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Abstract—In mobile crowdsensing, truth discovery (TD) enables a crowdsensing server to extract truthful information from possibly
conflicting crowdsensing data. TD provides a more accurate truth estimation than traditional truth inference methods like majority
voting and averaging. However, there still exist crucial data privacy (including sensory data, inferred truths, and intermediates) and
practicability (e.g., efficiency, utility, and non-interaction) concerns in real-world crowdsensing applications. Existing researches either
fail to provide adequate data privacy protection throughout the entire TD procedure or suffer from low practicability. In this paper, we
propose two schemes: a basic privacy-aware TD scheme (BPTD) and a privacy-enhanced TD scheme (PETD) with two servers for
mobile crowdsensing, comprehensively considering both privacy and practicability. BPTD is straightforwardly conducted on shared
data with few user-side interactions, while achieving high efficiency. To further liberate mobile users and prevent disclosure of the
intermediates, PETD incorporates a novel partial decryption-based Paillier Cryptosystem to work with secret sharing, offering
enhanced privacy protection without relying on any user-side involvement. Additionally, we improve the efficiency of PETD via data
packing. Security analysis shows the desired privacy goals. Compared to prior studies with the best security guarantees, our extensive
experiments demonstrate a comparable and superior performance regarding different metrics.

Index Terms—Mobile crowdsensing, truth discovery, data aggregation, secret sharing, Paillier Cryptosystem.
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1 INTRODUCTION

The past few years have witnessed the emergence and boom
of mobile crowdsensing [39], [40] due to the proliferation of
mobile devices equipped with powerful embedded sensors.
With no geographic constraint and deployment cost, mobile
crowdsensing has fostered a broad spectrum of applica-
tions in environmental monitoring, assistive healthcare, and
intelligent transportation ([20], [26]). However, for specific
applications, the quality of sensory data observed by dif-
ferent users may vary significantly due to differences in
sensor quality, user expertise, and environmental noise. For
example, a temperature sensor with high accuracy generally
provides a more reliable measurement than another with
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low accuracy. A user with a malfunctioning sensor may even
submit incorrect data. Hence, the sensory data provided
by mobile users is not all reliable and even conflicting.
As data receivers, data requesters want to obtain truthful
data from user-contributed information. Accordingly, one
research problem is how to extract the truthful data by
aggregating unreliable information from different users.
Conventional data aggregation methods like majority vot-
ing and averaging assume that users are in equal reliability,
which fail to capture users’ differences in reliabilities and
cannot derive accurate truths ( [22], [23], [30], [38]). For this
issue, truth discovery (TD) [21] has recently received consid-
erable attention in the context of mobile crowdsensing. TD
aims to discover the truthful information of each sensing ob-
ject from user-submitted conflicting data based on the users’
weights (i.e., reliabilities). The common principle in most
TD algorithms is that a user is assigned a higher weight if
his submitted data is closer to the aggregated results, and a
user’s data is counted more in truth estimation if the user
has a higher weight. Compared with majority voting and
averaging, TD provides more accurate truth information
by iteratively estimating users’ weights and updating the
estimated truths based on weighted aggregation [13].

Despite these benefits, we observe several critical pri-
vacy concerns that may impede the full potential of TD
application to real-world mobile crowdsensing [32], [33].
From the users’ perspective, the sensory data may con-
tain users’ sensitive information (e.g., location and health
information [41]). For example, to evaluate new drugs’
effects on patients, a research institution needs to aggregate
data from the participating patients to derive the truthful
value. However, the patients may not want to reveal their
health data. Additionally, the weights derived in the TD
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TABLE 1
Comparison with Existing Schemes

Schemes S. data U. weight E. truth I. results Non-I. Secure C. No P-U T. Non-collusion assumption
[22], [23], [35], [36], [37] " " % % % % " All parties
[24] " % % % % % " All parties
[48]-I " " % % % " " ≥Two users
[48]-II " " % % % " " ≥ Two users, two servers
[43]-I, [44] " ◦ % % % % " Two servers
[27] " ◦ ◦ % " % " Two servers
[43]-II " " % % " % " Two servers
[45]-I " ◦ % % % % " All parties
[45]-II " % % % % % " All parties
[42]-I " ◦ % % % % " ≥ Three users, two servers
[42]-II " " % % " % " ≥ Three users, two servers
[28] " " % " " % " Most users, two servers
[15], [16], [38] " % % % " % % —
[30] " " % % % % % User and server, cloud and edge
[19] " ◦ % % % % " Most users
[2], [3], [47] " " " " " % " Two servers
BPTD " " " ◦ % " " User and server, two servers
PETD " " " " " " " Two servers

S., U., E., I., Non-I., C., and No P-U T. are abbreviations for sensory, user, estimated, intermediate, non-interaction, convergence, and no
privacy-utility tradeoff; Comp. and Comm. stand for computation cost and communication cost, respectively; -I and -II denote the first and
second solution, respectively. ◦ denotes partial data disclosure and — means that this item is not mentioned.

procedures reflect user’s reliability degrees, indicating some
personal information such as education level and wealth
condition [37], and hence should be protected as well from
anyone including users themselves1. From the requester’s
perspective, he regards the final inferred truths as his pro-
prietary property since generally he pays the server and
mobile users some money for truth acquisition. Inherently,
the requester wants to keep them confidential against others
except for those willing to pay for access. Besides these, the
confidentiality of TD intermediate results is also of great
significance, but is neglected in most previous researches.
Although directly deriving the sensory data or the final
results is not easy based on an individual intermediate data,
it is much easier if big data or machine learning techniques
([25], [29]) are applied or multiple entities collude with each
other. Therefore, for stringent privacy concerns, the above
private/sensitive information should be protected.

With these privacy concerns, Miao et al. [22] first for-
mulated the privacy-preserving truth discovery (PPTD)
problem in mobile crowdsensing. After that, a series of
researches ([2], [15], [19], [23], [24], [27], [28], [35], [36],
[37], [38], [42], [43], [45], [47], [48]) continued this line of
work, targeting different privacy requirements or efficiency
improvements based on the single-server or the two-server
models. Despite their effectiveness, as shown in Table 1,
these solutions still suffer from limitations. First, limited
privacy protection is provided. Schemes like [22], [23], [35],
[36], [37], [45] ignore the truth and intermediates privacy.
Most solutions ([19], [24], [35], [36], [37], [42], [45], [48]) are
vulnerable to collusion attacks between users or between
users and the server. Differential privacy-based PPTD [15],
[16], [30], [38] can greatly improve the TD efficiency but
inevitably sacrifices the truth accuracy due to the added
noise, i.e., there is a tradeoff between privacy and utility.

1. Revealing lower weights to users may discourage them from
participation in the long term.

Noteworthily, for convergence determination, many PPTD
schemes simply predefine a maximum number of iterations
and focus on ensuring privacy in weight and truth estima-
tion. How to securely conduct computation-involved con-
vergence determination and preserve the privacy through-
out the entire TD procedure is hardly investigated except
in [48]. Second, past researches ([19], [22], [23], [24], [35],
[36], [37], [45], [48]) require users’ online involvement to
help compute intermediate values, which is difficult for
practical realization due to failure of network connections
[12] or battery issues of mobile devices. Additionally, extra
computation and communication overhead is incurred at
the users. Recently, schemes in [2], [3], [47] achieve non-
interactive PPTD with more privacy considered by combin-
ing Garbled Circuit (GC) with homomorphic encryption or
additive secret sharing. However, generating the related GC
is expensive and achieving secure convergence determina-
tion still remains neglected. For practicability concerns, a
non-interactive PPTD scheme with no privacy-utility trade-
off and heavy cost is highly advocated. However, when
the above privacy and practicability drawbacks are both
taken into account, designing a lightweight and practical PPTD
scheme with a stronger security guarantee throughout the entire
TD phase is a great challenge.

In this paper, inspired by the idea of additive secret
sharing [4], we initiate our first attempt and propose a
Basic Privacy-aware Truth Discovery scheme, named BPTD,
based on the two non-colluding server model. BPTD pro-
tects not only the sensory data and user weights, but also the
final inferred truths and some intermediate results. It yields
high efficiency with little user privacy sacrifice and a few
user-server interactions in each secure weight estimation.
To mitigate these, we further craft a Privacy-Enhanced and
practical Truth Discovery scheme, called PETD. Secure TD
protocols are proposed by making the best of the additive
secret sharing and the state-of-the-art Pallier Cryptosystem
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with partial decryption (PCPD) techniques. PETD indeed
releases the mobile users after data submission, and only
requires the online participation of the two servers. The
main contributions of this paper are summarized as follows.

• We propose a basic scheme BPTD, which enables
efficient TD on shared data while satisfying the pri-
vacy demands of users and the data requester under
the non-collusion assumption. We present a delicate
design of three secure sub-protocols on shared data
with the fewest interactions with the mobile users.

• We further present a privacy-enhanced and practi-
cal scheme PETD, which provides stronger privacy
guarantees (resistant to user-server collusion attacks)
with no user-side interactions. Similarly, three secure
PPTD sub-protocols are proposed on hybrid data.
Moreover, the server-side cost is further reduced by
seamlessly incorporating a data packing technique.

