Identifying Effective Re-entry Pathways for Returning Women to Transition into Computing and Tech Education and Workforce

Farzana Rahman Dept. of EECS Syracuse University Syracuse, USA frahma02@syr.edu Elodie Billionniere School of EnTec Miami Dade College Miami, USA ebillion@mdc.edu Sinchana Sulugodu Shashidhara

Dept. of EECS

Syracuse University

Syracuse, USA

ssshashi@syr.edu

Abstract— The disparity of women in computing and technology field is quite evident. There have been many national initiatives over the past decade that tried to enhance diversity in these fields. However, one group of population, returning women, have received little to no attention. Covid-19 pandemic has made this situation even worse by sharpening the inequality in America's economy, where nearly eight times the number of women left the workforce compared to men last year. Yet, returning women, remain to be one of the largest untapped talent pools in the nation. The field of computing and Emerging Technology (EmTech) can use the untapped potential of returning women to fill the gap in workforce, which is growing at a rapid rate. Hence, to broaden participation and to understand the barriers and challenges faced by returning women to (re-)enter EmTech, a national virtual conference, RESET, was organized in 2021 amid the COVID-19 pandemic. In this paper, we present results from a mixed method study to investigate if the attendance at the RESET conference is a predictor of returning women's elevated knowledge in (re-)entering EmTech education and/or workforce, and if the conference was successful in identifying resources that would facilitate transition of returning women in computing and tech discipline. In our quest to answer the questions we also report on - 1) challenges and barriers returning women face when pursuing computing degree, after a break, 2) challenges and barriers returning women face to transition to computing jobs, after a career break, 3) strategies and technical preparations that can be adopted to ease this transition, 4) level of satisfaction with the resources offered by the conference; 5) knowledge benefit from various technical sessions; 6) compliance with effectiveness of the resources offered; and 7) preparedness in pursuing EmTech education and workforce.

Keywords—emerging technologies, re-entry, women in computing, diversity, career-break

I. INTRODUCTION

One of the critical needs of the 21st-century workforce development is the recruitment, retention, and graduation of women in computing and technology fields. In computing discipline, only 22% of the bachelor's degrees were awarded to women in the United States, down from a high of 28% in 2000 [1]. In recognition of the widening skills and opportunity gaps in computing, there have been several initiatives aimed at recruiting a diverse body of students [2]. Although the proportion of women computing degree holders remains

relatively low, the field of computing continues to grow each year [3-5]. Further, a recent survey of Americans [6] found that 48% of respondents expect the number of computing jobs to continually grow in the U.S. over the next decade. Some industry within computing domain known as Emerging Technology (EmTech), like machine learning, artificial intelligence, and cloud computing, etc, are growing at an exponential rate and there is prediction that these areas will face skill shortage in the coming years [7, 8].

Additionally, due to COVID-19 pandemic, nearly eight times the number of women left the workforce compared to men this year [9] and this inequality has also impacted the computing industry's diversity representation very negatively. Literature has demonstrated that women who leave school or career often do so because of finances, lack of support network or personal obligations [10, 11] and the pandemic has made these challenges more prominent for women. To broaden participation in computing and fill a growing need for professionals in computing, specially EmTech discipline, it is important to consider innovative pathways to shift attention to the largest untapped pools of talent, which is returning women. As the nation continues to place high importance on broadening participation of women in computing, is critical to understand how equitable education, diverse training, upskilling, and reskilling initiatives can be implemented for returning women who can fill the growing needs of EmTech industry.

Additionally, in recent years, studies have shown experiential educational activities, like conferences, encourage learners' persistence in STEM [12]; this is especially important for students underrepresented in the field. With this theory in place, to identify the challenges and barriers faced by returning women in their journey to (re-)enter EmTech discipline, we have designed and implemented a three-day national virtual conference, RESET (Re-Entering STEM through Emerging Technology), in March 2021. The goal of the conference was to provide a platform to share experiential knowledge and evidence-based findings, and to provide recommendations on how the enrollment, retention, recruitment, and employment opportunities of returning women may be improved through different efforts like research, practice, policy, and evaluation.

