application. For instance, in long-range

surveillance applications, SWIR or MWIR modalities are

often used. Unlike NIR images, which are close to the VIS

spectrum images, LWIR images are often acquired in low-

resolution with many facial details missing on the captured

imagery. This is well-reflected by the performance drop of

the existing recognition methods on such datasets [23, 51].

Also, greater than 99% accuracy has been reported on many

NIR face datasets [8, 12]. However, the performance of vari-

ous HFR methods on LWIR data is significantly low [23,51].

In summary, the main contributions of our paper are:

• We propose a new data-efficient generation scheme for

HFR. Thanks to the powerful visual priors, it manages

to alleviate fundamental data challenges, resulting in

superior hallucination results.

• We introduce a unified framework to make large-scale

training possible in real-world scenarios. VPFL makes

multi-institutional collaborations possible without rais-

ing any privacy concerns.

• Extensive experiments show that our method can pro-

duce faces with state-of-the-art photo-realism and fi-

delity, which in turn significantly boosts the recognition

accuracy. These merits show its great potential to serve

as a universal solution towards real-world applications.

2. Related Work

Heterogeneous Face Recognition. Compared to the meth-

ods relying on feature/subspace learning, recognition via

synthesis [8, 11–13, 41, 75, 76] has received significant atten-

tion, because off-the-shelf face recognition algorithms can

be applied to the synthesized images. Our discussion will

focus on these types of methods. Early deep learning-based

approaches directly learn a CNN for cross-spectral mapping.

For example, Lezama et al. [30] train a CNN for NIR-VIS

and improve results with low-rank assumption. Riggan et

al. [56] enhance the discriminative quality of the synthesized

images by modeling both global and local regions. Recent

methods leverage GANs to improve the hallucination quali-

ties. Zhang et al. [76] propose GAN-VFS that jointly learns

semantic rich features and facial reconstruction, which re-
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Figure 1. The proposed VPGAN. It adopts an encoder-decoder structure. The UNet encoder extracts style codes as well as multi-scale

representations and then transmits them to the decoder for generation control. MSCA enhances the encoder by merging multi-scale

information, which proves to be crucial for accurate hallucination. A pre-trained StyleGAN [25,26] serves as the facial decoder and generates

the desired visible face. A is the linear transformation of the style codes in [25, 26] and B plays a similar role as that of noise injection.

sults in more photo-realistic and accurate generation. Further

improvements are based on cycle-consistency [60], more ad-

vanced loss [7], and attention mechanism [6, 23, 73].

GAN Inversion. Our method is related to GAN inver-

sion [4, 17, 44, 55, 62, 71] which relies on pre-trained GAN

priors for better image manipulation and restoration. Early

approaches [17, 44] explicitly “invert GANs”, which itera-

tively find the closest latent code of a targeting image. For ex-

ample, PULSE [44] for photo upsampling gradually searches

the correct latent code of a StyleGAN [25,26] by optimizing

a downsampling loss. More recent methods [4, 55, 62, 71]

use a DNN encoder and learn to predict the latent code in

one forward pass. Our work is inspired by these approaches

but exploits its ability in transferring visual priors for data-

efficient heterogeneous face hallucination.

Federated Learning. Federated learning is a decentral-

ized machine learning framework which leverages data

from multiple institutions or users to collaboratively train

a global model without directly sharing their local data.

Addressing heterogeneous data distribution across devices

or institutions in the real-world deployment of FL ap-

plications draws emerging attention. Several FL meth-

ods [2,18,19,34,36,46,54,69] targeting on this issue are built

upon FedAvg [43]. FedProx [34] and Agnostic Federated

Learning (AFL) [46] introduce an additional regularization

on weights during the local training to alleviate the learn-

ing bias issue of the global model. FedDyn [2] is proposed

to address the issue that there is an inconsistency between

minima of the local model loss and those of the global loss

by introducing a dynamic regularizer in each client. While

those works conduct rigorous theoretical analysis, their per-

formance is not validated on practical applications. Recently,

Aggarwal et al. [3] proposed face recognition methods based

on the FL framework. However, it is worth noting that the

multi-institutional collaborative approach based on FL for

face hallucination has not been well studied in the literature.

3. Proposed Method

In this section, we first formulate the TH-VIS face hal-

lucination problem and then describe our method in detail.