• We provide formal security and complexity analysis
to demonstrate the desired security and practicality.
Extensive experiments are conducted to validate the
superiority of our schemes to prior solutions.

The rest of this paper is organized as follows. Section 2
reviews previous work. We formulate the main problem in
Section 3. Section 4 introduces some preliminaries. Section 5
elaborates on our scheme details. Security analysis and
performance evaluations are presented in Sections 6 and 7,
respectively. We conclude the paper in Section 8.

2 RELATED WORK

As the first attempt, Miao et al. [22] designed a cloud-
enabled framework for PPTD in mobile crowdsensing. The
core of this framework is a secure sum protocol SSP which
protects the data/weight privacy but needs user-side in-
volvement for decryption. For a better performance, an
efficient PPTD scheme was proposed in [35], [37], which
however has a severe security compromise as a secret
key and random numbers must be shared among users
(vulnerable to user-side or user-server collusion attacks).
Moreover, frequent user-side interactions are required. As
an improvement, [36] employed t−D secret sharing to
support users dropping out to some extent. Instead of
employing a single server, Miao et al. [24] proposed two
lightweight PPTD frameworks via collaboration of two non-
colluding servers. Despite its low user-side cost, these two
solutions are also not secure enough, as user’s weight,
the intermediate results, and the estimated truths are all
revealed to the servers. The same disclosure problem also
exists in [43], [45], [48]. In [42], [45], different solutions were
proposed for user interactive and non-interactive scenarios,
respectively. Similarly, [43], [44] further crafted two reliable
fog-based PPTD schemes with consideration of external at-
tacks. However, as in [19], besides direct disclosure of truths
and intermediates, the weight information is also revealed
to each user. Adopting DP-based methods, mechanisms [15],
[16], [30], [38] were proposed to enable lightweight PPTD,
which bear a trade-off between privacy and utility. Besides,
the scheme (called PrivSTD) proposed in [30] integrated
edge servers with the cloud server for privacy-preserving

streaming TD, which also needs user-side interactions with
the edge servers.

Recently, Tang et al. [28] made their endeavors in de-
signing the non-interactive PPTD, which leverages Yao’s
GC and provides data privacy except the final estimated
truths. Zheng et al. [47] proposed an encrypted confidence-
aware TD approach by bridging additive homomorphic
encryption and GC. The adoption of GC also exists in [2], [3]
with an integration of additive secret sharing. It however is
time-consuming to generate GC and needs approximation
for logarithm computation with high accuracy. Instead of
concealing the sensory data, an anonymization protocol
named AnonymTD [27] was designed to delink workers
from their data and it enabled PPTD without worker-side
interactions. However, AnonymTD incurs a high communi-
cation overhead as the number of data submitted by each
worker is the same as the number of workers. Although
the deficiency is mitigated by another protocol named Per-
turbTD with perturbation, both AnonymTD and PerturbTD
ignore secure convergence determination and the privacy of
intermediates. User weights and estimated truths are also
revealed to some entities.

Besides achieving PPTD, enabling privacy-aware worker
recruitment [34], [46] and task allocation [31], [32] have also
been active research issues in the mobile crowdsensing com-
munity. Since we aim to protect users’ privacy in different
mobile crowdsensing phases, we omit the detailed literature
review of these two lines of work.

3 SYSTEM MODEL & PROBLEM FORMULATION

In this section, we present our system model, threat model,
and the problem statement for TD in mobile crowdsensing.

3.1 System Model

Our system consists of four kinds of parties: data requester,
cloud platform, mobile users, and key generation center.

1) Data requester: An individual/organization who has
data sensing tasks on certain objects. Due to the limited
resources, the data requester publishes his tasks on a cloud
platform and relies on the platform to collect data from
mobile users and conduct the TD procedure.

2) Cloud platform: An organization (or multiple organiza-
tions) who is/are responsible for distributing tasks, collect-
ing data, and exploring the truths for the data requester. The
cloud-based sensing model fosters a notable concept called
sensing as a service [26]. In this paper, we consider that the
cloud platform comprises two cloud servers managed by
two non-colluding and independent organizations. Such a
two-server model is also adopted by [24], [28], [43], [47].

3) Mobile users: Participants who perform tasks and col-
lect sensory data with their mobile devices. The sensory data
is sent to the cloud platform for further TD analysis.

4) Key generation center (KGC): A trusted party who
generates and distributes keys to the system participants.
The KGC only works in PETD for system initialization and
will stay offline in the PPTD procedures. A similar entity
was also introduced/mentioned for key distribution in prior
cryptography-based researches [22], [23], [42], [43], [44], [45].
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3.2 Threat Model

In our attack model, in line with [22], [23], [42], [43], [44],
[45], the KGC is considered fully trusted. Similar to [47],
we assume that the data requester, the cloud servers, and
mobile users are honest-but-curious, i.e., they will strictly
follow the designated PPTD protocol, but try to infer private
information of others. Specifically, the cloud servers may
want to know the sensory data and weights of mobile
users, or the estimated ground truths of the data requester,
due to either curiosity or business-driven reasons (financial
purposes [22], [23]). For example, the cloud servers may
sell the sensory data or estimated truths to third parties for
making a profit. Similarly, it is possible that the requester is
not satisfied with only getting the estimated truths, but also
be curious about the private information of mobile users.
On the other hand, each mobile user may also want to learn
others’ sensory data, weight information including his own
weight, and the data requester’s final estimated truths.

Additionally, in realistic crowdsensing applications,
some parties may collude with each other to infer private
information, which is easy to launch but is more challenging
to defend than single-adversary attacks. For example, in
[35], [37], a user’s sensory data can be easily deduced if
some users and the server collude with each other, as the
private key is shared between a set of users and the server.
The servers may collude with each other to reveal the
private data of the mobile users and the data requester. To
mitigate this, economic means [6] can be employed, where
the main idea is to leverage game theory and smart contracts
to stimulate tension between the servers, so that rational
servers will not collude and cheat because it is unprofitable
and too risky. This line of work is out of the scope of this
paper and we assume such an economic approach serving
our schemes. Hence, as in the prior two-server models
( [24], [28], [43], [47]), we follow the common non-collusion
assumption about the servers.

Moreover, regarding the Dolev-Yao threat model [5] in
which “active” eavesdroppers may obtain any message
passing through the network, impersonate another user,
or alter the message being transmitted, we assume that
each data share is transmitted via secure and authenticated
channels. Such an assumption can be also found in [2], [3].
Alternatively, the sender of a data share can also encode
his name together with the data share in the encrypted text
and sends it to the receiver. This solution is proved secure
against arbitrary behavior of the active eavesdroppers in [5].
For the partially decrypted ciphertexts transmitted between
the servers and the final truth ciphertexts sent to the re-
quester, they can be transmitted via an insecure channel.
However, the “active” eavesdroppers cannot discover the
corresponding plaintexts by impersonating the servers as
each server can only partially decrypt the ciphertexts. An
“active” eavesdropper may encrypt arbitrary data with the
system public key and obtain the partially decrypted cipher-
text from a cloud server. The eavesdropper may then imper-
sonate the cloud server and send the partially decrypted
ciphertext to another server for further decryption, which
leads to an incorrect computation result. Similarly, an “ac-
tive” eavesdropper may encrypt an arbitrary data with the
requester’s public key and impersonate a server to return

an incorrect truth ciphertext to the requester. The above
attacks can be resolved by letting the sender attach a digital
signature to each message, so that message authenticity and
integrity is ensured.

In this paper, we define two kinds of privacy disclosure:
direct privacy disclosure and indirect privacy disclosure.

Definition 1. (Direct Privacy Disclosure). The sensory data of
users and the estimated truths of the requester are known by others
without relying on additional information. Moreover, the weights
of users are directly revealed to the system entities including the
users themselves.

Solutions requiring the users/server to compute weights
[24], [27], [43], [45] and revealing the truths to the
server/users [22], [23], [27], [45], [48] all suffer from direct
privacy disclosure.

Definition 2. (Indirect Privacy Disclosure). The sensory data,
weights, or estimated truths are inferred from additional informa-
tion. The additional information may be obtained based on entity
collusions or intermediate data disclosure.

Collusion-vulnerable solutions [35], [36], [37] inevitably
suffer from indirect privacy disclosure. As pointed out in
[28], a continuous collection of the intermediates potentially
reveal the users’ sensory data and weights. Therefore, those
with no protection of intermediate data may be susceptible
to indirect privacy disclosure.

Note that the malicious attack model, in which malicious
users submit invalid (e.g., out-of-range) data or malicious
cloud server(s) returns incorrect truths to the data requester,
is not the focus of this paper. As potential solutions, repu-
tation evaluation [33], zero-knowledge proof [7], incentive
mechanism [8], [39], and verifiable computation [10] can be
adaptively integrated to address these issues.

3.3 Problem Statement and Design Goals

The PPTD problem is formalized as follows: Suppose that
there are M sensing tasks generated by the data requester,
denoted as T = {τ1, τ2, . . . , τM}, and there are K mo-
bile users, denoted as U = {u1, u2, . . . , uK}. Let xk =
(xk,1, xk,2, . . . , xk,M ) represent the data vector of user uk,
where xk,m denotes uk’s sensory data for task τm. More-
over, we use vector w = (w1, w2, . . . , wK) to represent the
corresponding weights of users.