In this paper, we present results from a mixed method study to investigate if the attendance at the RESET conference is a predictor of returning women's elevated knowledge in (re-)entering EmTech education or workforce. We studied the relationship between conference participation psychological predictors of returning women's elevated knowledge on (re-)entering EmTech, which clearly shows that higher satisfaction level at the conference by returning women related very strongly with their elevated knowledge and preparedness on (re-)entering education and workforce pipeline of EmTech discipline. Our analysis and results indicate that the relationship between exposure to conference facilitated resources' effect is stronger for returning women vs women who did not experience any break.

II. GOALS, DESIGN, AND SCOPE

A. Conference Goals

We designed the RESET conference to explore and discuss challenges encountered by returning women with a purpose of understanding their situations and identifying solutions to their problems in accessing EmTech education and employment opportunities. In Fig. 1, we highlight the conference's three primary goals:

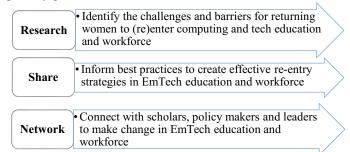


Figure 1. RESET Conference Goals

B. Design Rationale

The national virtual conference, RESET, was designed to understand the barriers and challenges faced by returning women to (re-)enter computing and tech education and career pathways. The conference provided:

- (a) a platform that supports collaborative discussion on effective strategies having a real impact on bringing more returning females in computing and tech fields
- (b) a platform to explore and identify barriers and challenges for returning women to enter computing and tech
- (c) enhanced knowledge on what strategies do returning women currently utilize to enter the educational and professional pipeline of EmTech disciplines
- (d) knowledge to participants on existing programs, career options, and skill building opportunities in EmTech fields
- (e) a community to exchange new ideas and innovations to enable returning women's re-entry in EmTech
- (f) a networking community of educators and industry professionals to facilitate greater dissemination and exchange of expertise, which can generate effective and innovative pathways for returning women's re-entry in EmTech.

C. Conference Scope

Through the three primary goals mentioned in Fig. 1, RESET conference also enabled the sharing of experiential knowledge and evidence-based findings, and provided recommendations on how the enrollment, retention, recruitment, and employment opportunities of returning women may be improved through different efforts like research, practice, policy, and evaluation. The conference sessions emphasized on the following theme topics, but not limited to 1) *Current state of EmTech curriculum initiatives*, 2) *Equitable EmTech education initiatives*, 3) *Upskilling and reskilling in EmTech*, 4) *Non-traditional paths in EmTech*, 5) *New initiatives for tech diversity*, 6) *Diverse routes to EmTech*, and 7) *Tech re-entry lessons learned*.

Additionally, to facilitate technical training, numbers of handson virtual workshops and technical interview sessions were provided which focused on 1) Google Cloud Build platform, 2) building a Chatbot with AWS Lex, 3) data science and visualization in healthcare, 4) cyber-attacks with cryptography, forensics, and web exploitation, 5) assessing trustworthy AI with Z-Inspection®, and 6) securing and privacy-preserving of data-driven systems.

The three-day conference took place on March 2021 with 62 women tech speakers, 38 sessions, and 444 registrants, including 216 student participants, in the computing/EmTech fields. It was a conference for women, by women to women. The presenters and invited participants were from the National Science Foundation, academia, industry, social science and policy fields, and support organizations.

III. RESEARCH METHODOLOGY

A. Research Questions

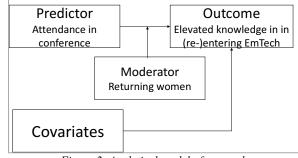


Figure 2. Analytical model of research

In this current research, we are interested in finding answer to the following research questions:

- 1. If the RESET conference was able to elevate the knowledge of returning women to (re-)enter EmTech fields?
- 2. What challenges and barriers returning women face when pursuing computing education (special focus on computing and tech disciplines), particularly after a career break? (women's experiences in academia)?
- 3. What challenges and barriers returning women face when working in computing fields (special focus on computing and tech profession), particularly after a career break? (women's experiences in the industry)?

4. What strategies and technical preparations can be adopted to make computing and computing and tech education and workforce more accessible and attractive for women returning from a career break?