Given a TH image IT H, our goal is to reconstruct a VIS

face IVIS by learning a mapping function IVIS = F(IT H).
The synthesized face IVIS should be both visually realis-

tic and accurate, and thus can be used for face matching.

As discussed earlier, due to various reasons, IT H is often

captured in low-resolution. Unlike existing methods (which

only synthesize faces at 128× 128), our work performs joint

translation and upsampling. To the best of our knowledge,

this is the first work that can hallucinate high-resolution

faces (512× 512) in HFR.

3.1. VPGAN

Conventional methods learn synthesis entirely from

paired datasets. Due to data limitations, they can hardly

output clear and high-quality images. Our method instead

only learns to control generation by making use of diverse vi-

sual priors encapsulated in a pre-trained GAN. We leverage

off-the-shelf StyleGAN [25, 26] pretrained on FFHQ [25],

which contains 70,000 high-resolution faces. As shown in

Figure 1, VPGAN adopts an encoder-decoder architecture.

Only the encoder is required to train with the HFR dataset

for guiding the hallucination. To output a visible face, we

first extract global style codes

w = MLP (UNetE(IT H)), (1)

where UNetE and MLP are the encoder part of the UNet

and fully connected layers, respectively. Then we compute a
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set of multi-scale features Fi from every stage of the decoder

for fine-grained generation control, i.e. Fi = UNetDi
(ITH).

A visible face can then be produced via

IVIS = S(w, {F1, ..., Fn}), (2)

where S is the StyleGAN decoder. Thanks to diverse visual

priors such as face geometry, color and texture, VPGAN is

able to alleviate the need of large datasets and yields more

faithful results.

Improved UNet Encoder. U-shaped structure has shown

great capability in obtaining semantic-rich representations.

However, we found that a naive UNet [57] is incapable of

generating accurate local structures, which are crucial for

face-matching. This is because features in the decoder are

upsampled from coarser scales, and thus lack sufficient fine-

grained information. Errors from early stages are also trans-

mitted to the subsequent layers, leading to incorrect synthe-

sis. To this end, we improve the conventional UNet [57] with

a new Multi-Scale Contexts Aggregation (MSCA) mecha-

nism, which provides a comprehensive encoding of the input

image at multiple scales. This ensures the resulting features

at all levels contain both coarse and fine information and

thus leads to better generation control. As shown in Fig-

ure 1, MSCA computes an output by adaptively merging

multi-scale features from the UNet encoder (after first up-

scaling and down-scaling to match the spatial dimensions).

Formally, the output features at i-th level can be expressed

as follows:

outi = MSCA(E1 ↑, ..., Ei, ..., En ↓), (3)

where ↑ and ↓ denote the upscaling and downscaling op-

eration, respectively. We will demonstrate that this simple

design is crucial for accurate face matching in Section 4.2.1.

Embedded Visual Prior. Our key design is to utilize vi-

sual priors embedded in a pre-trained GAN. The Style-

GAN [25, 26] decoder stores diverse facial knowledge and

acts similar to a memory bank or dictionary, where the ex-

tracted style codes (from encoder) query desired faces. The

style codes w can be incorporated either in a similar way

to [26], by directly applying the modulation and demodula-

tion operations on the convolution kernel of each style block,

or through AdaIN [22] as used in [25]. Either operation is

easy to implement and results in good generation quality.

The multi-scale features from the UNet act in a similar way

as the noise injection in the original StyleGAN. But rather

than achieving localized variation, here we want to control

detailed facial components to be consistent with the input im-

age. We achieve this via a modulation operation (B in Figure

1) similar to [48, 64]. Specifically, we compute pixel-wise

scale and shift parameters γi and βi from the i-th multi-scale

feature Fi via a simple 1× 1 convolution layer. And then we

use it to calibrate the output feature from the i-th StyleGAN

layer:

S+
i = γi � S−

i + βi, (4)

where � denotes Hadamard product and S−
i is the pre-

modulated feature. After calibration, the resulting S+
i is

passed to the next stage for subsequent generation.

Training Objectives. To ensure both realness and fidelity,

our training objective consists of four terms: (1) reconstruc-

tion loss Lr, (2) adversarial loss Ladv , (3) perceptual loss Lp,

and (4) Identity Loss Lid. The overall loss can be expressed

as follows:

Lgen = Lr + λaLadv + λbLp + λcLid, (5)

where λa, λb and λc are corresponding balancing parameters.