In our system, for each sensing task τm ∈ T , there is
a ground truth unknown to all parties. Given the sensory
data vector xk, k ∈ [1,K], from a high level perspective,
our objective is to enable the cloud platform to estimate
the corresponding ground truths x= (x1, x2, . . . , xM ) of all
tasks according to the users’ weights w= (w1, w2, . . . , wK)
in a privacy-aware and practical manner. For direct privacy
protection, we aim to let mobile users only know their
own sensory data and let the data requester only learn the
inferred truths. The sensory data and estimated truths are
not directly disclosed to others. A mobile user’s weight
cannot be directly revealed to anyone including the user
himself. For indirect privacy protection, we aim to conceal
the intermediate results derived in the PPTD procedure.
No sensory data, weights, and truths can be inferred even
if partial intermediates are exposed. For practicability, the
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overhead incurred in PPTD should be as low as possible,
especially on the user side. There is no privacy-utility trade-
off. Moreover, we aim to minimize and ideally remove the
user-server interactions during the iteration procedure.

4 PRELIMINARY

In this section, we first describe the general TD procedure
in mobile crowdsensing, and then we review some crypto-
graphic primitives as building blocks for our schemes.

4.1 Truth Discovery
The purpose of TD in mobile crowdsensing is to infer the
truthful information of sensing tasks based on the massive
sensory data collected by different users. The general proce-
dure of TD algorithms is to iteratively estimate the weights
of users (weight estimation) and the ground truths of tasks
(truth estimation), until some predefined convergence crite-
rion is satisfied (convergence determination).

Next, we illustrate the iterative steps by taking the
representative TD algorithm CRH [13] as an example. CRH
also serves as the underlying TD basis for our schemes.
However, our proposed schemes are not restricted to CRH
and also suits other iterative TD algorithms such as [14] with
minor modifications.

1) Weight Estimation: Given all users’ sensory data
xk, k ∈ [1,K] and the estimated ground truths x =
(x1, x2, . . . , xM ), the estimated weight of any user ui,
i ∈ [1,K] can be computed as

wi = log(
K∑
k=1

d(xk,x))− log(d(xi,x))

= log(

∑K
k=1(xk − x) · (xk − x)

(xi − x) · (xi − x)
), (1)

where d(xk,x) =
∑M
m=1(xk,m − xm)2 is the square of

Euclidean distance between xk and x. In addition, · denotes
the inner product of two vectors.

2) Truth Estimation: Given users’ weight vector w =
(w1, w2, . . . , wK) and their sensory data, the estimated
ground truth for each sensing task τm can be derived as

xm =

∑K
k=1 wkxk,m∑K
k=1 wk

=
w · x∗,m
w · s

, (2)

where x∗,m = (x1,m, x2,m, . . . , xK,m) and s = (1, 1, . . . , 1).
3) Convergence Determination: Given a predefined thresh-

old ε, 0 < ε < 1, we check the following inequality to
determine whether convergence is satisfied.

d(xt,xt−1) < ε, (3)

where xt and xt−1 denote estimated truth vectors in the t-th
and (t− 1)-th iterations, respectively.

4.2 Additive Secret sharing and Multiplication Triples
Additively Secret Sharing (Shr(x)). The additive secret sharing
scheme separates an l-bit value x into two shares x(1)

and x(2), in which x(1) is a uniformly distributed random
number in the ring Z2l , and x(2) = x − x(1) mod 2l. These
two shares are held by two parties P1 and P2, respectively.

For ease of presentation, we omit the modular operation
(i.e., mod 2l) in the following descriptions.

Secret Reconstruction (Rec(x(1), x(2))). Given two shares
x(1) and x(2), a party can reconstruct the secret x by com-
puting x = x(1) + x(2).

Secure Addition Protocol on Shared Data. Given two values
x and y shared between P1 and P2, we assume that P1 holds
shares x(1) and y(1), and P2 holds shares x(2) and y(2). Pi
can compute the sum of his shares by calculating z(i) =
x(i) + y(i), i = {1, 2}. Finally, the addition of x and y can
be obtained by computing z(1) + z(2). Similarly, we can also
derive x− y by having Pi compute z(i) = x(i) − y(i).

Secure Multiplication Protocol on Shared Data. To enable
multiplication of two values x and y shared between P1

and P2, we adopt the multiplication triple technique [1],
[11]. In this technique, P1 and P2 are assumed to share three
values/triples a, b, c, where c = a · b and a, b are uniformly
randomized in the ring Z2l . Pi computes e(i) = x(i) − a(i)
and f (i) = y(i) − b(i). Both parties then jointly reconstruct
e and f . After that, Pi sets z(i) = (i − 1) · e · f + f · a(i) +
e · b(i) + c(i). The above operations on shared values can
also be generalized to shared vectors. In Section 5.1.2, we
will show how to perform secure multiplication protocol on
shared vectors.

4.3 Partial Decryption-based Paillier Cryptosystem
To further mitigate the leaking risk of the system private
key which is held by a single server, [18] adapted the con-
ventional Paillier Cryptosystem by separating the private
key into two different shares between two parties. This new
cryptosystem, named Paillier Cryptosystem with Partial
Decryption (PCPD), provides a higher security guarantee
as even if one server is compromised, the system private
key is still hidden. PCPD works as follows:

• KeyGen(1κ): Given a security parameter κ and two
κ-bit large prime numbers p, q, this algorithm out-
puts a public-private key pair (pk, sk). Specifically, it
computes N = p · q and λ = (p− 1)(q − 1)/2, based
on which, we generate a generator g of order N and
define a function L(x) = (x − 1)/N . Finally, we set
the public key pk = N and the private key sk = λ.

• KeyS(λ): This algorithm splits the private key sk = λ
into two parts, i.e., sk(i) = λi(i = {1, 2}), where
λ1 + λ2 ≡ 0 mod λ and λ1 + λ2 ≡ 1 mod N .

• Enc(m, pk): Given a message m ∈ ZN and the
public key pk = N , this algorithm chooses a ran-
dom number r ∈ Z∗N and outputs the ciphertext
[m]pk=gm · rN mod N2 = (1 +mN) · rN mod N2.

• Dec([m]pk, λ): Given a ciphertext [m]pk and the
private key λ, this algorithm outputs the plain-
text m = L([m]λpk mod N2)λ−1 mod N , where
[m]λpk mod N

2 =(1 +mNλ).
• PD1([m]pk, λ1): This algorithm performs the first-

step partial decryption with the partial private key
λ1. Given a ciphertext [m]pk and λ1, it outputs
CT (1) = [m]λ1

pk = rλ1N (1 +mNλ1) mod N2.
• PD2([m]pk, CT

(1), λ2): This algorithm performs the
second-step partial decryption with another partial
private key λ2. Given the partial decrypted cipher-
text CT (1), it first executes CT (2) = [m]λ2

pk =
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rλ2N (1 + mNλ2) mod N2, and then computes m =
L(CT (1) · CT (2) mod N2).

Additive homomorphic property: Given m1,m2 ∈ ZN un-
der the same pk, we have [m1]pk · [m2]pk = (1 + (m1 +
m2)N)·(r1+r2)N mod N2 =[m1+m2]pk, and ([m]pk)N−1 =
(1 + (N − 1)mN) · r(N−1)N mod N2 =[−m]pk.

The notations used in this paper are listed in Table 2.

TABLE 2
Notation Settings

Notations Description
M Number of sensing tasks
K Number of mobile users
xk,m The sensory data of task τm submitted by user uk
xm The estimated truth of task τm
ε The predifined threshold
x A vector value

d(xk,x) The square of Euclidean distance between xk and x
x · y The inner product of vectors x and y
x · y The multiplication of scalars x and y
λ1, λ2 Partial private keys
pk, sk Key-pair of the system
pkr, skr Key-pair of the data requester
[m]pk Ciphertext of message m encrypted by pk
d e The ceiling function
b c The floor function
[x|y] The packed value of x and y

5 OUR PROPOSED SCHEME

In this section, we present our schemes for secure TD for
mobile crowdsensing. The first scheme BPTD is inspired
by the salient features of additive secret sharing. It enables
some arithmetic computations (e.g., addition, subtraction,
and multiplication) directly to be performed on shared
data, but needs extra interactions with the mobile users for
division and logarithm computations (reveals partial inter-
mediates). For better practicability and security, we present
our second design PETD, incorporating the power of addi-
tive secret sharing and PCPD to provide enhanced PPTD
on hybrid data. PETD offers stronger privacy protection
against user-server collusion attacks in a non-interactive
way. Finally, we present an optimized PETD with reduced
computation and communication cost at the servers.

5.1 BPTD
5.1.1 Design Principle
We observe that one of the core operations in TD is
to compute accumulated values such as accumulated
square and weighted sensory data. Additionally, the meta-
operations involved in these computations are mostly ad-
ditions/multiplications, which can be efficiently performed
on additive shared data based on the aforementioned ad-
dition/multiplication protocols. According to the property
of arithmetic sharing, the key idea of BPTD is to let the
two servers first compute the shares of all accumulated
values included in weight estimation, based on which, two
shares of weight are to be derived. Secure truth estimation
and convergence determination are then both conducted on
shared values. In this case, the privacy of all data involved is
well protected as the servers do not collude with each other.