This will be evident if the attendance and dissemination of conference artifacts lead to attendees reporting - 1) reasons for educational breaks, 2) reasons for career break, 3) approaches to mitigate barriers for returning women, 4) level of satisfaction with the resources offered by the conference; 5) knowledge benefit from various technical sessions; 6) compliance with effectiveness of the resources offered; and 7) preparedness in pursuing an EmTech education and workforce.

These reported parameters are considered as covariates in our study. These covariates are known correlates of outcome variables and are included in statistical models so that any observed effects of predictors (conference attendance) and moderators (returning women) on outcome variables are true over and above the effects of our covariates on outcome measures. Hence, an underlying research question we are investigating are if the attendance at the RESET conference is a predictor of returning women's elevated knowledge in (re-)entering EmTech. Fig. 2 illustrates our analytical model showing the moderating role of returning women in determining the impact of the conference.

B. Survey Instrument

There were three main survey instruments in this study: (1) post-sessions surveys for all conference sessions; (2) a post-conference survey; and (3) focus groups with volunteers to discuss their experience attending the RESET conference and their perspectives on career breaks for women in computing and tech fields.

In this paper, the results will primarily focus on the data collected from post-conference survey and the post-session surveys. Both evaluations focused on event satisfaction, understanding the challenges and barriers women face when returning to work or education in EmTech after a career break, and recommendations for improving the transition.

The Post-Conference Survey. The post-conference survey was administered to all 444 attendees at the end of the conference. 161 attendees provided feedback on the post-conference survey. A general inductive approach was used to analyze the qualitative data generated from the survey. This approach was selected because it is particularly useful in drawing clear links between research questions or objectives and data collection results. Thematic analysis was conducted for open-ended survey responses.

Post-Session Surveys. Part of the evaluation included a post-sessions survey that was administered to conference attendees after 31 of the conference sessions. 1360 responses were provided by attendees. To develop the survey, the Evaluation Team first referenced priorities and goals of the surveys discussed during the project launch, reviewed the evaluation questions in the grant narrative, and facilitated conversations with the leadership team, which was then transferred to conference platform, Whova [13].

C. Data Collection

The primary two data collection instruments, post-session survey and post-conference survey, were developed to answer the research questions and measure conference satisfaction, outcome. The main postsurvey consisted of three demographic questions, five Likert questions, 34 other questions that asked participants to report their current academic concentration, if they had any career break, if they have (re-)entered computing and/or tech education or professional pipeline, what challenges and barriers they faced and what strategies have been useful for them to reskill or upskill so they could (re-)enter. In the postsurvey, of the 161 attendees who responded to the survey, twothirds (67.74%) were undergraduate students, 12.50% were graduate sstudents, and 8.55% were faculty members. All respondents were women (100.00%) with just over half (55.26%) under the age of 30, and one-quarter (26.97%) reported that they had experienced a career break. The number of participants included in each of the data collection points are provided in Table 1.

Table 1. Goals of the conference

Data Collection	Number of Participants		
Post-Session Surveys	1360 responses		
Post-Conference Survey	161 attendees responded		

D. Demographic of the Participants

Nearly three-quarters of the 125 students who responded to the survey were at freshmen-junior level (72.00%), and the most frequently reported areas of study for respondents were Computer Science (41.00%), Data Analytics (20.00%), and Information Technology (20.00%). Most students did not have any industry experience in computing or technology fields (69.60%). Half of the students (53.61%) reported that they are currently in a computing or tech field of study, and more than one-quarter (28.31%) reported than they plan to pursue a career in computing or tech fields.

Forty-one respondents (26.97%) reported that they had experienced career breaks. Of those, 43.90% reported that their break was less than two years. In open-ended survey responses, respondents frequently cited family obligations/raising children, COVID-19, pursuing educational opportunities, and unemployment as reasons for their career breaks.

Most of these participants had at least some college education before their break (87.82%) and were working or both working and in school before their break (87.81%). Nearly two-thirds (63.17%) reported an area of study related to computing/tech. More than half of those who experienced career breaks (63.63%) found a job in computing/tech field in less than a year after their break started. Nearly half of those who reported experiencing career breaks reported that they did not participate in any training or supports during their break (45.45%), and one-quarter (27.27%) reported that they participated in skill development through free courses or other informal trainings.