We define the reconstruction loss as the standard L1 distance

between the synthesized image IVIS and ground-truth im-

age IGT to ensure content consistency. The adversarial loss

is directly inherited from StyleGAN [25, 26] for more sharp

generation. To improve visual quality while preserving iden-

tity, we further adopt the perceptual loss and the identity loss.

Both can be expressed as feature-wise distance of a given

CNN (e.g., a pre-trained VGG):

Lp, Lid =
1

HiWiCi

‖Vi(IGT )− Vi(IVIS)‖1, (6)

where V is the corresponding CNN. Hi,Wi,Ci are the height,

width and channel number of the i-th feature map in V . Here,

we use an ImageNet pre-trained VGG for Lp and a simple

ArcFace [5] for Lid.

3.2. Face Hallucination with Federated Learning

Even with an advanced design like VPGAN, training with

limited data is still an essential shortcoming for deep mod-

els. To this end, we consider Federated Learning (FL) and

introduce a novel Model Proximity Regularization (MPR).

In this section, we will first describe a vanilla FL framework

and then detail the proposed MPR.

A Vanilla FL Framework. We start by recalling issues

in the standard local training. Suppose we have K HFR

datasets D1,D2, . . . ,DK dispersed at different institutions.

These institutions can be different universities, government

agencies or private companies. In a conventional non-

collaboration scheme, a local model (parameterized by Θk )

at institution k is trained with its own private data Dk, by

optimizing Lgen,k defined in Eq. 5:

Θp+1

k ← Θp
k − γ∇Lgen,k. (7)

After several local gradient updates (i.e. P steps), institution

k can obtain its local model. However, as discussed earlier,

local data not only tend to have a limited capacity, but also

may display unique characteristics due to discrepancies in

the acquisition protocols. Therefore, the resulting model

inevitably suffers from insufficient representation ability and

low generalizability to other datasets. Ideally, one can miti-

gate such issue by training on a diversity-rich multi-source

dataset or simply constructing a global dataset D from all

available sources. Nevertheless, due to emerging privacy

concerns, it is usually not the case for HFR.
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Figure 2. An overview of the proposed FL framework. Through

q rounds of communication between data centers and the server,

the collaboratively trained global model parameterized by Θ
q can

be obtained in a data privacy-preserving manner. The zoomed-

in subplot shows the proposed Model Proximity Regularization

(MPR) in a local institution k.

Algorithm 1: VPFL with MPR

Input: D1

s ,D
2

s , . . . ,D
K
s , K dispersed datasets; P , local update steps;

Q, communication rounds; γ, learning rate; Θ1, ...,ΘK , local models;

Θ, global model.

� parameters initialization

for q = 0 to Q do

for k = 0 to K in parallel do
� deploy weights Θq to local model

for p = 0 to P do
VPGAN Face Hallucination:

� compute loss Lgen,k using Eq. 5

Model Proximity Regularization:

� compute the proximal term with respect to Θ
p,q

k
and Θ

q

� compute the final local objective using Eq. 9 and update

Θ
p,q

k

end

� upload weights to the central server

end

� update the global model using Eq. 8

end

return Θ
Q

To maximize data utilization and learn a more generic

model, we propose a vanilla FL framework based on Fe-

dAvg [43]. Rather than directly sharing private datasets,

we leverage a centralized server to indirectly harvest infor-

mation from all available institutions. This is achieved by

periodically aggregating local models and broadcasting the

updated results to all participants. A global update in the

central server is calculated as follows:

Θq =
1

K

K∑
k=1

Θq
k, (8)

where q represents the q-th communication round. The fi-

nal trained global model ΘQ is obtained after Q rounds of

client-server communications.

Model Proximity Regularization. While our vanilla FL

algorithm manages to scale-up training, in real-world appli-

cations, the non-i.i.d. data distribution among institutions

will still inevitably hurt the performance [34]. Due to the

dissimilar local objectives Lgen,k resulting from heteroge-

neous data distribution, local updates without proper con-

straints will cause the resulting model to skew toward the

optima of its local objective, leading to inconsistency with

the global one. Previous works [18, 50] circumvent this is-

sue via FL adversarial training between source and target

domains. However, such methods require directly sharing

the latent features between participants, which compromises

the privacy-preserving principle.