However, a non-trivial challenge is that additive secret
sharing does not support other operations such as logarithm

and division computations which are also required in the
TD procedure. Cai et al. [2] integrated GC to tackle division
and approximately computed logarithm values. However,
constructing such GCs is usually time-consuming and there
is a need for an efficient approximation with high accuracy
for the logarithm function. Reconstructing the intermediate
results and then splitting is a viable solution but it confronts
the risks of possible indirect privacy disclosure especially
when some parties collude with each other.

To tackle the above challenge, we carefully design BPTD
based on the existing arithmetic sharing protocols. Our
insight is to employ different parties for data reconstruction
so that each party only knows partial intermediate results
and can derive nothing about the sensory data, weights, and
truths by himself. The coordination of the two servers is,
however, not sufficient or secure. For example, in weight es-
timation, we need to reconstruct two values

∑K
k=1 d(xk,x)

and d(xk,x) for logarithm computations. One server recon-
structing d(xk,x), k ∈ [1,K] would get the accumulated
value

∑K
k=1 d(xk,x) and deduce each wk. To tackle this

issue, we let the users join in the reconstruction process but
only allow each user uk to reconstruct a value d(xk,x). In
this case, there is only one server-user interaction in each
iteration. Moreover, even though the user colludes with
the server who holds

∑K
k=1 d(xk,x), an inferred weight

is merely known by the user himself. For secure truth
estimation, since there is no logarithm operation included,
we only need to reconstruct

∑K
k=1 wk, which can be done

by the server not recovering data in weight estimation. Such
an idea complies with the requirements of minimizing the
user-side interactions and information held by each party.

5.1.2 Detailed Design

BPTD consists of one-time system initialization, multi-time
iterations, and final truth recovery at the data requester.
Specifically, there are three iterative sub-procedures: secure
weight estimation, secure truth estimation, and secure con-
vergence determination. Fig. 1 depicts the workflow and
inter-entity interaction process of BPTD. Note that our secret
sharing-based arithmetic operations are all performed in
the integer ring, and non-integer values can be scaled up
to integers by multiplying by a parameter P (a magnitude
of 10). Accordingly, the original value can be recovered by
dividing by P . In Section 7.2, we will show that the accuracy
of our result is not compromised if a proper P is chosen.

1) System Initialization. Instead of encrypting the data
locally, each user uk ∈ U splits his data vector xk into two
shares, denoted as x(1)

k and x
(2)
k , and sends them to C1 and

C2, respectively. The user-side computation cost isM simple
modulo (i.e., mod 2l) operations for M sensing objects. The
user-server communication cost is the bit length of 2M data
shares. Besides, the system sets a threshold ε to control the
convergence of TD. ε is also split into ε(1) and ε(2) and each
server holds one share. Similarly, the estimated ground truth
x is first initialized with random shares, represented by x(1)

and x(2), between the servers.
To enable multiplication operations on shared vectors,

the system sets shared vectors a, b, c and a′, b′, c′, which is
similar to that on shared data as introduced in Section 4.2.
The elements of these vectors are uniformly randomized in
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Fig. 1. The workflow of BPTD.

Z2l , and c = a · b mod 2l, c′ = a′ · b′ mod 2l. Finally,
these parameters are split and shared between the servers.
For each server, the total storage cost is the bit length of
(KM+3M+2K+3) data shares in the initialization phase.

2) Secure Weight Estimation. Since computing d(xk,x)
is a crucial operation in weight estimation, we first in-
troduce a secure distance square computation method on
shared data (SDS), which serves as a main component of
our secure weight estimation later. Specifically, given the
aforementioned shared data, SDS works as follows. For
each mobile user uk, server Ci (i = {1, 2}) first locally
computes u

(i)
k = x

(i)
k − x(i), e

(i)
k = u

(i)
k − a(i), and

f
(i)
k = u

(i)
k − b(i), in which e

(i)
k and f

(i)
k are sent to another

server for reconstruction. After recovering ek and fk, Ci
computes z(i)k = (i − 1)ek · fk + a(i) · fk + b(i) · ek + c(i),
which outputs the shares of product of two vectors. As
a result, C1 obtains z

(1)
k = d(xk,x)(1) while C2 obtains

z
(2)
k = d(xk,x)(2).

Based on the shared distance square, we further present
secure weight estimation on shared data, which finally
outputs the corresponding weight shares. As illustrated in
Algorithm 1, for each user uk ∈ U , after performing SDS
with C2, the servers send z(1)k and z(2)k to uk for reconstruc-
tion. Additionally, both servers compute the sum of its held
distance square shares among all users (Line 6), after which,
C2 obtains z(2) and sends it to C1 for reconstruction. On
the user side, uk recoveries zk and computes hk = log zk.
Since C1 and uk only know the partial information, there is
no direct privacy disclosure of weights. After deducing the
logarithm values, h and hk are then split into data shares
h(i) and h

(i)
k , i ∈ {1, 2}. uk sends the corresponding shares

to the servers for weight share computation.
In Algorithm 1, 5KM +2K+2 and 5KM +2K modulo

operations are needed at C1 and C2, respectively. Each mo-
bile user performs 2 module operations for data reconstruc-
tion and split. For user-server communication cost, 4 data

Algorithm 1: Secure Weight Estimation on Shared
Data

Input: C1 has {x(1)
k }

K
k=1,x

(1),a(1),b(1), c(1); C2 has
{x(2)

k }
K
k=1,x

(2),a(2),b(2), c(2).
Output: C1 obtains w(1), C2 obtains w(2).

1 // C1 and C2;
2 for k = 1 to K do
3 Perform SDS;
4 z

(1)
k ← d(xk,x)(1), z(2)k ← d(xk,x)(2);

5 C1 and C2 send z(1)k and z(2)k to uk, respecively;

6 Ci computes z(i) =
∑K
k=1 z

(i)
k for i ∈ {1, 2};

7 C2 sends z(2) to C1;
8 // C1;
9 z ← Rec(z(1), z(2));

10 Compute h = log z, (h(1), h(2))← Shr(h);
11 Send h(2) to C2;
12 // Mobile user;
13 for k = 1 to K do
14 uk computes zk ← Rec(z

(1)
k , z

(2)
k );

15 Compute hk = log zk, (h
(1)
k , h

(2)
k )← Shr(hk);

16 Send h(1)
k and h(2)

k to C1 and C2, respectively;

17 // C1 and C2;
18 for k = 1 to K do
19 Compute w(i)

k = h(i) − h(i)
k for i ∈ {1, 2};

shares are transmitted between each user and the servers.
There are (4KM + 2) data shares transmitted between the
two servers. For storage cost in each algorithm, besides the
algorithm input, we assume that each party only stores the
final results. As the storage of inputs of Algorithm 1 has
been considered in the initialization phase, C1 and C2 only
need to store w(1) and w(2). The corresponding storage cost
is the bit length of K data shares, respectively.

3) Secure Truth Estimation. After deriving the weight
shares w(1) and w(2), we can conduct secure truth esti-
mation on shared data, as shown in Algorithm 2. First, to
derive w · x∗,m based on the shared data, C1 computes
e(1) (relevant to w(1)) and f

(1)
m (relevant to x

(1)
∗,m) while C2

computes e(2) and f
(2)
m . Similarly, to derive w · s, C1 and C2

also compute g(1) and g(2), respectively. After recovering
the above values, the servers then compute the shares of the
denominator of Eq. (2) (Line 15). To deal with the division
computation on shared data, our basic idea is to convert di-
vision to multiplication which can be performed efficiently
based on the secure multiplication protocol in Section 4.2.
Specifically, we let C2 reconstruct y whose inverse is then
rounded by a factor P ′. After getting ỹ, C2 further splits it
into two shares and sends ỹ(1) to C1. Finally, both servers
obtain x(1) and x(2) by performing secure multiplication
protocol on data shares of ym and ỹ.

In Algorithm 2, 2KM + 4K + 3M + 4 and 2KM +
4K + 3M + 6 modulo operations are incurred at C1 and
C2, respectively. Meanwhile, 2KM + 4K + 2M + 4 data
shares are transmitted between the two servers. For storage
cost, C1 stores s(1) as input (can be also included in the
initialization phase, then it can be neglected in this phase)
and x(1) as output. Similarly, C2 stores the other two shares.
Accordingly, the storage cost at both servers is the bit length
of K +M data shares.
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Algorithm 2: Secure Truth Estimation on Shared
Data

Input: C1 has w(1), {x(1)
∗,m}Mm=1, s

(1),a′
(1)
,b′

(1)
, c′(1); C2

has w(2), {x(2)
∗,m}Mm=1, s

(2),a′
(2)
,b′

(2)
, c′(2).