IV. RESULTS

Attendees of the conference reported the degree to which they found conference informative and provided open-ended comments related to the effectiveness of different sessions. We first disaggregated the four reported parameters (i.e., covariates), which were answered a on 5-point Likert-type scale, against different characteristics of the attendees (i.e., moderator). And then we conducted a series of moderated multiple regression analyses to address our single research question. A "moderation" effect occurs when the relationship between a predictor variable (e.g., attendance at the conference) and an outcome variable (e.g., elevated preparedness to (re-)enter EmTech) depends on a moderator variable (e.g., demographic group: returning women characteristics).

In the following subsections, we first present the disaggregation of the moderator characteristics and covariates, and later we report only on the impact of our primary variables of interest to answer the research question. All of the following findings were significant at the p < .05 level.

A. Reasons for Educational Breaks

As reported in Fig. 3, the top few reasons why may have education breaks in computing as reported by survey respondents were family obligations, stereotype threat of computing and tech disciplines, lack of knowledge about diverse pathways, and financial hurdles.

Reasons for an Educational Breaks	1-2 ye	2-5 ye	6-12	Less t	More
Family obligations	13.94	12.20	11.11	13.29	13.73
Stereotype threat of computing academic programs	12.64	11.33	10.02	11.98	12.20
Lack of knowledge about diverse pathways	11.76	10.46	8.93	11.55	11.76
Finances	10.46	8.93	7.84	10.02	10.24
Lack of supportive community/network	10.02	8.50	7.63	9.59	9.59
Caregiving responsibilities	8.93	8.06	7.63	8.50	8.71
Lack of mentoring	8.28	7.41	6.10	8.06	8.06
Lack of programs for upskilling and reskilling	7.41	5.45	4.79	6.75	6.75
Career readiness	5.01	5.01	4.79	5.01	5.01
Educational requirements	5.01	4.36	3.92	4.79	4.79
Lack of diverse pathways	5.01	4.14	3.49	4.36	4.36
lack of exposure to what tech can mean	0.22	0.22	0.22	0.22	0.22

Figure 3. Top reasons for education break in computing

B. Reasons for Career Breaks

CategoryCareerBreak	1-2 ye	2-5 ye	6-12	Less t	More
Family obligations	23.08	25.64	23.08	23.08	25.64
Complete a degree	20.51	20.51	20.51	20.51	20.51
Care giving	17.95	20.51	17.95	17.95	17.95
Covid-19 Pandemic	12.82	12.82	12.82	12.82	12.82
Lack of returnship programs	7.69	7.69	7.69	7.69	7.69
Taking different occupation	2.56	2.56	2.56	2.56	2.56
Laid off	2.56	5.13	2.56	5.13	2.56
Health issues	2.56	2.56	2.56	2.56	2.56

Figure 4. Top Reasons for career break in computing

As reported in Fig. 4, the top few reasons why women may have break in computing and tech careers included family obligations, lack of degree completion opportunities, lack of reentry programs (returnships), Covid-19 pandemic, caregiving responsibilities, and lack of supportive community/network

C. Mitigating Barriers for Women

More than 90% of respondents reported that as a result of attending RESET, they have a better understanding of the barriers women face in (re-)entering computing education (92.35%) and the barriers they face (re-)entering computing and tech careers (94.27%). They also noted, at similar rates, that they learned ideas of how to overcome barriers to (re-)entering tech fields (92.36%) as well as gained a deeper understanding of their role in helping to mitigate barriers (91.08%) and of the actions they can take to help mitigate the barriers that women face (90.45%).

Conference attendees reported that after attending conference, they were better equipped to help address barriers for women through an increased understanding and awareness of the barriers and the resources available to them, the ways in which they can be part of a support system, and their own self-confidence. These themes arose most frequently from the 98 women who provided feedback on the ways in which they're more equipped to help than they were before attending the conference. The most common themes based on the thematic analysis are -1) Increased Awareness of Barriers and Resources, 2) Support Systems, and 3) Self-Confidence.