Inspired by [2, 34, 46], here we introduce a new Model

Proximity Regularization (MPR) to correct local updates

which can be easily combined with VPGAN. As shown in

Figure 2, rather than solely minimizing the local objective

Lgen,k, MPR introduces an extra proximal term for each

local solver to force the proximity of latent codes from the

current local model and the initial global model. The final

local objective Lgen,k is adjusted to

Lk = Lgen,k + λd

(
‖w − wq‖2 +

n∑
i=1

‖Fi − F
q
i ‖

2

)
, (9)

where λd is a balancing parameter. In our unified framework

VPFL, we integrate VPGAN as the base model and use it in

the FL framework. VPFL thus can jointly enjoy benefits of

strong visual priors and large-scale training for more realistic

and faithful hallucination. The detailed training process can

be found in Algorithm 1.

4. Experiments

In our experiments, we focus on synthesizing 512× 512
VIS faces from 128× 128 TH images, with an emphasis on

both recognition accuracy and image quality. More analysis,

discussion and additional results for resolutions less than

128× 128 can be found in the supplementary material.

Dataset and Evaluation Metrics. So far, there are no

standardized protocols in this field. Existing methods re-

port results trained and tested on custom datasets/splits.

This paper selects two common datasets (VIS-TH [42] and

ARL-VTF [52]) where high-resolution VIS images are avail-

able. To study the effect of data restriction, we intentionally

choose one dataset to be more challenging than the other.

We create VIS-TH image pairs by cropping 512× 512 and

128× 128 face regions respectively.

VIS-TH is a challenging dataset containing data from 50

subjects. Images from each subject contain 21 faces varying

significantly in pose, expression and light conditions. VIS-

TH images are captured via a dual-sensor camera in LWIR
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Figure 3. The schematics of the clients partition and different

training strategies.

modality and thus naively aligned. We construct the train-

ing set by randomly selecting data from 40 subjects. The

remaining data from 10 subjects are used as the testing set.

ARL-VTF provides subjects’ data in LWIR modality with

annotations for alignment. We create a dataset by randomly

selecting a subset of 160 subjects with variations only in

expressions as the training set, 20 subjects’ data as the val-

idation set, and 40 subjects’ data as the testing set. The

resulting data split contains 3,200 training pairs, 400 vali-

dation pairs, and 985 testing pairs. The color adjustment is

applied to mitigate overexposure of the VIS images.

Evaluation Metrics. This paper extends the existing ver-

ification protocol with image quality measurements. For

verification, we follow [8] and report Rank-1 accuracy, Ver-

ification Rate (VR) @ False Accept Rate (FAR)=1% and

VR@FAR=0.1%. One VIS image of each subject is added

to the gallery set and the probe set contains all TH images.

To measure image quality, we report perceptual metrics

LPIPS [77], NIQE [45], identity metric Deg (cosine distance

between LightCNN [67] features), and pixel-wise PSNR and

SSIM [65].

4.1. Implementation and Training Details

For VPGAN, we adopt off-the-shelf StyleGAN2 [26] as our

facial decoder. The UNet encoder contains 5 downsample

stages and 7 upsample stages for joint face translation and

upsampling. Feature at the lowest level has a spatial size of

4× 4. The network is trained using the Adam [27] optimizer

with the following hyperparameters: initial learning rate of

2e-3 for the first 140K iterations then reduced to 1e-3; 150K

maximum iterations; batch size of 4; λa = 1; λb = 10;λc =
100; λd =10e-4 if applicable. We implement the proposed

model using PyTorch on Nvidia RTX8000 GPUs.

For VPFL, we adopt the same hyperparameters as that in

VPGAN except 80K maximum iterations. The periodical

communication between clients and the server is set to 200

iterations. Two training sets are further split into 4 subsets by

sampling from a Dirichlet distribution (α=0.3) to simulate

heterogeneous data distribution in the FL scheme, resulting

in 8 independent clients as shown in Figure 3. Detailed

dataset statistics in each client is provided in the supplemen-

tary material. For experiments in the FL setting, we not only

compare different FL algorithms but also privacy-preserving

alternative strategies. Models of Local Only are trained only

with data from a single client and evaluated on two testing

datasets. We denote the method that obtains independently

trained models from all local clients and fuses their outputs

as Fused, which does not violate privacy regulations. In

addition, we can obtain a model trained by all available data,

which is denoted by Centralized. Since it is prohibited in

FL, we treat it as an upper bound. Figure 3 provides the

schematics of different training and evaluation strategies in

the FL setting.