Output: C1 obtains x(1), C2 obtains x(2).
1 // C1;
2 e(1) ← w(1) − a′

(1);
3 for m = 1 to M do
4 f

(1)
m ← x

(1)
∗,m − b′

(1);

5 g(1) ← s(1) − b′
(1);

6 Send e(1), {f (1)m }Mm=1,g
(1) to C2;

7 // C2;
8 e(2) ← w(2) − a′

(2);
9 for m = 1 to M do

10 f
(2)
m ← x

(2)
∗,m − b′

(2);

11 g(2) ← s(2) − b′
(2);

12 Send e(2), {f (2)m }Mm=1,g
(2) to C1;

13 // C1 and C2;
14 Reconstruct e, {fm}Mm=1 and g;
15 Ci computes y(i) = (i− 1)e ·g+g ·a′(i) +b′

(i) · e+ c′(i);
16 C1 sends y(1) to C2;
17 // C2;
18 y ← Rec(y(1), y(2));
19 ỹ ← bP ′/yc, (ỹ(1), ỹ(2))← Shr(ỹ);
20 Send ỹ(1) to C1;
21 // C1 and C2;
22 for m = 1 to M do
23 y

(i)
m ← (i− 1)e · fm + fm · a′(i) + b′

(i) · e + c′(i) for
i ∈ {1, 2};

24 Compute x(i)m based on secure multiplication
protocol on two shared data ym and ỹ;

4) Secure Convergence Determination. After generating a
new estimated ground truth, we need to evaluate whether
the convergence criterion is satisfied. Meanwhile, no other
information should be exposed to both servers except for the
evaluation results. Algorithm 3 presents a secure conver-
gence determination protocol on shared data, which takes
the shares of two estimated truth vectors xt,xt−1 and the
predefined threshold ε as inputs and outputs a convergence
label ν. Finally, although C1 learns ν, it cannot derive any
information about xm, x′m, ∆, and ε without other shares.

Algorithm 3: Secure Convergence Determination
on Shared Data

Input: C1 has (xt)(1), (xt−1)(1), ε(1); C2 has
(xt)(2), (xt−1)(2), ε(2).

Output: Convergence label ν.
1 // C1 and C2;
2 Perform SDS protocol;
3 ∆(1) ← d(xt,xt−1)(1), ∆(2) ← d(xt,xt−1)(2);
4 // C1;
5 ν(1) ← ∆(1) − ε(1);
6 // C2;
7 ν(2) ← ∆(2) − ε(2), send ν(2) to C1;
8 // C1;
9 ν ← Rec(ν(1), ν(2));

In Algorithm 3, C1 and C2 both require 5M + 3 modulo

operations. 4M + 1 data shares are transmitted between the
two servers. Finally, C1 stores the convergence label ν.

5) Truth Recovery. Once convergence is detected in the
t-th iteration, C1 and C2 send (xt)(1) and (xt)(2) to the
data requester, respectively, in which 2M data shares are
transmitted between the requester and the servers. Next, the
data requester is able to reconstruct the final estimated truth
vector xt with Rec(), which needs M modulo operations.
The associated storage cost is the bit length of M data.

Cost analysis of BPTD. Let mod denote the modulo op-
eration and l1 be the bit length of a data share (or a
data), the cost of BPTD with one iteration is summarized
as follows. For computation overhead, (M + 2)mod cost
is incurred on each user side. As discussed in the above
algorithms, the total computation cost of C1 and C2 is
both (7KM + 6K + 8M + 9)mod. It takes Mmod cost for
requester-side data reconstruction. On the other hand, the
user-server communication cost is (2M + 4)l1. In contrast,
(6KM+4K+6M+7)l1 communication is needed between
the two servers while 2Ml1 communication is needed be-
tween the servers and the requester. For data storage, the
corresponding cost at C1 and C2 is (KM + 4M + 4K + 4)l1
and (KM+4M+4K+3)l1, respectively. The requester-side
storage cost is only Ml1.

5.2 PETD

Despite the efficiency advantages, we observe that BPTD
requires C1 and each user uk to reconstruct

∑K
k=1 d(xk,x)

and d(xk,x) in secure weight estimation. Additionally, C2 is
responsible for recovering

∑K
k=1 wk in each secure truth up-

date. In practice, this is not desirable due to possible indirect
privacy disclosure and user-side online requirement.

For the above concerns, we continue our second at-
tempt PETD by resorting to the state-of-the-art partial
decryption-based Paillier Cryptosystem PCPD, and com-
bining it with additive secret sharing to design protocols
for secure TD on hybrid data. Different from exiting homo-
morphic encryption-based [9] secure computation protocols
and PPTD scheme [47], PETD splits both user data and the
system private key into two shares between the servers,
which reduces the risk of data and key leakage. Moreover,
the whole TD is securely conducted by the servers without
any user’s participation and leakage of the intermediates.

5.2.1 Construction Details

As in BPTD, we require each user to share one part of
his sensory data with each server. Instead of using data
shares, the estimated truths and threshold are initiated
with encrypted random values in PETD. The two servers
then collaboratively compute the encrypted distance square
between each user’s sensory data and the estimated truths
via PCPD. Based on this, three secure protocols are all con-
ducted on hybrid data without revealing any information
about the user’s data, weights, intermediates, and the final
results. Finally, only the requester can obtain the final truths.
Note that, the rounding factor P is also used to deal with
the floating-point number, which is omitted in the following
algorithms for ease of presentation. The detailed procedure
of PETD is shown in Fig. 2.
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Fig. 2. The workflow of PETD.

1) System Initialization. Given a security parameter κ, two
key pairs (pk, sk) and (pkr, skr) are first generated by the
KGC2 via KeyGen(). Specifically, pk and pkr are used to en-
crypt the sensory data and the estimated truth, respectively.
After key generation, the KGC splits sk into λ1 and λ2 via
KeyS(). skr is sent to the data requester while λ1 and λ2
are sent to C1 and C2, respectively. In PETD, x is randomly
initialized and then encrypted with pk by C1 (each encryp-
tion requires one modular multiplication and two modular
exponentiation operations). Meanwhile, ε is also encrypted
with pk. Then, each user uk uploads x(1)k and x(2)k to C1 and
C2, respectively. As in BPTD, the user-side computation cost
is Mmod and the user-server communication cost is 2Ml1
in the initialization phase. The difference lies in that C1

needs M +1 modular multiplication and 2(M +1) modular
exponentiation operations to encrypt x and ε. For storage
cost, C1 needs to store {x(1)

k }Kk=1, [x]pk, [ε]pk, λ1, i.e., KM
data shares, M + 1 ciphertexts, and a partial decryption key
λ1. In contrast, C2 only stores KM data shares {x(2)

k }Kk=1

and a partial decryption key λ2.
2) Secure Weight Estimation. Before illustration, we first

present its core sub-protocol, named Secure Distance square
computation on Hybrid data SDH (see Fig. 3). Given C1

holding {x(1)
k }Kk=1, [x]pk, λ1 and C2 holding {x(2)

k }Kk=1, λ2,
SDH enables C1 to securely get [d(xk,x)]pk. Let mul and
exp denote the modular multiplication and modular ex-
ponentiation, respectively. As the underlying sub-protocol,
SDH requires C1 to perform 3M encryptions (each costs
1mul+2exp) and M first-step decryptions (each costs 1exp)

2. It is possible to remove the KGC and let C2 and the requester
generate (pk, sk) and (pkr, skr), respectively. C2 then splits sk into λ1
and λ2. λ1 is sent to C1 while λ2 is held by C2. Such a solution needs
entity-side extra computation and communication cost, and loses the
advantage of key split in key leakage mitigation as we mentioned in
Section 4.3. Hence, we still introduce the KGC for initialization.

for each user3. For C2, only 2M encryptions and M second-
step decryptions (each costs 1mul+1exp) are needed.

Algorithm 4: Secure Weight Estimation on Hybrid
Data

Input: C1 has {x(1)
k }

K
k=1, [x]pk, λ1; C2 has {x(2)

k }
K
k=1, λ2.

Output: C1 obtains [w]pk.
1 // C1 and C2;
2 for k = 1 to K do
3 Compute Dk ← [d(xk,x)]pk;
4 Choose a random number βk, and compute Dβk

k ,
D′k ← PD1(D

βk
k , λ1);

5 D ← ΠK
k=1Dk;

6 for k = 1 to K do
7 Compute Dβ2

k , D′k ← PD1(Dβ2
k , λ1);

8 Send D′k, D′k, D
βk
k , Dβ2

k to C2;

9 // C2;
10 for k = 1 to K do
11 D′′k ← PD2(D

βk
k , D′k, λ2), D′′k ← PD2(Dβ2

k ,D′k, λ2);
12 Compute log(D′′k/D′′k ), Zk ← [log(D′′k/D′′k )]pk;
13 Send Zk to C1;

14 // C1;
15 for k = 1 to K do
16 [wk]pk ← Zk · [log βk]N−1

pk ;

After that, both servers continue secure weight estima-
tion on hybrid data. As shown in Algorithm 4, for each user
uk, C1 first derives Dk via SDH under the assistance of C2.
To compute the weight without revealing any information
about Dk, C1 then chooses a random number βk ∈ Z∗N
(β2
k ∈ Z∗N is also satisfied) and computesDβk

k ,Dβ2
k , whereD

is the encrypted sum of distance square of all users (Line 5).
After partial decryption (i.e., 2Kexp computation cost), Dβk

k

and Dβ2
k are sent to C2 with D′k and D′k. Next, C2 performs

the partial decryption (2K(exp+mul) computation cost) and
derives D′′k and D′′k . It then can obtain the masked weight
by computing log(D′′k/D′′k). The corresponding ciphertext
Zk (K encryptions with K(2exp + mul) computation cost) is
sent to C1. Since only C1 knows βk, it can get the encrypted
weight of uk by multiplying by [log βk]N−1pk (K encryptions
with K(2exp + mul) computation cost). The correctness of
weight estimation is shown in Eq. (4), in which any floating
point number x is rounded as dx · P e. In Eq. (4), it is
possible that dP · log βk+P · log(ΣKk=1d(xk,x)/d(xk,x))e =
dP ·log βke+dP ·log(ΣKk=1d(xk,x)/d(xk,x))e−1. In this case,
the result is [dP ·wke − 1]pk, a large P will not compromise
the accuracy of the recovered weight.