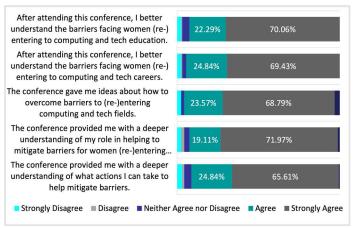


Figure 5. Understanding of barriers and action items

D. Level of Satisfaction

Overall, conference attendees were satisfied with the conference. 95.03% of attendees reported that they were somewhat or very satisfied with the conference. Of those, nearly 85% (84.847%) reported that they were very satisfied. Open-ended survey responses reflected this positive assessment of the conference as well, and these responses are provided throughout the findings in the report.

Additionally, conference attendees were satisfied with the sessions they attended. 27 of the 31 sessions that attendees completed post-session surveys for had a satisfaction of rate of 90.00% or greater.

E. Knowledge Benefit from Various Technical Sessions

Similarly, at least three-quarters of respondents (77.70%), which included attendees having career break as well, reported benefits of attending the conference that aligned with the same three themes: inspiration, networks of support, and skills/knowledge acquisition.

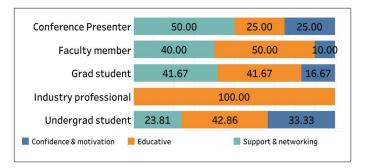


Figure 6. Benefit of attending conference vs different groups

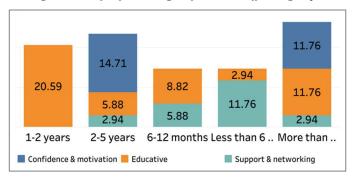


Figure 7. Benefit of attending conference vs career break

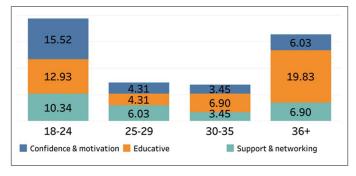


Figure 8. Benefit of attending conference vs age group

Respondents most frequently agreed that they had gained new skills or information that will help them advance their careers (86.63%), felt more inspired about the opportunities ahead of them (85.35%), and increased their network (77.70%) (Fig. 6-9). This pattern of responses existed and were common when we disaggregated the responses based on different subgroups of user population (ex. age group, length of career break, academic major, and academic or professional level of user).

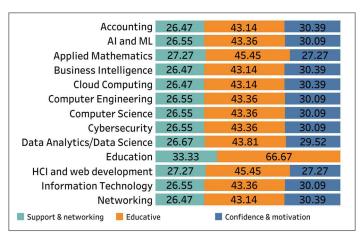


Figure 9. Benefit of attending conference vs current major

F. Compliance with Effectiveness of the Resources Offered

All respondents reported that they learned at least some of what they had hoped to learn at the conference, and 83.23% of respondents reported that they learned what they hoped to (Fig. 10-11).

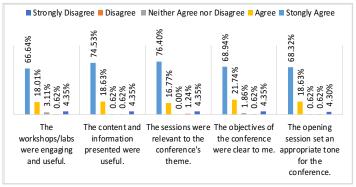


Figure 10. Attendees' compliance with effectiveness of the sessions

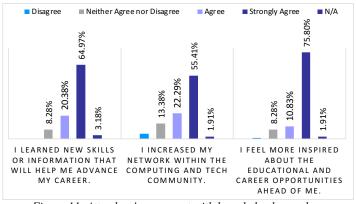


Figure 11. Attendees' agreement with knowledge learned

Respondents who reported that they learned what they hoped to at the conference expressed that they hoped to learn about "advances in technology and the tech field," "opportunities for women in STEM," "how to better navigate the tech field as a woman," and "I was hoping to learn about other women's experiences in the STEM field."

For respondents who reported that they learned some of what they had hoped to at the conference, they responded with similar hopes for the conference, and added that they hoped to learn "specific practices individual faculty can use to make their classes more inclusive, mentoring strategies, etc.," and "I was hoping to learn more practical skills."