Table 1. Image quality results on the VIS-TH dataset. Red and

blue indicates the best and the second best performance.

Methods LPIPS↓ NIQE↓ Deg.↑ PSNR↑ SSIM↑

TH 0.7147 10.666 36.13 6.41 0.3619

Pixel2Pixel [24] 0.3837 6.642 43.97 16.64 0.6818

HiFaceGAN [70] 0.3769 5.973 51.03 15.75 0.6794

GANVFS [76] 0.4012 6.314 43.95 16.69 0.6569

SAGAN [6] 0.2786 5.899 62.35 18.15 0.7179

AxialGAN [23] 0.2688 5.761 62.66 19.02 0.7190

VPGAN (ours) 0.2253 5.508 68.36 18.96 0.7456

4.2. Evaluations for VPGAN

Results on the VIS-TH dataset. To demonstrate the ef-

fectiveness of our VPGAN, we first report results on the

challenging VIS-TH dataset and compare it with 5 represen-

tative methods: Pixel2Pixel [24], HiFaceGAN [70], GAN-

VFS [76], SAGAN [6] and AxialGAN [23]. Pixel2Pixel is

a well-known image-to-image translation method. HiFace-

GAN is the state-of-the-art approach for face restoration.

For TH-VIS hallucination, we select three leading methods

GANVFS, SAGAN, and AxialGAN. Note: only AxialGAN

has made their code publicly available. For GANVFS and

SAGAN, implementations are acquired from authors.

Visual results are shown in Figure 4. As can be seen

from this figure, previous approaches fail to generate clear

visible faces. Specifically, Pixel2Pixel, HifaceGAN, GAN-

VFS show strong artifacts and distortions in the generated

faces. SAGAN and AxialGAN improve hallucination by

adapting self-attention mechanism, but the produced images

are still very blurry. In contrast, VPGAN outperforms previ-

ous methods by a large margin and it synthesizes the most

faithful and accurate faces. Results for quantitative quality

assessment are reported in Table 1. Our approach achieves

the best performance in almost all metrics. VPGAN also

obtains the highest Deg. value, indicating its superior ability

in preserving identity. All of these results demonstrate the

huge benefits of using visual priors for HFR.

We report verification results in Table 2. Given the

superior generation quality, there is no surprise that VP-

GAN achieves the best performance on all metrics. Specif-
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Figure 4. Visual comparison on the TH-VIS and ARL-VTF datasets. Low-resolution TH inputs are attached at the bottom right corner of the

GT images with the real scale ratio (128:512) preserved. Our VPGAN can synthesize high-quality faces even with challenging expressions

and large poses. Best viewed by zooming to 400% in the screen.

Table 2. Verification results on the VIS-TH dataset.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

LightCNN [67] 30.48 8.57 2.86

Pixel2Pixel [24] 15.24 2.21 0.07

HiFaceGAN [70] 44.76 10.95 2.86

GANVFS [76] 18.11 7.29 1.90

SAGAN [6] 63.33 23.81 17.62

AxialGAN [23] 66.67 24.76 13.81

VPGAN (ours) 76.67 45.71 20.00

Table 3. Image quality results on the ARL-VTF dataset.

Methods LPIPS↓ NIQE↓ Deg.↑ PSNR↑ SSIM↑

TH 0.6721 10.176 42.34 5.63 0.2940

Pixel2Pixel [24] 0.2038 6.298 70.67 19.46 0.7759

HiFaceGAN [70] 0.2166 7.274 70.11 19.67 0.7954

GANVFS [76] 0.2433 6.679 67.26 19.76 0.7511

SAGAN [6] 0.1925 6.155 71.12 20.11 0.7772

AxialGAN [23] 0.1998 6.223 69.75 20.17 0.7770

VPGAN (ours) 0.1713 6.059 72.00 20.29 0.7883

ically, our method significantly improves the baseline

LightCNN [67] by 46%, and previous state-of-the-art Axial-

GAN by 10% in Rank-1 accuracy. In contrast, low-quality

hallucinations, e.g., from Pixel2Pixel and GANVFS, can

also impair the performance.