In Algorithm 4, the computation cost of C1 and C2 is
(3KM +K)mul + (7KM + 4K)exp and (3KM + 3K)mul +
(5KM + 4K)exp. Let l2 be the bit length of a ciphertext, the
bit length of λ1 and λ2 is also l2. The communication cost
between C1 and C2 is (4KM + 5K)l2, in which (4KM)l2
data is transmitted between the two servers in SDH. For
data storage, C1 needs Kl2 cost to store the final weight
ciphertexts [w]pk.

3. As in [18], we ignore other operations and focus on the encryption
and (partial) decryption cost in computational analysis.
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Zk · [log βk]N−1pk = [log(βk
ΣKk=1d(xk,x)

d(xk,x)
)]pk · [log βk]N−1pk

Rounded
=⇒ [dP · log(βk

ΣKk=1d(xk,x)

d(xk,x)
)e]pk · [dP · log βke]N−1pk

= [dP · log βk+P · log
ΣKk=1d(xk,x)

d(xk,x)
e]pk · [dP · log βke]N−1pk

= [dP · log βke+dP · log
ΣKk=1d(xk,x)

d(xk,x)
e]pk · [dP · log βke]N−1pk

= [dP · log βke+dP · log
ΣKk=1d(xk,x)

d(xk,x)
e − dP · log βke]pk

= [dP · log
ΣKk=1d(xk,x)

d(xk,x)
e]pk = [dP · wke]pk. (4)

3) Secure Truth Estimation. With [w]pk, secure truth es-
timation is performed via Algorithm 5. For each task τm,
C1 and C2 compute X1

m and X2
m, respectively. Next, C2

sends X2
m to C1 who can obtain the encrypted numerator of

Eq. (2) by computing X1
m · X2

m. Meanwhile, the encrypted
denominator of Eq. (2) is derived by multiplication of all the
encrypted weights. Next, a random number rm is chosen to
mask the numerator, denominator, and quotient so that C2

cannot infer any information from Y ′′m, W ′′m, and Y ′′m/W
′′
m.

The correctness of truth estimation is shown in Eq. (5) (P
and the modular operation are included).

Zr
−1
m
m

Rounded
=⇒ ([dP · rm

ΣKk=1xk,mwk
ΣKk=1wk

e]pk)r
−1
m mod N

= [r−1m · rm · dP ·
ΣKk=1xk,mwk

ΣKk=1wk
e]pk

= [dP · ΣKk=1xk,mwk
ΣKk=1wk

e]pk = [dP · xme]pk. (5)

In Algorithm 5, C1 performs 2M first-step partial de-
cryptions with 2Mexp cost. In contrast,C2 requires 3Mmul+
4Mexp cost for 2M second-step partial decryptions and
M encrytpions. The server-server communication cost is
(K + 6M)l2. Finally, Ml2 storage cost is incurred at C1 to
store the truths.

4) Secure Convergence Determination. W.l.o.g., given two
encrypted estimated truths [xt]pk, [xt−1]pk in two consec-
utive iterations, we can evaluate if Eq. (3) is satisfied via
a secure less than (SLT) protocol [18] (In SLT, C1 per-
forms two encryption and one first-step decryption oper-
ations while C2 performs one encryption and one second-
step decryption operations). The objective of SLT is to get
the encrypted data [u∗]pk which indicates the relationship

Algorithm 5: Secure Truth Estimation on Hybrid
Data

Input: C1 has [w]pk,x
(1)
∗,m, λ1; C2 has x

(2)
∗,m, λ2.

Output: C1 obtains [x]pk.
1 // C1;
2 for m = 1 to M do

3 X1
m ← ΠK

k=1[wk]
x
(1)
k,m

pk ;

4 Send [w]pk to C2;
5 // C2;
6 for m = 1 to M do

7 X2
m ← ΠK

k=1[wk]
x
(2)
k,m

pk ;

8 Send X2
m to C1;

9 // C1;
10 W ← ΠK

k=1[wk]pk;
11 for m = 1 to M do
12 Xm ← X1

m ·X2
m;

13 Choose a random number rm and compute

Ym ← X
r2m
m , Wm ←W rm ;

14 Y ′m ← PD1(Ym, λ1),W ′m ← PD1(Wm, λ1);
15 Send Ym, Y ′m,W,W ′m to C2;

16 // C2;
17 for m = 1 to M do
18 Y ′′m ← PD2(Ym, Y

′
m, λ2),W ′′m ← PD2(Wm,W

′
m, λ2);

19 Compute Y ′′m/W ′′m, Zm ← [Y ′′m/W
′′
m]pk;

20 Send Zm to C1;

21 //C1;
22 for m = 1 to M do

23 [xm]pk ← Z
r−1
m
m ;

between d(xt,xt−1) and εm. If u∗ = 0, it implies that
d(xt,xt−1) ≥ εm. If u∗=1, d(xt,xt−1)<εm.

Specifically, C1 first takes [xt]pk, [xt−1]pk as inputs and
jointly computes [d(xt,xt−1)]pk with c2 via a secure dis-
tance computation protocol similar to SDH (Different from
SDH, here C1 only needs 2M encryptions to encrypt a
random number rm, r2m and performs M first-step partial
decryptions. C2 performs M second-step partial decryp-
tions and M encryptions). Both servers then jointly perform
SLT which outputs [u∗]pk. Through two partial decryptions,
we can obtain u∗ and further evaluate the convergence. If
u∗ = 1, the convergence is considered satisfied and C1 takes
[xt]pk as the final result.

In secure convergence determination, C1 performs
(2M + 2)mul + (5M + 5)exp operations while C2 needs
(2M +2)mul+(3M +3)exp operations. The communication
cost between the servers is (4KM + 2)l2. Moreover, C1

needs to store u∗, leading to l1 storage cost.
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5) Truth Recovery. C1 first transforms [xt]pk into [xt]pkr ,
such that only the data requester can decrypt it with his
private key skr . Specifically, C1 chooses a random number
rm ∈Z∗N and computes [rm]pk and [rm]pkr , respectively. C1

derives [xtm+r]pk = [xm]pk ·[rm]pk,m ∈ [1,M ] and partially
decrypts it with λ1. C2 will re-encrypt xtm + rm with pkr
after further decryption. Holding [xtm+rm]pkr , C1 is able to
derive [xt]pkr by multiplying by [rm]N−1pkr

. Finally, [xt]pkr is
sent to the data requester for decryption.

The above truth recovery takes C1 and C2 2Mmul +
5Mexp and 2Mmul + 3Mexp computation cost, respectively.
The server-server and server-requester communication cost
is 2Ml2 and Ml2, respectively. Finally, the requester needs
M(mul + 2exp) cost to decrypt the encrypted truths.

Cost analysis of PETD. Based on the cost analyzed in
the above algorithms, we can summarize the computation,
communication, and storage cost of PETD with one iter-
ation. Theoretically, each user needs Mmod cost for data
split and the requester needs M(mul + 2exp) cost for the
final decryption. The total computation cost of C1 and C2 is
(3KM+K+5M+3)mul+(7KM+4K+14M+7)exp and
(3KM + 3K + 7M + 2)mul + (5KM + 4K + 10M + 3)exp,
respectively. On the other hand, the server-server communi-
cation cost is (8KM + 6K + 8M + 2)l2 in total. In contrast,
the server-user and server-requester communication cost is
2Ml1 and Ml2, respectively. For data storage, C1 and C2

need (KM + 1)l1 + (2M + K + 2)l2 and KMl1 + l2 cost,
respectively. The storage cost of the requester is Ml1.

5.2.2 Optimization
We observe that random numbers are necessarily required
to protect intermediates from C2 in the aforementioned sub-
protocols. It, however, is time-consuming to encrypt and de-
crypt each masked data (e.g., encrypt x(1)k,m+rk,m), especially
for large-scale users and tasks. To tackle this deficiency, we
seamlessly integrate the data packing technology [17] into
our proposed protocol. Instead of encrypting each plaintext,
the basic idea of data packing is that one party (e.g., C1) first
packs a certain number4 (say η) of plaintexts into a value,
and then encrypts it and sends the ciphertext to another
party (e.g.,C2) who can decrypt it and recover each plaintext
after unpacking. Suppose that there are KM data to be
packed, the server-side encryption and decryption cost will
be reduced to dKM/ηe after data packing.

W.l.o.g., we assume that there areKM σ-bit integers vk,m
to be packed into one value, where k ∈ [1,K] and m ∈
[1,M ]. The packed value can be computed as follows.

vpack = [v1,1|v1,2| · · · |v1,M | · · · |vK,1|vK,2| · · · |vK,M ]

=
K∑
k=1

M∑
m=1

vk,m2%, (6)

where %=σ((K−k+1)M−m), v1,1 and vK,M are the highest
and lowest significant bits of vpack.