G. Preparedness in Pursuing EmTech Education and Workforce

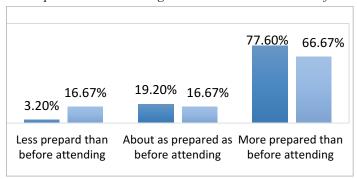


Figure 12. Preparedness to pursue a future in EmTech

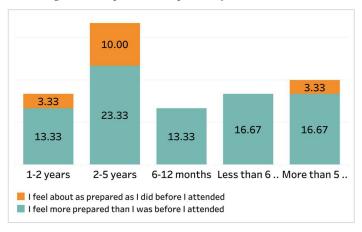


Figure 13. Preparedness to pursue EmTech vs career break

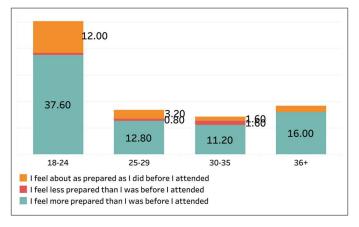


Figure 14. Preparedness to pursue EmTech vs age group

More than 90% of respondents reported that because of attending the conference they have a better understanding of the barriers women face in (re-)entering computing education (92.35%) and the barriers they face (re-)entering computing and tech careers (94.27%) (Fig. 12-16). They also noted, at similar

rates, that they learned ideas of how to overcome barriers to (re-)entering tech fields (92.36%) as well as gained a deeper understanding of their role in helping to mitigate barriers (91.08%) and of the actions they can take to help mitigate the barriers that women face (90.45%).

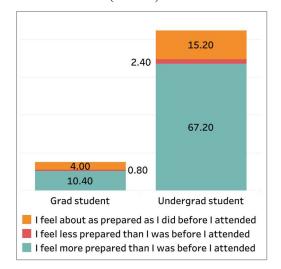


Figure 15. Preparedness to pursue EmTech vs different groups

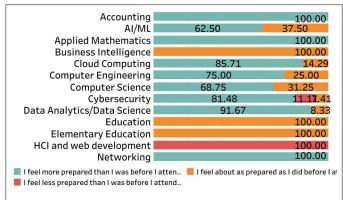


Figure 16. Preparedness to pursue EmTech vs current major

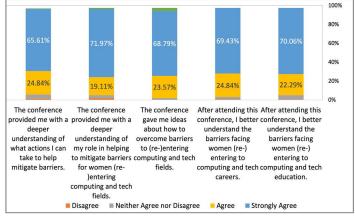


Figure 17. Attendees' feedback on their experience at the conference

Conference attendees reported that after attending the conference, they were better equipped to 1) address barriers for women through an increased understanding and awareness of

the barriers and the resources available to them, 2) the ways in which they can be part of a support system, and 3) their own self-confidence. These themes arose most frequently from the 98 women who provided feedback on the ways in which they're more equipped to help than they were before attending the conference (Fig. 17).

H. Measured Outcomes

Based on multiple linear regression analysis, here we briefly present output for simple effects of our main predictor on the outcome which is, returning women's' elevated knowledge in (re-)entering EmTech. Our results show that returning women experienced enhanced knowledge level in (1) (re-)entering EmTech education (avg. effect = 1.52, 95% CI = [0.27, 2.74]), (2) (re-)entering EmTech workforce (avg. effect = 1.42, 95% CI = [0.27, 2.53]), (3) learned more about the barriers and challenges in re-entry to EmTech (avg. effect = 1.20, 95% CI = [0.22, 2.18]). However, the relationship between exposure to conference facilitated resources' effect is stronger for returning women vs women who did not experience any break at all.

V. SUGGESTED STRATEGIES

Several key suggestions arose across focus group respondents and survey respondents who provided feedback on the ways in which academia and industry could create a smoother transition for women entering or re-entering computing or technology fields of study. Sample responses are provided for each suggestion.

- a) Academia could help mitigate barriers for women in STEM or technology fields through acting on the following recommended strategies:
 - Provide flexibility in scheduling
 - Increase pathways into stem education
 - Create more connections to industry partners
 - Provide mentoring
 - Seek to improve student culture for women
 - Offer more supports, like scholarships, to women
- b) Industry leaders could help mitigate barriers for women in STEM or technology fields through implementing the following suggestions:
 - Offer increased flexibility in work environments
 - Instill a willingness to take a chance on lesstraditional candidates
 - Provide more mentorship and at-work advocates for women
 - Create returnship and apprenticeship opportunities for on-the-job learning
 - Drive a company culture change

VI. POST-CONFERENCE IMPACT

Nearly 95% of respondents (94.77%) reported that they would recommend the resources provided through the conference to their peers. Only seven respondents reported a neural or negative response to sharing the resources provided. One hundred sixteen conference attendees also reported on the most important benefits that they gained from attending the conference. Their responses fell into three common themes: 1) a network of women to support them; b) inspiration as they continue their career paths; and 3) knowledge and practical information.