Results on the ARL-VTF dataset. To study the effect of

data restriction, we further report results on the ARL-VTF

Table 4. Verification results on the ARL-VTF dataset.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

LightCNN [67] 11.07 9.24 4.57

Pixel2Pixel [24] 70.96 56.35 33.60

HiFaceGAN [70] 70.15 56.65 32.18

GANVFS [76] 70.76 45.99 22.03

SAGAN [6] 71.16 54.11 38.07

AxialGAN [23] 71.57 57.16 37.36

VPGAN (ours) 74.16 59.96 41.27

dataset. This dataset contains ×4 more subjects (160) than

VIS-TH with only slight variations in expressions. Note that

it is non-trivial for a single institution to achieve diversity

at this scale. As shown in Figure 4, data simplicity allows

previous methods to yield better visual results as expected.

While most of them are able to produce a face outline, they

struggle to create detailed facial components. In contrast, our

approach can produce realistic and faithful facial details. Its

superior hallucination ability is further verified by the quan-

titative results in Table 3. Face verification results are shown

in Table 4. While previous methods can achieve reasonable

performance, VPGAN still reaches the best performance

given the more clear and accurate face details.

4.2.1 Ablation Study

Effects of Visual Priors. The key design of VPGAN is to

leverage rich and diverse visual priors for better hallucina-
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Table 5. Ablation study on the VIS-TH dataset.

Rank-1 VR@FAR=1% Deg. LPIPS↓ PSNR↑

w/o VP 52.85 19.04 57.69 0.2948 18.23

w/o MSCA 71.90 31.43 63.15 0.2460 18.74

VPGAN 76.19 38.10 65.87 0.2381 18.85

GT Local Fused FedProx VPFL w/o MPR VPFL

Figure 5. Visual comparison under the FL setting. VPFL is able to

recover the most accurate face components.

tion. Here, we investigate its effectiveness. We construct

a baseline model by removing the pre-trained decoder, re-

sulting in a U-Shaped generator. As shown in Table 5, the

performance is substantially improved by incorporating vi-

sual priors, demonstrating our design is indeed beneficial

and helpful.

Multi-Scale Contexts Aggregation. VPGAN improves the

standard UNet encoder with Multi-Scale Contexts Aggrega-

tion module. Table 5 shows its effect. Adding the MSCA can

obviously improve results in all metrics, especially in terms

of recognition accuracy and Deg. These results indicate that

MSCA can provide more accurate generation control and

preserve the identity information better.

4.3. Evaluations for VPFL

Here we show the benefits of collaborative training for

HFR by revealing performance and generalizability gaps. Ta-

ble 6 presents the verification and quality assessment results

of different privacy-preserving strategies on three sub-tables

VIS-TH, ARL-VTF, and Global Test Avg. Global Test Avg.

refers to the average performance on the two datasets and

reflects generalizability.

The first 8 rows of each sub-table report the results of

locally trained models (Local Only). We treat them as base-

lines. Due to the data heterogeneity, all locally trained mod-

els exhibit low generalizability on the data from another

distribution. For example, C1-C4 achieve low performance

on ARL-VTF and vice versa. This can also be verified by

their poor results on the Global Test Avg. In addition, the

naive Fused strategy cannot consistently improve the perfor-

mance. In contrast, apparent improvements can be observed

by introducing the FL scheme, which demonstrates the ne-

cessity of collaborative training. When compared with the

strong FL baseline FedProx [34] (with the empirically best

μ=10e-4), our VPFL achieves the significantly better overall

performance and is closest to the Centralized upper bound.

These results indicate that VPFL can generalize well and

is more robust towards heterogeneous data distribution. As

Table 6. Verification and image quality comparisons with different

methods under the FL setting. VR1% denotes VR@FAR=1%.