In SDH, we assume that η=KM . x(1)k,m+rk,m is chosen

to be packed into x
(1)
pack =

∑K
k=1

∑M
m=1(x

(1)
k,m + rk,m)2%.

Here σ included in % is the bit-length of x
(1)
k,m + rk,m,

4. The number of data in each pack is determined by the message
space of Paillier Cryptosystem and the bit length of data to be packed.

where rk,m is a (l+ δ)-bit integer, l is the bit-length of
x
(1)
k,m and δ is a statistical security parameter [17]. C1 com-

putes µ = [x
(1)
pack]pk

∏K
k=1

∏M
m=1[xm]

(N−1)2%
pk . Note that, it

is not difficult to find that µ is the ciphertext [x
(1)
1,1−x1 +

r1,1| · · · |x(1)K,M−xM +rK,M ]. After partial decryption at the

servers, x(1)k,m−xm+rk,m is revealed by C2 via unpacking.
Subsequently, both servers perform the same operations as
shown in Fig. 3. Obviously, only one encryption is required
after data packing at C1 in step 1, which saves much time
compared with KM encryptions. Similarly, the correspond-
ing number of decryptions is reduced to one for the servers.

Since SDH is the underlying protocol of secure weight
estimation and a similar protocol applies to convergence
determination, the computation cost at the servers can be
reduced correspondingly via data packing. In Section 7,
we will show the detailed cost savings in our optimized
PETD (denoted as PETD-OPT). Theoretically, the total com-
putation cost of C1 and C2 can be reduced to (KM +
K + 4M + 5)mul + (2KM + 4K + 11M + 13)exp and
(KM + 3K + 6M + 4)mul + (2KM + 4K + 9M + 5)exp,
respectively. In addition, PETD-OPT can save (4KM − 4)l2
communication cost between the two servers (i.e., the server-
server communication is (4KM + 6K + 8M + 6)l2).

6 SECURITY ANALYSIS

In this section, we provide a theoretical security analysis of
our schemes. Follow the security analysis in [18], we con-
struct simulators Sim = (SimU ,SimC1

,SimC2
,SimR) to re-

sist four kinds of adversaries A = (AU ,AC1
,AC2

,AR) that
corrupt the mobile user U , C1, C2, and the task requester R,
respectively. Let E be an environment machine by which the
inputs of uncorrupted parties are chosen. Security is defined
by comparing a real-world execution and an ideal-world
execution. A protocol π is considered secure against non-
colluding semi-honest adversaries A if REAL[E ,A, π, λ] ≈
IDEAL[E ,S, f, λ], in which REAL[E ,A, π, λ] denotes the fi-
nal output (i.e., view) of the environment E when interacting
with A and honest parties who execute protocol π on the
security parameter λ while IDEAL[E ,S, f, λ] denotes the
output of the environment E when interacting with Sim and
honest parties who run the dummy protocol in presence of
an ideal functionality f on λ. In other words, the views in
the two worlds are indistinguishable.

Theorem 1. In BPTD, if all parties are honest-but-curious
and there is no collusion between the servers, the sensory data,
weights, and the final estimated truths will not be disclosed to any
other party (i.e., no direct privacy disclosure). Some intermediates
are inevitably exposed but no private data can be inferred from the
intermediates as long as the users do not collude with the server
(i.e., no indirect privacy disclosure).

Proof. In secure weight estimation, SimU receives each sen-
sory data x as input and splits x into two shares in Z2l . SimU

sends one share to AU . SimC1 simulates AC1 as follows: it
randomly chooses data in Z2l and computes one share of
d(xk, x). Then, SimC1 computes the sum of distance partial
shares and sends it toAC1 . SimC2 simulatesAC2 in a similar
manner. By now, the views of AU , AC1 , and AC2 are all
indistinguishable in the real and ideal world as all data
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are generated using uniformly random shares. This ascribes
the security of additive secret sharing. In other words, the
confidentiality of data is protected from direct disclosure
as long as the data is shared (no reconstruction) between
the two servers. For indirect privacy disclosure, it is a fact
that some intermediate results are revealed to the parties
due to data reconstruction. Next, we analyze that such
reconstructions will not compromise the privacy of users
and the requester in our non-colluding setting.

Specifically, in secure weight estimation,
∑K
k=1 d(xk,x)

is disclosed to C1 while d(xk,x) is revealed to each user
uk. The collusion between uk and C1 only allows uk to
learn his own weight wk, still keeping wk private to other
parties. The users may collude with each other, a user
colludes with a subset of users will not reveal any weight
information while collusion among all users does not make
sense as it also reveals the user’s own weight. In secure truth
estimation, we resort to C2 to reconstruct

∑K
k=1 wk. For

the t-th iteration, the exposed intermediate results include∑K
k=1 d(xk,x

t), d(xk,x
t),

∑K
k=1 w

t
k, and d(xt,xt−1) (i.e., ν

in Algorithm 3). C1 and the users may continuously collect
this data in each iteration and try to infer the sensory data
and estimated truths. However, the estimated truth in each
iteration is shared by the two servers, it is hence hidden
from C1 in the server-side non-collusion assumption. Al-
though (xt − xt−1)2 is revealed to C1, it is infeasible to
determine xt and xt−1, respectively. Similarly, C1 cannot
infer the estimated truths from two unknown data x1 and
x2. On the other hand, C2 only learns

∑K
k=1 w

t
k,

∑K
k=1 w

t−1
k ,

and a share of weights and estimated truths, no sensory
data, weights, and truths can be inferred from these in-
termediates, i.e., no indirect privacy disclosure. Tang et al.
[28] showed that the sensory data would be deduced by
building K formulas after K iterations when the intermedi-
ate estimated truths and the above aggregated data in each
iteration are exposed. In BPTD, the estimated truth xt is
shared between the servers, hence inferring the sensory data
is infeasible in our non-collusion assumptions.

As analyzed, as long as the users do not collude with
C1 and the two servers do not collude with each other, the
privacy of mobile users and the requester is well protected
without direct and indirect privacy disclosure.

Theorem 2. In PETD, if all parties are honest-but-curious and
there is no collusion between the servers, the sensory data, user
weights, intermediate results, and the final estimated truths are
oblivious to the adversaries, even if users collude with one server.
In other words, there is no direct or indirect privacy disclosure.

Proof. In PETD, we only provide a proof to show how to
construct four independent simulators for Algorithm 4. The
security of Algorithm 5 and secure convergence determina-
tion can be proved accordingly.

In secure weight estimation, SimU receives x as input
and splits x into two shares in Z2l . SimU sends one share
to AU . We omit the simulation of SDH as its underlying
secure multiplication protocol is proved secure in [18]. On
the server side, SimC1

simulates AC1
by generating two fic-

titious encryptions Dβk

k and Dβ2
k with Enc() and randomly

chosen data. SimC1
computes D′k and D′k with PD1() and

sends Dβk

k , Dβ2
k , D′k and D′k to AC1 . If AC1 replies with ⊥,

then SimC1
returns ⊥. SimC2

simulates AC2
by randomly

choosing a number z and computing [z]pk with Enc().
SimC2

sends [z]pk to AC2
. If AC2

replies with ⊥, then SimC2

returns ⊥. SimR simulates AR by generating encryption
[xm]pkr of a randomly chosen data xm, which is then sent
to AR and outputs AR’s view. For the above simulators, the
view of AU in the real and ideal worlds is indistinguishable
due to the security of additive secret sharing. Hence the
confidentiality of sensory data is guaranteed. The views of
AC1

,AC2
, andAR consist of the encrypted data they create,

which are indistinguishable in the real and ideal executions
due to the semantic security of PCPD. The intermediate and
final results are well protected.

Regarding collusion attacks, first, collusion among dif-
ferent users does not make sense as it only reveals their
own sensory data, rather than information of the non-
colluding users. Additionally, these users are not able to
infer the estimated truths without the decryption key of the
data requester. Second, similar to the intra-user collusion
case, users colluding with C1 or C2 will disclose nothing
about other users’ sensory data and weights, as well as
the estimated truths. Third, for collusion between the data
requester and any server, it is infeasible to derive the sensory
data based on the partial data shares and the estimated
truths. Moreover, C1 cannot decrypt [w]pk with the data
requester’s private key skr . Therefore, the weight privacy
of each user is still preserved. Due to the same reason, inter-
mediate results such as w ·x∗,m, w ·s are also concealed.

7 EXPERIMENTS

7.1 Simulation Setup
As in the previous work, we used the well-known CRH [13]
as the underlying TD method. As to computation and com-
munication cost, we compare our schemes with three most
relevant researches [48] (we use the second scheme PPTD-
II for comparison due to its better overhead performance),
[47] (we call the scheme GHTD), and [2] (or its journal
version [3], we denote the scheme in [2] as PPTD-S). For
a fair comparison, the above schemes are all based on CRH
with the same dataset.