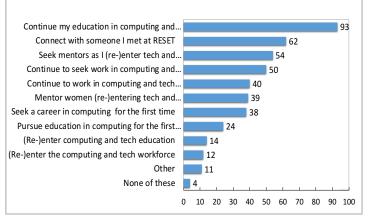


Figure 18. As a Result of Attending, I Intend to (n=153)

Conference attendees reported that after attending the conference, they were most likely to continue their education in computing and tech fields, connect with someone they met at the conference, seek mentors, and continue to seek work in computing and tech fields (Fig. 18). Participants were asked to "check all that apply," and as such the chart below provides frequencies of responses, rather than percentages. Less than 10.00% of respondents reported that they were likely to (re)enter computing and tech education or workforce (15 respondents), other (11 respondents), or none of these (4 respondents). Responses for "other" included, "continue to find conferences like this," "continue my community engagement using comp sci and emergent technologies," and "fuse the knowledge I learn from tech and computing with my passion for public health (Interdisciplinary)".

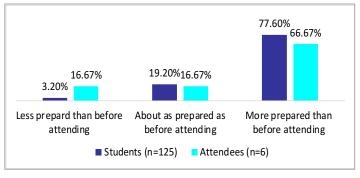


Figure 1. Preparedness for Pursing a Future in Computing/Tech

Additionally, students and attendees were asked to report on their preparedness for pursuing a future in EmTech after attending in the conference. More than three-quarters of students (77.60%) and two-thirds of attendees (66.67%) reported that they felt more prepared to pursue a future in computing than they did before they attended the conference (Fig. 19). Nearly all the responses were positive, and attendees affirmed that they were pleased with the conference.

Sample responses included:

- "All the speakers were amazing. They came from a variety of backgrounds and tech careers."
- "I just want to say thank you to the sponsors, the organizers, the volunteer team, the speakers. Even the attendees, it was a successful life changing experience."
- "I will suggest a combination of workshops and talks early in the conference. The talks were amazing, but the workshops drive the learning. Perhaps morning talks and afternoon workshops or vice versa."
- "I'd love to see this conference offered again. I know that at SWE societal conferences, they have re-entry sessions. If the conference can't be offered again, perhaps there can be re-entry tracks at, Grace Hopper and other similar conferences."
- "This is the first I heard of the conference and several of my fellow female classmates were interested in attending. Especially women of color. I wish more people knew."
- "Workshops were truly relevant technical skills."
- "You found incredible women to attend and give conferences, I learned a lot from each of them."

VII. LIMITATIONS AND DISCUSSION

A. Credibility of Data and Limitations

To attempt various limitations of the research study, the Evaluation Team took advantage of several key tactics --

- *Triangulation:* The evaluation team took an opportunity embedded in mixed-methods evaluation, the triangulation of data. Findings that have been corroborated through triangulation tend to be sufficiently robust and credible. Hence, in this study, by comparing findings based on different data sources and using approaches that incorporate both evidence and negative evidence (i.e., data that do not support findings), the Evaluation Team employed several key tactics to solidify and strengthen the accuracy and credibility of study findings. This was done through creating a robust and dynamic depiction of implementation [14].
- Researcher effect: By using dynamic debriefing, internal meta-evaluation reviews, and inter-rater reliability, the evaluation team monitored for potential researcher bias.
- *Collaborative inquiry:* By presenting findings to conference chairs and stakeholders for elaboration, corroboration, and modification, the evaluation team confirmed and updated analyses. Additionally, by sharing findings with intended users as they emerged, the team built a collaborative relationship with stakeholders by presenting higher quality findings and increasing the likelihood of user-relevant findings.