VIS-TH

Methods Rank-1↑ VR1%↑ VR0.1%↑ Deg.↑ PSNR↑ SSIM↑ LPIPS↓ NIQE↓

Local Only C1 59.05 30.95 17.62 60.69 18.05 0.723 0.262 5.903

Local Only C2 32.86 1.90 0.48 51.52 16.56 0.699 0.315 5.809

Local Only C3 50.95 20.00 7.14 55.49 17.65 0.718 0.283 6.403

Local Only C4 46.19 17.62 10.00 56.82 17.01 0.700 0.294 5.748

Local Only C5 47.62 17.14 8.10 51.64 14.94 0.664 0.383 5.911

Local Only C6 42.86 11.43 6.19 53.17 14.75 0.664 0.385 6.171

Local Only C7 40.95 15.24 5.24 51.30 15.01 0.668 0.385 6.420

Local Only C8 40.95 15.71 5.71 52.20 14.80 0.665 0.384 6.426

Fused 37.62 16.19 7.14 55.83 17.36 0.732 0.328 6.934

FedProx [34] 66.19 30.95 20.00 61.99 17.86 0.718 0.262 5.565

VPFL w/o MPR 70.95 30.95 22.38 61.16 18.19 0.719 0.254 5.579

VPFL 73.81 35.71 25.71 65.81 18.81 0.728 0.245 5.651

Centralized 76.67 39.05 24.76 66.63 18.71 0.743 0.232 5.729

ARL-VTF

Methods Rank-1↑ VR1%↑ VR0.1%↑ Deg.↑ PSNR↑ SSIM↑ LPIPS↓ NIQE↓

Local Only C1 17.77 10.66 2.44 52.44 16.78 0.699 0.325 6.708

Local Only C2 20.51 11.78 2.74 47.65 16.67 0.704 0.330 6.821

Local Only C3 16.85 14.31 2.84 49.41 16.67 0.713 0.332 6.777

Local Only C4 23.55 10.66 3.96 53.30 16.51 0.690 0.335 6.771

Local Only C5 54.11 39.80 20.10 64.96 19.36 0.764 0.211 6.770

Local Only C6 54.31 36.65 22.34 65.66 19.28 0.768 0.213 6.294

Local Only C7 40.91 33.91 18.07 63.45 19.51 0.776 0.211 6.335

Local Only C8 54.82 37.77 20.91 64.05 19.01 0.762 0.222 6.205

Fused 37.16 26.50 10.56 62.45 19.96 0.789 0.260 6.840

FedProx [34] 57.77 37.36 15.94 67.21 19.60 0.770 0.212 6.022

VPFL w/o MPR 62.03 36.14 16.45 67.46 19.51 0.770 0.209 6.019

VPFL 65.79 40.71 22.23 67.68 19.69 0.773 0.203 6.013

Centralized 69.34 57.77 28.63 71.28 20.08 0.785 0.186 6.106

Global Test Avg.

Methods Rank-1↑ VR1%↑ VR0.1%↑ Deg.↑ PSNR↑ SSIM↑ LPIPS↓ NIQE↓

Local Only C1 38.41 20.81 10.03 56.57 17.41 0.711 0.293 6.306

Local Only C2 26.69 6.84 1.61 49.59 16.61 0.701 0.322 6.315

Local Only C3 33.90 17.16 4.99 52.45 17.16 0.716 0.308 6.590

Local Only C4 34.87 14.14 6.98 55.06 16.76 0.695 0.314 6.259

Local Only C5 50.87 28.47 14.10 58.30 17.15 0.714 0.297 6.341

Local Only C6 48.59 24.04 14.27 59.42 17.01 0.716 0.299 6.233

Local Only C7 40.93 24.58 11.66 57.38 17.26 0.722 0.298 6.378

Local Only C8 47.89 26.74 13.31 58.13 16.90 0.713 0.303 6.316

Fused 37.39 21.35 8.85 59.14 18.66 0.761 0.294 6.887

FedProx [34] 61.98 34.16 17.97 64.60 18.73 0.744 0.237 5.794

VPFL w/o MPR 66.49 33.55 19.42 64.31 18.85 0.745 0.231 5.799

VPFL 69.80 38.21 23.97 66.75 19.25 0.751 0.224 5.832

Centralized 73.01 48.41 26.70 68.96 19.40 0.764 0.209 5.918

shown in the last three rows of each sub-table, the advantages

come from the newly designed MPR. These quantitative re-

sults are also aligned with the visual comparison in Figure 5.

One can see that VPFL yields the most accurate and faithful

hallucination results.

5. Conclusion

In this paper, we proposed a unified framework VPFL

for heterogeneous face hallucination. VPFL consists of a

novel VPGAN and a new Federated Learning (FL) scheme.

VPGAN introduces powerful visual priors to avoid learning

hallucination from scratch, resulting in more accurate gen-

eration under the current data limitations. With the consid-

eration of practical privacy issues, the proposed FL scheme

allows institution-wise collaborations without sharing data,

making large-scale training possible. Extensive experiments

demonstrate that VPFL can significantly boost HFR by syn-

thesizing accurate and realistic visible faces at a resolution

unseen in the literature. Discussion of limitations can be

found in the supplementary material.
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