As in prior designs [28], [48], we used a synthetic dataset
and all data was generated from a normal distribution
with a random mean µ (represents the real ground truth)
and a variance σ2 (reflects the quality of observed data).
Specifically, we generated a dataset with 100 mobile users
and 50 tasks, and each user observed sensory data whose
mean value µ ∈ [20, 40] and variance σ2 ∈ [1, 2]. The size of
each sensory data l1 was set to be 64 bits, while the statistical
parameter δ was set as 20 bits to achieve 220 statistic security.
In addition, N was set to be 1024 bits to achieve 80-bit
security levels. We set P ′ in Algorithm 2 as 1000 to ensure
ỹ 6= 0 in our scenario with 100 users. P and ε were set in the
range from 100 to 105 and from 0.00001 to 1, respectively.
For “log” computation in GHTD, we used Taylor Expansion
with order 100 which is sufficient to ensure the accuracy.

7.2 Simulation Results
Accuracy. We first evaluate the accuracy of the final esti-
mated truths of our solutions, with CRH as the baseline.
Fig. 4 depicts the impact of P on the estimation accuracy
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Fig. 4. Accuracy evaluation
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Fig. 5. Convergence determination

(the standard root of mean square error RMSE as the ac-
curacy metric, ε = 0.01). When P is 100, our two schemes
have greater RMSE than CRH as the fractional parts of
all sensory data and intermediate results are removed for
computations on integers. As P increases, our estimation
error decreases and is nearly the same as CRH when P is
greater than 102. Hence, as long as P is large enough, the
accuracy of our schemes will not be compromised. In the
following experiments, unless otherwise stated, we set P as
105.

Convergence. We show in Fig. 5 the impact of ε on the
number of iterations for three schemes. As expected, our
schemes present the same number of iterations as CRH
under varying ε. Additionally, we observe that the number
of iterations does not always decrease as ε decreases. It is
reasonable since less ε indicates a higher precision which
usually needs more iterations (or the same sometimes).

Computation Overhead. Table 3 reports the user-side com-
putation time w.r.t the number of tasks taken by each user. It
is shown that the computation cost in all solutions grows as
more tasks are executed. Among them, PETD and PPTD-
S show the same least user-side computation. BPTD is
expected to have negligible more time than PETD, which
coincides with our theoretical analysis. In GHTD, since users
undertake expensive data encryptions for sensing tasks, far
more computations are needed than other solutions.

TABLE 3
User’s Computation Cost (ms)

M PPTD-II GHTD PPTD-S Our schemes
BPTD PETD

10 0.25 (13.8×) 40 (2222×) 0.018(1×) 0.019 0.018
20 0.37 (14.2×) 79 (3038×) 0.026 (1×) 0.027 0.026
30 0.52 (13.7×) 110 (2894×) 0.038 (1×) 0.041 0.038
40 0.63 (12.6×) 156 (3120×) 0.05 (1×) 0.053 0.05
50 0.79 (12.9×) 191 (3131×) 0.061 (1×) 0.064 0.061

Next, we fix the number of users to 100. Fig. 6 reports the
impact of task quantity on the server-side computation cost
for each user in each secure weight update. As observed,
the server-side cost of most schemes increases as more
tasks are performed, with BPTD exhibiting negligible cost
due to the efficient modulo operations on shared data.
In contrast, PETD takes both servers much more running
time to estimate user’s weight, which is more than that
in PPTD-II. This is because computing d(xk,x) in PETD
is conducted on hybrid data, in which encryptions and
partial decryptions require more computations than that in
the plaintext domain in PPTD-II. PETD essentially provides
stronger privacy guarantee at the cost of heavier computa-
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Fig. 6. Computation cost at the servers in secure weight update. (a) On
C1 side. (b) On C2 side.
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Fig. 7. Computation cost at the servers in secure truth update. (a) On
C1 side. (b) On C2 side.

tion overhead. Fortunately, this large cost is greatly reduced
via our PETD-OPT. Moreover, PETD-OPT and PPTD-II have
similar C1-side cost and PETD-OPT takes C2 less time
than PPTD-II. Notably, despite a stable growth, GHTD still
bears the most server-side computations as expensive cost
is incurred for Taylor Expansion computation based on
the secure multiplication protocol. For PPTD-S, it presents
good scalability because the server-side cost is dominated
by the GC-based computations (two logarithm and one
division operations rely on GC, regardless of M ). However,
it still yeilds more time cost than PETD(-OPT). In real-world
applications where each user generally participates in a few
tens of tasks, our schemes exhibit more advantages.

Fig. 7 plots the server-side computation cost w.r.t the
user quantity for each task in secure truth update. Similarly,
BPTD shows the least and negligible cost. Different from
Fig. 6, PETD presents far less computation cost at the servers
than PPTD-II. This is because secure truth update is fully
performed on encrypted data in PPTD-II, which requires to
call SMP k times for k users. In contrast, PETD takes shared
sensory data and encrypted weights as inputs, and only
needs some modular exponentiation computations to derive
the encrypted weighted data. Since optimization does not
work when updating truth, PETD and PETD-OPT share
the same cost. For GHTD, it presents comparable cost with
PPTD-II but still yields the most computation cost. This is
reasonable since GHTD and PPTD-II both use Paillier-based
secure multiplication protocol to derive the encrypted sum
of weighted truths and weights. Compared with Fig. 6, only
one division is performed by the GC, and hence PPTD-S
shows a lower cost at both servers per truth estimation,
which is comparable with PETD(-OPT).

Last, Figs. 8(a) and 8(b) compare the server-side com-
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putations in secure convergence determination. We omit
GHTD and PPTD-S as they use the maximum number of
iterations as convergence criteria. As reported, PETD incurs
much more computation cost than BPTD at both servers,
which, however, is greatly reduced in our PETD-OPT with
up to 4.1× and 4× savings for C1 and C2, respectively. Both
BPTD and PETD-OPT exhibit a better performance than
PPTD-II. Hence, our schemes provide a more secure method
to decide the convergence with higher efficiency.
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Fig. 8. Computation cost at the servers per convergence determination.
(a) On C1 side. (b) On C2 side.

Communication overhead. Table 4 presents the user-server
communication overhead in each scheme, in which our
PETD and PPTD-S yield the fewest bytes. The reason is that
they both only need to send two data shares to the servers
for each task. BPTD bears more bytes as extra four data
shares are transmitted between a user and the servers in
each weight estimation (three iterations are involved under
the setting ε = 0.01). In contrast, the communication cost in
PPTD-II is over two times as much as PETD. The additional
cost also attributes to the frequent user-server interactions
in weight estimation. For GHTD, each user needs to send
the 2048-bit ciphertexts to C1. Hence, it results in 16× bytes
as that in our schemes.

TABLE 4
Communication Cost Between a User and the Servers (bytes)

M PPTD-II GHTD PPTD-S Our schemes
BPTD PETD

10 448 (2.8×) 2560 (16×) 160 (1×) 256 160
20 848 (2.65×) 5120 (16×) 320 (1×) 416 320
30 1248 (2.6×) 7680 (16×) 480 (1×) 576 480
40 1648 (2.57×) 10240 (16×) 640 (1×) 736 640
50 2048 (2.56×) 12800 (16×) 800 (1×) 896 800

Storage overhead. Last, Table 5 compares the two server-
side total storage cost in different schemes. Note that for
each scheme, we only store the input and output data in
the initialization and the three iterative procedures (if the
output is an input of another algorithm, it is not counted
repeatedly. If secure convergence determination is not in-
volved in the scheme, then no associated output is stored).
As shown in the table, BPTD needs the least storage cost
for the servers and PETD bears a medium storage cost
(less than PPTD-II and GHTD, and more than BPTD and
PPTD-S). This is in accord with our complexity analysis in
Section 5.2.1 and is reasonable for the sake of achieving non-
interaction and enhanced privacy. As PPTD-II, GHTD and
PETD all introduce homomorphic encryption for PPTD, the
servers require to store the weights and truth ciphertexts.

The higher storage overhead of PPTD-II and GHTD is due
to the extra storage of sensory data ciphertexts (PETD only
stores the sensory data shares). PPTD-S and BPTD both
adopt additive secret sharing and hence present comparable
storage cost. The reason for the slightly more cost in PPTD-S
is that the servers need to store the shares of accumulated
distance for each user in secure weight update.

TABLE 5
Server-side Total Storage Cost (bytes)

M PPTD-II GHTD PPTD-S Our schemes
BPTD PETD

10 341320 343296 31232 26632 103832
20 605560 609536 48032 43592 130072
30 869800 875776 64832 60552 156312
40 1134040 1142016 81632 77512 182552
50 1398280 1408256 98432 94472 208792

8 CONCLUSION

In this paper, we investigate how to securely and effi-
ciently discover truthful information from conflicting mo-
bile crowdsensing data. We first propose a basic scheme
BPTD enabling PPTD directly on shared data, which is very
efficient under the help of two non-colluding servers and the
mobile users, and ensures the most privacy requirements. To
provide stronger privacy protection of intermediates with
no user-side interactions, we further propose PETD with in-
tegration of a novel homomorphic encryption cryptosystem.
BPTD and PETD show a different trade-off between security
and efficiency, which caters for different applications accord-
ing to the practical requirements. The server-side efficiency
is further improved in PETD-OPT with data packing. Secu-
rity analysis and experimental implementations validate the
security and better performance of our schemes.
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