B. Evidence of achievement

Overall, the conference met its three main goals, and those who attended the conference were very satisfied with the event itself, the ways in which it empowered them to think more proactively about barriers for women (re-)entering STEM and tech fields and how to mitigate them, and the key learnings that they took from the conference. Attendees reported that the conference, the presenters, the networks established, and the knowledge they gained from the sessions will benefit them as they continue to pursue education and careers in computing and technology fields moving forward. Table 2 below demonstrates the evidence of achievement for each of the conference goals.

Table 2. Conference Goals Achievement

Conference Goal	Evidence of Achievement
Goal 1: Identify the barriers for returning women to enter EmTech education and workforce	Survey respondents reported similarly on key barriers, both from their own lived experiences through post-conf survey and from what they learned in conference sessions
Goal 2: Inform best practices to create effective re-entry strategies in EmTech for returning women	Meaningful recommendations were provided by the conference attendees in surveys to inform the field of ways to better support re-entry for EmTech women into both academia and industry settings
Goal 3: Connect with scholars, policy makers and leaders to make change in EmTech	Throughout the pot-conference and post-session survey data, participants noted the value of the connections they made with other attendees and presenters, the importance of networking, and the ways in which an intentional network of support is meaningful as they further their pursuits in the field

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 1953431 & 1932662. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

IX. REFERENCES

- [1] U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics. Integrated Postsecondary Education Data System (IPEDS): Completions Survey. (2015). Available: https://nces.ed.gov/ipeds/use-the-data (last accessed July 24).
- [2] National Science Foundation. CISE Strategic Plan for Broadening Participation. (2012). https://www.nsf.gov/cise/oad/cise bp.jsp.

- [3] Stewart Zweben and Betsy Bizot. 2016. 2015 Taulbee Survey: Continued booming undergraduate CS enrollment: Doctoral degree production dips slightly. Computing Research News 28, 5 (2016), 2–60.
- [4] S. Zweben and B. Bizot. 2017. 2016 Taulbee Survey: Generation CS continues to produce record undergrad enrollment; Graduate degree productionrises at both master's and doctoral levels. Computing Research News 29, 5 (2017), 3–51.
- [5] S. Zweben and B. Bizot. CRA Taulbee Survey: Another year of record undergrad enrollment: Doctoral degree production steady while master's production rises again. Computing Research News 30, 5 (2018), 2–48. Available: https://cra.org/crn/2018/05/2017cra-taulbee-survey-another-year-of-record-undergradenrollment-doctoral-degree-production-steady-while-mastersproduction-rises-again/ (last accessed Jul 24.)
- [6] Emerson. 2018. Emerson Survey: 2 in 5 Americans Believe the STEM Worker Shortage is at Crisis Levels. (2018). Avilable: https://www.emerson.com/en-us/news/ corporate/2018-stemsurvey (last accessed July 24)
- [7] R. Rawlings. Goss. Data Science Careers, Training, and Hiring. Springer International Publishing, (2019).
- [8] N. Soni, E. K. Sharma, N. Singh & A. Kapoor. Artificial Intelligence in Business: From Research and Innovation to

- Market Deployment. Procedia Computer Science, (2020), vol. 167, pp. 2200-2210.
- [9] A. Tappe. A Shocking Number of Women Dropped Out of the Workforce Last Month, (2020) Available: https://www.cnn.com/2020/10/07/economy/women-workforcecoronavirus/index.html
- [10] R. E. Dwyer, R. Hodson and L. Mccloud. Gender, Debt, and Dropping Out of College. Gender & Society, (2012), vol. 27, no. 1, pp. 30-55.
- [11] A. Khanam, U. Quraishi & H. Nazir. A Study of Reasons and Implications of the Dropout Phenomenon in Women at University. Journal of Research & Reflections in Education, (2016), vol. 10, no. 2, pp. 159-172
- [12] P. Mabrouk. Survey Study Investigating the Significance of Conference Participation to Undergraduate Research Students. Journal of Chemical Education, (2009), vol. 86, no. 11 pp. 1335– 1340.
- [13] Whova. https://whova.com/
- [14] J. Brewer & A. Hunter. Foundations of multimethod research: synthesizing styles, 2nd ed., (2006,)Thousand Oaks, CA: Sage publishing.